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Abstract Stochastic competitive models with pollution and without pollution are
proposed and studied. For the first system with pollution, sufficient criteria for ex-
tinction, nonpersistence in the mean, weak persistence in the mean, strong persistence
in the mean, and stochastic permanence are established. The threshold between weak
persistence in the mean and extinction for each population is obtained. It is found that
stochastic disturbance is favorable for the survival of one species and is unfavorable
for the survival of the other species. For the second system with pollution, sufficient
conditions for extinction and weak persistence are obtained. For the model without
pollution, a partial stochastic competitive exclusion principle is derived.

Keywords Competitive model · Polluted environment · Stochastic disturbance ·
Stochastic competitive exclusion principle

1 Introduction

The question of the effects of toxicants and pollutants on ecological communities
is interesting from both theoretical and practical points of view. For example, Nel-
son (1970) studied oil pollution in the sea, Jensen and Marshall (1982) analyzed the
dumping of toxic waste in rivers and lakes, and Shukla et al. (1989) investigated the
degradation of forests.

Recently, in a series of papers (Hallam et al. 1983a, 1983b; Hallam and Deluna
1984), Hallam and his coworkers studied the effects of toxicants on various ecosys-
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tems by utilizing mathematical models. From then on, many deterministic mod-
els were proposed and analyzed, for example (Chattopadhyay 1996; Freedman and
Shukla 1991; Hallam and Ma 1986, 1987; He and Wang 2007, 2009; Hsu et al. 1995;
Liu and Ma 1991; Luna and Hallam 1987; Ma et al. 1989; Shukla and Dubey 1996;
Thomas et al. 1996). Particularly, Liu and Ma (1991) investigated the effects of tox-
icants on two species under the assumption that the capacity of the environment is
so large that the change of toxicants in the environment that comes from uptake and
egestion by the organisms can be neglected.

Those important and useful studies on deterministic models provide a great in-
sight into the effects of the pollution, but in the real world, population dynamics is
inevitably affected by environmental white noise which is an important component
in an ecosystem (see, e.g. Gard 1984, 1986, 1988). The deterministic models assume
that parameters in the systems are all deterministic irrespective environmental fluc-
tuations. Hence, they have some limitations in mathematical modeling of ecological
systems; besides, they are quite difficult to fitting data perfectly and to predict the fu-
ture dynamics of the system accurately (Bandyopadhyay and Chattopadhyay 2005).
May (2001) pointed out the fact that due to environmental noise, the birth rates, car-
rying capacity, competition coefficients, and other parameters involved in the system
exhibit random fluctuation to a greater or lesser extent.

There are a few successful studies on stochastic models in a polluted environment
(see, e.g. Gard 1992; Liu and Wang 2009, 2010; Samanta and Maiti 2004). Particu-
larly, Gard (1992) proposed a stochastic model by introducing stochastic production
rate. Under the assumption that the concentration of toxicant in the organism is a
constant, the author obtained conditions for the existence of an invariant distribution
on (0,+∞). Then Liu and Wang (2009, 2010) studied some stochastic single-species
models in a polluted environment without the constant assumption. However, all of
those results deal only with single-species models. As population does not exist alone
in nature, it is of more biological significance to study the persistence and extinction
problems of each population in systems of two or more interacting species subjected
to toxicant. As far as we know, a very little amount of work has been done with the
stochastic competitive model with toxicants effect, and little is known of the impact
of random noise on the survival of species living in a polluted environment. Motivated
by these, in the first part of this study, we shall propose and study two competitive
models which account for random noise in a polluted environment.

The second part of this study devotes to investigating the stochastic competitive
exclusion principle. Consider a deterministic competitive model

(M0) :

⎧
⎪⎨

⎪⎩

dx1

dt
= x1[r10 − a11x1 − a12x2],

dx2

dt
= x2[r20 − a21x1 − a22x2],

where xi(t) is the population size of the ith species at time t , ri0, which denotes the
intrinsic growth rate of the ith population is a constant, aij , which measures the ac-
tion of species j upon the growth rate of species i (in particular, aii represents the
intraspecific competition coefficient of species i), is a positive constant. It is well
known that, for model M0, there is a classical deterministic competitive exclusion
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principle or Gause’s Law of competitive exclusion (Hardin 1960). The Competitive
exclusion principle, which can be regarded as a classical and fundamental theoretical
development in community ecology tells us that, if both a12 and a21 are sufficiently
large, then x1 and x2 competing for the same resources cannot stably coexist. The
two competitors will always compete with each other which leads to either the ex-
tinction of one of the competitors or an evolutionary or behavioral shift towards a
different ecological niche. If “competition is always favored” (i.e., both a12 and a21

are sufficiently small such that interspecific competition is lower than intraspecific
competition), then the two competitors will stably coexist and obey

lim
t→+∞x1(t) = a22r10 − a12r20

a11a22 − a12a21
, lim

t→+∞x2(t) = a11r20 − a21r10

a11a22 − a12a21
.

If one of a12 and a21 is small and another is large, for example, a12 is large and a21

is small, then x1 will go to extinction and x2 will survive, and moreover

lim
t→+∞x2(t) = r20/a22.

Since population dynamics is inevitably affected by environmental white noise, it is
worth while to study the stochastic system to find out whether the disturbance affects
competitive exclusion principle from the biological and ecological points of view.
From our results, it is easy to see that, similar to the deterministic competitive exclu-
sion principle, competitive coefficients also play a very important role in determining
persistence, or extinction of populations in stochastic model, which are neglected by
all relevant known references.

The rest of the paper is arranged as follows. In Sect. 2, we are going to develop
two stochastic competitive models in a polluted environment. In Sect. 3, we will carry
out the survival analysis for the first competitive system (model (SM1)) and obtain
some sufficient conditions for extinction, nonpersistence in the mean, weak persis-
tence in the mean, strong persistence in the mean, and stochastic permanence. The
threshold between weak persistence in the mean and extinction will be established for
each species. In Sect. 4, we are going to carry out the survival analysis for the sec-
ond competitive system (model (SM2)). Sufficient conditions for extinction and weak
persistence will be obtained; especially, the threshold between weak persistence and
extinction will be established for the single-species case. In Sect. 5, a partial sto-
chastic competitive exclusion principle will be derived. In Sect. 6, we shall work out
some figures to illustrate the various theorems obtained in Sects. 3–5. The last section
devotes to the conclusions and future directions of our research.

2 The Basic Models

From now on, unless otherwise specified, we shall always work on a given complete
probability space (Ω, F , P ) with a filtration {Ft }t≥0 satisfying the usual conditions.
Bi(t) stands for a given standard Brownian motion defined on the probability space,
i = 1,2.
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Our study relies on the assumption that the environment is of complete spatial
homogeneity and there is no migration. The individual organisms in the population
are assumed to be nongrowing. Let C0(t) stand for the concentration of toxicant in
the organism at time t ; CE(t) is the concentration of toxicant in the environment at
time t . The unit of C0 is in terms of m−1

0 mT , CE is in terms of m−1
E mT , where m0

denotes the units of mass of the organism, mT represents mass of toxicant, and mE

stands for the units of the mass of the environment. Assume that the living organisms
absorb environmental toxicants into their bodies, the dynamics of the population is
affected by internal toxicant. Let bi (in units: t−1) and di (t−1) be the birth rate and
the death rate of the ith population, respectively, i = 1,2.

A coupling between species and toxicant is obtained by assuming that the intrinsic
growth rate of the ith population, bi − di , is a linear function of concentration of
toxicant present in the organism:

bi − di = ri0 − ri1C0,

where ri0 has unit in terms of t−1 and ri1 has unit t−1m0m
−1
T .

We assume that the population dynamics is given as follows:

dx1

dt
= x1

[
r10 − r11C0(t) − a11x1 − a12x2

]
, (1)

dx2

dt
= x2

[
r20 − r21C0(t) − a21x1 − a22x2

]
, (2)

where aij has unit in terms of t−1m−1
0 , i, j = 1,2. The model consisting of (1) and

(2) as well as initial conditions

xi(0) > 0, C0(0) = 0 (3)

will be referred to as model (M).
As said above, population systems are often subject to environmental fluctuations.

Generally speaking, such fluctuations could be modeled by a colored noise (see, e.g.
Arnold 1974). It has been noted that (see, e.g. Arnold 1974; Braumann 2002; Øsendal
1998) if the colored noise is not strongly correlated, then we can approximate the
colored noise by a white noise, and the approximation works quite well. Thus, many
authors introduced the white noise into population dynamics to study the effect of the
environmental fluctuations in population system. Currently, there are two main ways
considered in the literatures to introduce the white noise into Lotka–Volterra system.
One is to assume that the most sensitive parameter is the intrinsic growth rate ri0
for it is the parameter most influential in the regulation of the fate of young recruits
after reproduction, a very sensitive phase in the life cycle. The other one is to assume
that the noise affects the removal processes (which represent those related to aij xixj )
mainly. The studies (Beddington and May 1977; Braumann 2002, 2008; Gard 1992;
Li and Mao 2009; Liu and Wang 2009, 2010; Pang et al. 2008; Rudnicki and Pichor
2007; Zhu and Yin 2009) are the former case while the investigations (Bahar and Mao
2004; Du and Sam 2006; Luo and Mao 2007; Mao et al. 2002, 2003; Mao 2005) are
the latter type.
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Firstly, let us consider the former way. Recall that the parameter ri0 represents
the intrinsic growth rate. In practice, we usually estimate it by an average value plus
errors. In general, by the well-known central limit theorem, the error term follows a
normal distribution; thus, for short correlation time, we may replace the rate ri0 by
ri0 → ri0 + αiḂi(t), where Ḃi(t) is the white noise, and αi is a positive constant
representing the intensity of the white noise. Then (1) and (2) can be described by the
Itô equations:

dx1 = x1
[
r10 − r11C0(t) − a11x1 − a12x2

]
dt + α1x1 dB1(t), (4)

dx2 = x2
[
r20 − r21C0(t) − a21x1 − a22x2

]
dt + α2x2 dB2(t). (5)

Here, it is useful to point out that there is no limitation on the relationship between
B1(t) and B2(t). The random noises B1(t) and B2(t) could be independent. They
could also be correlated, which corresponds to the situation when the same factor
(like an epidemic disease) influences both populations x1 and x2. The model con-
sisting of (4) and (5) as well as initial conditions (3) will be referred to as model
(SM1).

If we assume that the noise affects the parameter aij mainly, with −aij → −aij +
σij Ḃij (t), which results in a new stochastic form

dx1 = x1
[
r10 − r11C0(t) − a11x1 − a12x2

]
dt

+ σ11x
2
1 dB11(t) + σ12x1x2 dB12(t), (6)

dx2 = x2
[
r20 − r21C0(t) − a21x1 − a22x2

]
dt

+ σ21x1x2 dB21(t) + σ22x
2
2 dB22(t), (7)

where σij is the intensity of the white noise Ḃij (t), i, j = 1,2. The model consisting
of (6) and (7) as well as (3) will be referred to as model (SM2). Here, we use the Itô
calculus not the Stratonovich calculus on the grounds that, on the one hand, models
(SM1) and (SM2) “are approximations to age-structured populations, with popula-
tions growth taking place in discrete time steps” (see, e.g. Beddington and May 1977;
Braumann 2007; Ludwig 1975); On the other hand, the specific feature of the
Itô model of “not looking into the future” “is a reason for choosing the Itô in-
terpretation in many cases, for example, in biology” (see, e.g. Øsendal 1998;
Turelli 1977). However, our general conclusions are not dependent on the choice be-
tween the two calculi because there is an explicit connection between the two calculi
(we refer the reader to Øsendal 1998, p. 36 for more details of this explicit connec-
tion). For more biological motivation on this type of modeling in population dynam-
ics, we refer the reader to (Gard 1984, 1986, 1988).

Now, we are in the position to introduce the model of the concentration of environ-
mental toxicants. For the details of the modeling process, we refer the reader to (Liu
and Wang 2009). We suppose that C0(t) and CE(t) obey the following equations:

dC0(t)

dt
= a1CE(t) − p1θβ/a1 − (l1 + l2)C0(t), (8)
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dCE(t)

dt
= −hCE(t) + u(t), (9)

where the first two terms on the right in (8) denote the organismal net uptake of toxi-
cant from the environment and the food chain, respectively; the third term represents
the organismal net loss of toxicant due to metabolic processing and other causes. The
parameters a1,p1(≤ a1), θ,β, l1, and l2 are positive constants, a1 denotes environ-
mental toxicant uptake rate per unit mass organism; p1, the uptake rate of toxicant in
food per unit mass organism; θ , the concentration of toxicant in the resources; β , the
average rate of food intake per unit mass organism. l1 and l2 are organismal net in-
gestion and deportation rates of toxicant, respectively. The positive constant h in (9)
represents the loss rate of toxicant from the environment including processes such as
biological transformation, chemical hydrolysis, volatilization, microbial degradation,
and photosynthetic degradation. The exogenous rate of input of toxicant into the envi-
ronment is represented by u(t). Here, u(t) is restricted by 0 ≤ U1 ≤ u(t) ≤ U2 < +∞
for constants U1 and U2 for all t ∈ [0,+∞).

The system consisting of (4), (5), (8), and (9) as well as initial conditions
xi(0) > 0, C0(0) = CE(0) = 0 will be referred to as model (GSM1). The system
consisting of (6), (7), (8), and (9) as well as initial conditions xi(0) > 0,C0(0) =
CE(0) = 0 will be referred to as model (GSM2). One aim of this research is to find
the conditions on u(t) such that population xi(t) modeled by (GSMk) is persistent or
extinct, i, k = 1,2. From the standpoint of mathematics, the question is to investigate
the asymptotic behavior of the solution for the nonautonomous stochastic system
(GSMk). Since (8) and (9) in (GSMk) are linear in C0 and CE , respectively; they
are explicitly solvable. Therefore, the key of our problem is to find the conditions
for persistence and extinction of each species through C0(t) for the two-dimensional
subsystem (SMk).

For the sake of convenience and simplicity, we define the following notations:

Community interaction matrix: A =
(

a11 a12

a21 a22

)

R+ := [0,+∞); ϑ := r11
(
r20 − α2

2/2
)− r21

(
r10 − α2

1/2
);

Δ := detA = a11a22 − a12a21;

Δ1 := a22
(
r10 − α2

1/2
)− a12

(
r20 − α2

2/2
);

Δ2 := a11
(
r20 − α2

2/2
)− a21

(
r10 − α2

1/2
);

Φ1 := a22r11 − a12r21; Φ2 := a11r21 − a21r11.

The following definitions are commonly used (see, e.g. He and Wang 2007, 2009;
Liu and Wang 2009) and we list them below.

Definition 1 1. The population x(t) is said to go to extinction if limt→+∞ x(t) = 0.
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2. The population x(t) is said to be nonpersistent in the mean if
limt→+∞〈x(t)〉 = 0, where 〈f (t)〉 := 1

t

∫ t

0 f (s) ds;
3. The population x(t) is said to be weakly persistent if x∗ > 0, where f ∗ :=

lim supt→+∞ f (t).
4. The population x(t) is said to be weakly persistent in the mean if 〈x〉∗ > 0.

In this study, we also need the following definitions:

Definition 2 5. The population x(t) is said to be strongly persistent in the mean if
〈x〉∗ > 0, where f∗ := lim inft→+∞ f (t).

6. Model (SM1) is said to be stochastically permanent if for any ε ∈ (0,1), there
exists a pair of positive constants β = β(ε) and χ = χ(ε) such that for any initial
value x(0) = (x1(0), x2(0)) ∈ R2+, the solution obeys

lim inf
t→+∞ P

{∣
∣x(t)

∣
∣ :=

√

x2
1(t) + x2

1(t) ≤ χ
}≥ 1 − ε,

lim inf
t→+∞ P

{∣
∣x(t)

∣
∣≥ β

}≥ 1 − ε.

It follows from the above definitions that strong persistence in the mean implies
weak persistence in the mean, weak persistence in the mean indicates weak persis-
tence, extinction means nonpersistence in the mean. But generally, the reverse of the
above reasoning is not true.

There are many methods to analysis deterministic system, such as Lyapunov func-
tions, coincidence degree theory, Jacobian matrix, and so on. But there is lack of
mathematical machinery available to analyze the stochastic system. One of the cur-
rent approaches for studying stochastic system is to make use of Fokker–Planck equa-
tion (see, e.g. Gard 1992). However, on the one hand, (SMi ) is a nonautonomous
two-dimensional stochastic model, which corresponding Fokker–Planck equation is
not an ordinary differential equation but a partial differential equation, i = 1,2. On
the other hand, the uniform boundedness of x1 and x2 in deterministic model (M)

(obviously, xi(t) < ri0/aii if xi(0) < ri0/aii , i = 1,2) is destroyed in model (SMi )

by stochastic disturbance. It is well known that boundedness is a very important prop-
erty in the proof. For example, the successful study Liu and Ma (1991) is based on
the fact that the solutions of their deterministic models are bounded. In this work, we
mainly use Itô’s formula, the theory of stochastic equation, and Lyapunov functions
to analyze the properties of system (SMi ).

3 The Survival Analysis for Model SM1

We have two fundamental assumptions to model (SM1).

Assumption 1 r10 > α2
1/2 and r20 > α2

2/2.

Assumption 2 Δ1 > 0 and Δ2 > 0.
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The reasons why we assume r10 > α2
1/2, r20 > α2

2/2 and Δ1 > 0,Δ2 > 0 as well
as the biological interpretations of these assumptions will be given in Remark 5. It is
useful to point out that if r10 > α2

1/2 and r20 > α2
2/2, then Δ1 > 0 and Δ2 > 0 mean

Δ > 0.

First, let us prepare some lemmas.

Lemma 1 For model (SM1), with any given initial value x(0) = (x1(0), x2(0)) ∈ R2+,
there is an unique solution x(t) = (x1(t), x2(t)) on t ≥ 0 and the solution will remain
in R2+ with probability one.

The proof of Lemma 1 can be found in Li and Mao (2009). There a more general-
ized result about the existence and uniqueness of the global solution was given.

Since both C0(t) and CE(t) in models (GSM1) and (GSM2) are concentrations of
the toxicant, so the inequalities 0 ≤ C0(t) < 1,0 ≤ CE(t) < 1 for all t ∈ R+ must be
satisfied to be realistic. In fact, by solving (8) and (9) we have the following lemma.

Lemma 2 For models (GSM1) and (GSM2), if 0 < a1 + d1θβ/a1 < l1 + l2,U2 ≤ h,

then 0 ≤ C0(t) < 1,0 ≤ CE(t) < 1 for allt ∈ R+.

From now on, we impose 0 < a1 + d1θβ/a1 < l1 + l2,U2 ≤ h on systems (GSM1)

and (GSM2). The following two lemmas will play an important role in obtaining our
results.

Lemma 3 For model (SM1), we have {lnxi(t)/t}∗ ≤ 0, i = 1,2.

The proof of this and subsequent results are deferred until the Appendix.

Lemma 4 Suppose x(t) ∈ C[Ω × R+,R0+], where R0+ := {a|a > 0, a ∈ R}.
(I) If there are positive constants λ0, T and λ ≥ 0 such that

lnx(t) ≤ λt − λ0

∫ t

0
x(s) ds +

n∑

i=1

βiBi(t) (10)

for t ≥ T , where βi is a constant, 1 ≤ i ≤ n, then 〈x〉∗ ≤ λ/λ0, a.s. (i.e., almost
surely).

(II) If there are positive constants λ0, T and λ ≥ 0 such that

lnx(t) ≥ λt − λ0

∫ t

0
x(s) ds +

n∑

i=1

βiBi(t)

for t ≥ T , where βi is a constant, 1 ≤ i ≤ n, then 〈x〉∗ ≥ λ/λ0, a.s.

Now, we are in the position to establish our threshold theorems.



Stochastic competitive model 1977

Theorem 1 For species x1(x2) modeled by (SM1), if 〈C0〉∗ > μ(ν), then x1 (x2) will
go to extinction a.s., where

μ :=
{

(r10 − α2
1/2)/r11, ϑ ≤ 0,

Δ1/Φ1, ϑ ≥ 0;

ν :=
{

Δ2/Φ2, ϑ ≤ 0,

(r20 − α2
2/2)/r21, ϑ ≥ 0.

Theorem 2 If 〈C0〉∗ = μ(ν), then x1 (x2) will be nonpersistent in the mean a.s.

Theorem 3 If 〈C0〉∗ < μ(ν), then x1 (x2) will be weakly persistent in the mean a.s.

Remark 1 From Theorems 1–3, we know that x1 (x2) will go to extinction if and
only if 〈C0〉∗ > μ(ν); x1 (x2) will be weakly persistent in the mean if and only if
〈C0〉∗ < μ(ν). At the same time, it is easy to see that the 〈C0〉∗ − μ(〈C0〉∗ − ν) is
the threshold between weak persistence in the mean and extinction for x1 (x2). More
precisely.

(a) If ϑ < 0, then ν < μ. If 〈C0〉∗ > μ, then both x1 and x2 will go to extinction;
If ν < 〈C0〉∗ < μ, then x1 will be weakly persistent in the mean and x2 will go to
extinction; If 〈C0〉∗ < ν, then both x1 and x2 will be weakly persistent in the mean.
This shows that the ability of x1 to resist toxicant is stronger than that of x2 if ϑ < 0.
From a biological point of view, since ϑ < 0, r21(r10 − α2

1/2) > r11(r20 − α2
2/2),

which implies that x1 owns larger intrinsic growth rate and smaller dose-response
parameter to the organismal toxicant concentration, then it is more possible for x1 to
survive.

(b) If ϑ = 0, then ν = μ. If 〈C0〉∗ > μ, then both x1 and x2 will go to extinction;
If 〈C0〉∗ < μ, then both x1 and x2 will be weakly persistent in the mean. This implies
that the abilities of x1 and x2 to resist toxicant are equal if ϑ = 0.

(c) If ϑ > 0, then ν > μ. If 〈C0〉∗ > ν, then both x1 and x2 will go to extinction. If
μ < 〈C0〉∗ < ν, then x1 will go to extinction and x2 will be weakly persistent in the
mean; If 〈C0〉∗ < μ, then both x1 and x2 will be weakly persistent in the mean. This
means that the toxicant-resistant ability of x2 is stronger than that of x1 when ϑ > 0.
The biological interpretation is similar to the case ϑ < 0.

In the above, we have established the threshold between weak persistence in
the mean and extinction for species xi modeled by (SM1), i = 1,2. Now, we shall
strengthen the conditions to give some other persistence results. Without loss of gen-
erality, in the following theorem, we suppose that 〈C0〉∗ < μ and 〈C0〉∗ < ν.

Theorem 4 If limt→+∞〈C0(t)〉 exists, and suppose that

Δ1 − Φ1 lim
t→+∞

〈
C0(t)

〉
> 0, Δ2 − Φ2 lim

t→+∞
〈
C0(t)

〉
> 0,
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then both species x1 and x2 represented by (SM1) will be strongly persistent in the
mean almost surely, and moreover

lim
t→+∞

〈
x1(t)

〉=
(
Δ1 − Φ1 lim

t→+∞
〈
C0(t)

〉)
/Δ,

lim
t→+∞

〈
x2(t)

〉=
(
Δ2 − Φ2 lim

t→+∞
〈
C0(t)

〉)
/Δ.

On the other hand, it is well known that in the study of deterministic population
system, persistence which means that the population will survive forever, is one of
important and interesting topics owing to its theoretical and practical significance.
For stochastic system, we can study the stochastic persistence.

Theorem 5 If mini=1,2{ri0 − ri1 lim supt→+∞ C0(t)} > maxi=1,2{α2
i /2}, then model

(SM1) will be stochastically permanent.

Remark 2 Liu and Ma (1991) studied the deterministic model (M) and obtained the
following proposition.

Proposition 1 Denote ϑ̃ := r11r20 − r21r10, Φ̃1 := a22r11 − a12r21, Φ̃2 := a11r21 −
a21r11, Δ̃1 := a22r10 − a12r20 > 0, Δ̃2 := a11r20 − a21r10 > 0, then for model M :

(A) If 〈C0〉∗ > μ̃(ν̃), then x1 (x2) will go to extinction, where

μ̃ :=
{

r10/r11, ϑ̃ ≤ 0;

Δ̃1/Φ̃1, ϑ̃ ≥ 0.

ν̃ :=
{

Δ̃2/Φ̃2, ϑ̃ ≤ 0;

r20/r21, ϑ̃ ≥ 0.

(B) If 〈C0〉∗ = μ̃(ν̃), then x1 (x2) will be nonpersistent in the mean;
(C) If 〈C0〉∗ < μ̃(ν̃), then x1 (x2) will be weakly persistent in the mean.

Comparing Theorems 1–3 with Proposition 1, we can find out an interesting fact:
the stochastic disturbance of xi is unfavorable for the survival of species xi but is
favorable for the survival of species xj . On the other hand, strong persistence in the
mean and stochastic persistence were not studied in Liu and Ma (1991).

Remark 3 Liu and Wang (2009) investigated a stochastic model of the form

dx(t) = x(t)
[
r0 − r1C0(t) − nx

]
dt + αx dBt ,

where r0, r1, n, and α are positive constants. The authors claimed that:

(i) If r0 − α2/2 < r1〈C0〉∗, then population x(t) will go to extinction a.s.
(ii) If r0 − α2/2 > r1〈C0〉∗, then population x(t) will be weakly persistent in the

mean a.s.
(iii) If r0 − α2 > r1C

∗
0 , then population x(t) will be stochastically persistent.
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It is easy to see that for model (SM1), if we only consider one species, then our
Theorems 1 and 3 will become (i) and (ii), respectively. At the same time, our condi-
tions of Theorem 5 are much weaker than (iii). Moreover, nonpersistence in the mean
and strong persistence in the mean were not studied in Liu and Wang (2009).

4 The Survival Analysis for Model SM2

In the previous section, we have carried out the survival analysis for model SM1, in
this section we will turn to model SM2. To this end, let us prepare a lemma.

Lemma 5 For model SM2, if σii > 0 and σij ≥ 0 for i, j = 1,2 and i 
= j , then
with any given initial value x(0) = (x1(0), x2(0)) ∈ R2+, there is an unique solution
x(t) = (x1(t), x2(t)) on t ≥ 0 and the solution will remain in R2+ with probability
one. Moreover, the solution x(t) will be stochastically ultimately bounded, i.e., for
any ε ∈ (0,1), there exists a positive constant χ = χ(ε) such that for any initial value
x(0) = (x1(0), x2(0)) ∈ R2+, the solution obeys lim inft→+∞ P {|x(t)| ≤ χ} ≥ 1 − ε.

The proof of Lemma 5 is a slight modification of Mao et al. (2002, 2003, 2005).
This lemma show that the presence of even a tiny amount of noise in removal process
can not only suppress a potential population explosion but also make the population
become stochastically ultimately bounded. Let us now study the persistence and ex-
tinction of the species. First let us consider the stochastic logistic population system

dx = x
(
r0 − r1C0(t) − ax

)+ σx2 dB(t), x(0) = x0 > 0, (11)

where r0, r1, a and σ are all positive numbers. For system (11), we have

Theorem 6 If r0 − r1〈C0〉∗ < 0, then species x(t) will go to extinction with prob-
ability one; If r0 − r1〈C0〉∗ > 0, then species x(t) will be weakly persistent almost
surely.

Remark 4 On the one hand, from Theorem 6, we know that r0 −r1〈C0〉∗ is the thresh-
old between weak persistence and extinction for system (11). On the other hand,
from Theorem 6, one can see that the stochastic noise on a has no impact on the
persistence-extinction threshold of the species modeled by (11).

Now consider system (SM2).

Theorem 7 Suppose that σii > 0 and σij ≥ 0 for i, j = 1,2 and i 
= j . For species
xi modeled by (SM2), if 〈C0〉∗ > ri0/ri1, then xi will go to extinction, i = 1,2.

Theorem 8 Suppose that σii > 0 and σij ≥ 0 for i, j = 1,2 and i 
= j , if 〈C0〉∗ >

ri0/ri1 and 〈C0〉∗ < rj0/rj1, j 
= i, i, j = 1,2, then species xi will go to extinction
and xj will be weakly persistent almost surely.
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5 Stochastic Competitive Exclusion Principle

In this section, we shall study the stochastic competitive model:

(SM0) :
{

dx1 = x1[r10 − a11x1 − a12x2]dt + α1x1 dB1(t),

dx2 = x2[r20 − a21x1 − a22x2]dt + α2x2 dB2(t).

Model (SM0) can be regarded as the model (SM1) in the absence of toxicant, that is,
let the parameters r11 and r21 in model (SM1) be zero. The main aim of this section
is to show that competitive coefficients play a very important role in determining
persistence or extinction of populations in stochastic model. First, let us show the
impact of stochastic perturbation on the persistence or extinction of species.

Theorem 9 For model SM0,

(I) If

ri0 < α2
i /2,

then xi will go to extinction almost surely, i = 1,2.
(II) If

ri0 = α2
i /2,

then xi will be nonpersistent in the mean almost surely, i = 1,2.
(III) Suppose

[
r10 − α2

1/2
][

r20 − α2
2/2

]
< 0.

If ri0 − α2
i /2 < 0, then xi will go to extinction and xj will be weakly persistent

in the mean almost surely, moreover

lim
t→+∞

〈
xj (t)

〉= (
rj0 − α2

j /2
)
/ajj , a.s., i, j = 1,2, i 
= j.

The following theorem tells us that competition coefficients play an important role
in determining persistence or extinction of species for stochastic model, which can
be regarded as a partial stochastic competitive exclusion principle.

Theorem 10 Suppose r10 > α2
1/2, r20 > α2

2/2.

(I) If Δ ≥ 0 (It is easy to see that Δ1 < 0 and Δ2 < 0 can not simultaneously hold
in this case.)

(i) If Δi < 0, then xi will go to extinction almost surely, i = 1,2;
(ii) If Δi > 0, then xi will be weakly persistent in the mean almost surely;

(iii) Moreover, if Δi > 0,Δj < 0, then

lim
t→+∞

〈
xi(t)

〉= (
ri0 − α2

i /2
)
/aii , a.s., i, j = 1,2, i 
= j.

Especially, if Δ1 > 0 and Δ2 > 0, then limt→+∞〈x1(t)〉 = Δ1/Δ,
limt→+∞〈x2(t)〉 = Δ2/Δ a.s.
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(II) If Δ < 0 (It is easy to see that Δ1 > 0 and Δ2 > 0 can not simultaneously hold
in this case.)
(a) If Δi < 0,Δj > 0, then xi will go to extinction and xj will be weakly per-

sistent in the mean almost surely, moreover,

lim
t→+∞

〈
xj (t)

〉= (
rj0 − α2

j /2
)
/ajj a.s., i 
= j, i, j = 1,2.

(b) If Δ1 < 0,Δ2 < 0, then x1 and x2 will not simultaneously go to extinction
almost surely.

Remark 5 On the one hand, by virtue of Theorem 9, one can see that if ri0 < α2
i /2,

then species xi will go to extinction even without pollution, i = 1,2. Consequently,
Assumption 1 (r10 > α2

1/2, r20 > α2
2/2) is reasonable. Similarly, in view of Theo-

rem 10, we know that, if Δi < 0, then xi in model SM0 will go to extinction even
without pollution when Δ ≥ 0, i = 1,2, so Assumption 2 (Δ1 > 0,Δ2 > 0) is rea-
sonable in most cases. From a biological point of view, Δ1 > 0,Δ2 > 0 means that
the community consisting of two species is a stable biotic community before the
introduction of a toxicant. By comparing the results of model (SM1) with those of
model (SM0), we can see that pollution is unfavorable for the survival of both species
x1 and x2, which accords with our expectation.

On the other hand, because of the limitations of experimental techniques, data is
often described by temporal averages, so limt→+∞〈xi(t)〉 will be useful.

Remark 6 Zhu and Yin (2009) studied the stochastic system in the Stratonovich sense

{
dx1 = x1

[
r10
(
γ (t)

)− a11x1 − a12x2
]
dt + α1

(
γ (t)

)
x1 ◦ dB1(t),

dx2 = x2
[
r20
(
γ (t)

)− a21x1 − a22x2
]
dt + α2(γ (t))x2 ◦ dB2(t)

(12)

where γ (t) is a continuous-time Markov chain with a finite state space {1,2, . . . ,m}
and other parameters are as described above. Denote the solution of system (12) by
x(t) = (x1(t), x2(t))

T , authors claimed that, if the Markov chain γ (·) is ergodic with
stationary distribution π = (π1, . . . , πm) and (12) satisfies the following conditions:

(A) a11 > 0, a12 > 0, a22 > 0, a21 > 0,Δ = detA = a11a22 − a12a21 > 0.
(B) For γ = 1,2, . . . ,m, a22r10(γ ) > a12r20(γ ) and a11r20(γ ) > a21r10(γ ).
(C) limt→+∞ 1

t

∫ t

0 xi(s) ds exists a.s. for i = 1,2.

Then

lim
t→+∞

1

t

∫ t

0
x1(s) ds = (a22r1 − a12r2)/Δ,

lim
t→+∞

1

t

∫ t

0
x2(s) ds = (a11r2 − a21r1)/Δ,

where ri =∑m
γ=1 πγ ri0(γ ), i = 1,2. From (iii) in Theorem 10, we can see that for

model (SM0), the above conclusions are valid even without condition (C).
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6 Numerical Simulations

In this section, we are going to use the Milstein method mentioned in Higham (2001)
to substantiate the analytical findings.

For model (SM1), consider the discretization equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

xk+1 = xk + xk

[
r10 − r11C0(kΔt) − a11xk − a12yk

]
Δt

+ α1xk

√
Δtξk + α2

1

2
x2
k

(
ξ2
k Δt − Δt

)
,

yk+1 = yk + yk

[
r20 − r21C0(kΔt) − a21xk − a22yk

]
Δt

+ α2yk

√
Δtηk + α2

2

2
y2
k

(
η2

kΔt − Δt
)
,

where ξk and ηk , k = 1,2, . . . , n, are the Gaussian random variables N(0,1). It is
useful to point out that the numerical method for model (SM0) can be obtained by
setting r11 = r21 = 0.

For model (SM2), in order to avoid complicated notation, let Bi1(t) = Bi2(t) =
Bi(t) for i = 1,2. Consider the discretization equation:

xk+1 = xk + xk

[
r10 − r11C0(kΔt) − a11xk − a12yk

]
Δt

+ σ11x
2
k

√
Δtξk + σ12xkyk

√
Δtξk

+ 0.5
[
σ 2

11x
4
k + σ 2

12x
2
k y2

k + 2σ11σ12x
3
k yk

](
ξ2
k Δt − Δt

)
,

yk+1 = yk + yk

[
r20 − r21C0(kΔt) − a21xk − a22yk

]
Δt

+ σ21y
2
k

√
Δtηk + σ22xkyk

√
Δtηk

+ 0.5
[
σ 2

21x
2
k y2

k + σ 2
22y

4
k + 2σ21σ22xky

3
k

](
η2

kΔt − Δt
)
.

Making use of the numerical simulation method given above and the help of Mat-
lab software, choosing suitable parameters, we get simulations of the stochastic sys-
tems SM1, SM2, and SM0 (in the following simulations, the step size Δt = 0.001).

As pointed out in Sect. 2, persistence or extinction of the species depends on the
values of ν,μ, and 〈C0〉∗. In Fig. 1, we choose r10 = 0.055, r20 = 0.05, r11 = 0.51,
r21 = 0.5, α2

1 = α2
2 = 0.01, a11 = a22 = 0.21 and a21 = a12 = 0.1 (from those

conditions, it is easy to see that ϑ < 0). The only difference between conditions
of Fig. 1(A), Fig. 1(B), and Fig. 1(C) is that the representation of C0(t) is dif-
ferent. In Fig. 1(A), we choose C0(t) = 0.1 + 0.01 sin t . Then it is easy to obtain
ν < μ < 〈C0〉∗. By Theorems 1–3, both x1 and x2 will go to extinction. Figure 1(A)
confirms these. In Fig. 1(B), we choose C0(t) = 0.09+0.01 sin t . Then the conditions
obey ν < 〈C0〉∗ < μ. Making use of Theorems 1–3 again gives that x1 will be weakly
persistent in the mean and x2 will go to extinction. These can be seen from Fig. 1(B).
In Fig. 1(C), we choose C0(t) = 0.0001 + 0.00001 sin t . That is to say, the conditions
satisfy 〈C0〉∗ < ν < μ. In view of Theorems 1–3, we can get that both x1 and x2
will be weak persistent in the mean. See Fig. 1(C). When ϑ > 0, some symmetrical
figures can be obtained similarly.
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(A)

(B)

Fig. 1 (Color online) Solutions of system (SM1) for r10 = 0.055, r20 = 0.05, r11 = 0.51, r21 = 0.5,
α2

1 = α2
2 = 0.01, a11 = a22 = 0.21, a21 = a12 = 0.1, x1(0) = 0.8, x2(0) = 0.6, C0(0) = 0, step

size Δt = 0.001. The horizontal axis this and the following figures represent the time t . (A) Is with
C0(t) = 0.1 + 0.01 sin t ; (B) Is with C0(t) = 0.09 + 0.01 sin t ; (C) Is with C0(t) = 0.0001 + 0.00001 sin t
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(C)

Fig. 1 (Continued)

In Fig. 2, we choose r10 = 0.055, r20 = 0.05, α2
1 = α2

2 = 0.01, a11 = a22 =
0.21, a12 = a21 = 0.1, r11 = 0.51, r21 = 0.5 and C0(t) = 0.05 + 0.001 sin t , then
Theorem 4 indicates that both species x1 and x2 will be strongly persistent in the
mean, and moreover,

lim
t→+∞

〈
x1(t)

〉= 0.0922, lim
t→+∞

〈
x2(t)

〉= 0.0513.

Figure 2 confirms these.
In Fig. 3, we choose r10 = 0.55, r20 = 0.48, α2

1 = 0.2, α2
2 = 0.1, a11 = a22 =

0.21, a12 = a21 = 0.1, r11 = r21 = 1, C0(t) = 0.35 + 0.02 sin t, then Theorem 5
means that model (SM1) will be stochastically permanent. See Fig. 3.

Let us now move to model (SM2).
In Fig. 4, we choose r10 = 0.5, r20 = 0.4, σ 2

ij = 2, i, j = 1,2, a11 = a22 = 0.21,
a21 = a12 = 0.3, C0(t) = 0.55 + 0.01 sin t . The only difference between condi-
tions of Fig. 4(A), Fig. 4(B), and Fig. 4(C) is that the values of r11 and r21 are
different. In Fig. 4(A), we choose r11 = r21 = 1. Then it is easy to obtain that
r20/r21 < r10/r11 < 〈C0〉∗. In view of Theorem 7, both x1 and x2 will go to ex-
tinction. Figure 4(A) confirms this. In Fig. 4(B), we choose r11 = r21 = 0.8. Then
the conditions obey r20/r21 < 〈C0〉∗ < r10/r11. Making use of Theorem 8 gives that
x1 will be weakly persistent and x2 will go to extinction. These can be seen from
Fig. 4(B). In Fig. 4(C), we choose r11 = 1, r21 = 0.7. That is to say, the conditions
satisfy r10/r11 < 〈C0〉∗ < r20/r21. By virtue of Theorem 8, we can get that x1 will
go to extinction and x2 will be weakly persistent. See Fig. 4(C).

Now let us turn to the stochastic competitive exclusion principle.
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Fig. 2 (Color online) Solutions of system (SM1) for r10 = 0.055, r20 = 0.05, α2
1 = α2

2 = 0.01,
a11 = a22 = 0.21, a12 = a21 = 0.1, r11 = 0.51, r21 = 0.5, C0(t) = 0.05 + 0.001 sin t , x1(0) = 0.8,
x2(0) = 0.6, C0(0) = 0 and step size Δt = 0.001. This figure indicates that both species x1 and x2 will be
strongly persistent in the mean, and moreover limt→+∞〈x1(t)〉 = 0.0922, limt→+∞〈x2(t)〉 = 0.0513

Fig. 3 (Color online) Solutions of system (SM1) for r10 = 0.55, r20 = 0.48, α2
1 = 0.2, α2

2 = 0.1,
a11 = a22 = 0.21, a12 = a21 = 0.1, r11 = r21 = 1, C0(t) = 0.35 + 0.02 sin t, x1(0) = 0.8, x2(0) = 0.6,
C0(0) = 0 and step size Δt = 0.001. This figure means that model (SM1) will be stochastically permanent
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(A)

(B)

Fig. 4 (Color online) Solutions of system (SM2) for r10 = 0.5, r20 = 0.4, σ 2
ij

= 2, i, j = 1,2,
a11 = a22 = 0.21, a21 = a12 = 0.3, C0(t) = 0.55 + 0.01 sin t , x1(0) = 0.6, x2(0) = 0.5, C0(0) = 0 and
step size Δt = 0.001. (A) Is with r11 = r21 = 1. (B) Is with r11 = r21 = 0.8. (C) Is with r11 = 1, r21 = 0.7
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(C)

Fig. 4 (Continued)

In Fig. 5, we choose r10 = 0.55, r20 = 0.5, α2
1 = α2

2 = 0.1, a11 = a22 = 0.3.

The only difference between conditions of Fig. 5(A), Fig. 5(B), Fig. 5(C) is that
the values of a12 and a21 are different. In Fig. 5(A), we choose a21 = 0.23,
a12 = 0.38, then Δ > 0, Δ1 < 0, Δ2 > 0. In view of part (I) of Theorem 10,
one can see that x1 will go to extinction and x2 will be weakly persistent in the
mean as well as limt→+∞〈x1(t)〉 = 1.5. Figure 5(A) confirms these. In Fig. 5(B),
we choose a21 = 0.28, a12 = 0.32, then Δ > 0, Δ1 > 0, Δ2 < 0. Applying
part (I) of Theorem 10 gives that x1 will be weakly persistent in the mean and
limt→+∞〈x1(t)〉 = 1.667 while x2 will go to extinction. See Fig. 5(B). In Fig. 5(C),
we choose a21 = 0.23, a12 = 0.32, then Δ > 0,Δ1 > 0,Δ2 > 0. Using part (I) of
Theorem 10 implies that both x1 and x2 will be weakly persistent in the mean and

lim
t→+∞

〈
x2(t)

〉= 1.2195, lim
t→+∞

〈
x1(t)

〉= 0.3659.

Figure 5(C) confirms these.
In Fig. 6, we choose r10 = 0.55, r20 = 0.5, α2

1 = α2
2 = 0.1, a11 = 0.5, a22 = 0.7.

The only difference between conditions of Fig. 6(A), Fig. 6(B), and Fig. 6(C) is that
the values of a12 and a21 are different. In Fig. 6(A), we choose a21 = a12 = 0.6,
then Δ < 0,Δ1 > 0,Δ2 < 0. Applying part (II) of Theorem 10 gives that x1 will be
weakly persistent in the mean and limt→+∞〈x1(t)〉 = 1 while x2 will go to extinction.
See Fig. 6(A). In Fig. 6(B), we choose a21 = 0.4, a12 = 0.9, then Δ < 0, Δ1 < 0,
Δ2 > 0. Making use of part (II) of Theorem 10 leads to that x1 will go to extinction
while x2 will be weakly persistent in the mean and limt→+∞〈x2(t)〉 = 0.643. See
Fig. 6(B). In Fig. 6(C), we choose a21 = a12 = 0.9, then Δ < 0, Δ1 < 0, Δ2 < 0. In
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(A)

(B)

Fig. 5 (Color online) Solutions of system (SM0) for r10 = 0.55, r20 = 0.5, α2
1 = α2

2 = 0.1,
a11 = a22 = 0.3, x1(0) = x2(0) = 0.1, C0(0) = 0 and step size Δt = 0.001. (A) Is with a21 = 0.23,
a12 = 0.38. (B) Is with a21 = 0.28, a12 = 0.32. (C) Is with a21 = 0.23, a12 = 0.32
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(C)

Fig. 5 (Continued)

view of part (II) of Theorem 10, one can derive that x1 and x2 will not simultaneously
go to extinction. Figure 6(C) confirms this. From Fig. 5 and Fig. 6, we can see that
aij play a very important role in determining the persistence or extinction of species.

7 Conclusions and Future Directions

Stochastic competitive models of toxicant-population interaction and stochastic com-
petitive exclusion principle were proposed and investigated. Our results have obvious
biological significance.

Firstly, when considering the environmental pollution which may be related to
the resources and health problems, it is an interesting topic to discuss the effect of
different types of noise. In this study, we find that the stochastic perturbation on
the production rate plays a very import role in determining persistence or extinction
of the species. At the same time, Theorem 6 shows that the stochastic perturbation
on the removal process has no impact on the persistence-extinction threshold of the
species for system (11). Lemma 5 indicates that when we introduce the noise into the
removal processes, the presence of even a tiny amount of noise can not only suppress
a potential population explosion but also make the population become stochastically
ultimately bounded.

Secondly, comparing our results for model (SM1) with Proposition 1, it is easy to
find out an interesting result: the stochastic disturbance of xi is unfavorable for the
survival of species xi and is favorable for the survival of species xj , j 
= i, i, j = 1,2,
which are neglected by all relevant known references. From a biological point of
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(A)

(B)

Fig. 6 (Color online) Solutions of system (SM0) for r10 = 0.55, r20 = 0.5, α2
1 = α2

2 = 0.1, a11 = 0.5,
a22 = 0.7, x1(0) = x2(0) = 0.6, C0(0) = 0 and step size Δt = 0.001. (A) Is with a21 = a12 = 0.6. (B) Is
with a21 = 0.4, a12 = 0.9. (C) Is with a21 = a12 = 0.9
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(C)

Fig. 6 (Continued)

view, this is understandable. Since model (SM1) describes a two-species dynamical
system, in which each individual competes with other for the limited resources in a
polluted environment, and since the stochastic disturbance of xi is unfavorable for the
survival of xi , then xj will get more resources, in other words, stochastic disturbance
of population xi is favorable for the survival of xj .

Thirdly, for model (SM0), from Theorem 10, we can find out that aij (i, j = 1,2)

play a very important role in determining whether xi will survive or not. Theorems 9
and 10 tell us that both x1 and x2 will go to extinction if and only if r10 < α2

1/2
and r20 < α2

2/2. When r10 ≥ α2
1/2 and r20 ≥ α2

2/2, at least one species will survive,
which species survive is highly dependent on the values of a12 and a21. When Δ ≥ 0,
if one of aij , i 
= j is small and another is large such that Δ1Δ2 < 0, for example,
a12 is small and a21 is large such that Δ1 > 0 and Δ2 < 0, then x1 will survive
while x2 will go to extinction; If “competition is always favored” (i.e., both aij , i 
= j

are sufficiently small such that Δ1 > 0 and Δ2 > 0), then x1 and x2 will coexist.
When Δ < 0, if Δi > 0, then xi will survive while xj will go to extinction. In a
word, the interaction rates aij play a very important role in determining persistence
or extinction of the species for stochastic model.

Fourthly, it is well known that the threshold is very important for assessing the risk
of extinction of species in systems exposed to toxicant. Then the threshold between
weak persistence in the mean and extinction obtained for model (SM1) as well as the
threshold between weak persistence and extinction derived for model (11) are useful.
For example, from the results for (SM1), we find that the extinction or persistence of
species is dependent on the intensity of the white noises α2

1 and α2
2 , the mean stress

measure in organisms 〈C0(t)〉, the population intrinsic growth rates r10 and r20, stress
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response rates ri1 (i = 1,2) and interaction rates aij (i, j = 1,2). At the same time,
from the results for system (11), we can observe that the extinction or persistence
of species is only dependent on the mean stress measure in organisms 〈C0(t)〉, the
population intrinsic growth rate r0, stress response rates r1 but is independent of the
power of the white noise σ 2 and the initial population size x0 as well as a.

Finally, a traditional approach to conserve a population xi is to cut down the pollu-
tant output u(t), this study tells us that we have other ways to conserve a population:
we can choose to reduce the intensity of the white noise αi on the production rates or
to enhance the intensity αj , i 
= j ; We can also choose to change the values of aij .

The conditions of Theorems 1–5 have some interesting biological meanings. The-
orem 5, which measures the population size xi(t) directly, means that the whole pop-
ulation size will neither too small nor too large with large probability if the time is
sufficiently large. Theorems 1–4 are based on the temporal average of the population
size xi(t). Theorem 1 indicates that the population will go to extinction which is the
worst case. Theorem 2 means that the population is bare. Theorems 3–4 admit the
case that the population size is closed to zero even the time is sufficiently large. That
is to say, the survival of species could be dangerous in reality. Thus, the survival con-
dition of Theorem 5 are better than that of Theorems 1–4 in many cases. These are
also the reasons why the temporal average of C0(t) is used in Theorems 1–4 whereas
lim supt→+∞ C0(t) is used in Theorem 5. At the same time, lim inft→+∞〈x(t)〉 = 0
is allowed in Theorem 3 but is not allowed in Theorem 4. That is to say the survival
of Theorem 4 is better than Theorem 3, then we used lim inft→+∞〈C0〉 in Theorem 3
and used limt→+∞〈C0〉 in Theorem 4.

Some interesting questions deserve further investigation. In Theorems 7 and 8,
we obtained some sufficient conditions for extinction and weak persistence of model
(SM2). Since the persistence-extinction threshold is very useful in practice, then it is
an important and interesting topic to study persistence-extinction threshold for model
(SM2). In fact, we also attempts to study those problems. Unfortunately, there are
some technical obstacles that can not be overcome at present stage. On the other
hand, one may propose some realistic but complex models. For example, when the
population size is taken into account, a Langevin approach is more appropriate (we
refer the reader to some literatures that derive Langevin equations from the underly-
ing stochastic processes; see Alonso et al. (2007) for a SIR infectious disease model,
see Cattiaux and Méléard (2009) for a Lotka–Volterra system, and see McKane and
Newman (2005) for a predator-prey system. There the reader will find also methods
to exactly simulate these stochastic systems; For more details of Langevin approach,
see, e.g. Gillespiea (2000)). In other words, one may consider the following model:

(SM3)

{
dx1 = x1

[
r10 − r11C0(t) − a11x1 − a12x2

]
dt + √

σ1x1 dB1(t),

dx2 = x2
[
r20 − r21C0(t) − a21x1 − a22x2

]
dt + √

σ2x2 dB2(t).

For model (SM3), similar to the proof given in Cattiaux and Méléard (2009), one
can get that if the “balance condition a12σ2 = a21σ1” holds, then both populations
x1 and x2 will “hit zero” in finite time with probability one (i.e., all species will
die out in reality with probability one). Another example deserved further investi-
gation is to incorporate Ornstein–Uhlenbeck process or the colored noise, such as
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Markov chain, into the system. The motivation is that the population may suffer
sudden-environmental changes, e.g., rain falls and changes in nutrition or food re-
sources, etc.; frequently, the switching among different environments is memoryless
and the waiting time for the next switch is exponentially distributed, then the sudden-
environmental changes can be modeled by a continuous-time Markov chain (see, e.g.
Luo and Mao 2007; Mao and Yuan 2006; Zhu and Yin 2009). It is also interesting to
study stochastic predator-prey system and stochastic cooperative model in a polluted
environment.

Since population does not exist alone in nature and many population models are
inevitably affected by stochastic noise, it is more meaningful to study the persistence-
extinction threshold of each species in systems of two or more interacting species
subjected to toxicant. At the same time, because of the importance of competitive ex-
clusion principle, the study of stochastic competitive exclusion principle is essential.
The studies of those stochastic models are important and useful for better understand-
ing of the real world. Owing to its theoretical and practical significance, stochastic
population dynamics under the influence of pollution have deserved a lot of attention,
but mainly in one dimension. The present paper is the first attempt, to our knowledge,
of such a study in a multidimensional setting.
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Appendix

Proof of Lemma 3 Suppose that yi(t) is the solution of equation:

dyi = yi[ri0 − aiiyi]dt + αiyi dBi(t), i = 1,2. (A.1)

Making use of comparison theorem for stochastic equations (Ikeda and Watanabe
1977) gives xi(t) ≤ yi(t). At the same time, (A.1) has explicit solution of the form:

y(t) = exp[ri0t − α2
i t/2 + αiBi(t)]

1/yi(0) + aii

∫ t

0 exp[ri0s − α2
i s/2 + αiBi(s)]ds

. (A.2)

If ri0 < α2
i /2, then it follows from (A.2) that

xi(t) ≤ yi(t) ≤ yi(0) exp
{−t

[
α2

i /2 − ri0 − αiBi(t)/t
]}

.

Applying

lim
t→+∞B(t)/t = 0 (A.3)

yields y∗
i ≤ 0 a.s. In other words, limt→+∞ xi(t) = 0 a.s. Therefore,

[
ln{xi(t)}

t

]∗
≤ 0 a.s. (A.4)
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If ri0 ≥ α2
i /2, then applying mean value theorem for integral gives

yi(t) ≤ 1

aii

∫ t

0 exp{(ri0 − α2
i /2)(s − t) + αi(Bi(s) − Bi(t))}ds

= 1

aii exp(αiBi(τ ) − αiBi(t))
∫ t

0 exp{(ri0 − α2
i /2)(s − t)}ds

= ri0 − α2
i /2

aii

1

exp(αiBi(τ ) − αiBi(t)){1 − exp[−(ri0 − α2
i /2)t]} ,

where τ ∈ [0, t]. Using (A.3) again leads to that [ln{yi(t)}/t]∗ ≤ 0 a.s., thus

[
ln
{
xi(t)

}
/t
]∗ ≤ 0 a.s. �

Proof of Lemma 4 (I) Suppose that λ > 0. Denote g(t) = ∫ t

0 x(s) ds for all t ≥ T ,
then dg/dt = x(t) ≥ 0 for all t ≥ T . Substituting g into (10) one can derive that

ln
dg

dt
≤ λt − λ0g +

n∑

i=1

βiBi(t), t ≥ T

which is to say

exp{λ0g}dg

dt
≤ exp

{
n∑

i=1

βiBi(t)

}

exp{λt}, t ≥ T .

Integrating the above inequality from T to t and then using mean value theorem for
integral results in

λ−1
0

[
exp

{
λ0g(t)

}− exp
{
λ0g(T )

}]≤
∫ t

T

exp

{
n∑

i=1

βiBi(s)

}

exp{λs}ds

= λ−1 exp

{
n∑

i=1

βiBi(τ )

}
[
exp{λt} − exp{λT }],

where τ ∈ [T , t]. Rewriting the above inequality, one can see that

exp
{
λ0g(t)

}≤ exp
{
λ0g(T )

}+ λ0λ
−1 exp

{
n∑

i=1

βiBi(τ )

}

exp{λt}

− λ0λ
−1 exp

{
n∑

i=1

βiBi(τ )

}

exp{λT }.
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Taking logarithm of both sides yields that

g ≤ λ−1
0 ln

{[

λ0λ
−1 exp

{
n∑

i=1

βiBi(τ )

}

exp{λt}
]

+ exp
{
λ0g(T )

}− λ0λ
−1 exp

{
n∑

i=1

βiBi(τ )

}

exp{λT }
}

,

which means that

〈
x(t)

〉= t−1
∫ t

0
x(s) ds

≤ λ−1
0 ln

{

exp

(
n∑

i=1

βiBi(τ )/t

)[

λ0λ
−1 exp(λt)

+ exp

[

λ0g(T ) −
n∑

i=1

βiBi(τ )

]

− λ0λ
−1 exp(λT )

] 1
t
}

.

In view of (A.3) and the basic inequality (a + b + c)p ≤ [3(a ∨ b ∨ c)]p , we can
derive that

〈x〉∗ = lim sup
t→+∞

〈
x(t)

〉≤ λ−1
0

{
ln
[
3λ0λ

−1 exp(λt)
]
/t
}∗ = λ/λ0.

If λ = 0, then for ∀ε > 0, we must have

lnx(t) ≤ εt − λ0

∫ t

0
x(s) ds +

n∑

i=1

βiBi(t).

Consequently, 〈x〉∗ ≤ ε/λ0. Since ε is arbitrary, we therefore obtain 〈x〉∗ ≤ 0 = λ/λ0.
(II) The proof of (II) is similar to (I). This completes the proof. �

Proof of Theorem 1 First, let us consider population x1.
Case 1: If ϑ ≤ 0, then r10 − α2

1/2 < r11〈C0〉∗. Applying Itô’s formula (see, e.g.
Mao and Yuan 2006 on p. 39) to (4), one then sees that

ln
(
x1(t)/x1(0)

)
/t = r10 − α2

1/2 − r11
〈
C0(t)

〉

− a11
〈
x1(t)

〉− a12
〈
x2(t)

〉+ α1B1(t)/t. (A.5)

Making use of (A.3) yields

{
t−1 lnx1(t)

}∗ ≤ r10 − α2
1/2 − r11〈C0〉∗ < 0,

which results in limt→+∞ x1(t) = 0 a.s.
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Case 2: If ϑ > 0, then Δ1 < Φ1〈C0〉∗. Applying Itô’s formula to (5) gives

ln
(
x2(t)/x2(0)

)
/t = r20 − α2

2/2 − r21
〈
C0(t)

〉− a21
〈
x1(t)

〉

− a22
〈
x2(t)

〉+ α2B2(t)/t. (A.6)

Computing (A.5)×a22 − (A.6)×a12 leads to

a22
ln(x1(t)/x1(0))

t
− a12

ln(x2(t)/x2(0))

t
= Δ1 − Φ1

〈
C0(t)

〉− Δ
〈
x1(t)

〉

+ α1a22
B1(t)

t
− α2a12

B2(t)

t
. (A.7)

It follows from Lemma 3, (A.3) and Δ > 0 that

a22
{
lnx1(t)/t

}∗ ≤ Δ1 − Φ1〈C0〉∗ + ε < 0,

where ε is sufficiently small such that Δ1 − Φ1〈C0〉∗ + ε < 0. In other words, we
have already shown that limt→+∞ x1(t) = 0.

Similarly, we can conclude that x2 will go to extinction provided 〈C0〉∗ > ν. �

Proof of Theorem 2 First, let us consider species x1.
Case 1: If ϑ ≤ 0, then r10 − α2

1/2 = r11〈C0〉∗. For ∀ε > 0, ∃T such that 〈C0(t)〉 ≥
〈C0〉∗ − ε for all t > T . Substituting the above inequality into (A.5) results in

t−1 ln
[
x1(t)/x1(0)

]≤ r10 − α2
1/2 − r11〈C0〉∗ + r11ε − a11

〈
x1(t)

〉+ α1B1(t)/t,

that is to say

ln
[
x1(t)/x1(0)

]≤ r11εt − a11

∫ t

0
x1(s) ds + α1B1(t).

According to Lemma 4, we must have that 〈x1〉∗ ≤ r11ε/a11. Because ε is arbitrarily
small, then 〈x1〉∗ ≤ 0. In other words, limt→+∞〈x1(t)〉 = 0.

Case 2: If δ > 0, it follows from Lemma 3 that for ∀ε > 0, ∃T such that
a12

ln(x2(t)/x2(0))
t

≤ ε/2 and 〈C0(t)〉 ≥ 〈C0〉∗ − ε/(2Φ1) for all t > T . Substituting
the above inequalities into (A.7) one can derive that

a22
ln(x1(t)/x1(0))

t
≤ Δ1 − Φ1〈C0〉∗ − Δ

〈
x1(t)

〉+ ε + α1a22
B1(t)

t
− α2a12

B2(t)

t
,

which indicates that

ln
(
x1(t)/x1(0)

)≤ εt/a22 − Δ

∫ t

0
x1(s) ds/a22 + α1B1(t) − a12α2B2(t)/a22.

Making use of Lemma 4, we obtain

〈x1〉∗ ≤ ε/Δ.
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Then it follows from the arbitrariness of ε that 〈x1〉∗ ≤ 0. Thus, limt→+∞〈x1(t)〉 = 0.
Similarly, we can show that x2 will be nonpersistent in the mean if 〈C0〉∗ = ν. �

Proof of Theorem 3 Consider species x1,
Case 1: If ϑ < 0, then

r11/r21 <
(
r10 − α2

1/2
)
/
(
r20 − α2

2/2
)

(A.8)

and

r10 − α2
1/2 > r11〈C0〉∗.

According to Lemma 3 and (A.5), one can observe that

a11〈x1〉∗ + a12〈x2〉∗ ≥ r10 − α2
1/2 − r11〈C0〉∗ > 0. (A.9)

Therefore, 〈x1〉∗ > 0 a.s. In fact, for ∀ω ∈ {〈x1〉∗ = 0}, we must have that
〈x2(ω)〉∗ > 0. Making use of Δ1 > 0,Δ2 > 0, and (A.8), we see that

a12

a22
<

r10 − α2
1/2

r20 − α2
2/2

<
a11

a21
,

which implies that r11/r21 ∈ (0, a11/a21).

(a) If r11/r21 ∈ (0, a12/a22], then Φ1 ≤ 0. Using Lemma 3 and (A.7), one can get
that

−a12

[
lnx2(t,ω)

t

]∗
≥ Δ1 − Φ1〈C0〉∗ > 0.

So, limt→+∞ x2(t,ω) = 0, which contradicts with 〈x2(ω)〉∗ > 0. Thus, r11/r21 /∈
(0, a12/a22].

(b) If r11/r21 ∈ (a12/a22, a11/a21), then Φ1 > 0. From r11×(A.6) − r21×(A.5),

−r21
ln(x1(t,ω)/x1(0))

t
+ r11

ln(x2(t,ω)/x2(0))

t

= ϑ + Φ2
〈
x1(t,ω)

〉− Φ1
〈
x2(t,ω)

〉+ α2r11
B2(t)

t
− α1r21

B1(t)

t
(A.10)

It then follows from [ ln(x1(t,ω)/x1(0))
t

]∗ ≤ 0 and 〈x1(ω)〉∗ = 0 that

r11

[
lnx2(t,ω)

t

]∗
≤ ϑ − Φ1

〈
x2(ω)

〉

∗ < 0.

That is to say, limt→+∞ x2(t,ω) = 0, which contradicts with 〈x2(ω)〉∗ > 0. So
r11/r21 /∈ (a12/a22, a11/a21), in other words, 〈x1〉∗ > 0.

Case 2: If ϑ = 0, then

r11/r21 = (
r10 − α2

1/2
)
/
(
r20 − α2

2/2
)
.
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Since

r10 − α2
1/2 > r11〈C0〉∗,

then (A.9) is valid, which demonstrates that 〈x1〉∗ > 0 a.s. In fact, for ∀ω ∈
{〈x1〉∗ = 0}, we can obtain that 〈x2(ω)〉∗ > 0. At the same time, limt→+∞〈x1(t,ω)〉 =
0 and [lnx1(t,ω)/t]∗ ≤ 0 mean that for ∀ε > 0,∃T such that |Φ2〈x1(t,ω)〉| < ε/2
and r21 ln(x1(t,ω)/x1(0))/t < ε/2 for all t > T . Substituting above inequalities into
(A.10) yields that

ln
[
x2(t,ω)/x2(0)

]
< r−1

11 (ε + ϑ)t − r−1
11 Φ1

∫ t

0
x2(s,ω)ds

+ α2B2(t) − r−1
11 r21α1B1(t).

According to Lemma 4, we obtain that

〈
x2(ω)

〉∗ ≤ (ε + ϑ)/Φ1. (A.11)

Then it follows from the arbitrariness of ε and ϑ = 0 that 〈x2(ω)〉∗ = 0, which con-
tradicts with 〈x2(ω)〉∗ > 0.

Case 3: Suppose ϑ > 0. We can deduce from ϑ > 0 and Δ1 > 0 that Φ1 > 0 and
μ = Δ/Φ1 > 0. Applying (A.9) gives that

a11〈x1〉∗ + a12〈x2〉∗ ≥ r10 − α2
1

2
− r11Δ1/Φ1 = a12ϑ/Φ1 > 0. (A.12)

For ∀ω ∈ {〈x1〉∗ = 0}, it follows from (A.12) that

〈
x2(ω)

〉∗
> ϑ/Φ1, (A.13)

then ε = (Φ1〈x2(ω)〉∗ − ϑ)/2 > 0. Substituting this ε into (A.11) yields that
〈x2(ω)〉∗ ≤ ϑ/Φ1, which contradicts with (A.13).

Similarly, if 〈C0〉∗ > ν, x2 will be weakly persistent in the mean. �

Proof of Theorem 4 Since [lnx2(t)/t]∗ ≤ 0, then for ∀ε > 0, ∃T such that

a12t
−1 ln

(
x2(t)/x2(0)

)
< ε/2

for t > T . Substituting the above inequality into (A.7) leads to

a22t
−1 ln

(
x1(t)/x1(0)

)
< Δ1 − Φ1 lim

t→+∞
〈
C0(t)

〉+ ε − Δ
〈
x1(t)

〉

+ α1a22B1(t)/t − α2a12B2(t)/t.

Note that Δ > 0 and Δ1 − Φ1 limt→+∞〈C0(t)〉 > 0, then according to Lemma 4 and
the arbitrariness of ε, one can see that

〈x1〉∗ ≤
(
Δ1 − Φ1 lim

t→+∞
〈
C0(t)

〉)
/Δ. (A.14)
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At the same time, computing a11×(A.6) − a21×(A.5) gives

a11
ln(x2(t)/x2(0))

t
− a21

ln(x1(t)/x1(0))

t

= Δ2 − Φ2 lim
t→+∞

〈
C0(t)

〉− Δ
〈
x2(t)

〉+ ε

+ α2a11
B2(t)

t
− α1a21

B1(t)

t
. (A.15)

Then similar to (A.14), we get

〈x2〉∗ ≤
(
Δ2 − Φ2 lim

t→+∞
〈
C0(t)

〉)
/Δ. (A.16)

Computing (A.7)×a21 + (A.15)×a22 and then taking the superior limit leads to

[
t−1 lnx2(t)

]∗ ≥ a21

(
Δ1 − Φ1 lim

t→+∞
〈
C0(t)

〉)
/Δ

+ a22

(
Δ2 − Φ2 lim

t→+∞
〈
C0(t)

〉)
/Δ

− a21〈x1〉∗ − a22〈x2〉∗.
Making use of [t−1 lnx2(t)]∗ ≤ 0 we can demonstrates that

a21〈x1〉∗ + a22〈x2〉∗ ≥
[
a21

(
Δ1 − Φ1 lim

t→+∞
〈
C0(t)

〉)

+ a22

(
Δ2 − Φ2 lim

t→+∞
〈
C0(t)

〉)]
/Δ. (A.17)

It then follows from (A.14), (A.16), and (A.17) that

〈x1〉∗ =
(
Δ1 − Φ1 lim

t→+∞
〈
C0(t)

〉)
/Δ > 0,

〈x2〉∗ =
(
Δ2 − Φ2 lim

t→+∞
〈
C0(t)

〉)
/Δ > 0.

Then for ∀ε > 0, ∃T > 0 such that for all t > T ,

a11
〈
x1(t)

〉
< a11

(
Δ1 − Φ1 lim

t→+∞
〈
C0(t)

〉)
/Δ + ε/2;

a12
〈
x2(t)

〉
< a12

(
Δ2 − Φ2 lim

t→+∞
〈
C0(t)

〉)
/Δ + ε/2.

Substituting those inequalities into (A.5) results in

t−1 ln
(
x1(t)/x1(0)

)
> r10 − α2

1/2 − r11 lim
t→+∞

〈
C0(t)

〉− ε

− a11

(
Δ1 − Φ1 lim

t→+∞
〈
C0(t)

〉)
/Δ
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− a12

(
Δ2 − Φ2 lim

t→+∞
〈
C0(t)

〉)
/Δ + α1B1(t)/t

= −ε + α1B1(t)/t,

which implies that [t−1 lnx1(t)]∗ ≥ −ε. Since ε is arbitrary, from Lemma 3, we can
derive that limt→+∞ t−1 lnx1(t) = 0. Similarly, one can derive that limt→+∞ t−1 ×
lnx2(t) = 0. Taking limits on both sides of (A.7) and (A.15), we get

lim
t→+∞

〈
x2(t)

〉=
(
Δ2 − Φ2 lim

t→+∞
〈
C0(t)

〉)
/Δ;

lim
t→+∞

〈
x1(t)

〉=
(
Δ1 − Φ1 lim

t→+∞
〈
C0(t)

〉)
/Δ. �

Proof of Theorem 5 We shall divide the whole proof into two parts.
Firstly, we claim that for arbitrary ε > 0, there exists a constant β > 0 such that

P∗{|x(t)| ≥ β} ≥ 1 − ε. Define

V1(x) = 1

x1 + x2

for x ∈ R2+. Then Itôs formula implies that

dV1(x) = {−V 2
1 (x)

[
x1
(
r10 − r11C0(t) − a11x1 − a12x2

)

+ x2
(
r20 − r21C0(t) − a21x1 − a22x2

)]+ V 3
1 (x)

[
α2

1x2
1 + α2

2x2
2

]}
dt

− V 2
1 (x)

[
α1x1 dB1(t) + α2x2 dB2(t)

]
.

Since mini=1,2{ri0 − ri1 lim supt→+∞ C0(t)} > maxi=1,2{α2
i /2}, we can choose a

positive constant θ such that it obeys

min
i=1,2

{
ri0 − ri1 lim sup

t→+∞
C0(t)

}
− max

i=1,2

{
α2

i /2
}

>
θ

2
max
i=1,2

{
α2

i

}
.

Define V2(x) = (1 + V1(x))θ . Making use of Itôs formula again gives

dV2(x) = θ
(
1 + V1(x)

)θ−1
dV1(x) + θ(θ − 1)

2

(
1 + V1(x)

)θ−2
d
(
V1(x)

)2

= θ
(
1 + V1(x)

)θ−2
{

−(1 + V1(x)
)
V 2

1 (x)

× [
x1
(
r10 − r11C0(t) − a11x1 − a12x2

)

+ x2
(
r20 − r21C0(t) − a21x1 − a22x2

)]+ V 3
1 (x)

[
α2

1x2
1 + α2

2x2
2

]

+ θ + 1

2
V 4

1 (x)
[
α2

1x2
1 + α2

2x2
2

]
}

dt

− θ
(
1 + V1(x)

)θ−1
V 2

1 (x)
[
α1x1 dB1(t) + α2x2 dB2(t)

]
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= θ
(
1 + V1(x)

)θ−2
F(x)dt

− θ
(
1 + V1(x)

)θ−1
V 2

1 (x)
[
α1x1 dB1(t) + α2x2 dB2(t)

]
, (A.18)

where

F(x) = −(1 + V1(x)
)
V 2

1 (x)
[
x1
(
r10 − r11C0(t) − a11x1 − a12x2

)

+ x2
(
r20 − r21C0(t) − a21x1 − a22x2

)]

+ V 3
1 (x)

[
α2

1x2
1 + α2

2x2
2

]+ θ + 1

2
V 4

1 (x)
[
α2

1x2
1 + α2

2x2
2

]
.

Estimate that

F(x) ≤ −V 2
1 (x)

(

1 + 1

x1 + x2

)[
x1

(
r10 − r11 lim sup

t→+∞
C0(t) − ε

)

+ x2

(
r20 − r21 lim sup

t→+∞
C0(t) − ε

)]

+ V 2
1 (x)

(

1 + 1

x1 + x2

)
[
a11x

2
1 + a12x1x2 + a21x1x2 + a22x

2
2

]

+ max
i=1,2

{
α2

i

}[
x2

1 + x2
2

] 1

(x1 + x2)3

+ θ + 1

2
max
i=1,2

{
α2

i

}[
x2

1 + x2
2

] 1

(x1 + x2)4

≤ −V 2
1 (x) min

i=1,2

{
ri0 − ri1 lim sup

t→+∞
C0(t) − ε

}
+ V 2

1 (x)
θ + 1

2
max
i=1,2

{
α2

i

}

+ max
i,j=1,2

{aij }
(
1 + V1(x)

) 1

(x1 + x2)2

(
x2

1 + 2x1x2 + x2
2

)+ max
i=1,2

{
α2

i

}
V1(x)

≤ −V 2
1 (x)

[

min
i=1,2

{
ri0 − ri1 lim sup

t→+∞
C0(t) − ε

}
− θ + 1

2
max
i=1,2

{
α2

i

}
]

+ V1(x)
[

max
i,j=1,2

{aij } + max
i=1,2

{
α2

i

}]+ max
i,j=1,2

{aij }.

Substituting the above inequality into (A.18) results in

dV2
(
x(t)

) ≤ θ
(
1 + V1(x)

)θ−2
{

−V 2
1 (x)

[

min
i=1,2

{
ri0 − ri1 lim sup

t→+∞
C0(t) − ε

}

− θ + 1

2
max
i=1,2

{
α2

i

}
]

+ V1(x)
[

max
i,j=1,2

{aij } + max
i=1,2

{
α2

i

}]+ max
i,j=1,2

{aij }
}

dt

− θ
(
1 + V1(x)

)θ−1
V 2

1 (x)
[
α1x1 dB1(t) + α2x2 dB2(t)

]
.
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Now, choose κ sufficiently small to satisfy

0 <
κ

θ
< min

i=1,2

{
ri0 − ri1 lim sup

t→+∞
C0(t) − ε

}
− θ + 1

2
max
i=1,2

{
α2

i

}
.

Define V3(x(t)) = exp{κt}V2(x(t)). Then Itô’s formula indicates that

dV3
(
x(t)

) = κ exp{κt}V2(x) dt + exp{κt}dV2(x)

≤ exp{κt}(1 + V1(x)
)θ−2

{

κ
(
1 + V1(x)

)2

− V 2
1 (x)θ

[

min
i=1,2

{
ri0 − ri1 lim sup

t→+∞
C0(t) − ε

}
− θ + 1

2
max
i=1,2

{
α2

i

}
]

+ V1(x)θ
[

max
i,j=1,2

{aij } + max
i=1,2

{
α2

i

}]+ θ max
i,j=1,2

{aij }
}

dt

− θ exp{κt}(1 + V1(x)
)θ−1

V 2
1 (x)

[
α1x1 dB1(t) + α2x2 dB2(t)

]

= exp{κt}θ(1 + V1(x)
)θ−2

{

−V 2
1 (x)

[

min
i=1,2

{
ri0 − ri1 lim sup

t→+∞
C0(t) − ε

}

− θ + 1

2
max
i=1,2

{
α2

i

}− κ/θ

]

+
[

max
i,j=1,2

{aij } + max
i=1,2

{
α2

i

}+ 2κ/θ
]
V1(x) + max

i,j=1,2
{aij } + κ/θ

}

dt

− θ exp{κt}(1 + V1(x)
)θ−1

V 2
1 (x)

[
α1x1 dB1(t) + α2x2 dB2(t)

]

=: exp{κt}J (x)dt

− θ exp{κt}(1 + V1(x)
)θ−1

V 2
1 (x)

[
α1x1dB1(t) + α2x2 dB2(t)

]

for sufficiently large t , where

J (x) = θ
(
1 + V1(x)

)θ−2
{

−V 2
1 (x)

[

min
i=1,2

{
ri0 − ri1 lim sup

t→+∞
C0(t) − ε

}

− θ + 1

2
max
i=1,2

{
α2

i

}− κ/θ

]

+
[

max
i,j=1,2

{aij } + max
i=1,2

{
α2

i

}+ 2κ/θ
]
V1(x) + max

i,j=1,2
{aij } + κ/θ

}

.

It then follows from the definition of κ that J (x) is upper bounded in R2+, namely

K1 := sup
x∈R2+

J (x) < +∞.
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Consequently,

dV3
(
x(t)

) ≤ K1 exp{κt}dt − θ exp{κt}(1 + V1(x)
)θ−1

V 2
1 (x)

× [
α1x1 dB1(t) + α2x2 dB2(t)

]

for sufficiently large t. Integrating both sides of the above inequality and then taking
expectations gives

E
[
V3
(
x(t)

)]= E
[
exp{κt}(1 + V1

(
x(t)

))θ ]≤ (
1 + V1(x0)

)θ + K1

κ
exp{κt}.

That is to say,

lim sup
t→+∞

E
[
V θ

1

(
x(t)

)]≤ lim sup
t→+∞

E
[(

1 + V1
(
x(t)

))θ ]≤ K1

κ
.

At the same time, note that for x(t) ∈ R2+,

(
x1(t) + x2(t)

)θ ≤
(

2 max
i=1,2

xi(t)
)θ = 2θ

(
max
i=1,2

x2
i (t)

)0.5θ ≤ 2θ
∣
∣x(t)

∣
∣θ .

Therefore,

lim sup
t→+∞

E

[
1

|x(t)|θ
]

≤ 2θ K1

κ
=: K.

So, for any ε > 0, set β = ε
1
θ /K

1
θ , by Chebyshev’s inequality, we can derive that

P
{∣
∣x(t)

∣
∣< β

}= P
{

1

|x(t)|θ >
1

βθ

}

≤
E[ 1

|x(t)|θ ]
1
βθ

= βθE

[
1

|x(t)|θ
]

,

that is to say

P ∗{∣∣x(t)
∣
∣< β

}≤ βθK = ε.

Consequently,

P∗
{∣
∣x(t)

∣
∣≥ β

}≥ 1 − ε.

Next, we prove that for arbitrary ε > 0, there exists χ > 0 such that P∗(|x(t)| ≤
χ) ≥ 1− ε. The proof is rather standard but for the completeness of the paper we will
give it briefly. Define V (x) = x

q

1 + x
q

2 for x ∈ R2+. Then it follows from Itô’s formula
that

dV
(
x(t)

) = qx
q

1

[

r10 − r11C0(t) − a11x1 − a12x2 + q − 1

2
α2

1

]

dt

+ qx
q

2

[

r20 − r21C0(t) − a21x1 − a22x2 + q − 1

2
α2

2

]

dt

+ qα1x
q

1 dB1(t) + qα2x
q

2 dB2(t)
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≤ qx
q

1

[

r10 − a11x1 + q − 1

2
α2

1

]

dt + qx
q

2

[

r20 − a22x2 + q − 1

2
α2

2

]

dt

+ qα1x
q

1 dB1(t) + qα2x
q

2 dB2(t).

Let k0 > 0 be sufficiently large such that every component of x(0) is contained within
the interval [1/k0, k0]. For each integer k ≥ k0, define the stopping time

τk = inf
{
t ≥ 0 : x1(t) /∈ (1/k, k) or x2(t) /∈ (1/k, k)

}
.

Clearly, τk → ∞ almost surely as k → ∞. Applying Itô formula again to exp{t}V (x)

and then taking expectations on both sides leads to

E
[
exp{t ∧ τk}xq(t ∧ τk)

]− xq(0)

≤ qE

∫ t∧τk

0
exp{s}xq

1 (s)

(

r10 − a11x1(s) + q − 1

2
α2

1 + 1/q

)

ds

+ qE

∫ t∧τk

0
exp{s}xq

2 (s)

(

r20 − a22x2(s) + q − 1

2
α2

2 + 1/q

)

ds

≤ E

∫ t∧τk

0
exp{s}(K2 + K3) ds ≤ (K2 + K3)

(
exp{t} − 1

)
,

where K2 and K3 are positive constants. Letting k → ∞ gives

exp{t}E[xq(t)
]≤ xq(0) + (K2 + K3)

(
exp{t} − 1

)
.

That is to say

lim sup
t→+∞

E
[
xq(t)

]≤ (K2 + K3).

Then for any ε > 0, set χ = (K2 + K3)
1/q/ε1/q , in view of Chebyshev’s inequality,

we can obtain that

P
{|x(t)| > χ

}= P
{∣
∣x(t)

∣
∣q > χq

}≤ E[|x(t)|q ]
χq

.

In other words, we have already shown that

lim sup
t→+∞

P
{|x(t)| > χ

}≤ lim sup
t→+∞

E
[∣
∣x(t)

∣
∣q
]
/χq ≤ ε,

which is the desired assertion. �

Proof of Theorem 6 Applying Itô’s formula to (11) leads to

d lnx = dx

x
− (dx)2

2x2
= [

r0 − r1C0(t) − ax − 0.5σ 2x2]dt + σx dB(t).
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That is to say,

lnx(t) − lnx(0) = r0t − r1

∫ t

0
C0(s) ds −

∫ t

0

[
ax(s) + 0.5σ 2x2(s)

]
ds + M(t),

(A.19)
where M(t) = ∫ t

0 σx(s) dB1(s), whose quadratic variation is

〈
M(t),M(t)

〉= σ 2
∫ t

0
x2(s) ds.

By virtue of the exponential martingale inequality (see, e.g. Mao and Yuan 2006, on
p. 74), for any positive constants T ,α, and β , we have

P
{

sup
0≤t≤T

[

M(t) − α

2

〈
M(t),M(t)

〉
]

> β

}

≤ exp−αβ . (A.20)

Choose T = n, α = 1, β = 2 lnn. Then it follows that

P
{

sup
0≤t≤n

[

M(t) − 1

2

〈
M(t),M(t)

〉
]

> 2 lnn

}

≤ −1/n2.

An application of the Borel–Cantelli lemma (see, e.g. Mao and Yuan 2006, on p. 10)
then yields that for almost all ω ∈ Ω, there is a random integer n0 = n0(ω) such that
for n ≥ n0,

sup
0≤t≤n

[

M(t) − 1

2

〈
M(t),M(t)

〉
]

≤ 2 lnn.

That is to say

M(t) ≤ 2 lnn + 1

2

〈
M(t),M(t)

〉= 2 lnn + 0.5σ 2
∫ t

0
x(s)2 ds

for all 0 ≤ t ≤ n,n ≥ n0 almost surely. Substituting the above inequality into (A.19)
leads to

lnx(t) − lnx(0) ≤ r0t − r1

∫ t

0
C0(s) ds − a

∫ t

0
x(s) ds + 2 lnn

≤ r0t − r1

∫ t

0
C0(s) ds + 2 lnn

for all 0 ≤ t ≤ n,n ≥ n0 almost surely. In other words, we have already shown that
for 0 < n − 1 ≤ t ≤ n,

lnx(t) − lnx0

t
≤ r0t − r1

∫ t

0 C0(s) ds

t
+ 2

lnn

n − 1
,

which indicates that
[

lnx(t)

t

]∗
≤ r0 − r1〈C0〉∗.
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In other words, if r0 − r1〈C0〉∗ < 0, one can see that limt→+∞ x(t) = 0.
Now, we are in the position to prove the second part of Theorem 6. Firstly, we are

going to show that
[

lnx(t)

t

]∗
≤ 0 a.s. (A.21)

In fact, making use of Itô’s formula to (11) gives

d
(
exp(t) lnx

) = exp(t) lnx dt + exp(t) d lnx

= exp(t)
[
lnx + r0 − r1C0(t) − ax − 0.5σ 2x2]dt + exp(t)σx dB(t).

In other words, we have already shown that

exp(t) lnx(t) − lnx0 =
∫ t

0
exp(s)

[
lnx(s) + r0 − r1C0(s)

− ax(s) − 0.5σ 2x2(s)
]
ds + N(t), (A.22)

where N(t) = σ
∫ t

0 exp(s)x(s) dB(s) is a local martingale with the quadratic form:

〈
N(t),N(t)

〉= σ 2
∫ t

0
exp(2s)x2(s) ds.

It then follows from the exponential martingale inequality (A.20) by choosing
T = γ k, α = exp(−γ k),β = θ exp(γ k) lnk that

P
{

sup
0≤t≤γ k

[

N(t) − exp(−γ k)

2

〈
N(t),N(t)

〉
]

> θ exp(γ k) ln k

}

≤ k−θ ,

where θ > 1 and γ > 1. By virtue of the Borel–Cantelli lemma, for almost ω ∈ Ω ,
there exists k0(ω) such that for every k ≥ k0(ω),

N(t) ≤ exp(−γ k)

2

〈
N(t),N(t)

〉+ θ exp(γ k) lnk, 0 ≤ t ≤ γ k.

Substituting the above inequality into (A.22) yields that

exp(t) lnx(t) − lnx0 ≤
∫ t

0
exp(s)

[
lnx(s) + r0 − r1C0(s) − ax(s) − 0.5σ 2x2(s)

]
ds

+ σ 2 exp(−γ k)

2

∫ t

0
exp(2s)x2(s) ds + θ exp(γ k) ln k

=
∫ t

0
exp(s)

[
lnx(s) + r0 − r1C0(s) − ax(s)

− 0.5σ 2x2(s)
[
1 − exp(s − γ k)

]]
ds + θ exp(γ k) lnk.
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It is easy to see that for any 0 ≤ s ≤ γ k and x > 0, there exists a constant C indepen-
dent of k such that

lnx(s) + r0 − r1C0(s) − ax(s) − 0.5σ 2x2(s)
[
1 − exp(s − γ k)

]≤ C.

In other words for any 0 ≤ t ≤ γ k,

exp(t) lnx(t) − lnx0 ≤ C
[
exp(t) − 1

]+ θ exp(γ k) lnk.

That is to say

lnx(t) ≤ exp(−t) lnx0 + C
[
1 − exp(−t)

]+ θ exp(−t) exp(γ k) lnk.

If γ (k − 1) ≤ t ≤ γ k and k ≥ k0(ω), we have

lnx(t)/t ≤ exp(−t) lnx0/t +C
[
1 − exp(−t)

]
/t + θ exp

(−γ (k − 1)
)

exp(γ k) ln k/t,

which is the desired assertion (A.21) by letting k → +∞.

Now suppose that r0 − r1〈C0〉∗ > 0, we are going to prove that x∗ > 0 a.s. Oth-
erwise, let E be the set E = {x∗ = 0} and suppose that P (E) > 0. It follows from
(A.19) that

lnx(t) − lnx(0)

t
= r0 − r1

〈
C0(t)

〉− a
〈
x(t)

〉− 0.5σ 2〈x2(t)
〉+ M(t)/t. (A.23)

On the other hand, for ∀ω ∈ E, we have limt→+∞ x(t,ω) = 0, then the law of large
numbers for local martingales (see, e.g. Mao and Yuan 2006, on p. 16) implies that
limt→+∞ M(t)/t = 0. Substituting the above inequality into (A.23) gives

[
lnx(t,ω)/t

]∗ = r0 − r1〈C0〉∗ > 0.

Then P ([lnx(t)/t]∗) > 0, which contradicts with (A.21). This completes the
proof. �

Proof of Theorem 7 Without loss of generality, we prove the conclusions for x1.
Making use of Itô’s formula to that (6) leads to

d lnx1 = dx1

x1
− dx2

1

2x2
1

= [
r10 − r11C0(t) − a11x1 − a12x2 − 0.5σ 2

11x
2
1 − 0.5σ 2

12x
2
2

]
dt

+ σ11x1 dB11(t) + σ12x2 dB12(t). (A.24)

In other words,

lnx1(t) − lnx1(0) =
∫ t

0

[
r10 − r11C0(s) − a11x1(s) − a12x2(s) − 0.5σ 2

11x
2
1(s)

− 0.5σ 2
12x

2
2(s)

]
ds + M11(t) + M12(t),
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where M1i (t) = ∫ t

0 σ1ixi(s) dB1i (s), whose quadratic variation is

〈
M1i (t),M1i (t)

〉= σ 2
1i

∫ t

0
x2
i (s) ds, i = 1,2.

Then similar to the proof of Theorem 6, by virtue of the Borel–Cantelli lemma and of
the exponential martingale inequality for almost ω ∈ Ω , there exists n0(ω) such that,
for every n ≥ n0(ω),

M1i (t) ≤ 2 lnn + 0.5σ 2
1i

∫ t

0
xi(s)

2 ds, i = 1,2,

for all 0 ≤ t ≤ n,n ≥ n0 almost surely. Substituting the above inequalities into equa-
tion (A.24) gives

lnx1(t) − lnx1(0) =
∫ t

0

[
r10 − r11C0(s) − a11x1(s) − a12x2(s)

]
ds + 4 lnn

≤ r10t − r11

∫ t

0
C0(s) ds + 4 lnn

for all 0 ≤ t ≤ n,n ≥ n0. In other words, we have already shown that for 0 < n − 1 ≤
t ≤ n,

[
lnx1(t) − lnx1(0)

t

]

≤ r10 − r11
〈
C0(t)

〉+ 4
lnn

n − 1
.

Consequently,
[

lnx1(t)

t

]∗
≤ r10 − r11〈C0〉∗ < 0,

which is the required assertion. �

Proof of Theorem 8 It follows from Theorem 7 that species xi will go to extinction.
Then model (SM2) becomes a single-species system. Thus, the desired assertion fol-
lows from Theorem 6 immediately. �

Proof of Theorem 9 Without loss of generality, we prove the conclusions for x1.
(I) The proof is similar to Lemma 3 (the case ri0 < α2

i /2).
(II) Applying Itô’s formula to (A.1) and setting i = 1 yields that

ln
[
y1(t)/y1(0)

] =
(

r10 − α2
1

2

)

t − a11

∫ t

0
y1(s) ds + α1B1(t)

= −a11

∫ t

0
y1(s) ds + α1B1(t).

Then in view of Lemma 4, we have 〈y1〉∗ ≤ 0, that is to say 〈x1〉∗ ≤ 〈y1〉∗ ≤ 0, thus
〈x1〉∗ = 0.



Stochastic competitive model 2009

(III) Without loss of generality, we suppose i = 1, j = 2. From (I), we know that x1
will go to extinction, that is to say limt→+∞ x1(t) = 0. On the other hand, it follows
from (A.6) that

ln
(
x2(t)/x2(0)

)
/t ≤ r20 − α2

2/2 + ε − a22
〈
x2(t)

〉+ α2B2(t)/t,

ln
(
x2(t)/x2(0)

)
/t ≥ r20 − α2

2/2 − ε − a22
〈
x2(t)

〉+ α2B2(t)/t.

Then Lemma 4 means that

〈x2〉∗ ≤ (
r20 − α2

2/2
)
/a22, 〈x2〉∗ ≥ (

r20 − α2
2/2

)
/a22.

This completes the proof. �

Proof of Theorem 10 (I) Without loss of generality, suppose that Δ1 < 0 and Δ2 > 0.
(i) Let Φ1 = 0 in (A.7), one then sees that

a22
ln(x1(t)/x1(0))

t
− a12

ln(x2(t)/x2(0))

t

= �1 − �〈x1(t)
〉+ α1a22

B1(t)

t
− α2a12

B2(t)

t
, (A.25)

in other words

a22

{
lnx1(t)

t

}∗
≤ Δ1 < 0,

which indicates that limt→+∞ x1(t) = 0.
(ii) The proof of (ii) and (iii) will be presented together. It follows from (A.6) that

ln
(
x2(t)/x2(0)

)
/t ≤ r20 − α2

2/2 − a22
〈
x2(t)

〉+ α2
B2(t)

t
.

Using Lemma 4 yields that

〈x2〉∗ ≤ (
r20 − α2

2/2
)
/a22.

On the other hand, in view of (A.6) and limt→+∞ x1(t) = 0 we can derive that, for
sufficiently large t ,

ln
(
x2(t)/x2(0)

)
/t ≥ r20 − α2

2/2 − a22
〈
x2(t)

〉− ε + α2
B2(t)

t
.

In view of (II) in Lemma 4, one can observe that

〈x2〉∗ ≥ (
r20 − α2

2/2
)
/a22.

Consequently,

lim
t→+∞

〈
x2(t)

〉= (
r20 − α2

2/2
)
/a22.
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The following proof of (iii) is similar to Theorem 4.
(II) (a) Without loss of generality, suppose that Δ1 < 0,Δ2 > 0. Making use of

(A.15), Δ < 0 and Lemma 3, one then derives

−a21

[
ln(x1(t)/x1(0))

t

]∗
≥ Δ2 > 0,

that is to say

lim
t→+∞x1(t) = 0.

At the same time, similar to (A.17) one can show that

a21〈x1〉∗ + a22〈x2〉∗ ≥ (a21Δ1 + a22Δ2)/Δ = r20 − α2
2/2.

Consequently,

〈x2〉∗ ≥ (
r20 − α2

2/2
)
/a22 > 0. (A.26)

On the other hand, it follows from (A.6) and r21 = 0 that

ln(x2(t)/x2(0))

t
≤ r20 − α2

2/2 − a22
〈
x2(t)

〉+ α2
B2(t)

t
.

Then by (I) of Lemma 4 we get

〈x2〉∗ ≤ (
r20 − α2

2/2
)
/a22.

The desired assertion follows from the above inequality and (A.26) immediately.
(b) The fact that x1 and x2 will not simultaneously go to local extinction follows

from (A.9). The proof of Theorem 10 is complete. �
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