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Abstract Signal processing in the cerebral cortex is thought to involve a common
multi-purpose algorithm embodied in a canonical cortical micro-circuit that is repli-
cated many times over both within and across cortical regions. Operation of this algo-
rithm produces widely distributed but coherent and relevant patterns of activity. The
theory of Coherent Infomax provides a formal specification of the objectives of such
an algorithm. It also formally derives specifications for both the short-term process-
ing dynamics and for the learning rules whereby the connection strengths between
units in the network can be adapted to the environment in which the system finds
itself. A central assumption of the theory is that the local processors can combine
reliable signal coding with flexible use of those codes because they have two classes
of synaptic connection: driving connections which specify the information content of
the neural signals, and contextual connections which modulate that signal process-
ing. Here, we make the biological relevance of this theory more explicit by putting
more emphasis upon the contextual guidance of ongoing processing, by showing that
Coherent Infomax is consistent with a particular Bayesian interpretation for the con-
textual guidance of learning and processing, by explicitly specifying rules for on-line
learning, and by suggesting approximations by which the learning rules can be made
computationally feasible within systems composed of very many local processors.
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1 Introduction

Neural systems must be reliable but flexible. The contrast between these two require-
ments is reflected in two fundamental, but frequently opposed, perspectives that have
arisen from the neuroscience of the last century. First, there is the classical tradition
that sees sensory features, semantic attributes, and motor commands as being reli-
ably signalled by single cells, or small local populations of cells. These codes do not
change from moment to moment, and do not depend upon what is going on elsewhere.
Within this conception feature detection, object recognition and other higher func-
tions are achieved through fixed or slowly adapting feed-forward projections through
hierarchies of cortical areas. Studies of functional specialization within and between
cortical regions provide a vast body of evidence supporting and developing this per-
spective.

In contrast, the holistic perspective emphasizes flexibility. This perspective was
strong in the early days of neuroscience, but was greatly weakened by all of the
evidence for local specialization (Finger 1994). Then from the early 1980s onward,
many studies have shown that, even in sensory systems, activity is influenced by high-
level cognitive states of attention and intention, and by an ever-changing stimulus
context that reaches far beyond the classical receptive field. This has led many to
conclude that the simple classical tradition is no longer viable, and that information
is conveyed only by the rich non-linear dynamics of very large and ever-changing
populations of cells.

The evidence for reliable functional specializations within and between cortical
regions is overwhelming. The evidence for the flexible use of those resources is also
clear, however, so we now need a better understanding of how activity in many dis-
tinct streams of processing is coordinated. Our work on Coherent Infomax there-
fore combines local and holistic perspectives. It emphasizes dynamic contextual in-
teractions, but claims that, instead of robbing the local signals of their meanings,
these coordinating interactions make the local signals more reliable and more rel-
evant. Its central hypothesis is that there are two classes of synaptic interaction:
those that specify the meanings of the signals transmitted, and those that dynami-
cally coordinate those computations so as to achieve current goals in current circum-
stances. These coordinating interactions produce both contextual disambiguation and
dynamic grouping. They amplify activity relevant to the current task and stimulus
context, group activity into coherent subsets, and combat noise by context-sensitive
redundancy. They are crucial to Gestalt perception, selective attention, working mem-
ory, and strategic coordination. These broad claims of close relations between partic-
ular synaptic coordinating interactions and particular cognitive functions are based
upon many studies from many labs, and they relate findings from psychophysics, cog-
nitive neuroscience, neurobiology, and psychopathology (Phillips and Singer 1997;
Phillips and Silverstein 2003).
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The concept of cognitive coordination has been formalized in precise neuro-
computational terms within the theory of Coherent Infomax (Phillips et al. 1995;
Kay and Phillips 1997; Kay et al. 1998). That theory uses concepts of conditional
and three-way mutual information to show how it is possible for contextual inputs
to have large effects on the transmission of information about the primary driving
inputs, while transmitting little or no information about themselves, thus influenc-
ing the transmission of cognitive content, but without becoming confounded with it.
That formalization enables us to specify the essential properties of coordinating in-
teractions, and includes the specification of an objective function, which describes
the signal processing work to be done. To meet that objective, a learning rule for
modifying the synaptic weights in a neural network was derived analytically. What
most impressed us about the consequent learning rule is that, although it was derived
independently of any neurobiological evidence concerning synaptic plasticity, it fits
that evidence well.

In Sect. 2, we discuss the role of coordinating interactions within a neural system
and also the important distinction between ‘modulatory’ and ‘driving’ interactions.
Information theory is used to define a class of objective functions in Sect. 3 for a
local processor and we specify the particular components of information we use in
our theory of Coherent Infomax. In Sect. 4, we also consider a Bayesian perspective
on the modelling and show that our approach is consistent with a particular Bayesian
formulation. In Sect. 5, we turn our attention to learning rules which are used to
maximize the information theoretic objective function and we mention some applica-
tions. A limitation of our early work was the fact that it was necessary to store a large
number of terms in each local processor and so the networks did not scale well with
the dimensionality of the inputs. Possible solutions to this problem were sketched
by Kay (2000) and these are presented in detail in Sect. 6, together with useful ap-
proximations. The net result is that the computational load now scales linearly with
the number of neurons in the system and is independent of the dimensionality of the
inputs. A summary is provided in Sect. 7.

2 Synaptic Interactions that Coordinate Ongoing Activities

Since McCulloch and Pitts (1943) proved that basic logical operations can in prin-
ciple be implemented by networks composed of simple binary units with only exci-
tatory and inhibitory inputs, many computational studies have used only this highly
restricted set of synaptic interactions. After all, if networks of sufficient complexity
can in principle compute anything computable with only excitatory and inhibitory in-
teractions, why use more? Real neural systems use more because what they could do
‘in principle’ given unlimited time and storage capacity is irrelevant to survival in the
real world where fast and effective actions are required. This speed and effectiveness
is achieved via many concurrent activities that are distributed across many special-
ized subsystems, so coordinating those activities is a fundamental requirement. To a
crude first approximation, the theory of Coherent Infomax can be seen as proposing
that, in addition to the excitatory and inhibitory inputs that specify what local neural
processors process information about, they must also receive a distinct class of inputs
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that enables them to coordinate their activities with what is going on elsewhere. There
is plenty of neurobiological and computational evidence for the existence and utility
of such coordinating interactions.

This evidence has been used to distinguish ‘modulatory’ from ‘driving’ interac-
tions (Sherman and Guillery 1998), ‘contextual fields’ from ‘receptive fields’ (Kay
et al. 1998; Phillips and Singer 1997), local circuit mechanisms for gain control
(Tiesinga et al. 2005), and local circuit mechanisms for coordinating phase relations
between rhythmic activities (Whittington and Traub 2003). These coordinating inter-
actions must be clearly distinguished from those mediated by the cholinergic system
and other classical neuromodulators. The effects of those neuromodulators are dif-
fuse and non-specific. They arise from small subcortical nuclei that do not have the
bandwidth required to coordinate all the locally specific activities within cortex with
each other. We therefore use the term ‘coordination’ to refer to locally specific in-
teractions between cortical activities. Nevertheless, these interactions include what
is often referred to as ‘contextual modulation’, because that is mostly due to locally
specific interactions between cortical activities, rather than to diffuse modulation of
those activities by the classical neuromodulators.

It has been proposed that coordination is predominately achieved through lat-
eral and descending connections within and between cortical regions (Phillips and
Singer 1997). Feedforward drive is the primary determinant of receptive field selec-
tivity. Lateral and descending connections coordinate the effects of that drive so as
to increase overall coherence (e.g. Lamme and Roelfsema 2000). By analogy with
Bayesian techniques, the feedforward pathways can be seen as transmitting infor-
mation from which a priori output probabilities are calculated, and the lateral and
descending pathways can be seen as carrying information that is used to resolve am-
biguities and reach decisions that are more appropriate to the broader context (e.g.
Körding and Wolpert 2004).

It has also been proposed that some coordinating interactions are predominantly
mediated by the apical and distal dendritic compartments of cortical pyramidal cells.
Basal and proximal synapses seem better placed to have a central role in driving
post-synaptic activity, whereas apical and distal compartments seem better placed
to receive and integrate inputs from the broader context. Computational modelling
studies support this hypothesis (e.g. Körding and König 2000; Spratling and Johnson
2006).

There may also be mechanisms that are specialized for coordination at the synap-
tic level. The main excitatory neurotransmitter in neocortex is glutamate, and the
main inhibitory neurotransmitter is GABA. For both, there are particular receptor
subtypes with a special role in coordinating activity. NMDA receptors (NMDARs)
for glutamate act as highly selective gain-controllers, and thus could help mediate
coordination (Phillips and Singer 1997). There is evidence that NMDAR malfunc-
tion is a crucial part of the pathophysiology of cognitive disorganization in psychosis
(Phillips and Silverstein 2003), which also suggests that they play a major role in co-
ordinating cognitive activity. In addition, various subtypes of GABA receptors play
a central role in generating and coordinating rhythmic activities (Whittington and
Traub 2003). They also enhance attended activities and suppress those that are ir-
relevant (Tiesinga et al. 2005). In combination with NMDARs, they may therefore
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play a central role in dynamic coordination. This hypothesis is supported by evidence
implicating GABAergic neuro-transmission in the pathophysiology of disorganized
cognition (Lewis et al. 2005).

In sum, these considerations suggest that coordinating interactions are fundamen-
tal to what neural systems do and how they do it. The theory of Coherent Infomax
provides an abstract general formalization of this hypothesis. Coordination depends
upon knowing what predicts what, however, so learning algorithms for discovering
those rich and ever-changing relationships are central to the theory. Inter alia, it also
shows how the broader context can modulate signal processing without robbing those
signals of their meaning. To show how this is so, and to derive the learning algorithms
required, we use concepts from information theory, as outlined in the following.

3 Information Theoretic Objectives

3.1 Previous Uses of Information Theory

Information theory has been used in various ways in Psychology, Statistics, and
Neural Computation stemming from the seminal work of Shannon (Shannon and
Weaver 1949). In Psychology, it has been used to measure the uncertainty and redun-
dancy in sequences of symbols, e.g. words and sentences, and also to measure the
transmission of information in experiments in perception; see, for example, Attneave
(1959). In Statistics it has been used: as a measure of the amount of information pro-
vided by an experiment (Lindley 1956); in the analysis of categorical data (Gokhale
and Kullback 1978); in feature selection in discrimination (Aitchison and Kay 1975)
and in other statistical problems (Kullback 1959).

Ideas from information theory have also been used in research in Neural Computa-
tion. Some examples are: the stochastic modelling of temporal pattern discrimination
(Tsukada et al. 1975, 1976, 1983); the development of learning rules in synaptic plas-
ticity (Intrator and Cooper 1995); the study of measures of functional complexity in
the nervous system (Tononi et al. 1994); the unbiased measurement of transmitted
information in monkey striate cortex (Optican et al. 1991); bias in measures of infor-
mation (Treves and Panzeri 1995); the use of an information-maximization approach
to blind separation and blind deconvolution in signal processing (Bell and Sejnowski
1995); the exploration of neural population coding for movement (Sanger 1997); the
development of optimization principles for the neural code (DeWeese 1996). A good
discussion of the role of information theory in neural coding and the measurement
of information transmission in neural systems is provided by Reike et al. (1997,
Chap. 3); in particular, they discuss theoretical upper limits for the quantity of in-
formation which can be transmitted and show in experiments with real organisms
that these limits can be close to realization. See also Zador (1998).

There has also been much use of information theory in the development of artif-
ical neural networks for various purposes including the modelling of real biological
systems; see Atick (1992), Redlich (1993), Taylor and Plumbley (1993) and Becker
(1992, 1996). We now provide a brief description of the work of Becker and Hinton
and that of Linsker which provided partial motivation. Linsker (1988, 1992) devel-
oped networks in which the goal was to maximize the transmission of information
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and he used the mutual information between the input and output distributions as
an objective function, and this approach has been termed infomax. This approach
may be viewed as an attempt to discover features within the input field which ex-
hibit the most variation and it is akin to principal component analysis. The work
reported by Becker and Hinton (1992, 1995), however, was concerned with the in-
formation shared between the outputs of units which received input from different
receptive fields, the aim being to maximize the spatial coherence and to use the units
to ‘supervise’ each other. This is rather akin to canonical correlations analysis. The
objective function used was the mutual information between the output distributions.
Information-theoretic objective functions were also used subsequently: in making
coherent predictions in discontinuous domains (Becker and Hinton 1992); in the cat-
egorization of objects using temporal coherence (Becker 1993) and in the recognition
of moving objects (Becker 1995). Another approach using an information theoretic
objective function is the ‘information bottleneck’ method; see, for example Chechik
et al. (2005) and Creutzig and Sprekeler (2008) and references therein. The aim there
is to discover a compressed version of the inputs that provides information about a
related set of variables. This is treated as a variational problem and so the nature of
the optimization performed is quite different than in the methods we discuss.

Our aim is to fuse, within a single objective function, the goals of basic fea-
ture discovery (or compressive recoding of the input data) and the learning of pre-
dictive relationships between different data sets; in this sense it is a hybrid of
the approaches of Linsker and Becker and Hinton. A crucial difference between
our networks and theirs, however, is that, in addition to using context to guide
learning, we also use it to guide ongoing processing. The basic component from
which our networks are built is the local processor and it is envisaged that many
such components can be connected together within a multi-layer, multi-stream ar-
chitecture, within which the computations are performed locally. While it is the
case that we use information theoretic concepts in our presentation of Coherent
Infomax as a goal for processing and learning in neural systems, it is important
to stress that the precise mathematical formalism employed is of less importance
than the general goal of searching for coherence. For example, Körding and König
(2000) introduce their relevant infomax approach which makes no explicit use of
information theory and yet in their experiments they are able to extract coher-
ent structure in a manner similar to our earlier experiments (Phillips et al. 1995;
Kay et al. 1998).

3.2 Some Basic Definitions

In this section, we describe very briefly the basic information-theoretic concepts of
entropy and mutual information. We employ the usual distinction between random
variables and their realized values by using capital letters to denote the former while
the corresponding lower-case letters denote the latter. We use a generic ‘p’ to denote
a probability density function, with the argument of the function signifying which
random variable is being described; so p(y) denotes the probability density function
associated with the random vector Y. In the discrete case p(y) will be a probabil-
ity mass function and will denote the probability that the random vector Y takes
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the value y in a particular realization. We denote the conditional probability density
function of Y, given that X = x, by p(y|x).

For an excellent discussion of basic information-theoretic concepts, see Hamming
(1980). The mutual information shared between two random vectors X and Y is de-
fined by

I (X;Y) = H(X) − H(X|Y).

Here, H(X) is the Shannon entropy associated with the distribution of X and
H(X|Y) denotes the Shannon entropy associated with the conditional distribution of
X given Y, with this later term being interpreted as the information that is contained
in the distribution of X that is not shared with Y. The mutual information is always
non-negative and is zero when the random vectors are stochastically independent;
hence, it may used as a general measure of correlation. We will be dealing with three
random vectors and so we consider also the conditional mutual information defined
by

I (X;Y|Z) = H(Y|Z) − H(Y|X,Z).

This is the conditional mutual information shared between X and Y, having ob-
served Z. We interpret this as being that information which is shared between X
and Y but not shared with Z.

The idea of mutual information may be extended to more than two random vectors
(McGill 1954) and for our purposes here we consider the three-way mutual informa-
tion that is shared among three random vectors, X,Y, and Z, defined by

I (X;Y;Z) = I (X;Y) − I (X;Y|Z) = I (X;Z) − I (X;Z|Y)

= I (Y;Z) − I (Y;Z|X)

= H(Y) − H(Y|X) − H(Y|Z) + H(Y|X,Z). (1)

This decomposition of information can only make strict sense when the measure of
three-way information is non-negative; however, that cannot be guaranteed (Whit-
taker 1990; Kay 2000) and it is easy to construct simple examples to demonstrate
this. It is important to stress, however, that this seeming pathology does not create
problems in practical examples when three-way shared information does exist and
when the computational goal is to maximize the three-way mutual information; in
such cases the three-way mutual information is driven toward positivity during the
learning process. In the case in which the three-way mutual information is positive,
it may be shown that the following decomposition holds

H(Y) = I (Y;X;Z) + I (Y;X|Z) + I (Y;Z|X) + H(Y|X,Z). (2)

Each of the four components of this equation will be of particular use in the general
form of objective function considered in the next subsection. Finally, we note some
integral representations of Shannon entropy; in the case where the random variables



Coherent Infomax as a Computational Goal for Neural Systems 351

are discrete, the integrals are replaced by summations, and the densities by probability
mass functions

H(Y) = −
∫

p(y) log
{
p(y)

}
dy,

H(Y|X) = −
∫ ∫

p(y|x) log
{
p(y|x)

}
p(x) dydx,

H(Y|X,Z) = −
∫ ∫ ∫

p(y|x, z) log
{
p(y|x, z)

}
p(x, z) dydxdz.

3.3 Class of Objective Functions

There are strong grounds for supposing that local micro-circuits of the cerebral cortex
embody a common multi-purpose algorithm (Phillips and Singer 1997). Our hypoth-
esis is that this algorithm can be described locally in such a way that when imple-
mented within a network of many such local processors it produces patterns of activ-
ity that, though widely distributed, are coherent and relevant to current circumstances.
To formalize this objective, we first consider a local processor that has a single output
and with inputs separated into two distinct types, namely, Receptive Field (RF) inputs
and Contextual Field (CF) inputs. It is proposed, however, to consider multi-layered
and multi-stream networks built by connecting together such local processors. Hence,
it is envisaged that the contextual field will consist of units from neighboring streams
at the same layer of processing as well as back-projections from higher layers. On the
other hand, the receptive field will generally consist of units in the layers below the
output unit. In a local processor, we use the random variable Y to denote the value of
the output unit and the random vectors X and Z to denote, respectively, the RF inputs
and the CF inputs, as shown below in Fig. 1.

In terms of such a local processor we may now interpret the four information
components defined in (2) as follows. The three-way mutual information I (Y ;X;Z)

represents the information that is common to the output and to both RF and CF inputs;

Fig. 1 A local processor with
RF inputs X1,X2, CF inputs
Z1, . . . ,Z4 and output Y . The
weights on the connections from
the RF inputs into the output
unit are w1,w2, and v1, . . . , v4
denote the corresponding
weights for the CF inputs.
Activity is driven by the RF
inputs and modulated by the CF
inputs
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we wish to maximize this term so as to maximize the transmission of the information
in the RF that is related to the current CF. The term I (Y ;X|Z) denotes the informa-
tion that the output shares with the RF inputs that is not contained in the CF units.
It is sensible for this term to be allowed to increase because, while the information
in the RF might not be relevant to the current context, it might nevertheless be rel-
evant to some other contextual units in the system. The term I (Y ;Z|X) denotes the
information that is shared between the output unit and the CF units but not with the
RF units. It should be small relative to I (Y ;X|Z) if the CF inputs are to function as
modulators rather than as primary drivers. Putting these information terms together
gives the following general class of information-theoretic objective functions

F = φ0I (Y ;X;Z) + φ1I (Y ;X|Z) + φ2I (Y ;Z|X) + φ3H(Y |X,Z). (3)

We normally take φ0 = 1, so that φ1, φ2 and φ3 express the relative importance
of their respective components of information relative to the three-way information
term. We allow the {φi} to take values in the interval (−1,1).

We now discuss some links between this class of objective functions and other
work. Taking φ1 = 1, φ2 = φ3 = 0 gives formally

F = I (Y ;X),

which is the objective function used by Linsker. This equivalence is formal, but to
actually implement it within our more general framework it is required to cut the
contextual connections.

Taking φ1 = φ3 = 0 and φ2 = 1 gives

F = I (Y ;Z),

which is consistent with the approach of Becker and Hinton were similar architec-
tures, connectivities and activation functions to be employed.

Taking φ1 = φ2 = φ3 = 0 gives

F = I (Y ;X;Z). (4)

This is the objective function which has been used in our previous work and it mea-
sures the information shared among the RF inputs, the CF inputs and the output; thus,
its maximization enables the extraction of that information from the RF inputs that
is coherently related to the information in the CF inputs, and it is maximized by the
Coherent Infomax learning rules. Hence, we see the generality of the proposed class
of objective functions and also that important precursors to the approach described
here may be viewed as special cases.

In the sequel, we take a conditional approach to the modelling of the output given
the RF and CF inputs and, therefore, we write the objective function (3) as

F = H(Y) − ψ1H(Y |X) − ψ2H(Y |Z) − ψ3H(Y |X,Z), (5)

where ψ1 = 1 − φ2,ψ2 = 1 − φ1 and ψ3 = φ1 + φ2 − φ3 − 1. Note from (5) that F

contains the same entropic terms as does the three-way mutual information given in
(1) and (4) but that they are weighted differently.
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3.4 Larger Systems

We have defined the objective function F for a single local processor. In a neural sys-
tem, however, there will be many inter-connected local processors. We denote their
respective objective functions by F1,F2, . . . Fn. The objective of each local processor
is to maximize its objective function and we define a global objective function as

F1 + F2 + · · · + Fn, (6)

where each Fi has the general form defined in (5); see Kay et al. (1998) and Kay
(2000) for further discussion and examples. However, we make the conditional in-
dependence assumption that, given the values of its RF and CF inputs, the output of
the ith local processor is conditionally independent of all the random quantities in
the other local processors to which it is not directly connected. That is, we assume
that local processors can be affected by processors to which they are not directly
connected but only via the direct connections. In other words, we leave out of the
analysis non-synaptic communications, such as through the hormonal system, for
example. This assumption keeps things local and ensures that we may view the max-
imization of objective function (6) as equivalent to the parallel maximization of the
objective functions F1,F2, . . . ,Fn. We assume, along with many others, that this is
biologically plausible to a first approximation.

4 A Bayesian Perspective on Local Processors

We consider a Bayesian formulation of the construction of the posterior distribution
of the output Y , given RF inputs X and CF inputs Z, within a local processor as
depicted above in Fig. 1. First, we develop some further notation. We denote the
connection weights between the RF inputs and the output by the vector w and the
connections between the CF inputs and the output by v and adopt the familiar practice
of treating biases by using additional units clamped at −1. The integrated RF and CF
inputs are defined by

R =
m∑

i=1

wiXi − w0 and C =
n∑

j=1

vjZj − v0,

where w0 and v0 are the biases and the {Xi} and the {Zi} are random variables rep-
resenting the components of the random vectors X and Z, respectively.

Bayes’ theorem is commonly used (e.g. Lee and Mumford 2003) by expressing
p(y|x, z) as

p(y|x, z) = p(y|z)p(x|y, z)
p(x|z) . (7)

Here, p(y|x, z) is the posterior distribution of Y given that X = x and Z = z. The
prior distribution of Y given that the CF inputs Z = z is p(y|z), which provides a
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model for a priori predictions of the output Y given the CF inputs. The term p(x|y, z)
is a generative model for the RF inputs X given that Y = y and Z = z.

This form of decomposition is not appropriate in our formulation, however, since
it does not express our requirement that the RF inputs are the primary drivers of the
output Y , with the CF inputs enjoying a modulatory role. Hence, we change perspec-
tive and use Bayes’ theorem in the form

p(y|x, z) = p(y|x)p(z|y,x)

p(z|x)
. (8)

Now the prior is p(y|x), which provides a model for a-priori predictions of Y given
the RF inputs, and p(z|y,x) plays the role of the ‘likelihood’ term and is a model
for the CF inputs given that Y = y and X = x. This alternative perspective provides
a ‘primary driving’ role for the RF units in addition to a modulatory role for the CF
inputs. By exploiting the binary nature of Y and using (8), we obtain the following
representations in terms of odds:

p(1|x, z)
p(0|x, z)

= p(1|x)

p(0|x)
× p(z|1,x)

p(z|0,x)
(9)

and log-odds

log

{
p(1|x, z)
p(0|x, z)

}
= log

{
p(1|x)

p(0|x)

}
+ log

{
p(z|1,x)

p(z|0,x)

}
. (10)

Now, let f (r) and g(r, c) be differentiable functions of the integrated fields r and c

and set

log

{
p(1|x)

p(0|x)

}
= f (r), (11)

log

{
p(z|1,x)

p(z|0,x)

}
= g(r, c). (12)

Note that it would have been possible here to take f and g to be general functions of x
and (x, z), respectively, but it is more biologically plausible to specify these functions
in terms of the integrated fields.

The conditional distributions in (11)–(12) are defined in a very implicit way and
we now provide explicit expressions for them and present the derivations of these
results in the Appendix, together with a specification of the joint distribution of
(Y,X,Z). The actual conditional probability density functions p(x|1) and p(x|0)

may be explicitly expressed as

p(x|0) =
{

1

1 + exp[f (r)]
}

p(x)

p0
, (13)

p(x|1) =
{

exp[f (r)]
1 + exp[f (r)]

}
p(x)

p1
, (14)

where p(x) is any valid probability density function and py = Pr(Y = y) is the prior
probability that the output Y takes the value y, (y = 0,1), also denoted by p(y).
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The actual conditional probability density functions p(z|1,x) and p(z|0,x) may be
explicitly expressed as

p(z|0,x) =
{

1 + exp[f (r)]
1 + exp[f (r) + g(r, c)]

}
p(z|x), (15)

p(z|1,x) = exp
[
g(r, c)

]
p(z|0,x), (16)

where p(z|x) is any valid conditional probability density function. The joint probabil-
ity density function for X and Z can be any probability density function composed as
p(x, z) = p(z|x)p(x). Of course, if we were actually employing the Bayesian mod-
elling here in practice then the conditional distributions p(x|1), p(x|0), p(z|1,x) and
p(z|0,x) would require to be directly specified. Then the posterior distribution p(y|x)

would be obtained via Bayes’ theorem in the form

p(y|x) = p(x|y)p(y)

p(x)

and the posterior distribution p(y|x, z) would be computed using (8).
Equations (9) and (12) may be used to explain the effect of contextual modulation

within a local processor. Exponentiation of both sides of (12) and substitution into
(9) gives

p(1|x, z)
p(0|x, z)

= p(1|x)

p(0|x)
× exp

[
g(r, c)

]
. (17)

The left-hand side of (17) is the posterior odds that the output Y takes the value 1 (as
opposed to 0) given both the RF and CF inputs. The right-hand side shows that this
posterior odds is an update of the posterior odds given just the RF inputs obtained
by multiplying by the contextual modulation factor exp [g(r, c)], using the current
values of the inputs and connection weights. Clearly, if g(r, c) > 0 the posterior odds
are increased, if g(r, c) = 0 they are unchanged and if g(r, c) < 0 they are decreased.

Finally, from (10)–(12), we obtain (see the Appendix) that the conditional distrib-
ution of Y given that X = x and Z = z is Bernoulli with

Pr(Y = 1|X = x,Z = z) = exp[A(r, c)]
1 + exp[A(r, c)] , (18)

where A(r, c) = f (r) + g(r, c). This shows that this form A(r, c) = f (r) + g(r, c)

of activation function is consistent with the particular Bayesian formulation just de-
scribed. Functions of this form have been used in other models; see Spratling and
Johnson (2006) and Körding and König (2000). We note, by way of contrast, that
had we persevered with the ‘commonly-used’ Bayesian perspective based on (7) and
employed the above argument then we would have been led to an activation func-
tion of the form a(c) + b(r, c), where a and b are differentiable functions of c and
(r, c), respectively. In exact opposition to the physiological and psychophysical evi-
dence, this would have required the CF inputs to be driving and the RF inputs to be
modulatory—hence the alternative Bayesian formulation developed above.
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However, rather than adopt explicit Bayesian computation, it is simpler and more
general to specify the probabilistic modelling directly in terms of the conditional
distribution of the output given the RF and CF inputs p(y|x, z) given in (18), as this
means that we do not require to specify a particular form for the joint distribution of
X and Z or for the conditional distributions implicit in (9) and (12). Our use of this
posterior distribution is therefore consistent with the Bayesian formulation described
above. We now proceed to define the particular activation function we use.

Our activation function was introduced by Kay and Phillips (1994, 1997) and dis-
cussed in some detail by Kay (2000); it was derived from the voltage-dependence
of NMDA channels, which makes them function as modulators. Here, we make the
connection to such physiological functions even stronger, however, because we have
now shown that the theoretical arguments for Coherent Infomax predict such func-
tions. The requirements we demand of the activation function, as set out in Phillips
et al. (1995), lead naturally to the following class of activation functions:

A(r, c) = r
[
k1 + (1 − k1) exp(k2rc)

]
, (19)

with k2 > 0 and 0 ≤ k1 < 1. In practical examples, we normally take k1 = 0.5 and
k2 = 2. Some simple experiments in Kay and Phillips (1994) demonstrated the neces-
sity and sufficiency of this form of activation function. While this class of activation
functions is sufficient to meet our requirements, it is not unique and other nonlinear
functions could be suggested which satisfy these requirements. The function (19) is
a member of the general class of the form f (r) + g(r, c) discussed above.

Finally, we present the derivatives of the activation function with respect to the
integrated RF and CF inputs, which are required in the learning rules

∂A

∂r
= k1 + (1 − k1)(1 + k2rc) exp(k2rc), (20)

∂A

∂c
= (1 − k1)k2r

2 exp(k2rc). (21)

5 Learning

Learning in neural systems involves adapting the strengths of the connections be-
tween processors to the environment in which the system finds itself. Here, we derive
the rules for changing connection strengths from the objective functions specified
in Sect. 3. It turns out that the rules for changing the RF and CF connections are
essentially the same, which fits the neurobiological evidence for a common widely
distributed form of synaptic plasticity. Furthermore, learning rules can only be bio-
logically plausible if they can be scaled-up to operate within very large systems. We
therefore present approximations by which this may be achieved.

From (18), the conditional probability that the output takes the value unity given
the observed RF and CF inputs is given by

Pr(Y = 1|X = x,Z = z) = 1

1 + exp[−A(r, c)] (22)
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and we denote this probability by θ ≡ θ(w,v,x, z); in the sequel, for simplicity, we
will not indicate this explicit dependence of the output probability on the RF and CF
weights and inputs and just use θ . A fairly detailed derivation of the learning rules is
provided by Kay (2000) and so we now simply state the main results required.

The learning rules involve various averages of the output probability θ and these
are defined as

E = 〈θ〉x,z, (23)

Ez = 〈θ〉x|z, (24)

Ex = 〈θ〉z|x. (25)

In the calculation of E, the average value of the output probability is taken over
all values of (x, z) seen by the local processor. The other two terms Ez and Ex are
conditional averages of the output probability taken with respect to the conditional
distribution of X, given that Z = z and Z, given that X = x, respectively. The term Ez
is computed by taking the average of the output probabilities over all values of x for
which Z = z. Similarly, the term Ex is computed by taking the average of the output
probabilities over all values of z for which X = x. In all cases empirical averages
based on the (x, z) patterns seen by the local processor are used.

We now state the derivatives of each of the entropic terms in the objective func-
tion F , defined in (5), with respect to the connection weights w and v and the biases
w0 and v0

∂F

∂w
=

〈
(ψ3A − Ō)

∂A

∂r
θ(1 − θ)x

〉
x,z

, (26)

∂F

∂v
=

〈
(ψ3A − Ō)

∂A

∂c
θ(1 − θ)z

〉
x,z

. (27)

The term Ō is a non-linear floating average given by

Ō = log
E

(1 − E)
− ψ1 log

Ex

(1 − Ex)
− ψ2 log

Ez

(1 − Ez)
. (28)

The derivatives for the biases are given by

∂F

∂w0
=

〈
(ψ3A − Ō)

∂A

∂r
θ(1 − θ)(−1)

〉
x,z

, (29)

∂F

∂v0
=

〈
(ψ3A − Ō)

∂A

∂c
θ(1 − θ)(−1)

〉
x,z

. (30)

Equations (26), (27), and (29)–(30) provide the derivatives of the objective func-
tion F required for incremental gradient-ascent learning. Since we wish to learn the
weights and biases in order to maximize the objective function F , in the gradient-
ascent learning rules the weight changes at each step are taken to be proportional
to these derivatives. In applying online learning, the averaging brackets are removed
and the optimal values of the connection weights and the required averages of output
probability in (23)–(25) are recursively built up over time.
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5.1 Online Learning Rules

The following equations give the learning rules for updating the parameters after the
presentation of pattern (yt , zt ) at time t . In the formulae below the superscript ‘t’
denotes time t and α and η are learning rate parameters. The function δ(a, b) takes
the value 1 when a = b and is zero otherwise. The learning rules for the averages of
the output probabilities are as follows:

Et+1 = Et + α θt , (31)

Et+1
z = Et

z + α θt δ(zt , z), (32)

Et+1
x = Et

x + α θtδ(xt ,x). (33)

We now consider the learning rules for the weights. Note that the notation [· · ·]t
means that all terms inside the brackets are evaluated at time t

wt+1 = wt + η

[
(ψ3A − Ō)

∂A

∂r
θ(1 − θ)x

]t

, (34)

vt+1 = vt + η

[
(ψ3A − Ō)

∂A

∂c
θ(1 − θ)z

]t

, (35)

w0
t+1 = w0

t + η

[
(ψ3A − Ō)

∂A

∂r
θ(1 − θ)(−1)

]t

, (36)

v0
t+1 = v0

t + η

[
(ψ3A − Ō)

∂A

∂c
θ(1 − θ)(−1)

]t

. (37)

In these rules, A is given in (19), the terms ∂A
∂r

and ∂A
∂c

are given in (20)–(21), θ is
given in (22) and Ō is given in (28).

5.2 Discussion of the Learning Rules

In the online learning rules, the terms ∂A
∂r

and ∂A
∂c

give the rate of change of the pre-
synaptic activation with respect to the integrated RF and CF fields, r and c. The term
θ(1 − θ) provides intrinsic weight stabilization, provided that the activation term A

grows large when the weights grow in magnitude. The term ψ3A − Ō ensures that
the weight change is non-monotonically related to the presynaptic activation A. This
property of these learning rules is therefore similar to the type of non-monotonicity
present in the behavior of the BCM and ABS learning rules (Artola et al. 1990;
Intrator and Cooper 1995), which have been shown to enjoy some biological plau-
sibility. The rules derived here are distinctive, however, particularly with regard to
the floating average Ō; this average depends on the current integrated RF, r , and
CF, c, and, in particular, it is context-sensitive. In order to further elucidate this non-
monotonicity, we consider the term ψ3A − Ō which may be written as the single
logarithm

log

{ [ θ
(1−θ)

]ψ3 [ Ex
(1−Ex)

]ψ1 [ Ez
(1−Ez)

]ψ2

E
(1−E)

}
. (38)
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Hence, in the case where ψ3 is positive, this term will be positive provided that the
current conditional output probability θ is greater than the threshold t

1+t
, where

t = exp(Ō/ψ3)

and otherwise non-positive. On the other hand, when ψ3 is negative, the term is posi-
tive when θ is less than the threshold t

1+t
and otherwise non-positive. In cases where

ψ3 = 0, the term θ disappears and then the sign of expression (38) depends on the
relative magnitudes of the various averages E, Ex, and Ez.

In applications, there are normally many interconnected local processors and the
objective function for each processor is given in (5). We make the conditional inde-
pendence assumption for the output of each local processor, namely that output is
independent of all the stochastic quantities involved in all the other local processors
given the values of its RF and CF inputs. This assumption means that, for the ith local
processor, the partial derivatives of F1 + F2 + · · · + Fn with respect each weight is
equal to the partial derivative of Fi with respect to the weight and so the learning rules
for the weights connected to the output unit of the ith local processor are local. See
Phillips et al. (1995) for examples. Systems in which the output unit is multivariate
have been developed; see Kay et al. (1998) for the case of multivariate binary output
units and Kay (2000) for the case of multinomial winner-take-all output units.

Coherent Infomax can be used for both supervised and unsupervised learning.
In the former case, the relevant contextual variables are given directly in the input,
whereas in the latter case they are latent variables that must be discovered. From this
perspective, one learning rule supports both supervised and unsupervised learning.
The distinction between them can then be seen, not as a dichotomy, but as a con-
tinuum depending upon the ease with which the relevant latent variables can be dis-
covered. Furthermore, this makes clear why learning correlations between complex
latent variables can be greatly facilitated by previous inputs in which those variables
were correlated either with directly observed variables or with simple functions of
them.

6 Computational Complexity

To be biologically plausible, the Coherent Infomax learning rules must be formulated
in a way that can be scaled-up to networks composed of very many local processors.
We have previously shown that increasing the number of streams across which ac-
tivity is correlated greatly increases the speed of learning (Phillips et al. 1995). The
computational load on individual processors must also be limited, however, so ap-
proximations by which this may be done are presented here.

We begin by taking another look at the modelling. In Sects. 3–5, the probabilistic
modelling was developed in terms of the actual RF inputs, CF inputs, and the outputs.
In that formulation, it was necessary to store conditional averages for each RF input
and also for each CF input. Hence, as the dimensionality of the RF and CF vectors
grows large, the required amount of storage grows exponentially fast for each local
processor in the network. This presents a serious limitation to the scalability of the
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approach described above for general applications. In order to overcome these com-
putational difficulties, we now exploit a special property of our empirical approach to
computation and rethink the probabilistic modelling. Rather than model the outputs
conditionally in terms of the actual RF and CF inputs via p(y|x, z), we now develop
the modelling in terms of the integrated RF and CF fields, R and C via the proba-
bility density function p(y|r, c). The immediate advantages of this approach are as
follows:

• It is required to compute conditional averages for each value of the integrated RF, r ,
and also for each value of the integrated CF, c.

• As the variables r and c are better thought of as quantitative variables, it now does
not matter whether the RF and CF inputs are categorical (properly coded), discrete,
or continuous.

• The number of conditional averages required is now independent of the dimensions
of the RF and CF inputs.

• The required conditional averages may now be computed from a single func-
tion

P(r, c) = exp[A(r, c)]
1 + exp[A(r, c)] ,

the output probability when the integrated RF and CF inputs are r and c, respec-
tively.

This new approach to the modelling resolves the scalability problem by working in-
stead with a single two-dimensional function of the integrated fields. This would
appear to present a different type of difficulty, namely, the specification of the form
of this function. However, given our empirical approach to the modelling in which no
explicit distributional assumptions are made concerning the integrated RF and CF in-
puts, the joint empirical distribution of R and C, which is derived from the empirical
distribution of the input patterns themselves, is used when computing the averages.
So this re-modelling does have advantages, but does this not change the objective
function? Does it not change the learning rules?

The objective function defined in (3) now becomes

F = φ0I (Y;R;C) + φ1I (Y;R|C) + φ2I (Y;C|R) + φ3H(Y|R,C)

and (5) becomes

F = H(Y) − ψ1H(Y |R) − ψ2H(Y |C) − ψ3H(Y |R,C).

In the derivatives required for the learning rules defined in (26)–(27) and (29)–(30),
we replace y and z with r and c, respectively. For example, the learning rule based
on (26) becomes

∂F

∂w
=

〈
(ψ3A − Ō)

∂A

∂r
θ(1 − θ)x

〉
r,c
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and the average E and the conditional averages, Ec and Er , are given by

E = 〈θ〉r,c,
Ec = 〈θ〉r|c, (39)

Er = 〈θ〉c|r (40)

and the dynamic average Ō is now

Ō = log
E

(1 − E)
− ψ1 log

Er

(1 − Er)
− ψ2 log

Ec

(1 − Ec)
. (41)

Note that in all the equations in this new approach the terms within the angled
brackets remain unaltered; the only difference now is that the averaging is being
taken with respect to the joint distribution of R and C or the conditional distribu-
tions of R given that C = c or of C given that R = r . Therefore, the expressions
are indeed different and in general are not the same as those obtained under the pre-
vious approach to the modelling taken in Sects. 3–5. However, with the empirical
approach being employed here, in which the expectations are taken with respect to
the empirical distributions of the input patterns, it turns out that all equations give
identical results as those derived before. The reason for this is based on the fact that
to each of the p primary input patterns (xi , zi : i = 1, . . . , p) there corresponds a sin-
gle (r, c) pattern, and so working empirically with the actual patterns seen by the net
there is a one-to-one correspondence between input patterns and integrated fields,
i.e. (xi , zi ) ↔ (ri , ci), i = 1, . . . , p. Hence, we may continue to calculate the com-
ponents of the objective function and the learning rules as before, with the advantage
now that the conditional averages may be obtained from a single two-dimensional
function. As a result, the learning rules for the weights w,v, and biases w0, v0 re-
main unchanged, and we use the learning rules in (34)–(37), but now the dynamic
average is computed using (41). Also, the learning rule for E given in (31) re-
mains unchanged and is used in this new formulation. It is only the terms Ec and
Er in (39)–(41) which require special consideration and we now consider two ap-
proaches to approximate them: Gaussian approximation and non-parametric approx-
imation.

6.1 Gaussian Approximation

In this first approach, it seems reasonable to assume if the numbers of RF and CF
inputs, m and n, are large, that via the central limit theorem the joint distribution of
R and C may be approximated by a bivariate Gaussian probability model, with mean
vector μ and covariance matrix Σ , where

μ =
[

μr

μc

]
and Σ =

[
σ 2

r ρσrσc

ρσrσc σ 2
c

]
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and μr and μc are the mean integrated RF and CF, respectively, σr and σc are the
standard deviations of the integrated RF and CF, respectively, and ρ is the correlation
between the integrated RF and the integrated CF.

The learning rule for E given in (31) can be used as before for online updat-
ing of E. Hence, we need to find approximations only for the conditional averages
Ec and Er and so we require the approximate conditional distributions of R, given
C = c, and C, given R = r . From standard probability results, it follows that these
conditional distributions are approximately Gaussian. The conditional distribution
of R, given C = c, is approximately Gaussian with mean μr|c and variance σ 2

r|c,
where

μr|c = μr + ρ
σr

σc

(c − μc) and σ 2
r|c = σ 2

r

(
1 − ρ2). (42)

The conditional distribution of C, given R = r , is approximately Gaussian with mean
μc|r and variance σ 2

c|r , where

μc|r = μc + ρ
σc

σr

(r − μr) and σ 2
c|r = σ 2

c

(
1 − ρ2). (43)

Then the computation of the required conditional averages consists of computing
averages of the output probability function

P(r, c) = exp [A(r, c)]
1 + exp [A(r, c)]

with respect to the conditional distributions of R, given that C = c, and C, given
that R = r . There are no closed-form expressions for these averages but we can eval-
uate them to the desired accuracy using Monte Carlo approximation (or numerical
integration).

The conditional averages are given by

Er =
∫ ∞

−∞
P(r, c)p(c|r) dc,

Ec =
∫ ∞

−∞
P(r, c)p(r|c) dr.

These equations may be written as

Er =
∫ ∞

−∞
P(r,μc|r + σc|r z)p(z) dz,

Ec =
∫ ∞

−∞
P(μr|c + σr|c z, c)p(z) dz,

where p(z) is the N(0,1) probability density function, by making the standardizing
transformations: c = μc|r + σc|rz and r = μr|c + σr|cz, respectively.
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If z1, . . . , zN are independent realizations from the N(0,1) distribution (white
noise) then the Monte Carlo approximations are given by

Er
∼= N−1

N∑
i=1

P(r,μc|r + σc|rzi), (44)

Ec
∼= N−1

N∑
i=1

P(μr|c + σr|czi, c). (45)

Note that the same values of the zi can be used in both of these approximations
at each iteration. Some simple experiments suggest that the Monte Carlo standard
error is about 0.02, 0.005, and 0.002 when N is 100, 1000, and 10000, respectively.
Hence, even with N = 100, it may well be possible to obtain a sufficiently good
approximation.

This then means that the conditional averages may be computed as explicit func-
tions of the current values at time t of the integrated RF and CF and also the current
values of the parameters of the approximating Gaussian distribution. They are com-
puted online at time t and this completely removes the scalability problem as there
is no longer any need to store conditional averages. The only cost emanating from
the use of these approximations is that at each local processor these Monte Carlo
calculations must be performed and also the five parameters of the approximating
bivariate Gaussian probability model must be learned. Hence, the computational cost
is linear in the number of local processors in the system. The ‘five parameters’ can be
learned using online updating via the following recursive formulae, in which β is a
learning rate parameter and the parameter γ is the covariance between the integrated
RF and CF

μt+1
r = (1 − β)μt

r + βrt , (46)

μt+1
c = (1 − β)μt

c + βct , (47)

σ 2
r,(t+1) = (1 − β)σ 2

r,t + β
(
rt − μt

r

)2
, (48)

σ 2
c,(t+1) = (1 − β)σ 2

c,t + β
(
ct − μt

c

)2
, (49)

γ t+1 = (1 − β)γ t + β
(
rt − μt

r

)(
ct − μt

c

)
, (50)

ρt+1 = γ t+1/[σr,(t+1)σc,(t+1)]. (51)

Here, as before, the values of the integrated RF and CF at time t are rt and ct . The
computation involves the following steps:

S1. Determine the values of the conditional parameters using (42)–(43) in terms of
the current values of the five Gaussian parameters.

S2. Compute the current values of the conditional averages using (44)–(45).
S3. Compute the dynamic average using the current value of E and (41).
S4. Update E using (31) and the weights and biases using (34)–(37).
S5. Update the Gaussian parameters using (46)–(51).

The Gaussian parameters may be initialized at t = 0 to zero, or a small random pos-
itive number, and the averages to 0.5. The weights and biases may be generated ran-



364 J.W. Kay, W.A. Phillips

domly from a uniform distribution on, say, [−0.001,0.001]. Note that (32)–(33) are
not required as there are no conditional averages to be stored.

One way to avoid the Monte Carlo computation involved in (44)–(45) would be
to consider Taylor approximations to the output probability function f (r, c). In the
case of first-order approximation, the efficacy will depend on how linear P(r, c) is
when considered as a function of r , for fixed c, and as a function of c, for fixed r .
The output probability function has a non-linear logistic form in both cases but is,
typically, approximately linear in the middle of the range (0,1) of the output prob-
ability. Toward the extremes of 0 and 1, the approximation tends to undershoot and
overshoot, respectively, when compared to the ‘exact’ value computed by the Monte
Carlo method.

6.2 Non-parametric approximation

In this second approach, the conditional averages Er and Ec of the output probability
function may be learned adaptively using non-parametric techniques; this is also a
simple approach and the required storage per unit depends on the ‘bin-size’ used in
the non-parametric estimation. We can separately bin the values of r the integrated
RF and c the integrated CF. So, we could split the possible r values, the real line,
into br bins. Then we can store and update online the value of Er for each bin.
Similarly, we could split the possible c values, the real line, into bc bins. Then we
can store and update online the value of Ec for each bin. Note that this would involve
keeping track of br +bc averages of the output probabilities. However, this number is
fixed and it is completely independent of the dimensionality of the RF inputs and CF
inputs. Clearly, some experimentation would be required to select suitable bins and
this approach requires evaluation. The computation involved here would be linear in
the number of local processors.

Suppose that the bins for the values of the integrated RF are the mutually exclusive
intervals R1, R2, . . . , Rbr of the real line R and that the bins for the values of the
integrated CF are the mutually exclusive intervals C1, C2, . . . , Cbc of the real line R.
Therefore, at time t , the current value of the integrated RF, rt , will belong to one
and only one of the intervals {Rb: b = 1, . . . , br} and the corresponding conditional
average Erb will replace Er and be used in the computation of the current value of
the dynamic average Ō in expression (41). Similarly at time t , the current value of the
integrated CF, ct , will belong to one and only one of the intervals {Cb: b = 1, . . . , bc}
and the corresponding conditional average Ecb will replace Ec and be used in the
computation of the current value of the dynamic average Ō in expression (41). Thus,
referring to the computational scheme set out in Sect. 6.1, steps S2 and S3 are not
required and the other steps are used as before. In addition, it is also necessary to add
updating of the conditional averages Erb and Ecb of the kind described in (32)–(33),
which are replaced by the following (52)–(53):

Et+1
cb = Et

cb + θ t I(ct , Cb): b = 1, . . . , bc, (52)

Et+1
rb = Et

rb + θ t I(rt , Rb): b = 1, . . . , br , (53)

where the indicator function I(x, A) is 1 when x ∈ A and zero otherwise.
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7 Discussion

The perspective outlined above raises many unresolved issues, as do all general the-
ories of brain function. Here, there is space to discuss only a few of these issues;
i.e. relations to oscillations and synchrony, empirical studies of approximations to
optimality, the reduction of ‘free-energy’ (i.e. prediction error), and the meaning of
‘meaning’.

The dynamic coordination implied by Coherent Infomax is related in close but
complex ways to cortical rhythms and their temporal phase relations. Much is al-
ready known about these issues, but far more remains to be discovered (von der
Malsburg et al. 2010). One major issue concerns rhythmic ‘windows-of-opportunity’
for pyramidal cell firing that are created by the rhythmic inhibitory inputs that they
receive from interneurons in the local cortical micro-circuit. These dynamics are
highly relevant to Coherent Infomax because they could provide a mechanism for
the contextual modulation emphasized in Sects. 2 and 4. Pyramidal cells receive
strong perisomatic inhibitory input from fast-spiking basket cells, and this temporar-
ily prohibits spiking. ‘Windows of opportunity’ for pyramidal cell spiking are pro-
vided by the periods of recovery from this inhibition. Pyramidal cell responses to
their excitatory inputs can therefore be modulated by controlling the synchrony of
these inhibitory inputs, because when they are synchronized, so are the periods of
recovery from inhibition. Models of this form of gain modulation show that it could
play a major role in attention, coordinate transformation, the perceptual constancies,
and many other cases of contextual disambiguation (Salinas and Sejnowski 2001;
Tiesinga et al. 2005). Furthermore, these models show that such gain modulation is
particularly effective at low gamma frequencies. The modulatory effects implied by
Coherent Infomax should therefore be most noticeable in that frequency range, and
available evidence supports this prediction (von der Malsburg et al. 2010). Thus, these
local circuit dynamics could play a pivotal role in future studies of mechanisms by
which Coherent Infomax may be implemented. Furthermore, although there is evi-
dence that these rhythmic inhibitory dynamics interact with NMDA channel activities
and are involved in the pathophysiology of cognitive disorganization in disorders such
as schizophrenia (Roopun et al. 2008), much remains to be discovered concerning
these issues. Finally, 1/f power scaling across the frequency spectrum is ubiquitous
in both the real cerebral cortex and continuum models (Wright et al. 2001). Theories
of ‘emergent coordination’ argue that this is clear evidence that cortical dynamics is
dominated by strong non-linear multiplicative interactions (Kello et al. 2007; Holden
et al. 2009). If so, Coherent Infomax predicts such a 1/f distribution. Furthermore,
as we do here, theories of emergent coordination argue that components of the system
must work together to produce coherent patterns of activity, even though each compo-
nent maintains its own individual identity. Understanding of Coherent Infomax may
therefore be advanced by further studies of its relation to emergent coordination and
1/f scaling.

Sections 5 and 6 presented theoretical learning rules and approximations for adapt-
ing connection strengths so as to approach the goal of Coherent Infomax, but how
can such adaptation be explored in neurobiological and psychophysical experiments?
Fully optimal states of adaptation are not computable in natural environments be-
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cause the computational demand is then too great. Improvements in the state of adap-
tation are feasible, however, so we assume that to be the goal. Evidence from a wide
variety of sources suggests that neural processing can in some circumstances approx-
imate optimal Bayesian inference (Doya et al. 2007), so that evidence supports our
approach as we have shown it to be consistent with a Bayesian interpretation. More
directly, conditional mutual information measures can be used to distinguish coor-
dinating contextual effects from the interactions that specify receptive fields (Smyth
et al. 1996). By applying these measures to two alternative forced-choice responses
in a texture segregation task with multiple cues, it was found that as predicted, at-
tention, but not cue fusion, involves coordinating interactions (Phillips and Craven
2000). Such measures and paradigms could be used to test the prediction that the
coordination implied by Coherent Infomax is improved by learning.

The theory of Coherent Infomax assumes that brain function can be thought of
as optimization, and several other major theories are also cast in this form. It has
been argued that many of them (including theories of Infomax, Bayesian inference,
attention, perceptual learning, value learning, and motor control) can be unified un-
der the assumption that a fundamental objective of neural systems is to reduce free-
energy, i.e. to reduce prediction error (Friston 2010). Relations of Coherent Infomax
to those other theories can therefore be implicitly discussed by relating it to Fris-
ton’s theory. This leads us to emphasize that Coherent Infomax is not a form of In-
fomax. It is Infomax plus the search for coherence, which is closely analogous to
Friston’s combination of Infomax and redundancy reduction with the Bayesian Brain
hypothesis (Doya et al. 2007). Coherent Infomax has many fundamental similari-
ties to free-energy theory because maximizing coherence is essentially the comple-
ment of reducing prediction error. In both theories, the functional asymmetry between
feedforward connections that are driving and feedback or lateral connections that are
modulatory is crucial. In both, context-dependent redundancy combats noise. In both,
stimulus context and selective attention are treated as forms of contextual-guidance,
and rules for the long-term optimization of synaptic strengths are derived from the
objective to be optimized. Though there are several differences between the two the-
ories, they seem mainly to be due to the more extensive development achieved by the
free-energy theory, rather than to any fundamental disagreements. Several possible
improvements to the theory of Coherent Infomax are therefore suggested by com-
parison with the free-energy theory. These include: greater emphasis upon contextual
feedback from higher levels in the hierarchy; explicit reference to value learning; and
explicit development of the possibility that coherence can be maximized not only by
adapting the system to its external input, but also by adapting the input to the system
(by action). Prima facie, one major difference between the two theories concerns the
effect of contextual modulation on the forward transmission of predicted data. We
have emphasized amplification, whereas, in accordance with predictive-coding the-
ories (e.g. Lee and Mumford 2003), the free-energy theory emphasizes suppression,
so that only prediction errors are fed forward. Even this difference may be more ap-
parent than real, however, because predictions are crucial to both theories, and they
may be used for amplification in some cases, such as those emphasized by Spratling
(2008), and for suppression in others, such as those emphasized by Friston (2010).
Overall, therefore, the agreement between the two theories may be more fundamental
than the differences.
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Contextual fields have been defined as inputs to local neural processors that modu-
late signal transmission without changing the ‘meaning’ currently conveyed by those
signals. Therefore, clarification of what we mean by ‘meaning’ in this context may be
useful. In information theoretic terminology this refers to what the signals transmit
information about. In perceptual systems, for example, it is commonly agreed that
neurons act as feature detectors, or filters, that can be modulated by stimulus context
and attention without changing the features detected. To some, it may seem that, as
signals transmit information about everything that affects them, information theory
cannot be used to distinguish meaning from modulation. This intuition is mislead-
ing. The information that is transmitted specifically about modulatory input given the
receptive field input can be negligible, even when that modulating input has a large
effect on the transmission of receptive field information (Kay et al. 1998). Therefore,
conditional mutual information measures can be used to distinguish meaning from
modulation (Smyth et al. 1996). Receptive fields and, therefore, the meaning of the
signals transmitted, do change on the time-scale of learning, however, and Coherent
Infomax specifies rules by which that change should occur. As the goal is to discover
variables that are statistically related across diverse data-sets this amounts to discov-
ering distal realities in the proximal data sets, which is analogous to using converging
operations to discover hidden or latent variables. None of this necessarily implies a
receiver, or in semiotic terminology an interpretant, of the signals that distinguishes
between the signals and what they transmit information about, however. Therefore,
important and thorny issues concerning such things as intentionality, intentional rep-
resentation and self-awareness are not addressed.

8 Summary

In this paper, the relevance of the formal theory of Coherent Infomax to biological
neural systems has been made more explicit in various ways. First, we have placed
more emphasis upon the contextual guidance of ongoing processing by a special
class of coordinating or modulatory synaptic interactions, thereby relating it more
explicitly to all of the neurobiological and psychological evidence for such interac-
tions. Second, we have shown equivalence with a particular Bayesian formulation
thereby relating the theory more explicitly to all of the theoretical, neurobiological,
and psychophysical evidence that has been interpreted as supporting Bayesian ap-
proaches (e.g. Lee and Mumford 2003; Friston 2003; Körding and Wolpert 2004;
Schwartz et al. 2007). Third, we have explicitly specified rules for online learning,
which we assume to be more biologically plausible than the batch-learning rules used
in some of our earlier work. It turns out that these rules are much the same as in
the batch-learning case. Finally, biological plausibility requires that learning must be
computationally feasible within very large systems and complex environments. We
have therefore specified how this may be achieved by means of approximations to
the Coherent Infomax learning rules. Though it was first proposed in the early 1990s,
there are still many ways in which the theory of Coherent Infomax requires further
development and test. The formal studies presented here contribute to that develop-
ment, but by no means complete it.
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Appendix

A.1 Derivation of (13)–(14)

Recalling that Y is binary, with two possible values y = 0 and y = 1, we may employ
standard probability results as follows:

p(x) =
∑

y=0,1

p(x, y) =
∑

y=0,1

p(x|y)p(y) = p(x|1)p1 + p(x|0)p0, (A.1)

where py = Pr(Y = y). Taking exponentials in (11), we obtain

p(1|x)

p(0|x)
= exp

[
f (r)

]

and applying Bayes’ theorem in the form p(y|x) = p(x|y)py/p(x) (y = 0,1) it fol-
lows that

p(x|1)p1 = exp
[
f (r)

]
p(x|0)p0. (A.2)

Now, substituting (A.2) into (A.1) and rearranging the terms we obtain

p(x|0) =
{

1

1 + exp[f (r)]
}

p(x)

p0
(A.3)

and combining (A.3) with (A.2) it follows that

p(x|1) =
{

exp[f (r)]
1 + exp[f (r)]

}
p(x)

p1
. (A.4)

Equations (A.3)–(A.4) are (13)–(14) in the text.

A.2 Derivation of (15)–(16)

First, we need to relate the conditional densities p(z|0,x) and p(z|1,x) to the condi-
tional density p(z|x). Recalling that Y is binary and employing standard probability
results we obtain

p(z|x) =
∑

y=0,1

p(z, y|x) =
∑

y=0,1

p(z|y,x)p(y|x)

= p(z|1,x)p(1|x) + p(z|0,x)p(0|x). (A.5)

Now, taking exponentials in (11)–(12), we have

p(1|x) = exp
[
f (r)

]
p(0|x), (A.6)

p(z|1,x) = exp
[
g(r, c)

]
p(z|0,x). (A.7)
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By substituting (A.6)–(A.7) into (A.5), we obtain

p(z|x) = p(z|0,x)p(0|x)
{
1 + exp

[
f (r)

]
exp

[
g(r, c)

]}
= p(z|0,x)p(0|x)

{
1 + exp

[
f (r) + g(r, c)

]}
. (A.8)

Now we use (A.6) together with the fact that p(1|x) + p(0|x) = 1 to obtain

p(1|x) = exp[f (r)]
1 + exp[f (r)] ,

p(0|x) = 1

1 + exp[f (r)] .
(A.9)

Now substitute (A.9) into (A.8) and then rewrite the resulting equation to give

p(z|0,x) =
{

1 + exp[f (r)]
1 + exp[f (r) + g(r, c)]

}
p(z|x). (A.10)

Also, from (A.7), we have

p(z|1,x) = exp
[
g(r, c)

]
p(z|0,x). (A.11)

Equations (A.10)–(A.11) are (15)–(16) in the text.

A.3 Derivation of (18)

Equation (18) follows by substituting (11)–(12) into (10), exponentiating both sides
and then rearranging the terms to give

p(1|x, z) = p(0|x, z) exp
[
f (r) + g(r, c)

]

and application of the fact that p(1|x, z) + p(0|x, z) = 1 yields

p(1|x, z) = exp[f (r) + g(r, c)]
1 + exp[f (r) + g(r, c)] . (A.12)

Recognition of the facts that p(1|x, z) = Pr(Y = 1|X = x,Z = z) and A(r, c) =
f (r) + g(r, c) then gives (18) in the text.

A.4 Probabilistic Specification for (Y,X,Z)

Now, using standard probability results, we have

p(1,x, z) = p(1|x, z)p(x, z) = p(1|x, z)p(x|z)p(z). (A.13)

Now substitute (A.12) into (A.13) to obtain

p(1,x, z) =
{

exp[f (r) + g(r, c)]
1 + exp[f (r) + g(r, c)]

}
p(z|x)p(x). (A.14)



370 J.W. Kay, W.A. Phillips

The expression for the term p(0,x, z) follows similarly by noting that

p(0|x, z) = 1 − p(1|x, z) = 1/
(
1 + exp

[
f (r) + g(r, c)

])

and so we obtain

p(0,x, z) =
{

1

1 + exp[f (r) + g(r, c)]
}
p(z|x)p(x). (A.15)

Equations (A.14) and (A.15) specify the joint probability distribution for (Y,X,Z).
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