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Abstract A model for fluid and drug transport through the leaky neovasculature and
porous interstitium of a solid tumour is developed. The transport problems are posed
on a micro-scale characterized by the inter-capillary distance, and the method of multiple
scales is used to derive the continuum equations describing fluid and drug transport on the
length scale of the tumour (under the assumption of a spatially periodic microstructure).
The fluid equations comprise a double porous medium, with coupled Darcy flow through
the interstitium and vasculature, whereas the drug equations comprise advection–reaction
equations; in each case the dependence of the transport coefficients on the vascular geom-
etry is determined by solving micro-scale cell problems.

Keywords Homogenization · Vascular network

1. Introduction

The success of anticancer therapies in treating cancer is limited by their inability to reach
their target in vivo in adequate quantities (Jain, 1989). If anti-cancer drugs are unable to
access all of the cells within a tumour that are capable of regeneration, their effectiveness
will be compromised. In addition, the effectiveness of new molecular medicines at treat-
ing cancer will be jeopardized if they cannot reach all cancerous cells (Minchinton and
Tannock, 2006). An agent that is delivered intravenously reaches cancer cells via distrib-
ution through the vasculature, transport across the walls of the vessels that comprise the
capillary bed, and transport through the interstitium. Each of these involves a combination
of advection and diffusion, and in addition a molecule may bind to proteins or targets, be
metabolized, or be retained in tumour cells.

The blood network structure of a tumour is clearly an important component of the drug
delivery process. To obtain nutrients for growth, tumours sprout new blood vessels in a
process called angiogenesis (Cameliet and Jain, 2000). The resulting vasculature exhibits
high structural and functional heterogeneity. Blood vessels in tumours are substantially
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leakier than in healthy tissue (Hashizume et al., 2000) and are tortuous, causing spatial
and temporal heterogeneity in tumour blood flow. Further, the pressure generated by pro-
liferating cells reduces tumour blood and lymphatic flow (Jang et al., 2003). Collectively,
these vascular abnormalities lead to an impaired blood supply and abnormal tumour mi-
croenvironment characterized by hypoxia and elevated interstitial fluid pressure that re-
duces the distribution of macromolecules through advection (Heldin et al., 2004). Drug
treatments (mainly anti-angiogenics such as avastin, but also vascular disrupting and reg-
ularising agents such as combretastatin and nelfinavir) have been developed specifically
to target the abnormal vasculature in tumours; however, their impact is hard to predict
as the relationship between network structure and the functional parameters that deter-
mine mass transport is subtle. For example, increasing the number or diameter of vessels
can impair the blood flow distribution, whilst inhibiting angiogenesis is hypothesized to
improve circulation (Pries et al., 2009).

In recent years, imaging techniques have advanced significantly and it is now possi-
ble to describe vascular structure in a highly detailed way (see, for example Konerding
et al., 1999, 2001). As the resolution of this data continues to increase, it will become too
computationally intensive to simulate flow and mass transport in the entire vascular tree
using a discrete approach. Therefore, continuum models must be developed that use this
imaging data as model inputs to deduce functional properties relevant to blood and mass
transport.

Here, we develop a continuum model for fluid and drug transport in vascularized tu-
mours by extending the homogenization approach of Chapman et al. (2008) to account
for an arbitrary (periodic) vascular geometry. The goal of this approach is to develop a
concrete mathematical framework in which to derive continuum models of fluid and mass
transport in tumours. In the long-term, this will help to both elucidate the mechanisms
underlying transport, and to quantify the impact of vascular structure on tumour-scale
fluid and drug perfusion. As a first step in this process, this paper is focussed on model
development under a number of simplifying assumptions. In particular, we model the vas-
culature as a highly interconnected capillary bed with a spatially periodic microstructure.
This enables continuum equations for the fluid pressures and drug concentrations on the
tumour-scale to be derived using the process of multiple scales. Although this approach
does not account for several key features of the tumour vasculature (in particular a tempo-
rally evolving structure that may not be spatially periodic, and the hierarchical structure
of the vascular tree), it does provide a methodical and mathematically solid foundation for
future studies and model development. The final continuum equations are computation-
ally tractable, and will enable the impact of varying vascular structure on tumour-scale
fluid perfusion and mass transport to be tested, without re-deriving the models each time.

In Section 2, we formulate and non-dimensionalize the fluid and drug transport models
on a length scale characterized by the inter-capillary separation. This includes a detailed
discussion of parameter values and scalings for the dimensionless parameters that charac-
terize the transport problems. For drug transport, we categorize the possibilities into five
different transport problems, dependent on the relative importance of advection, diffu-
sion, and reaction, and the treatment of the capillary-interstitium boundary. In Section 3,
we use multiple scales to derive the continuum equations describing the fluid and drug
transport on the length scale of the tumour. The resulting fluid transport model is similar
to that described in Chapman et al. (2008), in that it comprises a double porous medium
with coupled Darcy flow through the interstitium and vasculature; however, this approach
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generalizes the grid capillary geometry of Chapman et al. (2008) to an arbitrary peri-
odic structure. Similarly, analytic expressions for the effective drug transport coefficients
are determined, and the dependence of these on the vascular geometry and drug type is
highlighted. Finally, in Section 6, we present our conclusions.

2. Model formulation

The capillaries of a tumour are embedded in the interstitium (comprised of cells and
extra-cellular space) and are relatively small compared to the size of the tumour domain
itself. Therefore, we characterize the problem by two length scales; the macro- (or global)
scale of the tumour and the micro- (or local) scale characterized by the inter-capillary
separation, and on which individual capillaries are identifiable. Denoting typical tumour
and inter-capillary length scales by L and d respectively, we assume that the macro- and
micro- scales are well separated so that

ε = d

L
� 1, (1)

and exploit this in the asymptotic analysis that follows. We assume the tumour can be
described as spatially periodic on the micro-scale, and consists of distinct vascular and
interstitial (or tissue) phases. On the micro-scale, the medium is denoted Ω ⊂ R3 and
is composed of a porous interstitial part, Ωt , and a capillary network region, Ωc . The
interface between the two regions (the capillary wall) is denoted Γ = ∂Ωt ∩ ∂Ωc .

The assumption of a periodic microstructure was discussed in the Introduction. Al-
though it is a simplifying assumption for tumours (and should be relaxed in future work),
it enables multiple scales to be used to derive the macro-scale equations, and in this way
allows a concrete mathematical framework to be developed under which fluid and mass
transport can be explored. A 2D schematic of the micro- and macro-scales is depicted in
Fig. 1, for an example periodic unit. On the right-hand side of Fig. 1 is the macro- (or
global) scale of the tumour. On this length scale, both the vasculature and interstitium are
averaged out and can be represented as continua; therefore, the distribution of fluid and
drugs in each of the phases can be represented as a ‘grey-scale’. In contrast, ‘zooming’
into a point on the macro-scale reveals the micro-scale where both the vessels and in-
terstitium are identifiable. Circled is a schematic of a single periodic unit that repeats to
form the tumour. Although the structure must be periodic, there is no other assumption of
homogeneity within this unit.

Next, we consider the fluid and drug transport problems in turn.

2.1. Fluid transport

We denote the fluid velocity by u and the pressure by p. We denote the restriction to Ωt

or Ωc by the subscript t or c respectively. We assume that the flow in both the interstitium
and the capillaries is incompressible. The interstitium is comprised of cells surrounded
by extra-cellular space. However, the capillaries are much larger than the pore size of the
interstitium (i.e. the inter-cell separation), and so we treat the interstitium as an isotropic
porous medium and describe fluid flow through it by Darcy’s law. Therefore,

∇ · ut = 0 in Ωt, (2)
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Fig. 1 A 2D schematic of the micro- and macro-scales. On the right-hand side is the macro-scale, where
the vasculature and interstitium are continua and the distribution of fluid and drugs in each of the phases
can be represented as a ‘grey-scale’. ‘Zooming’ (represented in blue) into a point on the macro-scale
reveals the micro-scale where both the vessels and interstitium are identifiable. The blue circled region is
an example of a periodic unit. (Colour figure online.)

ut = − k

μ
∇pt in Ωt, (3)

where k is the interstitial permeability and μ is the viscosity of the fluid.
Blood flow in the capillaries of the microcirculation is a highly complex process.

Healthy human blood is a concentrated suspension containing red blood cells (RBCs)
at a concentration (haematocrit) of 40–45%. In vessels much larger than the RBCs (i.e.
with diameter much larger than ≈8 µm), blood can be treated as a continuum with a
viscosity that is approximately constant. In vessels smaller than this, the finite size of
RBCs results in non-continuum behaviour and complex rheology that causes several im-
portant effects, e.g. the Fåhraeus (Fåhraeus, 1928) and Fåhraeus–Lindqvist (Fåhraeus and
Lindqvist, 1931; Pries et al., 1992) effects, and phase separation at diverging bifurcations
(Pries et al., 1989; Pries and Secomb, 2005).

For simplicity, and with a view to elucidating the homogenization technique, we ne-
glect non-Newtonian effects here and assume that the fluid flow in the capillaries is de-
scribed by the Navier–Stokes equations for a fluid of constant viscosity. This is a signifi-
cant simplifying assumption that should be addressed in future work. We have

∇ · uc = 0 in Ωc, (4)

ρ

(
∂uc

∂t
+ (uc · ∇)uc

)
= −∇pc + μ∇2uc in Ωc, (5)

where ρ is the fluid density.
The leakage from the capillaries into the interstitium is given by Starling’s law,

qe = Lp(pc − pt)n, (6)
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where qe is the leakage flux, Lp is the vascular permeability (assumed constant), n is
the unit outward pointing normal to the capillary surface, and pc , pt are evaluated on
the interior and exterior sides of the capillary wall, respectively. Given this, we impose
continuity of mass flux across Γ , so that

ut · n = uc · n = Lp(pc − pt) on Γ. (7)

Equations (7) are enough to determine the velocity in the tissue, but Eq. (5), being of
higher order, requires a further boundary condition on (for example) the tangential com-
ponents of u. Beavers and Joseph (1967) were the first to consider the appropriate form
of the boundary condition for the tangential component of the velocity when a Newtonian
fluid flows over a porous membrane by conducting experiments based on a 2D flow in
a channel over a naturally permeable block, under an imposed pressure gradient. They
concluded that a free fluid in contact with a porous medium flows faster than a fluid in
contact with a completely solid surface, and a small boundary layer develops near the in-
terface within which the tangential velocity of the fluid does not vanish. Saffman justified
the Beavers and Joseph boundary condition theoretically in his paper (Saffman, 1971) by
using a statistical approach to extend Darcy’s law to non-homogeneous porous medium.
Jones extended their result to curved boundaries and non-tangential flows (Jones, 1973),
by deriving the boundary condition

[
(n · ∇)uc

] · τ = − α√
k

uc · τ on Γ, (8)

where τ is a unit tangential vector to Γ , and α is a dimensionless constant depending on
the properties of the interface.

In practice, slip at the capillary surface will be determined by the microvascular rheol-
ogy, in particular the structure of the endothelial glycocalyx. Given that we have neglected
non-Newtonian effects here, we use Jones’ boundary condition (8) to account for slip un-
der the assumption that α will be determined by rheological effects. It should be noted
that the boundary condition (8) has only been derived in 2D, and the extension to 3D is
non-trivial (Jäger and Mikelić, 2000; Jäger et al., 2001). Here, we assume that (8) holds
for both of the tangent vectors to the vascular surface.

2.2. Drug transport

We denote the species concentration by c, with subscripts t and c denoting the restriction
to Ωt and Ωc respectively. We consider the transport of an arbitrary macromolecule that
is advected by the fluid and diffuses in all of Ω . In addition, the species may decay/be
metabolised in the interstitium, and so the transport problem may be described by

∂c

∂t
+ (u · ∇)c = D∇2c − Λc in Ω, (9)

where D is the species diffusivity, assumed constant in each region (and denoted Dt and
Dc in Ωt and Ωc, respectively), and

Λ =
{

0 in Ωc,

λ in Ωt,
(10)
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where λ represents the rate of species loss due to decay, cellular uptake, protein-mediated
uptake and metabolism in the interstitium. We have assumed that this rate of species loss
is proportional to the underlying drug concentration; this is a simplification, and indeed
the analysis that follows could be extended to more complex reaction mechanisms in the
future.

Finally, we consider the boundary conditions on the blood-interstitium boundary, Γ .
Conservation of mass implies that the flux, J = cu − D∇c, must be continuous across Γ ,
so that

(ctut − Dt∇ct ) · n = (ccuc − Dc∇cc) · n on Γ. (11)

To close the problem, we need one more boundary condition for the species concentration
on Γ . The nature of this final boundary condition is not as clear, and we consider three
options in this paper. The choice of which boundary condition is appropriate should be
motivated by the physiological situation under investigation.

Option 1 (Continuity of Concentration). The simplest boundary condition is to apply
continuity of species concentration,

cc = ct on Γ. (12)

Option 2 (A Concentration Jump Proportional to J (Membrane Law)). A second option is
to use a membrane treatment that links the flux of a species across the interface to the con-
centration jump across it through the permeability r (r has units cm s−1). This approach
is used widely in the literature (Jain, 1987, 1990) and stipulates that, in dimensional form,

(ccuc − Dc∇cc) · n = (ctut − Dr∇ct ) · n = r(cc − ct ) on Γ. (13)

Option 3 (A Concentration Jump as a Consequence of Species Solubility). The final
option is a jump in the species concentrations across the interface Γ as a consequence
of reduced agent solvability in the interstitium compared to the blood (for gases, this is
Henry’s law; the concentration and partial pressure of a gas in solution are related through
c = γp where γ is the solvability). In this case,

βcc = ct on Γ, (14)

for some constant β .

Before we can perform any systematic asymptotic analysis, we must first non-
dimensionalize the equations.

2.3. Non-dimensionalization

We non-dimensionalize the model to reduce the number of parameters and to enable us to
estimate the relative importance of the various terms. We set

X = dX′, p = μLU

d2
p′ + p0, u = Uu′, t = d

U
t ′, c = Cc′, (15)
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where d and L are the micro- and macro-reference length scales, U is a typical velocity,
p0 is a reference pressure, and C is a typical concentration. We apply these scalings to
the fluid and drug transport problems in turn, and from this point onwards drop the prime
notation. For ease of the reader, we restate the definition of ε, the ratio of micro- to macro-
length scales

ε = d

L
� 1. (16)

2.3.1. Fluid transport
The dimensionless fluid problem is given by

∇ · ut = 0 in Ωt, (17)

ut = −κ∇pt in Ωt, (18)

∇ · uc = 0 in Ωc, (19)

ε Re

(
∂uc

∂t
+ (uc · ∇)uc

)
= −∇pc + ε∇2uc in Ωc, (20)

uc · n = ut · n = R(pc − pt) on Γ, (21)[
(n · ∇)uc

] · τ = −φuc · τ on Γ, (22)

where

Re = ρUd

μ
, κ = kL

d3
, R = μLpL

d2
, φ = αd√

k
, (23)

are dimensionless parameters. In Ωt , it is possible to eliminate the fluid velocity, ut , and
express the problem in terms of the pressures only as

∇2pt = 0 in Ωt, (24)

−∇pt · n = ψ(pc − pt) on Γ. (25)

The parameter ψ = R/κ is a measure of the permeability of the vascular wall relative to
that of the interstitium. It is this ratio that determines the level of fluid leakage out of the
capillaries into the interstitium.

2.3.2. Drug transport problem
We define the local Péclet number, Pel , as the dimensionless parameter representing the
ratio of diffusive to convective timescales on the local length scale,

Pel = Ud

Dc

. (26)

Similarly, we define the Damköhler number, Da, as the dimensionless parameter repre-
senting the ratio of convective to reactive timescales in the interstitium,

Da = λd

U
. (27)
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The dimensionless drug transport problem is given by

∂c

∂t
+ ∇ · (cu − A∇c) = −Rc in Ω, (28)

where Ac = 1/Pel and At = Dt/(Dc Pel ), and

R =
{

0 in Ωc,

Da in Ωt.
(29)

The flux boundary condition (11) is given in dimensionless form by

(ctut − At∇ct ) · n = (ccuc − Ac∇cc) · n on Γ, (30)

whereas the Dirichlet boundary conditions (12), (14) remain unchanged. The membrane
treatment boundary condition (13) becomes

(ccuc − Ac∇cc) · n = (ctut − At∇ct ) · n = Υ (cc − ct ) on Γ, (31)

where Υ = r/U is a dimensionless parameter.

2.4. Parameter values

Parameter ranges pertaining to the fluid transport problem are discussed in detail (Chap-
man et al., 2008). Here, we present briefly some of the reported values of the geometrical
and physiological parameters and discuss the implications for the nondimensional para-
meters that characterize the fluid and drug transport problems.

2.4.1. Geometrical parameters
Geometrical data on capillaries are presented in Chapman et al. (2008). A representative
mean intercapillary distance d is 50 µm (Less et al., 1991), and the typical size of a
vascular tumour L ≈ 1–10 cm (Kirkpatrick et al., 2003). This gives values of ε between
5 × 10−4 and 5 × 10−3, justifying the assumption ε � 1.

2.4.2. Fluid physiological parameters
Values of the hydraulic conductivity κ = k/μ for different tissues are summarized in
Chapman et al. (2008) and lie in the range 10−9 to 10−6 cm3 s kg−1. The blood viscos-
ity, μ, depends on the hematocrit (the density of red blood cells) and the temperature,
and (though we are approximating blood as a Newtonian fluid) also on the shear rate.
Nevertheless, for a normal 40% hematocrit and 37◦C, μ ≈ 4 × 10−3 kg m−1 s−1 (Rand
et al., 1964). On this basis, the interstitial permeability k lies between 4 × 10−14 and
4 × 10−11 cm2.

Values of the vascular hydraulic permeability Lp for tumours are summarized in Chap-
man et al. (2008) and are about 10−6 cm2 s kg−1. The final parameters needed to determine
the non-dimensional parameters Re, κ and R are the blood density, ρ, and the typical cap-
illary blood velocity, U . These are ρ ≈ 1040 kg m−3 (Kenner, 1989) and U ≈ 200 µm s−1

(Intaglietta et al., 1975).
Based on these values, the Reynolds number Re ≈ 2.6 × 10−3 = O(ε) and, therefore,

inertia is unimportant on the micro-scale at leading order. We write Re = ε Reg where
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Table 1 Data on the diffusion coefficients and uptake rates of a variety of anti-cancer agents

Agent Blood
Diffusion
Coefficient, Dc

(cm2 s−1)

Tissue Diffusion
Coefficient, Dt

(cm2 s−1)

Tissue Uptake
Rate, λ

(min−1)

Reference

[14C]-sucrose 7.0 × 10−6 4.2 ± 0.9 × 10−8 0 Modok et al. (2006)
[3H ]-vinblastine 3.3 × 10−6 1.9 ± 0.2 × 10−8 6.42 × 10−10 Yao et al. (2000),

Modok et al. (2006)
[14C]-Pt(II) 8.2 × 10−6 17.5 ± 2.6 × 10−8 17.7 ± 5.5 × 10−2 Modok et al. (2007)
[14C]-Pt(IV) 8.2 × 10−6 17.8 ± 3.1 × 10−8 16.2 ± 5.3 × 10−2 Modok et al. (2007)
Tirapazamine
(TPZ)

/ 0.40 ± 0.02 × 10−6 1.12 ± 0.08 Hicks et al. (2006)

TPZ Analogue 3 / 0.027 ± 0.015 × 10−6 19.90 ± 6.61 Hicks et al. (2006)
TPZ Analogue 10 / 1.87 ± 0.17 × 10−6 3.68 ± 0.39 Hicks et al. (2006)
TPZ (V79-171b
MCLs) oxic

8.8 × 10−6 7.4 ± 0.3 × 10−7 0 Hicks et al. (1998)

TPZ (V79-171b
MCLs) anoxic

8.8 × 10−6 7.4 ± 0.3 × 10−7 0.52 ± 0.08 Hicks et al. (1998)

TPZ (MGH-U1
MCLs) oxic

1.5 × 10−5 1.25 ± 0.16 × 10−6 0 Hicks et al. (1998)

TPZ (MGH-U1
MCLs) anoxic

1.5 × 10−5 1.25 ± 0.16 × 10−6 0.31 ± 0.03 Hicks et al. (1998)

Reg = ρUL/μ represents the Reynolds number on the global length scale, and is O(1).
Also, R lies in the range 1.6 × 10−6 to 1.6 × 10−5 and κ in the range 3.2 × 10−5 to 3.2 ×
10−3. The limit we consider is ε → 0 with R/ε = R̄ and εκ = κ̄ fixed (the permeability
ratio ψ is thus of order ε2, and we define ψ/ε2 = ψ̄ where ψ̄ is fixed as ε → 0). This is a
distinguished limit, in that it retains the greatest number of physical phenomena at leading
order. Thus, although κ may be smaller, it is quite sensitive to the choice of d , and it is
important to retain it in the asymptotic analysis.

The limit ε → 0 with κ̄ = k/d2 fixed corresponds to the case when φ = O(α). As far
as we know, there is no physiological data available for α. We therefore assume φ = O(1),
which again represents a distinguished limit.

In conclusion, we consider the limit ε → 0 keeping the dimensionless fluid parameters

Reg = ρUL/μ, κ̄ = k/d2, R̄ = μLpL2/d3, ψ̄ = μLpL2/kd, φ = αd/
√

k,

(32)

fixed.

2.4.3. Drug physiological parameters
Despite the fundamental important of drug transport in predicting drug distribution in tu-
mours, it is rare that the transport properties of anticancer agents are fully characterized.
Therefore, vital information about the relative contributions of diffusivity, convection,
cellular uptake, and metabolism to intra-tumoural drug kinetics is often missing. Two
research groups have addressed this and have focussed on measuring the diffusion co-
efficients and uptake rates of various drugs in multicell layer (MCL) experiments. This
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experimental setup does not include flow, and so provides a simplified in vitro environ-
ment in which to accurately measure these quantities; their findings are presented in Ta-
ble 1. Modok and co-authors measured the transport properties of [14C]-sucrose, [3H ]-
vinblastine, [14C]-Pt(II), and [14C]-Pt(IV) in their papers (Modok et al., 2006, 2007) us-
ing MCL tumour models comprising DLD1 colon cancer cells. [14C]-sucrose is a com-
monly used tracer molecule (i.e. does not react in the interstitium), [3H ]-vinblastine is a
cell cycle-specific anticancer drug used widely in cancer therapies, and four-coordinate
platinum-based anticancer drugs are widely used in primary or palliative chemotherapy
(in particular for testicular cancer). In contrast, Hicks and co-authors measured the drug
transport properties for Tirapazamine (TPZ) (and various analogues of TPZ) in oxic and
anoxic conditions in their papers (Hicks et al., 1998, 2006). TPZ is a hypoxia-selective
cytotoxic agent, designed to target the hypoxic regions of tumours which may be left
un-reached by most standard intravenous therapies. Next we discuss the dimensionless
parameters for the drug transport problem in turn.

The Péclet number The local Péclet number, Pel , is calculated based on the diffusion
coefficient in the blood for each agent in Table 2. Maximum and minimum values are
presented, based on the maximum and minimum values of the local length scale d . The
appropriate scaling as ε → 0 is that Pel = O(1). The local Péclet number, Pel is related
to the global Péclet number, Peg = UL/Dc, through the scaling

Peg = 1

ε
Pel . (33)

This global Péclet number, Peg represents the ratio of diffusive to advective time scales
on the global length scale. Thus whilst advection and diffusion balance in the capillaries
on the local length scale, advection dominates over diffusion on the global length scale.

The dimensionless diffusivity in the interstitium The dimensionless diffusivity in the
interstitium represents the ratio of dimensional diffusivities Dr = Dt/Dc , and the possible
values for this ratio are presented in Table 2. For these data, Dr = O(ε) and so there is a
jump in the value of the diffusion coefficient across the blood-interstitium membrane Γ .
In this case, we assume that the fluid velocity in the tissue is also O(ε), as it is unlikely
that advection dominates in the tissue on the micro-scale. However, these agents only
represent a small proportion of those available, and so we consider both this case and that
when Dr = O(1), in which the agent diffusivities are the same order of magnitude in both
the blood and tissue.

The Damköhler number Maximum and minimum values for the Damköhler number, Da
are presented in Table 2. Clearly, for the tracer molecules ([14C]-sucrose, and TPZ (V79-
171b MCLs), TPZ (MGH-U1 MCLs) in oxic conditions) Da = 0 as there is no uptake
in the interstitium. The Damköhler number for [3H ]-vinblastine is insignificant, and so
[3H ]-vinblastine should also be treated as a tracer molecule. For the remaining agents,
Da = O(ε). However, the agents presented here only reflect a small proportional of those
used in practice. To cover all options, we consider Da = O(1) to be the maximum feasible
value for the Damköhler number, and so retain all transport features at leading-order. In
this way, it remains possible to take limiting cases to test smaller values of Da.
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Table 2 The dimensionless parameters Pel (calculated using Dc), Da, and Dr for a variety of anti-cancer
agents. The velocity scale is U = 0.02 cm s−1, and the maximum/minimum values presented are based on
the range of values for the length scale d

Agent Pel Range Dr Da Range

[14C]-sucrose 51.7 to 16.1 6.0 × 10−3 0
[3H ]-vinblastine 109.8 to 29.7 5.8 × 10−3 5.81 × 10−10 to 1.57 × 10−10

[14C]-Pt(II) 44.2 to 12.0 2.1 × 10−2 2.67 × 10−3 to 7.23 × 10−4

[14C]-Pt(IV) 45.3 to 12.0 2.1 × 10−2 2.44 × 10−3 to 6.62 × 10−4

Tirapazamine (TPZ) / / 1.69 × 10−2 to 4.57 × 10−3

TPZ Analogue 3 / / 0.300 to 8.12 × 10−2

TPZ Analogue 10 / / 5.55 × 10−2 to 1.50 × 10−2

TPZ (V79-171b MCLs) oxic 41.2 to 11.1 8.4 × 10−2 0
TPZ (V79-171b MCLs) anoxic 41.2 to 11.1 8.4 × 10−2 7.85 × 10−3 to 2.12 × 10−3

TPZ (MGH-U1 MCLs) oxic 24.1 to 6.53 8.3 × 10−2 0
TPZ (MGH-U1 MCLs) anoxic 24.1 to 6.53 8.3 × 10−2 4.67 × 10−3 to 1.27 × 10−3

Table 3 Calculations of the dimensionless parameter Υ = r/U based on MCL experiments by Modok
and co-authors. In each case, U = 0.02 cm s−1 is used and the appropriate scaling is Υ = O(ε)

Agent r (cm s−1) Υ Reference

[14C]-sucrose 1.4 ± 0.3 × 10−4 0.7 × 10−2 Modok et al. (2006)
[3H ]-vinblastine 1.2 ± 0.2 × 10−4 0.6 × 10−2 Modok et al. (2006)
[14C]-Pt(II) 2.7 ± 0.6 × 10−5 1.35 × 10−3 Modok et al. (2007)
[14C]-Pt(IV) 2.5 ± 0.4 × 10−5 1.25 × 10−3 Modok et al. (2007)

The membrane coefficient To the best of our knowledge, r has not been measured in
vivo; Modok and co-authors determined r for their MCL experiments in Modok et al.
(2006, 2007), and although they are calculated for a different membrane they serve to
give an order of magnitude estimate. Values for r and the corresponding dimensionless
parameter Υ are shown in Table 3 for the four anti-cancer agents tested by Modok et al.
These values indicate that the appropriate scaling is Υ = O(ε) and so we define Ῡ through
Υ = εῩ where Ῡ = O(1).

The solubility ratio To the best of our knowledge, there is no data available for β . We
determine the appropriate scaling for β with ε as part of the analysis that follows.

3. Multiple-scales analysis

We use the method of multiple-scales to move from the local to the global description
and derive continuum equations describing fluid and drug transport on the macro-scale.
A similar approach is used for fluid transport in fractured rock systems in Arbogast et al.
(1990, 1991), Arbogast and Lehr (2006) and resulted in a similar dual-porosity model on
the macro-scale.

As ε � 1, the micro- and macro-length scales are well separated and we define the
variables representing them as X and x = εX, respectively. Currently, we are on the
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timescale for advection on the micro-scale (which is d/U ); however, we seek the macro-
scopic behaviour and, therefore, must move onto the timescale for advection on the macro-
scale (which is L/U ). This is achieved by rescaling

t = t

ε
, (34)

which we refer to as the ‘advective rescaling’. Under the assumption of scale separation,
X and x can be treated as independent variables, so that

∇ = ∇X + ε∇x, ∇2 = ∇2
X + 2ε∇x · ∇X + ε2∇2

x . (35)

Henceforth, we denote the vasculature–interstitium interface by Γε to emphasise its de-
pendence on the micro-scale variable, and define averages over the interstitial, capillary
and entire micro-scale domains by

〈s〉t = 1

|Ωt |
∫

Ωt

s dV, 〈s〉c = 1

|Ωc|
∫

Ωc

s dV, 〈s〉 = 1

|Ω|
∫

Ω

s dV, (36)

and the capillary volume fraction, and its complement, by

nc = |Ωc|
|Ω| , nt = |Ωt |

|Ω| = 1 − nc. (37)

We consider the fluid and drug transport problems in turn.

3.1. Fluid problem

The fluid transport equations in Ω are now given by

∇2
Xpt + 2ε∇x · ∇Xpt + ε2∇2

xpt = 0 in Ωt, (38)

εut = −κ̄∇Xpt − εκ̄∇xpt in Ωt, (39)

∇X · uc + ε∇x · uc = 0 in Ωc, (40)

ε2 Reg

(
ε
∂uc

∂t
+ (uc · ∇X)uc + ε(uc · ∇x)uc

)
= −∇Xpc − ε∇xpc + ε∇2

Xuc

+ 2ε2∇X · ∇xuc + ε3∇2
x uc

in Ωc, (41)

−∇Xpt · n − ε∇xpt · n = ε2ψ̄(pc − pt) on Γε, (42)

uc · n = εR̄(pc − pt) on Γε, (43)[
(n · ∇X)uc

] · τ + ε
[
(n · ∇x)uc

] · τ = −φuc · τ on Γε. (44)

We perform a multiple-scales expansion

u = u(0)(x,X) + εu(1)(x,X) + · · · , (45)

p = p(0)(x,X) + εp(1)(x,X) + · · · , (46)

where we require that all variables are periodic in X.
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3.1.1. Interstitial domain
The equations determining the fluid transport in Ωt are (38), (39), and (42). Equating
coefficients of ε0 in (38) and (42) yields

∇2
Xp

(0)
t = 0 in Ωt with ∇Xp

(0)
t · n = 0 on Γε, (47)

with p
(0)
t periodic in X. Therefore, p

(0)
t must be constant on the local scale, so that p

(0)
t =

p
(0)
t (x). Equating coefficients of ε in (38) and (42) gives

∇2
Xp

(1)
t = 0 in Ωt with ∇Xp

(1)
t · n = −∇xp

(0)
t · n on Γε. (48)

Unlike p
(0)
t , p

(1)
t is not locally uniform due to the non-homogeneous flux boundary con-

dition on Γε . To solve for p
(1)
t , we exploit the linearity of (48) and propose a solution of

the form

p
(1)
t = −∂p

(0)
t

∂xj

P
j
t (X) + p̄

(1)
t (x), (49)

where P
j
t (X) and p̄

(1)
t are to be determined, and j = 1,2,3 correspond to the Cartesian

coordinate directions (we have used the summation convention). The function P
j
t (X) de-

pends on the local variable only, and accounts for the local variation in the O(ε) pressure
term p

(1)
t . It is determined by solving the cell problem

∇2
XP

j
t = 0 in Ωt with n · ∇XP

j
t = n · ej on Γε, (50)

where ej denotes the unit vector in the j -direction, and P
j
t is periodic in X. The variable

P
j
t is not determined uniquely by this cell problem, and so we impose the additional

condition

〈
P

j
t

〉
t
= 0. (51)

Equation (51) ensures uniqueness of the solution, and gives 〈p(1)
t 〉t = p(1)

t . Finally, equat-
ing coefficients at O(ε2) gives

∇2
Xp

(2)
t + 2∇x · ∇Xp

(1)
t + ∇2

xp
(0)
t = 0 in Ωt, (52)

−∇Xp
(2)
t · n − ∇xp

(1)
t · n = ψ̄

(
p(0)

c − p
(0)
t

)
on Γε. (53)

Equations (52)–(53) can be used to derive the first continuum pressure equation. First,
we integrate (52) over Ωt , and use the divergence theorem to transform it to an integral
over the surfaces bounding Ωt . These surfaces are comprised of the capillary walls Γε ,
together with sections of the outer surface of the periodic unit cell. The contribution from
the unit cell boundaries to the resulting surface integral cancel out due to periodicity. This
leaves only the contributions from the capillary surface Γε , which are evaluated using the
boundary condition (53) to give

κ̄∇x · (E · ∇xp
(0)
t

) = R̄

|Ω|
∫

Γε

(
p

(0)
t − p(0)

c

)
dS, (54)
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where

Eij = δij + 1

|Ωt |
∫

Γε

P
j
t ni dS. (55)

Equation (54) is a coupled continuum equation for p(0)
c and p

(0)
t on the macro-scale; a sec-

ond equation will be derived from the fluid system in Ωc in Section 3.1.2. Finally, equat-
ing O(ε) terms in the velocity Eq. (39) leaves an expression for the leading-order fluid
velocity in the interstitium,

〈
u(0)

t

〉
t
= −κ̄E · ∇xp

(0)
t . (56)

3.1.2. Capillary domain
Equating powers of ε0 in (41) yields

∇Xp(0)
c = 0. (57)

Thus, p(0)
c = p(0)

c (x) and the leading-order capillary pressure is constant on the local scale.
Equating powers of ε1 in (41), and ε0 in (40), (43), and (44) yields

∇Xp(1)
c − ∇2

Xu(0)
c = −∇xp

(0)
c in Ωc, (58)

∇X · u(0)
c = 0 in Ωc, (59)

u(0)
c · n = 0 on Γε, (60)[

(n · ∇X)u(0)
c

] · τ = −φu(0)
c · τ on Γε. (61)

We solve for u(0)
c and p(1)

c by exploiting linearity and proposing solutions of the form

u(0)
c = −∂p(0)

c

∂xj

wj
c (X), (62)

p(1)
c = −P j

c

∂p(0)
c

∂xj

(X) + p̄(1)
c (x). (63)

The cell variables wj
c and P

j
c are determined by substituting (62)–(63) into (59), (58),

(73), and (61) to give the cell problem

∇X · wj
c = 0 in Ωc, (64)

∇XP j
c = ∇2

Xwj
c + ej in Ωc, (65)

n · wj
c = 0 on Γε, (66)[

(n · ∇X)wj
c

] · τ = −φwj
c · τ on Γε, (67)

with wj
c and P

j
c periodic in X. The variable P

j
c is not determined uniquely by this cell

problem, and so we impose the additional condition

〈
P j

c

〉
c
= 0. (68)
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The canonical cell problem (64)–(67) can be solved numerically for a prescribed vascular
configuration. Defining,

Kij = 1

|Ωc|
∫

Ωc

w
j

ci dV, (69)

and integrating (62) gives Darcy’s Law for the averaged capillary fluid pressure

〈
u(0)

c

〉
c
= −K · ∇xp

(0)
c . (70)

Therefore, it can be seen that the inclusion of the slip boundary condition (8) has a direct
impact on the effective permeability of the capillary bed through K. Integrating (63) yields

〈
p(1)

c

〉
c
= p̄(1)

c . (71)

Equating coefficients of ε1 in (40), (43), and (44) gives

∇X · u(1)
c + ∇x · u(0)

c = 0 in Ωc, (72)

u(1)
c · n = R̄

(
p(0)

c − p
(0)
t

)
on Γε, (73)[

(n · ∇X)u(1)
c

] · τ + [
(n · ∇x)u(0)

c

] · τ = −φu(1)
c · τ on Γε. (74)

Equations (72) and (73) can be used to derive the second continuum pressure equation.
Integrating (72) over the fluid domain, using the divergence theorem to transform this to
a surface integral, and finally using periodicity with (73) gives the second homogenized
equation for p(0)

c and p
(0)
t , namely

∇x · (K · ∇xp
(0)
c

) = R̄S

|Ωc|
(
p(0)

c − p
(0)
t

)
, (75)

where S is the total capillary surface area in the unit cell, defined by

S =
∫

Γε

dS. (76)

Equation (75) should be solved in conjunction with (54) on the global domain, subject
to appropriate boundary conditions. The final continuum model that we have arrived at
is that of a double porous medium (for the vasculature and interstitium), with transport
between them due to the higher vascular permeability in tumours. This extends the result
of Chapman et al. (2008) to account for an arbitrary periodic micro-scale geometry, and
the slip boundary condition for a Newtonian fluid flowing over a permeable boundary. It
can be shown that, in the limit when the capillaries are thin, and the capillary grid takes
a grid geometry, the effective permeabilities reduce to those derived in Chapman et al.
(2008).

It is now possible to test the impact that vascular structure has on tumour-scale fluid
perfusion. First of all, the fluid permeability tensors E and K must be determined for
different vascular structures (e.g. a regular honeycomb pattern that may represent the
microcirculation in healthy tissue, and more irregular structures to mimic those found
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in different tumour types in Konerding et al. (1999, 2001)). This will be achieved by
solving the cell problems (50) and (64)–(67) on the appropriate micro-scale structures.
Equations (54) and (75) for the interstitial and capillary pressures can then be solved on an
appropriate global domain (extracted, for example, from a tumour image), with Dirichlet
boundary conditions on the capillary pressure, pc , to simulate a pressure drop across the
capillary bed. It is anticipated that variations in underlying vascular structure will result
in different interstitial and capillary fluid pressure distributions, as a direct consequence
of the change in the tensors E and K.

3.2. Drug problem

Next, we consider the drug transport problem. It is beyond the scope of this paper to
present the results of every feasible scaling of Da and Dr , together with each of the three
possible boundary conditions mentioned. Therefore, we consider five key examples, and
note that most remaining options can be determined as limiting cases of these examples:

1. Tracer Transport: we consider the simplest example in which there is no reaction (so
that Da = 0), Dr = O(1) and there is continuity of tracer concentration and flux on Γε .

2. Strong Reaction: Da = O(1). In this case, if the concentration is continuous across Γε

then the consumption in the interstitium will exhaust the supply over the microscopic
length scale ε. The only way to propagate c over large distances is if the solubility
in the interstitium is much less than that in blood so that boundary condition (14) is
used with β = O(ε). Therefore, we consider the case when Da = O(1) and Dr = O(1)

together with the concentration jump boundary condition (14).
3. Weak Reaction, Large Interstitial Diffusion: Da = O(ε) and Dr = O(1), with continu-

ity of concentration and flux on Γ .
4. Weak Reaction, Large Interstitial Diffusion: Da = O(ε) and Dr = O(1), with the mem-

brane law boundary condition (31).
5. Weak Reaction, Small Interstitial Diffusion: Da = O(ε) and Dr = O(ε) with the mem-

brane law boundary condition (31).

For each of the five options detailed above, we apply the same asymptotic homoge-
nization strategy. Given the advective rescaling (34) and assumption of scale separation
(35), the species transport equations are given by

ε
∂c

∂t
+ε∇x ·(cu)+∇X ·(cu) = A∇2

Xc+2Aε∇x ·∇Xc+ε2A∇2
x c− Rc in Ω. (77)

In addition to (45) and (46), we expand

c = c(0)(x,X, t) + εc(1)(x,X, t) + · · · , (78)

where all variables are assumed periodic in X; the velocity terms in (77) are already known
from the fluid analysis in Section 3.1. We equate powers of ε, considering the O(1), and
O(ε) systems in turn. In each case, the O(1) system determines the form of the leading-
order solution c(0). We evaluate the appropriate form of the solvability condition for the
O(ε) system, and use this to determine the leading-order homogenized transport equation.
This will be an advection–reaction equation for the average species concentrations. By
examining the solvability condition at O(ε2) it is also possible to determine the O(ε)
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correction to the macro-scale equations derived here; in particular this will bring in the
influence of diffusion, although is outside the scope of this paper (further details are given
in Shipley, 2008).

3.2.1. Tracer transport
The tracer transport equation is given by (77) with R = 0 throughout Ω . We employ
continuity of concentration and flux boundary conditions on Γε , which reduce to

cc = ct , (79)

(Ac∇Xcc + εAc∇xcc) · n = (At∇Xct + εAt∇xct ) · n. (80)

For ease of notation we define the operator (and its corresponding adjoint)

L0� := A∇2
X � −∇X · (u(0)�

)
, (81)

L∗
0� := A∇2

X � +∇X · (u(0)�
)
, (82)

both equipped with periodic boundary conditions on Ω . Equating coefficients of ε0 in
(77), (79), and (80) gives

L0c
(0) = 0, (83)

subject to boundary conditions

c(0)
c = c

(0)
t and Ac∇Xc(0)

c · n = At∇Xc
(0)
t · n on Γε. (84)

This system only has the locally uniform solutions c(0) = c(x, t) everywhere in Ω . Equat-
ing coefficients of ε1 gives

L0c
(1) = ∂c

∂t
+ (

u(0) · ∇x

)
c in Ω, (85)

subject to the internal boundary conditions

c(1)
c = c

(1)
t and

(
Ac∇Xc(1)

c − At∇Xc
(1)
t

) · n = (At − Ac)∇xc · n on Γε, (86)

where we have used the fact that c(0) = c(x, t) and ∇X · u(1) = −∇x · u(0). First we de-
termine the appropriate solvability condition for this system according to the Fredholm
alternative. We define the stationary invariant distribution ρ(x,X) as that which solves the
homogeneous adjoint problem

L∗
0ρ = 0, (87)

with

ρc = ρt and Ac∇Xρc · n = At∇Xρt · n on Γε, (88)

and periodic boundary conditions on the periodic cell, where ρt = ρ|Ωt and ρc = ρ|Ωc .
The solution to (87)–(88) is only unique up to normalization, and so we impose the
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uniqueness condition
∫

V

ρ(x,X)dV = 1. (89)

The system (87)–(89) only has the locally uniform solution ρ = ρ(x) throughout Ω ; the
normalization condition (89) determines that ρ = 1/|Ω|.

The solvability condition for (85)–(86) is given by

∫
Ω

(
∂c

∂t
+ (

u(0) · ∇x

)
c

)
ρ dV =

∫
Ω

(
ρL0c

(1) − c(1)L∗
0ρ

)
dV

= (At − Ac)

∫ ∫
Γε

ρ∇xc · n dS. (90)

However, both ρ and ∇xc are locally uniform, and so this final integral is zero. Therefore,
the solvability condition given by (90) reduces to

∂c

∂t
+ ũ(0) · ∇xc = 0, (91)

where ũ(0) is the averaged leading-order fluid velocity

ũ(0) = nt

〈
u(0)

t

〉
t
+ nc

〈
u(0)

c

〉
c
. (92)

However, from Eqs. (54), (56), and (70), (75) for the interstitial and capillary fluid pres-
sures and velocities we have that

nc∇x · 〈u(0)
c

〉
c
= RS

|Ω|
(
p

(0)
t − p(0)

c

)
, nt∇x · 〈u(0)

t

〉
t
= RS

|Ω|
(
p(0)

c − p
(0)
t

)
. (93)

Therefore, ∇x · ũ(0) = 0 and Eq. (91) can also be written in conservation form as

∂c

∂t
+ ∇x · (cũ(0)

) = 0. (94)

Note that 〈c〉 = nc〈cc〉c +nt 〈ct 〉t = c is (to leading order) the average tracer concentration.
Equation (94) is the leading-order homogenized species transport equation and shows that
the average species concentration is simply advected with the combined average fluid
velocity ũ(0) at leading-order.

3.2.2. Strong reaction with a concentration jump on Γε

Next, we consider the case when Da = O(1), together with Dr = O(1) and the concen-
tration jump boundary condition (14). We let β = εβ with β of order one, so that

ε
∂c

∂t
+ε∇x ·(cu)+∇X ·(cu) = A∇2

Xc+2Aε∇x ·∇Xc+ε2A∇2
x c− Rc in Ω, (95)

with boundary conditions

εβcc = ct on Γε, (96)
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(ccuc − Ac∇Xcc − Ac∇xcc) · n = (ctut − At∇Xct − Atct∇xct ) · n on Γε. (97)

In this case, ct will be O(ε) throughout Ωt , and so we employ multiple-scales expansions
of the form

cc = c(0)
c (x,X, t) + εc(1)

c (x,X, t) + · · · , (98)

ct = εc
(0)
t (x,X, t) + ε2c

(1)
t (x,X, t) + · · · . (99)

For ease of notation, we define the operator

L1� := A∇2
X � −∇X · (u(0)�

) − R � in Ω, (100)

equipped with periodic boundary conditions on Ω . We perform multiple scales expan-
sions (98)–(99) and equate powers of ε; the systems in Ωc and Ωt now decouple so there
is no need to introduce an invariant distribution ρ, and instead the homogenized transport
equation is determined by integrating the O(ε) system over Ωc . Equating coefficients of
ε0 gives

L1c
(0)
c = 0 in Ωc, (101)

Ac∇Xc(0)
c · n = 0 on Γε, (102)

and so the leading-order capillary concentration, c(0)
c = c̄(x, t), is locally uniform. Equat-

ing coefficients of ε1 gives

L1c
(0)
t = 0 in Ωt, (103)

c
(0)
t = c on Γε, (104)

L1c
(1)
c = ∂c

∂t
+ (

u(0)
c · ∇x

)
c in Ωc, (105)

Ac∇Xc(1)
c · n = (

At∇Xc
(0)
t − Ac∇xc + c̄u(1)

c

) · n on Γε, (106)

which is a Dirichlet problem for the leading-order interstitial concentration c
(0)
t , and a

Neumann problem for the correction term in the capillaries, c(1)
c . We use separation of

variables to solve for c
(0)
t by setting c

(0)
t = c(x, t)g(X); g represents the local variation in

the species concentration in the interstitium due to uptake, and is determined through the
cell problem

L1g = 0 in Ωt, (107)

g = 1 on Γε. (108)

By integrating (107) over Ωt, we find

At

|Ωt |
∫

Γε

∇Xg · n dS = −Da〈g〉t , (109)



Multiscale Modelling of Fluid and Drug Transport in Vascular Tumours 1483

and so the local flux of species into the interstitium balances with that lost by reaction.
Integrating (105) over Ωc gives

Ac

|Ωc|
∫

Γε

∇Xc(1)
c · n dS = ∂c

∂t
+ 〈

u(0)
c

〉
c
· ∇xc. (110)

Now using (106) and (109) together with the divergence theorem to evaluate the left-hand
side of (110) gives

Ac

|Ωc|
∫

Γε

∇Xc(1)
c · n dS = 1

|Ωc|
∫

Γε

cu(1)
c · n dS − Dant

nc

〈g〉t c

= c

|Ωc|
∫

Ωc

∇X · u(1)
c dV − Dant

nc

〈g〉t c

= −c∇x · 〈u(0)
c

〉
c
− Dant

nc

〈g〉t c. (111)

This yields the transport equation

nc

(
∂c

∂t
+ ∇x · (〈u(0)

c

〉
c
c
)) = −Dant 〈g〉t c. (112)

In this case, the average tracer concentration is given by

ĉ = nc〈cc〉c + nt 〈ct 〉t = ncc(x, t) + O(ε), (113)

and consequently, the transport of ĉ is also described by Eq. (112). The species is ad-
vected by the average fluid velocity in the capillaries and also reacts due to due de-
cay/metabolism, as represented by the term −Da〈g〉t c.

3.2.3. Weak reaction and continuity of concentration on Γε

Next, we consider the case when Da = O(ε) and Dr = O(1), together with continuity
of concentration and flux boundary conditions on Γε . We define the O(1) parameter Da
through Da = ε Da, and let

R̄ =
{

0 in Ωc,

Da in Ωt.
(114)

Then

ε
∂c

∂t
+ ε∇x · (cu) + ∇X · (cu) = A∇2

Xc + 2Aε∇x · ∇Xc + ε2A∇2
x c − εRc in Ω,

(115)

with the two continuity boundary conditions (79) and (80) on Γ . This system is similar
to the tracer system of Section 3.2.1, although reaction through Da contributes to the
O(ε) system. The systems in Ωc and Ωt are coupled at each order so the homogenized
transport equation will be derived using the invariant distribution approach. The O(1)
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system is unchanged from the tracer transport problem (83) with boundary conditions
(84) and so c(0) = c(x, t) is locally uniform across Ω . We introduce the same stationary
invariant distribution ρ = 1/|Ω|. The O(ε) system is given by

L0c
(1) = ∂c

∂t
+ (

u(0) · ∇x

)
c + R̄c in Ω, (116)

c(1)
c = c

(1)
t and

(
Ac∇Xc(1)

c − At∇Xc
(1)
t

) · n = (At − Ac)∇xc · n on Γε.

(117)

The solvability condition for this system is obtained by averaging over the whole domain
Ω to give

∂c

∂t
+ ∇x · (ũ(0)c

) = −Dantc, (118)

where ũ(0) is the combined fluid velocity in the capillaries and tissue given by (92). The
average species concentration is given by ĉ = c + O(ε) and, therefore, also satisfies the
transport equation (118).

3.2.4. Weak reaction with a membrane law on Γε

We consider the case when Da = O(ε) together with Dr = O(1), and use the membrane
law description of the boundary given by (31). The system equations are therefore given
by (115), however, the boundary conditions on Γε change to

(ccuc − Ac∇Xcc − εAc∇xcc) · n = (ctut − At∇Xct − Atε∇xct ) · n (119)

= εΥ (cc − ct ). (120)

The species concentrations in the capillaries and interstitium are both O(1); performing
multiple-scales expansions of the form (78) yields the O(1) system

L0c
(0) = 0 in Ω, (121)

Ac∇Xc(0)
c · n = At∇Xc

(0)
t · n = 0 on Γε. (122)

Therefore, c(0)
c = cc(x, t) and c

(0)
t = ct (x, t) are both locally uniform. However, the change

in boundary condition to the membrane approach means that cc and ct are no longer equal
on the internal boundary Γε . We must therefore determine two homogenized equations to
describe the average concentration in each of the capillaries and interstitium. The O(ε)

system is given by

L0c
(1) = ∂c(0)

∂t
+ u(0) · ∇xc

(0) + R̄c(0) in Ω, (123)

Ac∇Xc(1)
c · n = ccu(1)

c · n − Ac∇xcc · n − Ῡ (cc − ct ) on Γε, (124)

At∇Xc
(1)
t · n = ctu

(1)
t · n − At∇xct · n − Ῡ (cc − ct ) on Γε. (125)
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The systems in Ωc and Ωt decouple, therefore, we derive the leading-order homogenized
transport equations by averaging over Ωc or Ωt, respectively, to give

∂cc

∂t
+ ∇x · (〈u(0)

c

〉
c
cc

) = − Ῡ S

|Ωc| (cc − ct ), (126)

∂ct

∂t
+ ∇x · (〈u(0)

t

〉
t
ct

) = −Da ct + Ῡ S

|Ωt | (cc − ct ). (127)

Equation (126) represents the transport of the leading-order average species concentration
in the capillaries, whilst Eq. (127) represents that in the interstitium; both are advection–
reaction equations describing the respective concentrations. Transport of total average
species concentration 〈c〉 = nc〈cc〉c + nt 〈ct 〉t is therefore described by

∂

∂t
(nccc + ntct ) + ∇x · (ccnc

〈
u(0)

c

〉
c
+ ctnt

〈
u(0)

t

〉
t

) = −Dantct . (128)

3.2.5. Weak reaction with a jump in diffusivities across Γε and membrane law
Finally, we consider the case when reaction is weak in the interstitium so that Da = O(ε),
together with a jump in diffusivities across Γε so that Dr = O(ε). We also use the mem-
brane form of boundary condition on Γε , given in dimensionless form by (31).

Given that Dr = O(ε), the diffusion coefficient in the interstitium is O(ε). It is unlikely
that advection is the dominant transport mechanism locally, and therefore we consider the
case when the fluid velocity in the interstitium, ut , is also O(ε), so that the local Péclet
number remains O(1). We capture this change by maintaining the ratio φ = O(ε2), but
applying the scalings κ = O(1) and R = O(ε2), thereby reducing the order of magni-
tude of both the interstitial and vascular permeability by an order ε. This is equivalent to
taking the limit R → 0 with ψ fixed in the pressure Eqs. (54) and (75). This leaves the
equation for the interstitial fluid pressure (54) unchanged, but the leading-order capillary
fluid pressure equation becomes

∇x · (K∇xp
(0)
c

) = 0. (129)

In addition, the capillary fluid velocity given by (70) is unchanged, whilst the interstitial
fluid velocity is an order of magnitude smaller. We set

ut = εût , (130)

where the leading-order term 〈ût
(0)〉t is given by

〈
û(0)

t

〉
t
= −κE · ∇xp

(0)
t . (131)

It should be noted that when κ = kL/d3 = O(1), then k = O(εd2) and so φ = αd/
√

k =
O(α/

√
ε). Therefore, given experimentally determined α = O(1), the Beavers–Joseph

boundary condition may be approximated by a no-slip boundary condition at leading or-
der.

We define D̂r = Dr/ε = O(1) with Ât = D̂r/Pel , and non-dimensionalize all variables
with their respective scales in Ωc and Ωt separately. The system equations are then given



1486 Shipley and Chapman

by

ε
∂cc

∂t
+ ε∇x · (ccuc) + ∇X · (ccuc) = Ac∇2

Xcc + 2Acε∇x · ∇Xcc

+ ε2Ac∇2
x cc in Ωc, (132)

ε
∂ct

∂t
+ ε∇x · (ctut ) + ∇X · (ctut ) = Ât∇2

Xct + 2Ât ε∇x · ∇Xct + ε2Ât∇2
x ct

− Da ct in Ωt, (133)

with boundary conditions on Γε given by

(ccuc − Ac∇Xcc − εAc∇xcc) · n = (
εct ût − εÂt∇Xct − ε2Ât∇xct

) · n (134)

= εΥ (cc − ct ). (135)

The species concentration in both the capillaries and interstitium is O(1), therefore, we
employ multiple-scales expansions of the form (78) together with

uc = u(0)
c + εu(1)

c + · · · , (136)

ût = û(0)
t + εû(1)

t + · · · . (137)

We define the operator

L2� :=
{

Ac∇2
X � −∇X · (u(0)

c �) in Ωc,

Ât∇2
X � −∇X · (û(0)

t �) − Da� in Ωt,
(138)

equipped with periodic boundary conditions on Ω . The O(1) system is

L2c
(0) = 0, (139)

together with the boundary conditions

−Ac∇Xc(0)
c · n = 0, (140)

−Ât∇Xc
(0)
t · n = Υ

(
c(0)
c − c

(0)
t

)
, (141)

on Γε . The system decouples; the leading-order species concentration in the capillaries
is locally uniform and denoted c(x, t). The leading-order species concentration in the
interstitium is then the solution to the Robin problem

L2c
(0)
t = 0 in Ωt, (142)

Υ c
(0)
t − Ât∇Xc

(0)
t · n = Υ c(x, t) on Γε. (143)

We separate c
(0)
t into globally and locally varying components by setting

c
(0)
t = c(x, t)h(X). (144)
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The locally varying component h(X) is the solution to the cell problem

L2h = 0 in Ωt, (145)

Υ h − Ât∇Xh · n = Υ on Γε. (146)

The component c(x, t) is determined from a homogenized equation that is derived from
the O(ε) system in Ωc , which now reduces to

L2c
(1)
c = ∂c

∂t
+ (

u(0)
c · ∇x

)
c in Ωc, (147)

Ac∇Xc(1)
c · n = cu(1)

c · n + Υ c(h − 1) − Ac∇xc · n on Γε. (148)

Integrating over Ωc and using the cell problem for h given by (145)–(146) together with
û(0)

t = 0 on Γε yields the homogenized equation

nc

(
∂c

∂t
+ ∇x · (〈u(0)

c

〉
c
c
)) = −Dant 〈h〉t c. (149)

The average species concentration is given by

ĉ = nc〈cc〉c + nt 〈ct 〉t = c
(
nc + nt 〈h〉t

) + O(ε), (150)

and may be evaluated by solving the effective Eq. (149). This is the only one of our
examples where the local variation in species concentration impacts the leading-order
transport equation.

4. Discussion

Let us summarise the five models we have derived. In particular, let us look at the structure
of the equations in each case.

The simplest equations arise in cases 1 and 3. There the concentration c is the same
in the capillaries and interstitium at leading order and the reaction–convection equation
takes the form

∂c

∂t
+ ∇ · (uc) = −Rc, (151)

where u is the average of the interstitial and capillary fluid velocities. In case 1, the reac-
tion term is absent.

A similar equation holds in cases 2 and 4, but now most of the convection takes place
in the capillaries, and u is the capillary fluid velocity. The concentrations in the capillaries
and interstitium are no longer equal, and c represents some weighted average concentra-
tion.

Finally, in case 5, both capillary and interstitial concentrations need to be tracked in-
dependently, giving

∂cc

∂t
+ ∇ · (uccc) = −K(cc − ct ), (152)
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∂ct

∂t
+ ∇ · (ut ct ) = K(cc − ct ) − Rct , (153)

where K gives the transfer from capillaries to the interstitium.
It is rare that the transport properties of anti-cancer agents are fully characterized, and

as a consequence data on only a small proportion of the agents available clinically are pre-
sented in this paper. Of these, [14C]-sucrose, [3H ]-vinblastine, TPZ (V79–171b MCLs)
(oxic) and TPZ (MGH–U1 MCLs) (oxic) are tracers and follow case 1. Therefore, for
these agents the concentration is the same in the capillaries and interstitium at leading
order, and this concentration follows Eq. (151) (with no reaction term). By comparison,
[14C]-Pt(II), [14C]-Pt(IV), TPZ, TPZ Analogue 3, TPZ Analogue 10, TPZ (V79–171b
MCLs) (anoxic) and TPZ (MGH–U1 MCLs) (anoxic) follow case 5. Therefore, both
the capillary and interstitial concentrations should be tracked independently, according
to Eqs. (152)–(153).

The final models (151), (152)–(153) can now be solved alongside the fluid transport
equations to investigate how vascular structure impacts on drug delivery. First of all, the
fluid perfusion equations should be solved on a tumour domain (provided by a medical
image), as described at the end of Section 3.1. This will determine the advecting velocities
in Eqs. (151) and (152)–(153), which can now be solved on the same tumour domain sub-
ject to Dirichlet or Neumann boundary conditions to mimic the drug delivery mechanism.
For example, for an injection of the drug a Dirichlet condition that mimics the concentra-
tion of drug delivered to the tumour should be applied. However, for constant perfusion
of a drug over a fixed time period a Neumann flux condition should be applied.

5. Diffusion

Equations (94), (112), (118), (126)–(127), and (149) are the leading-order homogenized
species transport equations for the five physiological cases identified in Section 3.2. These
are advection–reaction equations; they do not include diffusion which features on an
O(1/ε) time scale globally, and thus contributes an O(ε) correction to the leading-order
equations derived in this paper. Although these O(ε) corrections are not included here,
they can be readily evaluated as detailed in Shipley (2008). Firstly, the O(ε) contributions
to the species concentration, c(1), must be determined by using the homogenized equa-
tions to eliminate time derivative terms from the system description of c(1) (for example,
for tracer transport, by using Eq. (94) to eliminate ∂c/∂t terms from the system (85)).
We then solve for c(1) by exploiting linearity, and decomposing the solution into locally
and globally varying components (the locally varying parts are determined from vari-
ous micro-scale cell problems, as in the fluid transport problem). Finally, integrating the
system determined by equating coefficients of ε2, yields the O(ε) corrections, including
diffusion, to the homogenized transport equations presented here.

6. Conclusion

We have developed theoretical models that describe the transport of fluid and drugs in
solid tumours through both the vascular and the interstitial compartments, and at a number
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of length scales. We started by posing the transport problems on the length scale charac-
terized by the inter-capillary separation, and classified pertinent scalings regimes through
the process of non-dimensionalization and parameter estimation. We then used multiple
scales to form continuum models describing fluid and drug transport that corresponded to
each of the scaling regimes identified.

The resulting fluid equations form a double porous medium; both the vascular network
and the tumour interstitium behave as a porous media, with fluid transport between them.
This generalized the model of Chapman et al. (2008) to an arbitrary (periodic) vascular
configuration, and provides a mechanism for testing the impact of vascular structure on
fluid perfusion in tumours.

The continuum drug equations comprise advection–reaction equations, where the ad-
vection and reaction coefficients are dependent on the scaling regime under investigation,
and the vascular morphology. We considered five different regimes, characterized by the
importance of reaction, interstitial diffusion, and the boundary condition on the capillary
wall. For four of these regimes, an appropriate average drug concentration satisfies an
advection–reaction equation, with the advection velocity and reaction term depending on
the particular regime considered. In the final case the interstitial and capillary concen-
tration both need to be tracked independently leading to two coupled reaction–advection
equations.

Although the motivation for this work is transport in tumours, the approach can be
readily generalized to healthy tissue. Indeed, the key physiological difference (other than
vascular structure) is a lower vascular permeability in healthy tissue; the impact of this
can be explored through the limiting case R → 0 (with κ fixed) in the homogenized fluid
transport equations (54) and (75). This results in decoupled homogenized equations for
pc and pt given by

∇x · (E · ∇xp
(0)
t

) = 0, ∇x · (K · ∇xp
(0)
c

) = 0. (154)

In this way, the models presented here can be used to investigate fluid perfusion and drug
distribution in a wide range of tissues.

The model we have presented makes several simplifying assumptions and is open to
improvement in a number of areas. The regularity of a periodic micro-structure is not
necessarily representative of the tumour vasculature, and does not account for temporal
changes in vascular structure due to re-modelling or adaption. It would be an interesting
and challenging extension of the model to extend this homogenization technique to ac-
count for these factors. Further, the blood in the microcirculation does not indeed behave
as a Newtonian fluid, but rather is a shear-thinning fluid with a haematocrit-dependent
viscosity. It is important that future work should take account of microvascular rheology
in a more realistic way.

Finally, although this paper is focussed on theoretical model development, the next
natural step is to simulate the continuum models of fluid and drug transport derived here
on tumour geometries provided by medical images. This will allow both model validation
(by comparison against clinical data), and the use of model predictions to elucidate the
connection between blood and mass transport and vascular structure.
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