
Bulletin of Mathematical Biology (2010) 72: 1623–1665
DOI 10.1007/s11538-009-9491-x

O R I G I NA L A RT I C L E

A Mathematical Analysis of Multiple-Target Selex

Yeon-Jung Seoa, Shiliang Chenb, Marit Nilsen-Hamiltonc,
Howard A. Levinea,∗

aDepartment of Mathematics, Iowa State University, Ames, IA 50011, USA
bDepartment of Mathematics, Princeton University, Princeton, NJ 08544, USA
cDepartment of Biochemistry, Biophysics and Molecular Biology, Iowa State University,
Ames, IA 50011, USA

Received: 5 May 2009 / Accepted: 24 November 2009 / Published online: 14 January 2010
© Society for Mathematical Biology 2010

Abstract SELEX (Systematic Evolution of Ligands by Exponential Enrichment) is a pro-
cedure by which a mixture of nucleic acids can be fractionated with the goal of identifying
those with specific biochemical activities.

One combines the mixture with a specific target molecule and then separates the target-
NA complex from the resulting reactions. The target-NA complex is separated from the
unbound NA by mechanical means (such as by filtration), the NA is eluted from the com-
plex, amplified by PCR (polymerase chain reaction), and the process repeated. After sev-
eral rounds, one should be left with the nucleic acids that best bind to the target. The
problem was first formulated mathematically in Irvine et al. (J. Mol. Biol. 222:739–761,
1991). In Levine and Nilsen-Hamilton (Comput. Biol. Chem. 31:11–25, 2007), a mathe-
matical analysis of the process was given.

In Vant-Hull et al. (J. Mol. Biol. 278:579–597, 1998), multiple target SELEX was
considered. It was assumed that each target has a single nucleic acid binding site that
permits occupation by no more than one nucleic acid. Here, we revisit Vant-Hull et al.
(J. Mol. Biol. 278:579–597, 1998) using the same assumptions. The iteration scheme
is shown to be convergent and a simplified algorithm is given. Our interest here is in the
behavior of the multiple target SELEX process as a discrete “time” dynamical system. Our
goal is to characterize the limiting states and their dependence on the initial distribution
of nucleic acid and target fraction components. (In multiple target SELEX, we vary the
target component fractions, but not their concentrations, as fixed and the initial pool of
nucleic acids as a variable starting condition.)

Given N nucleic acids and a target consisting of M subtarget component species, there
is an M × N matrix of affinities, the (i, j) entry corresponding to the affinity of the j th
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nucleic acid for the ith subtarget. We give a structure condition on this matrix that is
equivalent to the following statement: For any initial pool of nucleic acids such that all
N species are represented, the dynamical system defined by the multiple target SELEX
process will converge to a unique subset of nucleic acids, each of whose concentrations
depend only upon the total nucleic acid concentration, the initial fractional target distri-
bution (both of which are assumed to be the same from round to round), and the overall
limiting association constant. (The overall association constant is the equilibrium con-
stant for the system of MN reactions when viewed as a composite single reaction.) This
condition is equivalent to the statement that every member of a certain family of chemical
potentials at infinite target dilution can have at most one critical point. (The condition
replaces the statement for single target SELEX that the dynamical system generated via
the process always converges to a pool that contains only the nucleic acid that binds best
to the target.) This suggests that the effectiveness of multiple target SELEX as a separa-
tion procedure may not be as useful as single target SELEX unless the thermodynamic
properties of these chemical potentials are well understood.

Keywords SELEX · Chemical potential · Fractionation · Discrete dynamical system ·
Asymptotic stability

1. Introduction

1.1. Biochemical background

The alternatives to antibodies for selective and high affinity recognition are peptide or
nucleic acid aptamers. Aptamers are selected for their binding properties from a “library”
of peptides (in the context of a scaffold protein) or of nucleic acids in which each con-
stituent molecule contains a region of its sequence that has been created by the insertion
of randomly chosen precursors. For almost all peptide and nucleic acid libraries used for
selection, the number of constituent molecules is far fewer than the number of possible
unique sequences. Barring multiple sequences created as a result of the probabilistic na-
ture of the processes used to synthesize the libraries, each constituent molecule in these
libraries is unique. For both types of aptamer, the individual molecules with high affinity
and selectivity are captured from the library by a series of alternating selection and am-
plification steps in which a subset of molecules are first selected for a binding property
to a target, then the selected population is expanded (amplified) to increase the number
of copies of each selected molecule. The expanded pool is then again used as the basis
for selection of a subset of binders and the rounds of selection and expansion continued.
Typically, after about twelve selection rounds, the remaining molecules are evaluated for
the existence in the pool of an expanded representation of high affinity binders.

With the ability to detect and isolate molecules with important roles in biological sys-
tems comes increased knowledge of these molecules in their in vivo context, which con-
tributes to a fundamental understanding of the mechanisms by which these molecules
perform their biological role. Consequently, the development of probes such as antibod-
ies and aptamers that recognize specific molecules is important for the further devel-
opment of biological investigations. Most aptamer selections today are performed with
purified protein targets. Although these preparations contain a single molecular species,
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each molecule presents more than one target for aptamer binding. Using the immunolog-
ical nomenclature, these targets would be referred to as epitopes. Probes are also needed
for many proteins that have not yet been adequately purified. Thus, it is anticipated that
experimentalists will more frequently utilize mixed targets (e.g., impure proteins or intact
cells or organelles) for selection. To optimize these selection protocols, it will be impor-
tant to understand the nature of the selection process, which is the purpose of the current
work that considers nucleic acid aptamers, commonly referred to as aptamers.

1.2. Mathematical overview

Because the selection process is iterative, we view multiple target SELEX as a discrete
dynamical system. As in Vant-Hull et al. (1998), we employ a mean field (deterministic)
model. That is, we assume all species are present in sufficient quantities to invoke the law
of large numbers and use average values for the species concentrations. We do not impose
any distribution rule on the affinity matrix, taking its entries to be randomly generated
numbers within a specified physically meaningful interval. Likewise, we take the initial
pool of nucleic acid fractions to be random positive numbers summing to unity. A num-
ber of papers and the varied approaches to this subject are worth mentioning. Complex-
target SELEX models were considered in Chen (2007), Chen and Kuo (2007), Chen et al.
(2007), Vant-Hull et al. (1998) based on mean field theory. In Vant-Hull et al. (1998), the
authors generalized the complex-target model from the single-target model in Irvine et al.
(1991). There they introduced the method of ligand (nucleic acid) subpools with similar
affinities for each target. Within each subpool, it was assumed that the target affinities
satisfied a log Gaussian distribution for the ligand affinities. They organized the nucleic
acid pool and the subtarget proteins as follows (using our notation below). If we have N

nucleic acids with concentrations [NAj ] with indices j in the set N = {1,2, . . . ,N}, we
call this set the full nucleic acid pool. Any ordered subset of N with the same nucleic acid
concentrations for the indices in this subset is called a subpool of the given pool N . Now
consider a target (vector) composed of proteins T1, . . . , TM . Consider for subtarget T1, the
subpool S11 of nucleic acids that bind best to this target and call its affinity a1,1. Let S21 be
the subpool of nucleic acids that bind second best to T1 with affinity a2,1 < a1,1. Clearly
S11 and S21 are disjoint. Eventually, we arrive at a subpool Sn1,1 with poorest affinity
an1,1 < an1−1,1 < · · · < a2,1 < a1,1. Repeating this process for the remaining M − 1 tar-
gets, we arrive at a collection of subpools Ci = {Sji ,i | ji = 1, . . . , ni} for each subtarget Ti ,
1 ≤ i ≤ M. The subpools in each collection are pairwise disjoint. The subpools of interest
in Vant-Hull et al. (1998) are defined as follows: For each M-tuple of indices (j1, . . . , jM)

with 1 ≤ ji ≤ ni , let S(j1j2···jM ) =⋂M

i=1 Sji ,i . The meaning of the definition is that a nucleic
acid in one of these subpools is the j1st best binder to T1, the j2th best binder to T2, etc.
There are n1n2 · · ·nM such subpools. The number of these subpools can be quite large as
was remarked in Vant-Hull et al. (1998). In our example below, ni = N = 20 and M = 5
so that the number of subpools is 205 = 3.2(106), far more than the number of nucleic
acid species. A more typical but somewhat less dramatic illustration was given in Vant-
Hull et al. (1998), i.e., with 16 proteins and 10 binding constants per protein, the number
of such pools would be 1016 but a typical value for N ≈ 1015.1 Although, as is remarked

1The mathematical meaning of this is that some of the sets Sj1j2···jM must be empty. For example, if the
pool of nucleic acids is represented as {a1, a2, a3, a4} and the subpools of nucleic acids for the first protein
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in Vant-Hull et al. (1998), for reasons cited there, this can be viewed as “merely a math-
ematical technicality,” from the point of view of the computational scientist, it can cause
programming headaches and strains on computing resources (memory and running time),
especially as the addition of a single target increases the number of variables by a factor
of N . (This was noted also in Chen, 2007, p. 199 and in Chen and Kuo, 2007, p. 1,017.)

In view of these and related issues, the authors in Chen and Kuo (2007), Chen et al.
(2007) developed a condensed subpooling model for complex-target SELEX as well as for
subtractive SELEX (Vant-Hull et al., 1998, p. 594) to optimally reduce the size of ligand
subpools considered in Vant-Hull et al. (1998). Stochastic simulations of ligand evolution
were carried out in Chen (2007) to characterize the evolution dynamics under the influ-
ence of random effects such as point mutations. (In Chen, 2007, the author modeled the
binding and selection probability for complex-target SELEX. Conditions and evolution
trajectories of ligands were examined for the aptamer enrichment and ligand dynamics of
complex SELEX.) In Chen (2007, p. 198), the author also argued that “Missing aptamers
for some targets in the fully enriched library is conceivable for real experiments, but in
theory it will never be predicted by mean-field model-based simulations in Chen and Kuo
(2007), Vant-Hull et al. (1998).”

Our primary goal is to characterize the limiting values of the nucleic acid concentra-
tions in terms of the initial target components. Although an experimenter would eschew
SELEX procedures that involve more than 20 rounds (iterations), the computational scien-
tist is not limited by this restriction, but only by the computational power of the computer
employed. Nevertheless, dealing with 1016 subpools as variables can strain the resources
of a desktop computer. It was shown in Sun et al. (1996), for single target SELEX, that
for successful SELEX experiments, the number of rounds of SELEX cycles should be
closely tied to the concentration of the target. In Levine et al. (2007), it was shown for
single target SELEX that in the absence of other information the optimal way to proceed
from round to round was to reduce the target concentration by a factor of 1/m in passing
from the (m − 1)th to the mth, and that the convergence rate also depended geometri-
cally on the difference between the largest affinity and the second largest affinity. (Such a
choice always maximizes the limiting binding probability (target efficiency).) Use of the
same round reduction strategy in the multiple target case also leads to very rapid conver-
gence (under 25 rounds). (See Fig. 1(a), (b) and compare with Fig. 3.) Based on these
observations, we were strongly motivated to consider the multiple target problem from
the dynamical systems point of view.

In Vant-Hull et al. (1998, p. 585), it is stated that “It is not possible for any single
paper to fully cover the immense parameter space associated with this model. . . ” We
audaciously attempt to do this, at least at a theoretical level. This is possible because we
organize the calculation in different manner than that described above.

Consider a library of nucleic acids and a library of target proteins. The results of Levine
et al. (2007) suggested an experimental approach for the SELEX process to converge to
a pool consisting of a single best binding nucleic acid without recourse to any a priori

in order from best to worst binders are S11 = {a1, a4}, S21 = {a2}, S31 = {a3} and the pools for the second
protein are S12 = {a3}, S22 = {a1, a2}, S32 = {a4}, then there is no nucleic acid that is the poorest binder
to both the first and the second protein, i.e., there is no nucleic acid in the set S31 ∩ S32. Even if the ai

represent large concentrations of nucleic acids with similar binding properties, or if there are more ai than
nine, it is still quite possible to have a pool for which no member binds most poorly to both proteins.
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information about the nature of the binding constants or the distribution of the individual
nucleic acid fragments. With a single target, the definition of what it means to be the
best binding nucleic acid in a pool of nucleic acids is clear, namely the nucleic acid with
the highest affinity with respect to the target. Moreover, given any pool of nucleic acids,
the SELEX iteration scheme will always converge to the single best binding nucleic acid
present in the initial pool.

However, for the multiple target problem, one has an M × N matrix, A, of affinities,
where M is the number of target components and N is the number of nucleic acid species
present in the pool. The relative proportions of each target component are fixed, but the
concentration of the total target pool can be varied by dilution. It is not a priori clear that
the final distribution of nucleic acid fractions will be independent of the distribution of
nucleic acid fractions in the initial pool of nucleic acid fractions, even assuming that all
nucleic acids are present in the initial pool. Moreover, it is not even clear what the condi-
tion on this matrix should replace the statement for single target SELEX that the SELEX
process always converges to the best binding nucleic acid in the pool. No statistical as-
sumption is made about the distribution of equilibrium constants for each protein.

We present a necessary and sufficient condition on the matrix of affinities that ensures,
from a theoretical point of view, that a single set of final fractions of nucleic acids is
obtained for a fixed target distribution independently of the initial fractional distribution
of nucleic acids as long as all N species are initially present. This structure condition
is closely tied to the geometric properties of a family of chemical potentials against the
entire pool at infinite target dilution.

Perhaps the simplest way to formulate this geometric condition is as follows. To each
nucleic acid, we associate a vector whose components are its affinities for each target.
This vector can be thought of as the target affinity vector for this nucleic acid. (The reader
may find the two or three target cases the easiest to visualize.) We form the dot product of
each target affinity vector with a candidate vector of free target fractions (i.e., a weighted
target affinity for each nucleic acid) and take the largest such dot product. We call this the
maximal target affinity function. Its graph (over the space of possible free target fraction
vectors) is a convex polyhedral surface. This surface will have a minimum value over this
space.

Whenever any nucleic acid has the property that any dot product of its target affinity
vector with a free target fraction vector is smaller than this minimum, the nucleic acid in
question cannot be one of the limiting selection products. In other words, a nucleic acid
cannot be selected if every weighted target affinity corresponding to it is smaller than the
minimum of the maximal target affinity function. (See Remark 3.)

The faces of this graph are subsets of hyperplanes varying dimensions (points, lines,
planes, and higher dimensional “planes”). One can think of these faces as being the inter-
section of a number of hyperplanes defined by the free-target fraction vectors. A face is
said to be proper if the set of target affinity vectors that determine the intersecting hyper-
planes is linearly independent, i.e., if the corresponding set of indices uniquely determines
the face. If every face is proper, we say the maximal target affinity function is proper. (This
is the condition that replaces the condition that each nucleic acid is defined by a unique
target affinity in single target SELEX. There we agreed that if two nucleic acids had the
same affinity for the target, then with respect to the target they were the “same” nucleic
acid.)
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Table 1 Notation

Species Concentration or fraction

Target, T [T ]
ith target, Ti [Ti ]
ith target fraction, [Ti ]/[T ] Ωi

Free target, Tf [Tf ]
ith free target, Tfi [Tfi ]
ith free target fraction, [Tfi ]/[Tf ] Ωf,i

Nucleic acid, NA [NA]
j th nucleic acid, NAj [NAj ]
j th nucleic acid fraction, [NAj ]/[NA] Fj

Free nucleic acid, NAf [NAf ]
Free j th nucleic acid, NAfj [NAfj ]
Bound j th nucleic acid, {T : NAj } [{T : NAj }]
Bound j th nucleic acid with ith target, {Ti : NAj } [{Ti : NAj }]
Bound nucleic acid {T : NA} [{T : NA}]

In the proper case, it is possible to partition the simplex of initial target fractions into
polyhedra with pairwise disjoint interiors in such a way that, given any set of initial target
fractions, we can uniquely determine the final free target fractions and final nucleic acid
fractions if we also know the overall dissociation constant for the limit of the SELEX
rounds. In the improper case, the lack of uniqueness for the minima of the chemical po-
tentials means that we can only assert that for every minimizer of the chemical potential
there is a free target vector. The decomposition allows one to determine which nucleic
acids are candidates for selection, given the initial target vector, but it does not tell us
which nucleic acids will be ultimately chosen from the initial pool of nucleic acids.

In the analysis below, we have ignored the effects of noncompetitive binding and losses
through the support. However, following the analysis given in Levine et al. (2007) using
the assumptions in Irvine et al. (1991), these effects can be easily included.

2. Formulation and notation

Although this discussion applies equally to the selection of peptide or nucleic acid ap-
tamers, we frame the underlying chemistry of a single SELEX round in terms of chemi-
cal equilibria of nucleic acids. We employ the notation in Table 1 and envisage a pool
of N nucleic acids, NAj for j ∈ {1,2, . . . ,N} = N and a pool of M targets Ti for
i ∈ {1,2, . . . ,M} = M. The each target is presumed to be in equilibrium with each nu-
cleic acid:

{Ti : NAj }
k−i,j

�
ki,j

Tfi + NAfj where Kij = k−i,j

ki,j

= [NAfj ][Tfi]
[{Ti : NAj }] (1)

is the dissociation constant for each of the N nucleic acids binding to the ith target and
Tfi is the available free target of the ith target. In the (idealized) SELEX process, the total
bound nucleic acid {T : NA} is then separated. The bound nucleic acid is then eluted from
the target and subjected to PCR in order to bring the total concentration back to the value
of the original pool. The process is repeated with the target (with possibly a different over-
all concentration but with the same relative proportions of subtarget concentrations, [Ti]).
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It is probably worth remarking here that the mathematics involved is that of equilib-
rium statistical mechanics where we are dealing with ensemble averages of molecular
species. Each SELEX round can be considered to represent such an equilibrium state.

Define Aij = 1/Kij as the corresponding affinity of the nucleic acid for the target.
Define the affinity matrix

A =

⎡

⎢
⎢
⎢
⎣

1/K11 . . . 1/K1N

1/K21 . . . 1/K2N

...
...

...

1/KM1 . . . 1/KMN

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

A11 . . . A1N

A21 . . . A2N

...
...

...

AM1 . . . AMN

⎤

⎥
⎥
⎥
⎦

. (2)

Denote the rows of this matrix by
−→
A i for i = 1, . . . ,M and the columns by

−→
A j for

j = 1, . . . ,N. Associated with such vector quantities are the target and free target con-

centration vectors:
−→[T ] = 〈[T1], . . . , [TM ]〉, −−→[Tf ] = 〈[Tf1], . . . , [TfM ]〉 as well as the cor-

responding vectors of percentages (fractions) of each target component:

Ω̂ =
−→[T ]
[T ] =

〈 [T1]
[T ] , . . . ,

[TM ]
[T ]
〉

= 〈Ω1, . . . ,ΩM〉,

Ω̂f =
−−→[Tf ]
[Tf ] =

〈 [Tf1]
[Tf ] , . . . ,

[TfM ]
[Tf ]
〉

= 〈Ωf,1, . . . ,Ωf,M〉.
(3)

These are unit vectors in the L1 norm (the components are nonnegative and sum to unity).2

2.1. Formulation of the SELEX problem

There are a number of “conservation” laws for the system:

[NA] =
N∑

j=1

[NAj ], [T ] =
M∑

i=1

[Ti],

[{T : NAj }
]=

M∑

i=1

[{Ti : NAj }
]= [NAfj ]

M∑

l=1

[Tfl]Alj ,

[NAj ] = [NAfj ] +
M∑

i=1

[{Ti : NAj }
]= [NAfj ]

(

1 +
M∑

l=1

[Tfl]Alj

)

,

[Ti] = [Tfi] +
N∑

j=1

[{Ti : NAj }
]
.

(4)

2The L1 norm for k-tuple x = 〈x1, . . . , xk〉 of real numbers is denoted variously by |x| = |x|1 =
∑k

i=1 |xi |.



1630 Seo et al.

Define the fraction Fj of nucleic acid NAj as Fj = [NAj ]
[NA] and the N unit vector of

nucleic acid fractions as F̂ = 〈F1, . . . ,FN 〉. For convenience, define

Dj,f =
M∑

l=1

[Tfl]Alj = −−→[Tf ] · −→Aj = [T : NAj ]
[NAfj ] (5)

the ratio of bound to free j th nucleic acid. Then the fraction of nucleic acid NAj bound to
the ith target is given by

[{Ti : NAj }]
[NA] = Fj [Tfi]Aij

(1 +∑M

l=1[Tfl]Alj )
= Fj [Tfi]Aij

1 + Dj,f

. (6)

This yields a nonlinear system of equations for the M free target concentrations [Tfi]:

[Ti] = [Tfi]
(

1 + [NA]
N∑

j=1

FjAij

(1 +∑M

l=1[Tfl]Alj )

)

= [Tfi]
(

1 + [NA]
N∑

j=1

FjAij

1 + Dj,f

)

(7)

for i ∈ M. Summing both sides of the equations in (7) over the free index, we have

[T ] = [Tf ]
(

1 + [NA]
[Tf ]

N∑

j=1

FjDj,f

1 + Dj,f

)

. (8)

The fraction of bound NAj to total bound nucleic acid is

F ′
j ≡ [{T : NAj }]

[T : NA] =
∑M

i=1[{Ti : NAj }]
[T : NA] = [NA]

[T : NA]
(

Dj,f

1 + Dj,f

)

Fj (9)

where we have used (6) in the first sum on the right.3 Summing over both indices in (6),
we obtain

[T : NA]
[NA] =

N∑

j=1

M∑

i=1

[{Ti : NAj }]
[NA] =

N∑

j=1

M∑

i=1

Fj [Tfi]Aij

(1 +∑M

l=1[Tfl]Alj )
=

N∑

j=1

FjDj,f

1 + Dj,f

.

(10)

Therefore,
∑

j F ′
j =∑j Fj = 1. The total free nucleic acid is given by

[NAf ] =
N∑

j=1

[NAfj ] = [NA]
N∑

j=1

Fj/(1 + Dj,f ). (11)

3In the case of losses through the support and nonselective binding, the term [Ti : NAj ] must be replaced by
a[Ti : NAj ]+b[NAj ] where 0 < a,b < 1. The effect of these parameters is to slow the rate of convergence
of the iteration sequence. See Irvine et al. (1991), Vant-Hull et al. (1998) for definitions and Levine et al.
(2007) for a detailed analysis and simulations illustrating their effect on the rate of convergence.
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Using the notation in (3), (5), and Eq. (10), Eqs. (7), (8), and (9) become

F ′
j = [Dj,f /(1 + Dj,f )]Fj
∑N

l=1[Dl,f /(1 + Dl,f )]Fl

, (12)

Ωi = Ωf,i

(

1 + [NA]
N∑

j=1

FjAij

(1 + [Tf ]−→A j · Ω̂f )

)
[Tf ]
[T ]

= Ωf,i

(

1 + [NA]
N∑

j=1

FjAij

1 + Dj,f

)
[Tf ]
[T ] , i = 1, . . . ,M (13)

and

[T ] = [Tf ]
(

1 + [NA]
N∑

j=1

Fj

−→
A j · Ω̂f

1 + [Tf ]−→A j · Ω̂f

)

. (14)

(Given Ω̂f , Eq. (14) has exactly one positive solution [Tf ] for each set of F ′
j s and total

target [T ] because the right-hand side is strictly increasing in [Tf ] and takes values in
(0,∞).)

Notice that, to this point, we have not used amplification (such as by PCR) in our
formulation of the SELEX equations. However, when we reformulate Eqs. (9)–(14) as an
iterative scheme, we utilize an amplification protocol such as PCR (in the case of nucleic
acids) to restore the pool to its original size. Mathematically, this means that the nucleic
acid pool size does not change from round to round.

Remark 1. One can also follow the evolution of nucleic acid fraction vectors F̂ i =
〈F1i , . . . ,FNi〉 relative to each subtarget defined by

F ′
j i = [{Ti : NAj }

]/ N∑

l=1

[{Ti : NAl}
]= FjAij

1 + Dj,f

/ N∑

l=1

FlAil

1 + Dl,f

.

This notion is useful if one is to follow the multiple target SELEX by a number of single
target SELEX procedures using each of the subtarget species alone in order to fractionate
the individual best binders from the pool of those obtained from multiple target SELEX
(Vant-Hull et al., 1998, Fig. 2, p. 580). However, we do not do this here because we are
only interested in multiple target SELEX.

2.2. Overall dissociation and association constants, efficiencies

We consider the overall dissociation and association constants for

{T : NA} � Tf + NAf. (15)
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When the system is in equilibrium, the dissociation constant for (15) is defined as

Kd = 1

Ka

= [Tf ][NAf ]
[{T : NA}] = [Tf ]∑N

j=1 Fj/(1 + Dj,f )
∑M

i=1

∑N

j=1[Tfi]FjAij /(1 + Dj,f )

=
∑N

j=1 Fj/(1 + Dj,f )
∑N

j=1 Fj (
−→
A j · Ω̂f )/(1 + Dj,f )

. (16)

There are two sets of subreactions worth mentioning. The first consists of the N indi-
vidual reactions of each nucleic acid with the overall target:

{T : NAj }�Tf + NAfj . (17)

Similarly, at equilibrium, the overall dissociation constant for each reaction is given by

Kd,j = 1

Ka,j

= [Tf ][NAfj ]
[T : NAj ] = [Tf ][NAfj ]

∑M

i=1[Ti : NAj ]
= [Tf ]

Dj,f

= 1
−→
A j · Ω̂f

. (18)

The second set of subreactions consists of the M reactions of each target with the
overall pool:

{Ti : NA}�Tfi + NAf. (19)

The overall dissociation constant for each reaction at equilibrium is given by

κd,i = 1

κa,i

= [Tfi][NAf ]
[Ti : NA] = [Tfi]∑N

j=1[NAfj ]
∑N

j=1[Ti : NAj ]
=
∑N

j=1[NAfj ]
∑N

j=1[NAfj ]Aij

=
∑N

j=1 Fj/(1 + Dj,f )
∑N

j=1 AijFj/(1 + Dj,f )
. (20)

The overall association constant can be expressed nicely as weighted averages, namely

Ka = 1

Kd

=
M∑

i=1

Ωf,iκa,i =
M∑

i=1

Ωf,i

κd,i

=
N∑

j=1

φjKa,j =
N∑

j=1

φj

Kd,j

(21)

where

φj = Fj/(1 + Dj,f )
∑N

l=1 Fl/(1 + Dl,f )
= Fj − F ′

j

∑N

l=1 Dl,f Fl/(1 + Dl,f )

1 −∑N

l=1 Dl,f Fl/(1 + Dl,f )
.

For the reactions (15), (17), and (19), we define overall efficiencies. (In the literature,
these are sometimes referred to as binding probabilities, e.g. Chen, 2007.) For the first,
(15), we define

E = [T ] − [Tf ]
[T ] = [NA : T ]

[Tf ] + [NA : T ] = [NA]
Kd + [NA] = [NA]Ka

1 + [NA]Ka

. (22)
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For the second, (17), we define

Ej = [T : NAj ]
[NAj ] = Dj,f

1 + Dj,f

= Ka,j [Tf ]
Ka,j [Tf ] + 1

(23)

where we have used the second and third equations in (4) to evaluate the first ratio. This
quantity is a measure of the ability of the j th nucleic acid to bind the target. Clearly, for
a fixed free target, the larger Ka,j is, the greater will be the ability of the j th nucleic acid
to bind to the target pool. This is discussed in more detail in Section 4.

For the third, (19), define

Ei = 1 − [Tfi]
[Ti] = [Ti : NA]

[Ti] =
[NA](∑N

j=1
Fj Aij

1+Dj,f
)

[NA](∑N

j=1
Fj Aij

1+Dj,f
) + 1

=
[NA](κa,i

∑N

j=1
Fj

1+Dj,f
)

[NA](κa,i

∑N

j=1
Fj

1+Dj,f
) + 1

(24)

where we have used the second and third equations in (4) to evaluate the first ratio. This
quantity is a measure of the efficiency of the ith target to bind the nucleic acid pool. This
formula tells us that for a given set of nucleic acids and fixed κa,i , the target efficiency of
each subtarget will achieve its maximum as the total free target converges to zero.

The free target fractions can be expressed in terms of these efficiencies, i.e.,

Ωf,i = Ωi

1 − Ei

1 − E
. (25)

Moreover, an interesting relationship among the efficiencies is given by

E = 1 −
∑[Tfi]
∑[Tj ] = 1 −

∑[Ti](1 − Ei)
∑[Tj ] =

∑[Ti](Ei)
∑[Tj ] =

M∑

i=1

ΩiEi ≡ Ω̂ · −→E . (26)

Thus, the overall efficiency is related to the M individual efficiencies of the subtargets in
a very geometrically intuitive way.

Finally, we introduce the simplices S = {ω̂ = 〈ω1, . . . ,ωM〉| ωi ≥ 0, i = 1, . . . ,M and∑M

i=1 ωi = 1}, and SF = {f̂ = 〈f1, . . . , fN 〉| fi ≥ 0, i = 1, . . . ,N and
∑N

i=1 fi = 1}. The
first simplex is the set of all possible vectors Ω̂ of target fractions while the second is the
set of all nucleic acid fraction vectors.

Because our analysis will be carried out with all targets present, we introduce the open
subset of S namely S0 = {ω̂ ∈ S| ωi > 0, i = 1, . . . ,M}. The usual physical assumption
is that Ω̂ ∈ S0, i.e., the target contains all its components. Therefore, this will be true of
the corresponding free target fractions by (25).

From time to time, we will need subsimplices. For example, if L ⊂ N , we define the
simplex SF ,L = {f̂ ∈ SF | fi ≥ 0 for i ∈ L, fi = 0 if i ∈ N − L}.

For each index j = 1, . . . ,N and each vector ω̂ ∈ S , we define the vectors (the columns

of ω̂t ·A) as
−−→
Ajω = 〈A1jω1,A2jω2, . . . ,AMjωM〉t . We view the entries of these vectors as

the (ω) weighted contribution of each target vector to the affinity of the j th nucleic acid.

Because the numbers ωi,Aij are nonnegative, |−−→Ajω| = −→
A j · ω̂.
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3. The geometry of SELEX

The SELEX iteration process can be summarized and given a geometric interpretation
as follows. For each positive number τf and each pair of vectors (Ω̂, f̂ ) ∈ S × SF , we
define N + M + 1 functions as follows:

τ(τf , ω̂, f̂ ) = τf

(

1 + [NA]
N∑

j=1

fj

−→
A j · ω̂

1 + τf

−→
A j · ω̂

)

,

Ωi(τf , ω̂, f̂ ) = ωi

(

1 + [NA]
N∑

j=1

Aijfj

(1 + τf

−→
A j · ω̂)

)
τf

τ
, i = 1, . . . ,M,

f̃j (τf , ω̂, f̂ ) =
(

τf

−→
A j · ω̂

1 + τf

−→
A j · ω̂

fj

)( N∑

l=1

τf

−→
A l · ω̂

1 + τf

−→
A l · ω̂

fl

)−1

, j = 1, . . . ,N.

(27)

This defines a mapping from � = [0,∞) × S × SF into itself. (Notice that
∑

i ωi =
∑

j f̃j = 1.) In the SELEX problem, we are given (τ, Ω̂, f̂ ) and asked to find (τf , ω̂,
̂̃
f ).

Clearly, the direction to take is to solve the first M + 1 equations for (τf , ω̂) and then use

these values to compute ̂̃f .
We gain some understanding of the meaning of the final values in the SELEX process

by considering the fixed points of the above map. The study of these fixed points amounts
to the study of the solutions of the equations satisfied by the limiting values of the iterates.
We postpone this discussion until later.

4. The SELEX iteration scheme and its limiting states

4.1. Selection as a function of round number

In terms of an iteration scheme, the single step SELEX problem described in the pre-
ceding section as a single algebraic problem is really an iterative process. At the end

of the r th round, we have fractions F
(r)

1 ,F
(r)

2 , . . . ,F
(r)
N . We give a target vector

−→
T (r) =

〈T (r)

1 , . . . , T
(r)
M 〉 and solve the M nonlinear equations numerically

[
T

(r)
i

]= [Tf
(r)
i

]
(

1 + [NA]
N∑

j=1

F
(r)
j Aij

(1 +∑M

l=1[Tf
(r)
l ]Alj )

)

, i = 1, . . . ,M (28)

to compute the free target vector [−→Tf (r)]. Then one computes D
(r)
j,f for j = 1, . . . ,N and

computes the fractions for the next round from

F
(r+1)
j = [D(r)

j,f /(1 + D
(r)
j,f )]F (r)

j
∑N

l=1[D(r)
l,f /(1 + D

(r)
l,f )]F (r)

l

, (29)

a cumbersome but easily manageable formula. This alone is a much simpler algorithm
than that of Vant-Hull et al. (1998) because one needs only solve M nonlinear equa-
tions (28) rather than the much larger nonlinear system used there. Further simplifications
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in the numerical procedures are discussed in Section 9.1. A numerical simulation using
(28)–(29) is given in Fig. 1.

The fraction of each target component does not change from round to round although
we are permitted to vary the total target concentration by dilution. This assumption was
adopted so as to be consistent with the constraints of performing SELEX with a single
molecular species possessing multiple epitopes and with multiple targets associated with

a single cell type. We write [−−−→
T (r+1)] = (1 − sr )[

−→
T (r)] where 0 ≤ sr < 1 and [−→

T (0)] = [−→T ].
The analysis that follows is done in such a way that [T (r)] → 0, i.e. the infinite prod-
uct
∏∞

r=1(1 − sr ) diverges to zero. The rationale for such a choice is given in Levine et
al. (2007).4 Under these circumstances, it is not hard to see that there are two positive
constants d,D such that d[T (r)] ≤ [Tf (r)] ≤ D[T (r)]. Therefore, the free target concen-
trations and the total target concentrations converge to zero together.

If j, l ∈ {1, . . . ,N}, then

F
(r+1)
j

F
(r+1)
l

= D
(r)
j,f

D
(r)
l,f

(1 + D
(r)
l,f )

(1 + D
(r)
j,f )

F
(r)
j

F
(r)
l

. (30)

Clearly, the ratio of the fraction of NAj to that of NAl will be smaller after one round

of SELEX than before the round if and only if D
(r)
l,f > D

(r)
j,f (equivalently, Ω̂

(r)
f · −→

Al >

Ω̂
(r)
f · −→Aj ). We will use this observation to obtain more information about which indices

correspond to nucleic acids that are eventually eliminated from the pool and those that
survive. To do this, we first need to show that all the (uniformly bounded) sequences
{F (r)

j }∞
r=1 converge to some limiting value, not all of which can be zero. This is done in

Appendix B.

4.2. Limiting values as the round number becomes large

Because the sequences {F (r)
j }∞

r=1 converge, we partition the set of indices N into a set
L′ for which the limit is not zero and its complement, J ′ for which the limit is zero.
We postpone the determination of these sets for the moment. In the meantime, we let
Fj = limr→∞ F

(r)
j . These limiting values determine the limiting free target fractions.

From (28), we obtain

Ω
(r)
f,i [Tf (r)]
[T (r)] = Ωi

1 + [NA]−→A i · F̂ (r)
. (31)

From Appendix B, the right-hand side has a limit. Therefore, after defining W (r) =
[Tf (r)]/[T (r)] and W (r)

i = Ω
(r)
f,i W (r), it follows that the limits

lim
r→∞W (r)

i ≡ lim
r→∞Ω

(r)
f,i W (r) = Ωi

1 + [NA]−→A i · F̂
= Wi (32)

4If the total target concentration is fixed from round to round, many more rounds will be needed to achieve
selection in the multiple target case than in the single target case. See Fig. 3, panels (a), (b).
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exist. Because W (r) =∑M

i=1 W (r)
i , the limit limr→∞ W (r) =∑M

i=1
Ωi

1+[NA]−→A i ·F̂
= W exists.

Finally, the limiting free-target fractions must be given by limr→∞ Ω
(r)
f,i = Wi/W ≡ Ωf,i .

Since κ
(r)
a,i → −→

A i · F̂ , it follows that

Ka = lim
r→∞K(r)

a = lim
r→∞

M∑

i=1

κ
(r)
a,i Ω

(r)
f,i = 1

W

M∑

i=1

Ωi

−→
A i · F̂

1 + [NA]−→A i · F̂
. (33)

We note that

lim
r→∞

D
(r)
j,f

D
(r)
l,f

= lim
r→∞

K
(r)
a,j

K
(r)
a,l

=
−→
Aj · −→W
−→
Al · −→W

=
−→
Aj · Ŵ
−→
Al · Ŵ

(34)

where
−→W = 〈W1, . . . , WM〉.

However, we cannot reverse the argument. That is, suppose the following limits exist:

E = lim
r→∞E(r) = 1 − lim

r→∞
[Tf (r)]
[T (r)] = lim

r→∞
[NA]K(r)

a

[NA]K(r)
a + 1

= 1 − W (35)

and

lim
r→∞Ω

(r)
f,i = Ωf,i . (36)

It does not automatically follow that we can uniquely determine the final nucleic acid
fractions from this information. We argue as follows: Combining the existence of the
limits in (35), (36), with Eq. (25) at each round assures us that the limit

Ei = lim
r→∞E

(r)
i (37)

exists. (In fact, the existence of any two of the limits (35), (36), (37) implies the existence
of the third.) Therefore, the limit as r → +∞ of the right-hand side of (31) exists. How-
ever, this does not imply that the nucleic acid fraction sequence has a limit because the
matrix of affinities is (usually) not of full matrix rank.

4.3. Selection and its connection with asymptotic stability

In order to have selection, i.e., convergence of the SELEX scheme to a unique set of final
fractions, independently of the nucleic acid distribution in the initial pool provided all
F

(0)
i > 0, we need the notion of global asymptotic stability with respect to such pools. We

say that the SELEX process is globally asymptotically stable if for every Ω̂ there exists
a limiting set of nucleic acids F̂ depending only on Ω̂ such that limr→∞ |F̂ (r) − F̂ |1 = 0
independently of the choice of F̂ (0) (the initial pool with all nucleic acids present).

5. Origin of the SELEX indices

We turn next to the question of determining which nucleic acids will be selected.
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5.1. The solution of the SELEX problem at “infinite” dilution ([NA] ≈ 0)

To motivate the discussion, first consider the scheme (28), (29) when [NA] = 0. We as-
sume that the total target concentration is converging to zero in the manner indicated in
the discussion following Eq. (29).

Then [T (r)
i ] = [Tf

(r)
i ] so that the fraction of free target at each round is the same as the

fraction of total target at that round (Ω(r)
f,i = Ω

(r)
i ). Moreover, the total and individual effi-

ciencies at each round are zero. (Thus, we expect and do find that the rate of convergence
to equilibrium of the SELEX process decreases as the total pool size decreases.) Addition-

ally, D
(r)
l,f = [T (r)]−→A l · Ω̂, and hence the ratios D

(r)
j,f /D

(r)
l,f = −→

A j · Ω̂/
−→
A l · Ω̂ do not de-

pend on the round number. Now let L = {l ∈ N |−→A l · Ω̂ = max{−→A j · Ω̂, j = 1, . . . ,N}}.
Therefore, from (B.3), we see that if l ∈ L and j /∈ L the right-hand side of (30) con-
verges to zero, and hence F

(r)
j → 0. On the other hand, if j, l ∈ L, then the above ratios

are all unity. Consequently, from (B.1), we see that the indicated products are all unity for
every r . Thus, at infinite nucleic acid dilution, the concentrations of the initial and final
pool agree. The meaning of this result is that for small values of [NA], i.e., [NA] � [T (0)],
it will take many rounds before the fractional concentrations in the selection process con-
verge to their limiting values. See Fig. 5. There we see that for large pool sizes the overall
K(r)

a appears to take its limiting value after less than 100 rounds whereas for small pool
sizes, one has to perform many more rounds in order for K(r)

a to be close to the same
limiting value.

5.2. The solution of the SELEX problem at finite dilution

When the nucleic acid concentration is positive, the problem becomes mathematically
much more intractable than in the case of infinite dilution. Consider, for each round num-
ber, the sets C(r)

f = {−→A 1 ·Ω̂f
(r)

,
−→
A 2 ·Ω̂f

(r)
, . . . ,

−→
A N ·Ω̂f

(r)} and denote the limiting set by

C = {−→A 1 · Ŵ,
−→
A 2 · Ŵ, . . . ,

−→
A N · Ŵ}. Clearly, there is a subset C(Ω̂, [NA]) ⊂ C for which

all the elements of C(Ω̂, [NA]) are equal and exceed all the elements of C − C(Ω̂, [NA])
by some fixed fraction, δ say. Let L(Ω̂, [NA]) denote the indices of the elements in

C(Ω̂, [NA]) and J (Ω̂, [NA]) the indices in the complementary set. Then
−→
A l · Ŵ ≥

(1 + δ)
−→
A j · Ŵ where we have written Ŵ = −→W /W . It follows by continuity, that for all

sufficiently large round numbers r, |1 − D
(r)
j,f /D

(r)
l,f | > δ/(1 + δ) > δ/2 for l ∈ L, j ∈ J .

Thus, the full series
∑∞

r=1 |1 − D
(r)
j,f /D

(r)
l,f | diverges. Therefore, limr→∞ F

(r)
j = 0 when

j ∈ J (Ω̂, [NA]).
We do not assert that for all l ∈ L(Ω̂, [NA]), Fl > 0. That is, the set L′ of Section 4.2

is a (possibly proper) subset of L(Ω̂, [NA]).
5.3. A variational characterization of the SELEX indices. The maximal target affinity

function, ϕ, the nonlinear equations satisfied by the final target, and nucleic acid
fractions

The observation of the preceding subsection suggests that we define, on the simplex S ,
the (continuous) convex function

ϕ(ω̂) = max
{−→
A j · ω̂ | j ∈ N

}
(38)
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for ω̂ ∈ S . We call this function the maximal target affinity function. We view the numbers−→
A j · ω̂ as possible overall association constants for each nucleic acid relative to the target
vector, i.e., as numbers Ka,j = 1/Kd,j . Thus, we interpret the value ϕ(ω̂) as the affinity
of each selected nucleic acid for the limiting target vector as a function of the individual
components of ω̂. The minimum value of ϕ is the smallest overall affinity possible for
selection to occur. Let ϕmin denote this value and ϕMax the maximum of ϕ on the simplex.
Corresponding to each ω̂ ∈ S , there is a unique set of indices L(ω̂) ⊂ N for which ϕ(ω̂) =−→
A j · ω̂ for j in this set.

We denote the number of elements (indices) in L(ω̂) by Lω̂ . Let J (ω̂) be the com-
plement of this set. Define the level sets of ϕ as follows. For each positive number
Ka ∈ [ϕmin, ϕMax], the set

LKa = {l ∈ N |Ka = −→
A l · ω̂ = ϕ(ω̂)

}=
⋃

ϕ(ω̂)=Ka

L(ω̂) (39)

is the maximum possible set of indices that can be selected for this value of ϕ = Ka . Thus,

L0 =
⋃

ϕMax≥Ka≥ϕmin

LKa =
⋃

ω̂∈S

L(ω̂).

The meaning of this set of integers is that a nucleic acid, NAj is selectable for some initial
target vector if and only if j ∈ L0.

Just because an index is in LKa does not mean that the nucleic acid corresponding to it
will ultimately be selected, even if it is present in the initial pool. To see this, suppose l ∈
LKa , F

(0)
l > 0 and limr→∞ F

(r)
l > 0. Let ω̂ be the corresponding final free-target fraction

vector. This means that ϕ(ω̂) = Ka = −→
A l · ω̂. Suppose that j ∈ LKa . There must be (by

definition) another ω̂′ such that
−→
A j · ω̂′ = ϕ(ω̂′) = Ka. If

−→
A j · ω̂ <

−→
A l · ω̂ then the j th

nucleic acid will not be selected.
The graph of ϕ is convex and made up of closed faces defined as follows: Let L be an

increasingly ordered subset of N with L elements. The set

Φ(L) = {(ω̂, ϕ(ω̂)
) |−→A l · ω̂ = ϕ(ω̂), ω̂ ∈ S, l ∈ L

}
(40)

where the over line denotes the closure of the set below it (the set together with its limit

points) and where the set of vectors {−→A l| l ∈ L} is linearly independent and is called an
L face of the graph of ϕ. An L face is called proper if the set of indices that describes
it is unique. That is, Φ(L) = Φ(L′) implies L = L′.5 If an L face is proper, then the set
L is maximal with respect to the defining property. However, a set can be maximal with
respect to this property without being unique if the face is not proper.

If precisely two L faces, say Φ(L) and Φ(L′) intersect, the intersection is also an L

face of the form Φ(L′′) where L′′ ≤ L + L′ and L′′ ⊂ L ∪ L′. A similar statement holds
if exactly k such L faces intersect.

5The standard mathematical notation would be to call an L face an max{M −L,0} face, but we want an L

face to refer to the number of selected nucleic acids if the free target belongs the projection of the L face
onto S0.
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As a simple example of improper faces, consider four planes in 3 dimensions whose
normals have only positive components and with the property that the normals of any
three of them are linearly independent. Suppose they intersect at a common point in S.

Then there are 4 ordered subsets of three integers that describe this point. This point is an
improper 3 face. Likewise, suppose three such planes intersect at a single point. Suppose
a fourth plane contains a line of intersection of two of the other planes but does not pass
through the dihedral angle made by them. Then the line of intersection is an improper two
face, also.

If ϕ has the property that every L face is proper for L = 1,2, . . . ,M , we say that the
maximal target affinity function is proper. Otherwise, we say the maximal target affinity
function is improper.

We define certain submatrices of A, the affinity matrix. Suppose Ka ≥ ϕmin and sup-
pose ω̂ is such that ϕ(ω̂) = Ka and belongs to some L face. Let L be the index set for this
L face. Let AL be the submatrix of A that consists only of those columns whose column
index is in L. Let AJ have a similar meaning. We call the matrix AL the affinity selection
matrix (ASM) for the face with index set L and the matrix AJ the complement of this
matrix (CASM). We interpret the affinity matrix as an augmented M × L matrix with an
M × (N − L) matrix, namely A = [AL,AJ ] if we agreed to reorder the columns of A in
such a way that the first L columns corresponded to the selected nucleic acids. However,
we still use this representation even if the columns of AL are interspersed among those
of AJ .

Remark 2. Note that l ∈ L is a necessary, but not sufficient condition for the final value
Fl to be positive. The actual set of indices, L(Ω̂, [NA]) such that Fl > 0 will usually be a
proper (nonempty) subset of L.

If the only nucleic acids that can be selected are those whose indices belong to L, then
from (32) we have

Wi = Ωi

1 + [NA]∑N

j=1 FjAij

= Ωi

1 + [NA]∑j∈L FjAij

= Ωi

1 + [NA]∑j∈L(Ω̂,[NA]) FjAij

(41)

where j ∈ L is one of the selected nucleic acid indices. Multiplying both sides of this
equation by Fj ≥ 0 (but Fj > 0 on L(Ω̂, [NA])), summing over j ∈ L, expressing the
dot product as a sum over i and interchanging the order of summation on the left, we

find that
∑M

i=1[NA]Ωi

−→
A i · F̂ /(1 + [NA]−→A i · F̂ ) = [NA]ϕ(Ŵ(F̂ ))W(F̂ ) which yields,

upon rearrangement, W(F̂ ) = 1/(1 + [NA]ϕ(Ŵ(F̂ ))). Thus, Ka[NA]/(1 + Ka[NA]) =
E = 1 − W = [NA]ϕ(Ŵ(F̂ ))/[1 + [NA]ϕ(Ŵ(F̂ ))]. Thus, ϕ(Ŵ(F̂ )) = Ka as expected.
The meaning of this equation is that, at selection, i.e., after infinitely many rounds, the
overall final affinity of each selected nucleic acid for the target set is the same and has the

value
−→
A L · −→W (F̂ ) = Ka W = Ka/(1 + Ka[NA]) where we have defined the mean target

affinities for each target component on L as the row averages of AL, i.e., the vector
−→
A L

has components
−→
A L,i = L−1

∑
l∈L Ail.
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Thus, the final fractions must solve a system of L + M nonlinear equations given by

−→
Al · ω̂ = Ka, l ∈ L,

−→
A i · F̂ = (Ωi/(ωi W) − 1

)
/[NA], i ∈ M (42)

where W = 1/(1 + [NA]Ka) subject to the constraint that the components of F̂ are posi-
tive on some nonempty subset L(Ω̂, [NA]) ⊂ L and otherwise vanish and where we have
set ωi = Wi/W .

It is not hard to show from (42) by summing (
−→
Al · ω̂)Fl = KaFl over l and then

summing the equations Ωi = Wωi(1 + [NA]−→A i · F̂ ) over i that W(
∑

i ωi −∑l Fl) =
1 −∑l Fl and, therefore, the constraint conditions

∑
i ωi = 1 and

∑
l Fl = 1 are equiv-

alent. Thus, both hold since the first holds by the definition of ωi = Wi/W. This means
that, except for the requirement that the ωi,Fl ≥ 0, we do not need to worry about the
constraint conditions as they are satisfied automatically.

We expect, on physical grounds, the set L(Ω̂, [NA]) (as a set function of [NA]) to be
minimal at infinite nucleic acid dilution and to be the set L at [NA] = ∞ (for fixed Ω̂).
The number of elements, LΩ̂,[NA], in these sets is a piecewise constant, increasing function
of [NA].

As [NA] increases, we expect Ka to decrease. (It is not hard to show that ∂Ka/∂[NA]
≤ 0.) This suggests that the overall efficiency, E = Ka[NA]/([NA]Ka +1) should decrease
because poorer binders are more likely to bind with the target components. See Fig. 4 for
illustrations of these last two statements.

Remark 3. For each L face, L = 1,2, . . . ,N , with index set L, we identify a subsimplex
SF ,L ⊂ SF if and only if the index set defines an L face. Thus, we consider collections
of subsimplexes {SF ,L| L defines an L face}. Not every index can be in an L face. For
example, in Fig. 7, panels (a), (b), the second nucleic acid is not in any index set and in
Fig. 7, panels (c), (d), the fifth nucleic acid is not in any index set. The indices j = 2,5
fail to determine the 1 faces. To see this, note that the affinity matrix used to generate the
maximal target affinity function, i.e., the quantity Ka = ϕ(ω̂) that takes the form

Ka

([NA]) = (1 − W)/
([NA]W

)

=
(

3∑

i=1

ΩiAij /
(
1 + [NA]Aij

)
)/(

3∑

i=1

Ωi/
(
1 + [NA]Aij

)
)

.

This is always a decreasing function of [NA]. It has the value
∑3

i=1 ΩiAij at [NA] = 0
and approaches 1/(

∑3
i=1 Ωi/Aij ) as [NA] becomes large. If the former number is smaller

than ϕmin, then j cannot correspond to a L = 1 face. Because j is not an L = 1 face, we
must have that the latter is smaller than ϕmin. Using the data for Fig. 7, in the proper case,
for j = 2, ϕmin ≈ 3.07(10)3 (µM)−1 while Ka([NA]) ≤ 1.8(10)3 (µM)−1. In the improper
case, for j = 5, ϕmin ≈ 4.93(10)3 (µM)−1 while Ka([NA]) ≤ 2.79(10)3 (µM)−1.

6. The connection between the limiting efficiencies and chemical potentials

For readers unfamiliar with the term “chemical potential,” we have provided a brief ex-
planation in Appendix A.
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When we pass to the limit in the iteration scheme, i.e., to infinite target dilution, the
limiting values of the final overall mass fraction ratios for the reactions (15), (17), and (19)

have the form: Ka,j = −→
A j · ω̂, κa,i = F̂ · −→

A i , and Ka =∑l∈L FlKa,l =∑M

i=1 ωiκa,i =
ω̂t · AF̂, respectively. These formulas imply that the limiting concentrations are equilib-
rium solutions of the chemical equations at infinite target dilution. Therefore, the chemical
potentials μ,μi vanish.

The corresponding efficiencies for Eqs. (15) and (19) take the form: E = [NA]Ka/(1+
[NA]Ka), Ei = [NA]κa,i/(1 + [NA]κa,i). These formulas as well as the relationship be-
tween the chemical potentials and the overall equilibrium constants tell us that any func-
tion of the chemical potentials μ,μi can be viewed as a function of the overall association
constants Ka,κa,i or as a function of the efficiencies E,Ei and the correspondence among
the three variable sets is nondegenerate. (See Appendix A.) Define the following function
of the individual efficiencies at infinite target dilution:

Q(
−→
E ) = −RT

M∑

i=1

Ωi ln
[
1/(1 − Ei)

]
. (43)

This function can be written in several equivalent forms:

Q(F̂ ) = −RT

M∑

i=1

Ωi ln
(
1 + [NA]−→A i · F̂ ),

Q
(−→κa

)= −RT

M∑

i=1

Ωi ln
(
1 + [NA]κa,i

)
or

Q
(−→μ a
)= −RT

M∑

i=1

Ωi ln
(
1 + [NA]e−μa

i
/RT
)

(44)

where R is the gas constant and T is the Kelvin temperature.
When [NA] is very large, Q(−→μ a) ≈∑M

i=1 Ωiμ
a
i − RT ln[NA].6 That is, Q can be

viewed as the (weighted) chemical potential μa when the total concentration of target
is very small (i.e., at infinite target dilution) and the nucleic acid pool is very large. When
this is the case, there is so much nucleic acid present that one can view the nucleic acid
pool as interacting with each target in the M subreactions in (19) independently. The fact
that the chemical potential is not a finite sum of the individual chemical potentials at
moderate values of [NA] is just a reflection of the fact that at moderate concentrations, the
nucleic acid pool no longer interacts independently with each target. Therefore, for large
concentrations of nucleic acids, seeking minima for Q subject to a linear constraint such
as
∑

Fl = 1, for example, amounts to seeking minima for the (weighted) chemical poten-
tial for the entire system of MN reactions at equilibrium, i.e., seeking the most negative
possible (constrained) value of the weighted free energy at equilibrium.

6Notice that 0 < min{Ail} ≤ κa,i = −→
A i · F̂ ≤ max{Ail} where the minima and maxima are taken over all

nucleic acid indices so that the chemical potentials, μa
i

, are all bounded.
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7. The stability and uniqueness theorems for multiple target SELEX

In the case of single target SELEX, the iterative process always converges to a pool con-
sisting only of a single nucleic acid, the one in the initial nucleic acid pool that binds most
tightly to the target.

In the case of multiple target SELEX, the situation is more complicated. The notion of
“proper” as defined above replaces the notion that each (set of) nucleic acid(s) in single
target SELEX is defined by a unique target affinity. The following statements hold.

Theorem 1. The target affinity function ϕ is proper in the sense that we have defined
above if and only if for every Ω̂ of starting target fractions, the SELEX iteration scheme
converges to a unique final free target, ω̂, and a unique set of final fractions F̂ that is
independent of the starting pool F̂ (0) ∈ SF as long as this starting vector is an interior
point of the simplex SF . That is, the SELEX process is globally asymptotically stable.

Theorem 2. The target affinity function ϕ is proper in the sense that we have defined
above if and only if the chemical potential at infinite target dilution defined by each L

face has a unique minimum point.

The proof of Theorem 1 is given in Appendix C. Theorem 2 is a consequence of the
proof of Theorem 1.

Theorem 1 says that, if the maximal target affinity function is improper, i.e., some face
is improper, the SELEX process will no longer always converge to a unique set of final
nucleic acids for each choice of the initial target vector, Ω̂ independently of nontrivial
initial pools of nucleic acids. Rather the outcome will depend on the starting nucleic
acid fractions. This loss of uniqueness leads to the possibility, with multiple subtargets,
that one can select for more nucleic acids than subtargets. We illustrate these facts in the
section on simulations. See Fig. 7 panels (a), (c). Figure 7(a) is constructed from a target
affinity function in which all the faces are proper. We see that one cannot select for more
nucleic acids than there are target components. However, Fig. 7(c) is constructed from a
target affinity function for which there is one improper face. We see that if the initial target
fraction vector lies in the quadrilateral labeled {1,2,3,4}, we can select for four nucleic
acids although there are only three components of the initial target vector. In Fig. 9 and
Fig. 8, we illustrate the stability statements.

8. The initial target fraction relationship to the final free target and nucleic acid
fractions

The given affinity matrix A defines two functions, one of which, ϕ : S → (0,∞), is
convex and continuous on S and the second, L : S → P (N ) where P (N ) is the set of
all subsets of N = {1,2, . . . ,N}. For a given free target vector ω̂, the function W =
W([NA], ω̂) = 1/(1 +[NA]ϕ(ω̂)) and unit vectors in S , namely V̂ l = Wω̂ + (1 − W)Âlω

for l ∈ L are defined. The convex hull of this set of vectors was denoted by H([NA], ω̂)

and is the set from which the starting target fractions must come if and only if the final
free target fraction is ω̂. In order to find the final nucleic acid fraction vector F̂ when
Ω̂ ∈ H([NA], ω̂), we set Fj = 0 if j /∈ L and use (C.6) to evaluate the Fj when j ∈ L.
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If ϕ is proper, then the set {V̂ l | l ∈ L} is a linearly independent set, i.e., the rank of
the Grammian is precisely L and the final nucleic acid fractions are uniquely determined
by Ω̂, ω̂. However, if ϕ is improper and the set L does not uniquely determine the L face
to which (ω̂, ϕ(ω̂)) belongs, then the Grammian will not be invertible and two different
starting nucleic acid fraction vectors F̂ will determine two different sets of final nucleic
acid fractions. See Fig. 9, panel(a).

In the laboratory, one is concerned with the question: How can we find the final nucleic
acid fractions if we know the starting target fraction vector Ω̂ , Ka, and [NA]? If we know
the distribution of nucleic acid fractions in the initial pool, we use the SELEX iteration
scheme to determine both vector quantities (ω̂, F̂ ) simultaneously regardless of whether
ϕ is proper.

However, consider the laboratory case when the initial pool of nucleic acids is un-
known. We proceed as follows:

1. Calculate ϕ and determine its faces. In principle, this could be a tedious task. However,
if M is not too large, it is quite doable. The simplex S0 can be projected onto the
interior of the unit cube in RM−1 via the transformation ω1 = 1 − s1,ω2 = s2(1 −
s1), . . . ,ωM−1 = s1 · · · sM−2(1 − sM−1),ωM = s1 · · · sM−2sM−1. A rectangular grid can
then be imposed on this cube. The pointwise evaluation of ϕ is then carried out over
this grid.

2. Use Eq. (C.5) to compute the convex hull of the set of vectors {V̂ l(ω̂)|(ω̂, ϕ(ω̂)) ∈
Φ(L)}. Call this hull H([NA],Φ(L)). Then the simplex S of target fractions Ω̂ can be
written as

S = ∪{H
([NA],Φ(L)

)∣
∣ Φ(L) is a face of the graph of ϕ

}
. (45)

3. Suppose that Ω̂ ∈ H([NA],Φ(L)). Then ϕ(ω̂) = Ka for some free-target vector ω̂ and

Ωi = (1 + [NA]−→A i · F̂ )ωi W where W = 1/(1 + [NA]Ka) and where Fj = 0 if j /∈ L.

4. If the face in question is proper, the system of L equations (C.2) has one and only one
solution. If it is not proper, then there will be a several parameter family of stationary
final fraction vectors satisfying (C.2). They will be stable but not asymptotically stable.

5. In the proper case, components of the unique free target are then found from ωi =
Ωi/(1+[NA]−→A i · F̂ )W . In the improper case, there will be a several parameter family
of free targets corresponding to the family of solutions of (C.2).

9. Simulations

The numerical values used in the simulations are recorded in Tables 2, 3, 4, 5, 6, 7. Before
discussing the simulations in detail, a word about units is appropriate. Careful inspection
of the formulas in Section 2.1 reveals the following: If all of the terms involving concen-
trations of all of the nucleic acid and target species, e.g., the values [X] are replaced by a
common factor, say λ[X] and all of the association constants Aij are replaced by Aij /λ,
the resulting formulas are unchanged. The reason for this is that these equations can be
rewritten in terms of ratios of concentrations or else as products of concentrations with
affinities, both of which are dimensionless quantities.

In Irvine et al. (1991, p. 747), simulations were carried out using a range for Kd be-
tween 10−9 M to 10−7 M (affinities in the range of 107 M−1 to 109 M−1) with a nucleic
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acid pool size of 10−5 M = 10 µM. Thus, the affinity-concentration product is a dimen-
sionless number of order between 102 and 104. If we take λ = 105 as the scale factor,
this would correspond to the conversion of the values in Irvine et al. (1991) to micromo-
larity and using association constants in the range between 102 (µM)−1 to 104 (µM)−1

with [NA] = 1 µM. (In the laboratory, concentrations of nucleic acid pools are generally
in nanomolar to low micromolar range, the concentration of the total target being about
the same to an order of magnitude smaller.)

Our goal in the simulations is to explore as best we can, the parameter space in which
the dynamics is taking place. To do this as well as to respect the value of the affinity-
concentration product above, we took as our initial total target, a value of 1 µM and the
total nucleic acid pool as a variable. For most of the simulations, we take the parameter
[NA] = 1 µM. For the association constant range, our values were in the range 102 (µM)−1

to 104 (µM)−1. These values preserve the affinity-concentration product range used in
Irvine et al. (1991).

We sometimes illustrate the effect the nucleic acid pool concentration has on the output
by using smaller values. For example, in Fig. 4, we varied this parameter over the range
[10−5,1] in micromolarity. With the choice of affinities in this range, the results we obtain
are relatively insensitive to larger values of [NA].

In sum, the reader may disregard the units in the panels and think of them as dimen-
sionless numbers.

9.1. Final fractions using the SELEX iteration scheme

For a given target concentration vector
−−−→[T (r)] with total concentration [T (r)], with given

fraction vector F̂ (r), we first solve the M nonlinear equations (28) to compute the free-

target concentration vector
−−−−→[Tf (r)]. Rather than use Newton’s method to solve (28) as in

Vant-Hull et al. (1998), it is much easier (albeit somewhat slower) to use a fixed point
iteration method. This obviates the need to calculate the Jacobian matrix. (There is a
generalization of Newton’s method, the secant method. Its implementation avoids the
need to calculate this matrix, but is more cumbersome to program and, while faster than
the fixed point scheme, is slower than Newton’s method generally.)

We used the zero vector as a first guess, evaluated the right-hand side of (28) to com-
pute a second guess, and repeated the process until the relative error |[Tf

(r,k+1)
i ]/[Tf

(r,k)
i ]

− 1| was smaller than some specified tolerance. (Here, k is the iteration number for this
procedure.) It is not too hard to see that the functions on the right-hand side of (28) are
increasing in each of the variables [Tf

(r)
i ] and that they are bounded above by their numer-

ators so that this iteration scheme must converge. This eliminates the concerns expressed
in Vant-Hull et al. (1998, p. 585) concerning the convergence of this iteration scheme.

Then one computes D
(r)
j,f = [Tf (r)]−→Aj · Ω̂(r)

f for j = 1, . . . ,N and computes the new
fractions for the next round from (29). As in Levine et al. (2007), we take sr = 1/(r + 1).
It was shown in Levine et al. (2007) for a single target that this choice (or any choice such
that
∑∞

r=1 sr is a divergent series) optimizes the target efficiency.
The subfigures in Figs. 1–5 were generated using this iterative approach. In all the fig-

ures below, the initial nucleic acid fractions were selected by a random number generator
unless otherwise stated.
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1a. Figures 1(a), (c), (e), (f). If we use the final free-target vector found by itera-
tion and given in the caption of Fig. 1 to evaluate ϕ(Ω̂f ) from its definition,
we obtain the value ϕ(Ω̂f ) = 3207.45 (µM)−1 as well as the set of indices
{8,9,10,12,16}. To check that this is the minimum value, we computed ϕ(V̂i)

where V̂ i = (Ω̂f + εêi)/(1 + ε) where êi is one of the standard basis vectors
êi = 〈δi1, δi2, . . . , δi5〉 and where ε > 0 was small. We found that ϕ(V̂ i) > ϕ(Ω̂f ).
Because the graph of ϕ is convex, this strongly suggests that ϕ(Ω̂f ) = ϕmin =
Ka. Using the above set of indices, Ω̂f and the starting target fraction vector
Ω̂a = 〈0.1374,0.1346,0.4090,0.1844,0.1346〉, we computed the final nucleic acid
fractions corresponding to these vectors from (C.6) and found good agreement.
This is confirmed by calculating row and column sums of the classical adjoint
of the 5 × 5 matrix whose columns are indexed by {8,9,10,12,16} and is given
in (E.3). This task can be computationally intensive for large matrices. For this
matrix, the classical adjoint is given in (E.4). The column vector of row sums is
1015〈1.1182,0.8577,2.1713,1.6744,1.0952〉t and the row vector of column sums is
1015〈1.5082,0.9144,1.3998,1.8013,1.2930〉. The value for Ka = 3207.45 (µM)−1

given in the caption of Fig. 1 was found by iteration. The same value is found by
using formula (C.10).

1b. Figures 1(b), (d), (e), (f). For the starting target fraction vector Ω̂b = 〈0.2376, 0.1453,
0.1145, 0.2821, 0.2205〉 we have the set of indices {8,9,10,16} with the limiting
Ka = 3256.05 (µM)−1 = ϕ(Ω̂f ) > ϕmin. The limiting NA fraction vector given in the
caption of Fig. 1 agrees with the final fractions computed from the formula (C.6). The
overall dissociation constant and the overall target efficiency as a function of round
number are shown in panel (e), (f) together with the former case in Fig. 1(a).

2. Figure 2. We calculated the individual nucleic acid efficiencies in terms of the total
nucleic acid efficiency at the end of 40 rounds using the formulas Ej,r = D

(r)
j,f /(1 +

D
(r)
j,f ) with Mj,r = Ej,r/

∑N

l=1 El,r . (After 40 rounds, [Tf ] ≈ 10−6 M so that 1 +
Ka,j [Tf ] ≈ 1.0 for the values used.)

3. Figure 3. We repeated the same calculation as for Figs. 1(a), (b) but did not reduce
the total target concentration from round to round. Convergence to the final nucleic
acid pools is much slower.

4. Figure 4. We fixed the starting target vector, Ω̂ = Ω̂a and several values of
log10[NA] = 0,−1,−2,−3,−4,−5. In panel (a), we see how the number of indices
that correspond to the selected nucleic acids varies with pool size. Also noted, there
are the corresponding nucleic acid indices. For example, when three indices are se-
lected, they will correspond to nucleic acid indices 8,9,12. In panel (b), we see that
pKa appears to be a monotone decreasing function of pNA.

5. Figure 5. We plotted (pKa)
(r) as a function of round number for various pool sizes

using the same initial target vector as in Fig. 4. In panel (a), the association constant
appears to be decreasing with round number. However, in panel (b), this is not the
case when the round number is increased beyond 100, and hence no statement can
be made as to the monotonicity of (pKa)

(r). This is a stark difference between single
and multiple target SELEX because in the single target case, the overall Ka increases
as a function of round number.
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Fig. 1 Comparison of two SELEX experiments with different target vector fractions. Here and through-
out. pKa = − log10(Ka). Panels (a), (b): With [NA] = [T ] = 1 µM, the index sets for the se-
lected nucleic acids are (a) {8,9,10,12,16} and (b) {8,9,10,16} because for indices not in this
set, Fi = 0. The initial target vectors are (a) Ω̂a = 〈0.1374,0.1346,0.4090,0.1844,0.1346〉 and
(b) Ω̂b = 〈0.2376,0.1453,0.1145,0.2821,0.2205〉 with the nonzero components of limiting NA frac-
tion vectors given by Fa = 〈F8,F9,F10,F12,F16〉 = 〈0.1956,0.2794,0.0498,0.3843,0.0908〉 and
Fb = 〈F8,F9,F10,F16〉 = 〈0.3060,0.0670,0.2629,0.3640〉. These limiting vectors agree with values
from the formula (C.6) to at least eight significant figures (not shown). Panels (c), (d): The final free
target fractions in cases (a), (b), after 40 rounds, are: (c) Ω̂f = 〈0.1617,0.1241,0.3139,0.2420,0.1583〉
with limiting Ka = 3207.45 (µM)−1 and (d) Ω̂f = 〈0.1690,0.1288,0.2965,0.2476,0.1581〉 with limit-

ing Ka = 3256.05 (µM)−1. The starting ordinates of each of the curves in panels (c), (d), are the com-
ponents of the initial target vectors Ω̂a and Ω̂b above. Panel (e): The overall dissociation constant as a
function of round number. Panel (f): The overall target efficiency as a function of round number. (Eq. (22).)
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Fig. 2 The individual nucleic acid efficiencies after 40 rounds of the SELEX experiments shown in Fig. 1.
The bar graphs are not identical because, in Fig. 1(a), selection is for indices {8,9,10,12,16} while, in
Fig. 1(b), selection is for indices {8,9,10,16}.

Fig. 3 Misleading selection resulting from fixing target. After 125 rounds of the SELEX experiments
shown Fig. 1, it would appear from panel (a) that the selected indices are {1,6,8,9,10,12,16} whereas
from panel (b) after 400 rounds the selected indices would appear to be {1,8,9,10,12,16}. Compare
with Fig. 1(a). Thus, the importance of reducing the total concentration of target from round to round in a
systematic way is even more pronounced in the multiple target problem.

9.2. Comparison of stationary SELEX solutions with those obtained by iteration.
Decomposition of the initial target set

For more than two or three target components, it will be a challenge to the numerical ana-
lyst/programmer to write an algorithm that can efficiently test which faces of the maximal
target affinity function are proper. Indeed, even for the example in the preceding section,
we cannot positively assert that this function is proper. However, in the computations that
involve the affinities in Figs. 6 and 7, we do not rely on whether or not the function is
proper. In Figs. 8 and 9, we examine the stability properties of a target consisting of three
subtargets in order to illustrate the theory discussed in Sections 5–8.
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Fig. 4 Variability of selected nucleic acid sets with total pool size. In panel (a), the dependence of the
number of selected nucleic acids on the nucleic acid pool size is illustrated. In panel (b), pKa decreases
with decreasing pool size, i.e., Ka decreases with increasing pool size.

Fig. 5 Nonmonotonicity of pKa as a function of round number. The left-hand panel traces pK
(r)
a for

various pool sizes up to 120 rounds. The right-hand panel is a continuation of these curves for an expanded
scale on the vertical axis.

The various panels in Fig. 6 represent (a), the graph of the maximal target affinity
function, (b), the contour lines of this function, (c), (d), the results of running the SELEX
program over a grid in initial target space to partition it into the various hulls that should
be obtained independently using the decomposition suggested in the formula (45) and
calculated using Eqs. (C.5)–(C.6). We see how the nucleic acid pool size can affect the
initial target space. The level sets of ϕ are drawn in panel (b). Using the SELEX program,
the initial target space is partitioned in panel (c) using a value of [NA] = 10−4 M and in
panel (d) with [NA] = 1 µM. In comparing these two panels, note that the size of regions
where two nucleic acids can be selected increases at the expense of the regions where
only one nucleic acid can be selected and decreases at the expense of regions where three
nucleic acids can be selected. Low concentrations of nucleic acids are thus more likely to
lead to selection of a single nucleic acid species than are high concentrations.
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Fig. 6 The maximal target affinity function, its level sets and the effect of pool size on the decompo-
sition of the initial target space. Panel (a) is a graph of the maximal target affinity function when its
domain has been projected onto the plane. The panel (c) was generated from a fixed initial pool of nu-
cleic acids F̂ = 〈F1,F2,F3,F4,F5〉 = 〈0.3002,0.0731,0.1917,0.1535,0.2815〉 using the SELEX itera-
tion scheme for 2,000 rounds. (The number of rounds is large because the rate of convergence of SELEX
program slows as the nucleic acid pool size decreases.) In panels (c), (d), the indicated regions are la-
beled with the indices of the nucleic acids that will be selected when the initial target is selected from
the interior of the indicated region. The triangle in panel (b) generates the hexagon in panel (d). (There is
a corresponding hexagon for panel (c) that is omitted in the interests of clarity.) The initial target vectors
〈Ω1,Ω2,Ω3〉 were generated by setting Ω3 = 1−Ω1 −Ω2, where for j = 1, . . . ,199, i = 1, . . . ,200−j

and Ω1 = Ω1(i, j) = j/200,Ω2 = Ω2(i, j) = i/200 or about 20,000 initial target vectors.

In Fig. 7, we illustrate the formula (45) by comparing the results of running the SELEX
programs with a partition generated by (45) of the initial target space using the discussion
in Section 8 in the two cases ϕ proper (panels (a), (b)) and ϕ improper (panels (c), (d)). We
considered the following scenarios with three target components and five nucleic acids:

1. The function ϕ is proper, has a unique minimum point and there is a second point on
the graph of ϕ defined by exactly three intersecting planes. (Panels (a), (b).)

2. The function ϕ is improper with a unique point common to all four hyperplanes. (Pan-
els (c), (d).)

Panels (a), (c) were generated by the SELEX program for many points in the initial tar-
get simplex. Panels (b), (d) were generated using the stationary state algebraic equations
discussed in Section 8.



1650 Seo et al.

Fig. 7 Comparison of proper and improper case target space decomposition-dynamic and algebraic lim-
iting states. The panels (a), (c), were generated in the same manner as panels (c), (d) in Fig. 6. In all four
panels, the subregions are labeled with the indices of the nucleic acids that will be selected when the initial
target vector is in the indicated region. We refer to the case illustrated in panels (c), (d) as improper because
the minimum of the maximal target affinity function, ϕ, is defined by the intersection of any three of the
four planes that define its graph.

9.3. Stability properties of stationary solutions

To illustrate the asymptotic stability properties of the SELEX process, we consider two
cases for which M = 3 with several nucleic acids present. In the first case, the maximal
target affinity function is proper while in the second case, it is improper.

1. In Fig. 8, panel (a) (or panel (b) in Fig. 7), the asymptotic stability of the SELEX
scheme was tested for several choices of initial target fractions one from each of
the regions labeled {4}, {3,4}, {1,4,5}, {3,4,5}. We label these sets respectively
as S({4}), S({3,4}), S({1,4,5}), S({3,4,5}). In each of the four regions indicated,
a value of the starting target fraction vector Ω̂ was selected. In the nucleic acid sim-

plex, SF , six random vectors {F̂1
(0)

, . . . , F̂6
(0)} were generated and the one norms,

|F̂1
(r) − F̂j

(r)|1, j = 2, . . . ,6, plotted as a function of r , the round number.
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Fig. 8 Convergence of SELEX experiments to a unique NA set regardless of the starting NA pool. These
figures show that whatever convex hull in Fig. 7, panel (a) (or panel (b)), to which the initial target fraction
vector belongs, the SELEX process converges to a unique set of final nucleic acid fractions independently
of the distribution of starting nucleic acids in the starting pool. Each of the five curves in each panel corre-
spond to an independent trial for the starting pool of nucleic acids. (The vertical axis notation |F1 − Fj |1
is shorthand for |F̂1

(r) − F̂j
(r)|1 =∑5

i=1 |F(r)
i,1 − F

(r)
i,j

|. Here, j = 2, . . . ,6 for five of the six random
starting vectors. The starting ordinates of the norms |F1 − Fj | for each of the curves in panels (a)–(d) are
recorded in the fourth column of Tables 2–5 respectively.)

Fig. 9 The SELEX process is not globally asymptotically stable when the initial target fraction belongs
to the convex hull of an improper face (a) and is asymptotically stable when it belongs to a convex hull
corresponding to a proper face (b). Each of the five curves in both panels correspond to an indepen-
dent trial for the starting pool of nucleic acids. (The vertical axis notation |F1 − Fj |1 is shorthand for

|F̂1
(r) − F̂j

(r)|1 =∑5
i=1 |F(r)

i,1 − F
(r)
i,j

|. Here j = 2, . . . ,6 for five of the six random starting vectors. The
starting ordinates of the norms |F1 −Fj | for each of the curves in panels (a), (b) are recorded in the fourth
column of Tables 6, 7 respectively.)
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2. In Fig. 9, the asymptotic stability of the SELEX scheme was tested for choices of two
initial target fractions, one from each of the regions labeled S({1,2,3,4}), S({2,3}),
in Fig. 7, panel (c) (or panel (d)). Again six choices of initial nucleic acid fraction

vectors were selected at random and the five quantities |F̂1
(r) − F̂j

(r)|1, were plotted
as a function of the round number r . In panel (a), these quantities do not converge to
zero, thus illustrating the failure of asymptotic stability at an “improper” face. On the
other hand, in panel (b), these quantities do converge to zero.

10. Summary

We have the following statements.

1. We give an algorithm for multiple target SELEX that reduces the computation time
and programming labor considerably over the algorithm described in Vant-Hull et al.
(1998).

2. The SELEX process always converges to some limiting vector of nucleic acid fractions
and some final composition of free target fractions.

3. We give a necessary and sufficient geometric condition on the affinity selection matrix
that is equivalent to the statement that for any initial target there is a set of final nucleic
acid fractions to which the SELEX iteration scheme must converge independently of
the composition of the initial nucleic acid pool provided all nucleic acid types are in
the initial pool.

4. This geometric condition is the multiple target analog of the condition in single target
SELEX that the affinities of the members of a nucleic acid pool to a single target be
distinct. It is equivalent to the condition that certain chemical potentials have a unique
minimum at infinite target dilution.

5. The geometric relationship between initial target fraction vectors and final free target
fraction vectors at infinite target dilution is discussed. This decomposition allows one
to determine which nucleic acids are candidates for selection given the initial target
vector. When the maximal target affinity function is proper, the set of final nucleic
acid fractions is uniquely determined by the overall association constant and the initial
target fractions when no member of the initial nucleic acid pool is absent.
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Appendix A: The thermodynamic meaning of the chemical potential

We include a brief discussion of the chemical potential for readers who may not be famil-
iar with the concept. Suppose that the overall reactions in Section 2.2 are not in equilib-
rium (ne). Denote the reciprocals of the ratios of concentrations on the extreme right-hand
sides of (16), (18), (20) by Kne

a ,Kne
a,j , κ

ne
a,i . With each of the chemical equations in (15),
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(19), there is associated a chemical potential μ,μi . (There is also a chemical potential for
(17) but that does not concern us here.) These are

μ − μa = RT ln
(
Kne

a /K0

)
, μi − μa

i = RT ln
(
κne

a,i/K0

)
(A.1)

where the quantities μa,μa
i are the chemical potentials at equilibrium see Wall (1958).

(The quantity K0 is a reference value introduced to ensure the nondimensionality of the
argument of the logarithm. It is usually taken to be unity in the units of the numerator. We
adopt this convention here.) We set μa = −RT ln(Ka/K0),μ

a
i = −RT ln(κa,i/K0).

The physical meaning of these is well known to chemists. Consider, for example, the
first of these. Then the chemical potential can be written as μ = RT ln(Kne

a /Ka) and
represents the change in free energy per mole (chemical potential) in going from a non-
equilibrium state to equilibrium. If Ka < Kne

a , the chemical potential (free energy change)
will be positive for the reaction as written in (15) and dissociation will be preferred. On
the other hand, if Ka > Kne

a , the chemical potential will be negative for the reaction as
written. In this case, association will be preferred. Similar remarks apply to the subreac-
tions.

Thermodynamics dictates that the reaction proceeds most readily in the direction of
association when the free energy change is at its most negative value or equivalently,
when Ka has attained its largest value, or the target efficiency is as close to unity as
possible. However, this does not mean that the overall pKa = − log10 Ka = −pKd will
be a decreasing function of round number. (See Fig. 5.)

Appendix B: Convergence proof for the SELEX iteration scheme

Here, we establish that each of the (uniformly bounded) sequences {F (r)
j }∞

r=1 converges to
some limiting value, not all of which can be zero. This question is closely related to the
issue of when certain series converge and when they diverge.

For every pair of indices j, l, j �= l, we have

F
(r+1)
j

F
(r+1)
l

=
(

r∏

p=1

D
(p)

j,f

D
(p)

l,f

(1 + D
(p)

l,f )

(1 + D
(p)

j,f )

)
F

(1)
j

F
(1)
l

. (B.1)

The partial products converge to zero (the infinite product is then said to diverge to
zero) if and only if

∞∑

p=1

|D(p)

l,f − D
(p)

j,f |
D

(p)

l,f (1 + D
(p)

j,f )
=

∞∑

p=1

|1 − D
(p)

j,f /D
(p)

l,f |
(1 + D

(p)

j,f )
(B.2)

is divergent. Examining the tail-end of this series and noting that D
(p)

j,f → 0 uniformly
in j , we see that the divergence of the product is equivalent to the divergence of the
series:

∞∑

p=1

∣
∣1 − D

(p)

j,f /D
(p)

l,f

∣
∣. (B.3)
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To establish that all of the sequences {F (r)
j }∞

r=1 converge, it suffices to establish that
one sequence does.

To see the latter statement, fix some arbitrary index l ∈ N . If for all j �= l, the series
in (B.3) diverged, then the sequences {F (r)

j }∞
r=1 would all converge to zero. But then it

follows from the normalization condition that the sequence {F (r)
l }∞

r=1 converges to unity.
Suppose instead that for this l the set of all indices Ll for which the series in (B.3) is

convergent, is not empty. We claim that limr→∞ F
(r)
l > 0. We write

1 =
N∑

j=1

F
(r+1)
j = F

(r+1)
l +

∑

j∈Ll

F
(r+1)
j +

∑

j /∈Ll

F
(r+1)
j .

The second sum on the right must converge to zero as r → +∞. On the other hand, we
write F

(r+1)
j = c(r)(j, l)F

(r+1)
l if j ∈ Ll where c(r)(j, l) denotes the right-hand side of

(B.1). By hypothesis, the sequences {c(r)(j, l)}∞
r=1 converge to nonzero limits. Therefore,

F
(r+1)
l = 1 −∑j /∈Ll

F
(r+1)
j

1 +∑j∈Ll
c(r)(j, l)

and hence {F (r)
l }∞

r=1 converges to a nonzero value. Consequently, so do the sequences
{F (r)

j }∞
r=1 for j ∈ Ll . This completes the convergence proof.

Appendix C: Proof of Theorem 1

To prove Theorem 1, we need a few preliminary observations based on the system (42).
Suppose we have a solution of the system of equations

−→
Al · ω̂ = Ka for l ∈ L, ωi = Ωi/

[
W
(
1 + [NA]−→Ai · F̂ )] for i ∈ M (C.1)

where W = 1/(1 + [NA]Ka), ω̂ ∈ S , F̂ ∈ SF ,L . Then it is straightforward to see that

W =
M∑

i=1

Ωi

1 + [NA]−→Ai · F̂
= 1

Ka

M∑

i=1

ΩiAil

1 + [NA]−→Ai · F̂
, for l ∈ L. (C.2)

Conversely, if we have a vector F̂ ∈ SF ,L that solves the latter system, then we use the
second set of equations (C.1) to define ω̂. Substitution of these values into the second
set of equations in (C.2) leads to the first set of equations in (C.1). In either case, W =
1 − E = 1/(1 + [NA]Ka).

Remark C.1. It can be shown using the Schauder fixed-point theorem that the system
(C.2) always has at least one solution in F̂ ∈ SF ,L for any nonempty subset of indices
L ⊂ N and any Ω̂ ∈ S (Seo, 2010). The idea is to define a continuous map −→

g on the
unit N cube by gl(F̂ ) = 0 if l /∈ L and gl(F̂ ) = Fl

WKa

∑M

i=1
ΩiAil

1+[NA]−→Ai ·F̂
if l ∈ L. One easily

checks that for such l, 0 ≤ gl ≤ 1 so that the map is into the N cube.
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Remark C.2. Lagrange multipliers can be used to characterize the above stationary equa-
tions. Suppose for the moment that L is any subset of nucleic acid indices. When viewed
as a function on the subsimplex SF ,L, we use the notation Q(F̂ ) = Q(F̂ , L) for the first

form of Q in (44). Now let, for any set of nonnegative numbers Fl (say
−→
F , not necessarily

normalized to unity),

R(
−→
F , L) = Q(

−→
F , L) + λ

(∑

l∈L

Fl − 1

)

.

We always have

∂R
∂Fl

= −[NA]
M∑

i=1

ΩiAil

1 + [NA]−→Ai · −→F
+ λ.

If we define W(
−→
F ) = 1 − E(

−→
F ) = ∑M

i=1 Ωi/(1 + [NA]−→Ai · −→
F ), Ka(

−→
F ) = (1 −

W)/([NA]W) by (C.2) and ωi(
−→
F ) = Ωi/[W(

−→
F )(1 + [NA]−→Ai · −→

F )] for any vector of

nonnegative numbers Fl , and compute
−→
A l · ω̂, we see that

∂R
∂Fl

= −[NA]W−→
A l · ω̂ + λ.

Thus, any solution of the system ∂Fl
R = 0, l ∈ L is an extremal of Q subject to the

constraint that ∂λR =∑l∈L Fl − 1 = 0 if and only if
−→
A l · ω̂ = λKa/E. Moreover, the

indices will correspond to those for the maximal target efficiency function defined in (38)
for this extremal if and only if λ = E and the value of Ka is a given number in the range
of this function.

The Hessian matrix for R (or Q) with respect to F̂ has the bilinear form:

∑

k,l∈L

ξk

∂2 R
∂Fk

∂Fl

ξl = [NA]2
M∑

i=1

(
−→
ξ · −→A i)

2Ωi

(1 + [NA]−→A i · F̂ )2
. (C.3)

Therefore, the eigenvalues of the Hessian are all strictly positive if and only if the set of

vectors {−→Al } defining the L face are linearly independent, i.e., the L face is proper. To see

this, note that
∑

l∈L ξl

−→
A l = 〈−→ξ · −→A 1, . . . ,

−→
ξ · −→A M〉t .

This in turn implies that the surface defined by R over the simplex SF ,L must be
strictly convex if and only if the L face of the maximal target affinity function is proper.
Hence, there cannot be more than one critical point in SF ,L , i.e., there is at most one
solution of (C.1) in SF ,L whenever the L face is proper.

The proof of Theorem 2 is simply the statement that an L face is proper if and only if
the chemical potential over that face has a unique minimum.

Thus, if ϕ is proper, the limiting SELEX solution does not depend upon the composition
of the initial pool of nucleic acids but rather only on the value of the limiting overall
association constant, Ka and the initial target vector Ω̂ .
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Whether or not the face is improper, the initial target fractions Ωi , the nucleic acid
concentration pool size, [NA] and the final fractions are connected through the equations

Ωi = ωi(1 + [NA]−→A i · F̂ )
∑M

j=1 ωj (1 + [NA]−→A j · F̂ )
= ωi(1 + [NA]−→A i · F̂ )

1 + [NA]Ka

(C.4)

where only those Fl with l in L contribute to the indicated dot products. Equations (C.4)
in vector form are

Ω̂ = W
(∑

l∈L

Fl

{
ω̂ + [NA]−−→Alω

}
)

(C.5)

i.e., the starting fraction vector must be a convex combination of the unit vectors V̂ l =
V̂ l(ω̂) ≡ W(ω̂ + [NA]−−→Alω).7 The formula tells us that, if we know the final free target
fractions, the final nucleic acid fractions can be uniquely determined from Ω̂ and Ka if

and only if the vectors {ω̂ + [NA]−−→Alω, l ∈ L} are linearly independent and this is true if

and only if the set of column vectors {−−→Alω |l ∈ L} is linearly independent.8 This in turn is

true if and only if ω̂ ∈ S0 and the set of vectors {−→A l1 , . . . ,
−→
A lL} that define the columns

of the affinity selection matrix AL is linearly independent.
When this is the case, the final fractions are given by

F̂ =

⎛

⎜
⎜
⎜
⎝

V̂ l1 · V̂ l1 V̂ l1 · V̂ l2 . . . V̂ l1 · V̂ lL

V̂ l2 · V̂ l1 V̂ l2 · V̂ l2 . . . V̂ l2 · V̂ lL

...
... . . .

...

V̂ lL · V̂ l1 V̂ lL · V̂ l2 . . . V̂ lL · V̂ lL

⎞

⎟
⎟
⎟
⎠

−1⎛

⎜
⎜
⎜
⎝

Ω̂ · V̂ l1

Ω̂ · V̂ l2

...

Ω̂ · V̂ lL

⎞

⎟
⎟
⎟
⎠

. (C.6)

The inverse of the Grammian on the right exists if and only if the vectors V̂ i are linearly
independent. The components of F̂ are nonnegative and sum to unity if and only if Ω̂ is
in the convex hull of the V̂ l’s.

If ω̂ belongs to an improper face, then we are led to an underdetermined system of
linear equations for the nucleic acid fractions. The meaning of this is that we cannot de-
termine the final nucleic acid fractions from the stationary system (42) even when we
know the final free target vector. That is, when ϕ is improper, the final nucleic acid frac-
tions will depend, in general, not only upon the initial target fractions but also upon the
initial pool of nucleic acids.

7Because all of the entries of ω̂ + [NA]
−−→
Alω are nonnegative |ω̂ + [NA]

−−→
Alω| = 1 + [NA]Ka = 1/W .

8It is not too hard to see that this set is linearly independent if and only if the set {
−−→
Alω, l ∈ L} is linearly

independent. For if
∑

l∈L λl(ω̂ + [NA]
−−→
Alω) = −→

0 , then by summing the components these equations

we find that
∑

l∈L λl(1 + Ka) = 0 because |
−−→
Alω| =

−→
Al · −→ω = Ka. But then

∑
l∈L λl [NA]

−−→
Alω = −→

0 .
Therefore, if the latter set is linearly independent, so is the former. Likewise, if the former set is lin-

early independent, and
∑

l∈L λl [NA]
−−→
Alω = −→

0 , it again follows that
∑

l∈L(ω̂) λl = −→
0 . Consequently,

∑
l∈L λl(ω̂ + [NA]

−−→
Alω) = −→

0 and the linear independence of the former set implies that the λl = 0.
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To establish the claim when the face is improper, we give an example. Suppose
L = 3(= N) and M = 2 so that we have just two targets. Let N = {l1, l2, l3} = {1,2,3}.
Suppose the columns of AN , {−→A 1,

−→
A 2,

−→
A 3}, form a linearly dependent set but any pair

of elements in this set are linearly independent.

Suppose there is a single vector ω̂ such that ϕ(ω̂) = −→
A 1 · ω̂ = −→

A 2 · ω̂ = −→
A 3 · ω̂ = Ka ,

but ϕ(ω̂′) = max{−→A 1 · ω̂′,
−→
A 2 · ω̂′} >

−→
A 3 · ω̂′ when ω̂′ �= ω̂. Then L(ω̂) = {1,2,3}. There

are two 1 faces defined by the indices 1,2 respectively. However the pair (ω̂, ϕ(ω̂)) defines
a two face. This two face is not proper because three sets {1,2}, {1,3}, {2,3} define its
indices and all are proper subsets of {1,2,3} = L.

Because the vectors
−→
A1,

−→
A2,

−→
A3 are pairwise linearly independent, so are the vectors

V̂ 1, V̂ 2, V̂ 3. We write V̂ 3 = λ1V̂
1 + λ2V̂

2. (The λ′
i s are found as in (C.6). It suffices

to notice that λ1 + λ2 = 1 because the components of V̂ 3 are nonnegative and sum to
unity.) Using F1 +F2 +F3 = 1, we have Ω̂ = F1V̂

1 +F2V̂
2 +F3V̂

3 = (F1 + λ1F3)V̂
1 +

(F2 + λ2F3)V̂
2. Again using (C.6), we find the values of Fi + λiF3 = gi uniquely. Taking

the one norm of both sides of this equation, we see that g1 + g2 = 1 and, therefor, at
least one of the gi is positive. Adding equations, F1 + λ1F3 = g1, F2 + λ2F3 = g2 and
eliminating F1 + F2 between the resulting equation and F1 + F2 + F3 = 1, we find that
(λ1 + λ2 − 1)F3 = g1 + g2 − 1 = 0, and hence F3 cannot be found from the stationary
equations even when ω̂ is known. Moreover, all the stationary solutions are of the form
F̂s(t) ≡ 〈g1 − λ1t, g2 − λ2t, t〉 = 〈F1,F2,F3〉 for t in some subinterval of (0,1), namely
that subinterval for which g1 − λ1t ≥ 0 and g2 − λ2t ≥ 0.

If the L face is improper, the Hessian of the chemical potential corresponding to it
must have its smallest eigenvalue vanish. Therefore each set of stationary solutions (in
our example, the vector family {F̂s(t)}) minimizes the chemical potential at infinite target
dilution, i.e., is a realizable thermodynamic state. Thus, with such a state as an initial state,
with the given Ω̂ , we obtain another such state as a final state.

Remark C.3. Geometric properties of the family of convex hulls generated by a single
free target vector. Let H = H([NA], ω̂) ⊂ S denote the aforementioned convex hull. Sup-
pose the vectors V̂ i form a linearly independent set. Formula (C.5) has some interesting
geometric consequences. First, the dimensionality of the convex hull of the set of unit
vectors {V̂ l , l ∈ L} is precisely L − 1. Therefore, the largest (in dimensionality) sets of
initial targets come from those ω̂ that yield an M × M SELEX matrix with full rank M ,
i.e., to those final free targets that correspond to the selection of M nucleic acids.

Second, the diameter of H is the number (H) ≡ max{|V̂ l − V̂ m| l,m ∈ L} =
[NA]max{|−−→Alω − −−→

Amω| l,m ∈ L}/(1 + [NA]Ka) for all indices i = 1, . . . ,M. This di-
ameter is an increasing function of [NA] which vanishes at [NA] = 0 and has the lim-
iting value max{|Âlωl − Âlωm| l,m ∈ L}/Ka as [NA] → ∞. We note that the vectors−−→
Alω/Ka = −−→

Alω/ϕ(ω̂) = −−→
Alω/(

−→
A l · ω̂) = −−→

Alω/|−−→Alω| = Âlω are unit vectors with posi-
tive entries. Also, each vertex V̂ l to converges to Âlω as [NA] → ∞. Moreover, Ω̂ = ω̂

as [NA] → 0. That is, the convex hull, H = {ω̂}.
Third, if we make explicit the dependence of each vertex of the convex hull H([NA], ω̂)

on [NA] by writing V̂ l = V̂ l([NA]), then it is easy to see that V̂ l([NA]) = WV̂ l([0])+ (1−
W)V̂ l(∞) = W([NA])ω̂ + (1 − W([NA]))Âlω. Therefore, the family of convex hulls
forms an increasing family of sets, i.e., if [NA], [NA]′ are two pool concentrations with
0 < [NA] < [NA]′, {ω̂} ⊂ H([NA], ω̂) ⊂ H([NA]′, ω̂) ⊂ S .
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Remark C.4. From (C.6), we see that as [NA] → ∞, Ω̂ = ∑l∈L Fl

−−→
Alω/Ka =

∑
l∈L FlÂlω where

F̂ →

⎛

⎜
⎜
⎜
⎜
⎝

Âl1ω · Âl1ω Âl1ω · Âl2ω . . . Âl1ω · ̂AlLω

Âl2ω · Âl1ω Âl2ω · Âl2ω . . . Âl2ω · ̂AlLω
...

... . . .
...

̂AlLω · Âl1ω ̂AlLω · Âl2ω . . . ̂AlLω · ̂AlLω

⎞

⎟
⎟
⎟
⎟
⎠

−1⎛

⎜
⎜
⎜
⎜
⎝

Ω̂ · Âl1ω

Ω̂ · Âl2ω
...

Ω̂ · ̂AlLω

⎞

⎟
⎟
⎟
⎟
⎠

. (C.7)

We rewrite (C.4) as

Ω̂ = W
(

ω̂ + [NA]
∑

l∈L

Fl

−−→
Alω

)

= Wω̂ + [NA]Ka W
∑

l∈L

Fl

−−→
Alω/Ka

= Wω̂ + (1 − W)
∑

l∈L

FlÂlω (C.8)

where F̂ ∈ SF ,L. Therefore, every starting target fraction vector that can reach ω̂ can be
expressed as a convex combination of a free target vector, ω̂, and the unit affinity vectors
Âlω with l ∈ L.

We illustrate these comments with two examples.

1. Suppose L = 1. In this case, L must be a single positive integer, l1 = 1 say. Then
Fj = 0 unless j = 1 and F1 = 1. The set of initial target fractions that give this single

nucleic acid are given by Ω̂ = W(ω̂+[NA]−−→A1ω) provided that ϕ(ω̂) = −→
A 1 · ω̂ = Ka >−→

A j · ω̂ for j �= 1. Thus, there is only one initial target vector that will select uniquely
for nucleic acid 1 with overall equilibrium constant Ka . It is easy to see that ωi =
ωi([NA]) = (1 + Ka[NA])Ωi/(1 + [NA]Ai1) = [Ωi/(1 + Ai1[NA])]/[∑M

j=1 Ωj/(1 +
Aj1[NA])]. The association constant is then

Ka =
(

M∑

i=1

ΩiAi1/
(
1 + Ai1[NA])

)/(
M∑

j=1

Ωj/
(
1 + Aj1[NA])

)

.

This formula holds only over the range of total pool size [NA] for which L(ω̂([NA]))=
{1}. As Ka decreases, we experience a jump in this index set when two hyperplanes
intersect.

2. Suppose L = M and M ≤ N . Suppose moreover that L = {l1, . . . , lM} = {1, . . . ,M}
and {−→A 1, . . . ,

−→
A M} is a linearly independent set. We have ϕ(ω̂) = −→

A 1 · ω̂ = · · · =−→
A M · ω̂ = Ka >

−→
A j · ω̂ for j �= 1, . . . ,M . It is not hard to show from Cramer’s rule

for solving linear systems that

ωj = Ka

det

⎛

⎜
⎜
⎜
⎝

A11 . . . Aj−1,1 1 Aj+1,1 . . . AM1
A12 . . . Aj−1,2 1 Aj+1,2 . . . AM2
. . . . . . . . . . . . . . . . . . . . .

A1,M−1 . . . Aj−1,M−1 1 Aj+1,M−1 . . . AM,M−1
A1M . . . Aj−1,M 1 Aj+1,M . . . AMM

⎞

⎟
⎟
⎟
⎠

det(ALM
)

(C.9)
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for j = 1, . . . ,M . The numerator is clearly the column sum of the elements of the j th
column of the classical adjoint of the matrix ALM

. Thus, ω̂ will be well defined if and
only if
(a) All the column sums of the classical adjoint of the SELEX matrix ALM

have the
same sign as the determinant of this matrix.

(b) The overall association constant is given by

Ka = det(ALM
)/�A (C.10)

where �A ≡∑M

j=1

∑M

i=1 Aij denotes the sum of the cofactors Aij of ALM
.

Using these results, we compute the final nucleic fractions from (C.6).
Finally, there may be several vertices for the graph of ϕ, i.e., several M faces.

For such M faces, the association constants do not depend on the nucleic acid pool
size [NA]. However, the final nucleic acid fractions, Fi, i = 1, . . . ,M , generally do
depend upon the nucleic acid pool size, [NA], via the system of equations given in
(C.6) because the vectors V̂i do.

Appendix D: A special solution of the stationary SELEX equations

Here, we consider the following question: Is there a starting target fraction vector Ω̂ and
a final free-target vector ω̂ such that for every pool size [NA], Ω̂ ∈ H([NA], ω̂)? That is,
is there a target vector with the property that the SELEX iteration scheme must converge
to the same final free-target vector independently of the size of the initial pool as well as
the initial nucleic acid distribution.

Another way of formulating this question is to ask whether or not there is a choice
of Ω̂ such that the right-hand side of (C.6) does not depend upon the nucleic pool size
although the vectors V̂i do depend on it.

Clearly, when [NA] = 0, Ω̂ ∈ H(0, ω̂) for any ω̂. For other values of [NA], this choice
holds for Ω̂ if and only if

−→
A i · F̂ = Ka for all indices i = 1, . . . ,M. (D.1)

This system arises naturally if we try to minimize the chemical potential in the form
given in (43) with respect to the partial energies Ei subject to the constraint that the total
(weighted) energy is fixed. We see this as follows. Using Lagrange multipliers to minimize
Q subject to the constraint that E =∑ΩiEi is fixed yields Ei = E. This extreme point

is unique and, therefore, Ei = [NA]−→A i · F̂ /(1 + [NA]−→A i · F̂ ) = E and [NA]−→A i · F̂ =
E/(1 − E). Now suppose that our set of final fractions F̂ ∈ SF ,L satisfies (D.1). Then
E = [NA]Ka/(1 +[NA]Ka) and W = 1 −E = 1/(1 +[NA]Ka). Therefore, we must have
ωi = Ωi/(W(1 + [NA]Ka)), and hence ωi = Ωi.

Using Eqs. (D.1) and again invoking Cramer’s rule as we did for (42) with ALM
re-

placing At
LM

, we obtain

Fi = Ka

∑M

j=1 Aij

det(ALM
)

= det(ALM
)

�A

∑M

j=1 Aij

det(ALM
)

=
∑M

j=1 Aij

�A
. (D.2)
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These sum to unity. The set of fractions so obtained must be nonnegative. However, this
will be the case if the column sums of the classical adjoint are nonnegative. Therefore,
there is a starting target fraction vector Ω̂ and a final free target fraction vector ω̂ that
does not depend on the total pool concentration [NA] if and only if the SELEX matrix has
the property that the row sums and column sums of its classical adjoint all have the same
sign as its determinant. In this case, Ω̂ = ω̂.

For any finite value of [NA], the efficiency is

Efinal = 1 −
M∑

i=1

Wi = [NA]det(ALM
)

�A + [NA]det(ALM
)

= [NA]
�A/det(ALM

) + [NA] . (D.3)

Remark D.5. There is a geometric meaning to the condition that the row sums as well
as the column sums of the classical adjoint of the SELEX matrix are positive. This con-
dition is equivalent to the condition that the column sums of the classical adjoint of the
matrix At

LM
have the same sign as the determinant of this matrix. Suppose, without loss

of generality that det(ALM
) > 0. The M hyperlines that form the one dimensional edges

of the surface z = ϕ(ω̂′) near the minimum ω̂ are given by the parametric equations (for
fixed j = 1, . . . ,M ) t = (ωi − ωi,m)/Aij for i = 1, . . . ,M where t is the free parameter

for the line and where Aij is defined above. That is, the vector
−→
B j = 〈A1j , . . . ,AMj 〉 is

(up to a scalar) the direction vector for the j th edge. The vector Î = 〈1, . . . ,1〉/√M is
the outer normal to S . The condition that the minimum of ϕ occur at ω̂m is equivalent to

the condition that
−→
B j · Î > 0, i.e., that the row sums of the classical adjoint of At

LM
are

all positive. This tells us that the row sums of the classical adjoint At
LM

are positive if and
only if the vector ω̂ whose components are given in (C.9), are well defined and are such
that ϕ(ω̂) = ϕmin.

Therefore, there is starting target fraction Ω̂ in H = H([NA], ω̂) for all values of the
nucleic acid pool and some final free target fraction vector ω̂ if and only if Ω̂ = ω̂ where
ϕ(ω̂) = ϕmin.

Remark D.6. When M = 2 the classical adjoint of At
L2

is
[ A22 −A21

−A12 A11

]
. Suppose for the

moment that At
L2

has a positive determinant. Then a necessary and sufficient condition
for the row and column sums of the classical adjoint to be positive is that max{A12,A21} ≤
min{A11,A22}.

The above result becomes
(

Ω1

Ω2

)

=
(

ω1

ω2

)

= 1

�A

(
A22 − A21

A11 − A12

)

with F̂ =
(

F1

F2

)

= 1

�A

(
A22 − A12

A11 − A21

)

. (D.4)

Remark D.7. Consider the case for which the graph of ϕ has only one vertex. Suppose
the formulas (C.9), (C.10) for the components of ω̂ and Ka are in force. Let Ω̂ �= ω̂

be a vector in S . If |Ω̂ − ω̂| ≥ diam(H(∞)), then no selection for any of the nucleic
acids with indices in L is possible for this value of the final free target vector, ω̂. If the
inequality fails, then whether or not this outcome occurs depends upon the orientation of
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the hulls H([NA]) relative to the vector Ω̂ − ω̂. If the inequality holds, then there is a
smallest value of [NA], say [NA]min for which it holds and Ω̂ will be a boundary point
of H([NA]min). This boundary point will belong to some k < M dimensional intersection
of the hyperplanes (say those labeled by indices in a subset K = {l1, . . . , lk} ⊂ LM ) that
serve to define the graph of ϕ. At such a point, k of the SELEX fractions will be positive.
As [NA] increases, Ω̂ will become an interior point of the hulls H([NA]).

Appendix E: Numerical values used to generate the figures

We used the matrix A = A(1 : 5,1 : 20) given in (E.1), (E.2) below: to generate Figs. 1–5:

A(1 : 5,1 : 10)

=
⎡

⎢
⎢
⎢
⎢
⎣

822.37 618.81 521.92 984.25 759.88 1938.0 3164.6 1623.4 4629.6 2403.8
2403.8 1091.7 1396.6 659.63 521.92 1225.5 706.21 8620.7 4629.6 1623.4
4629.6 759.88 521.92 706.21 582.75 3164.6 984.25 550.66 1938.0 1396.6
2403.8 1225.5 3164.6 984.25 1091.7 521.92 582.75 1396.6 4629.6 8620.7
759.88 896.06 659.63 1623.4 1225.5 1091.7 618.81 8620.7 984.25 582.75

⎤

⎥
⎥
⎥
⎥
⎦
,

(E.1)

A(1 : 5,11 : 20)

=
⎡

⎢
⎢
⎢
⎢
⎣

896.06 550.66 1225.5 1396.6 496.03 8620.7 659.63 706.21 582.75 1091.7
759.88 896.06 496.03 1938.0 984.25 822.37 618.81 3164.6 582.75 550.66
1091.7 8620.7 496.03 618.81 896.06 1623.4 822.37 1225.5 2403.8 659.63
896.06 706.21 659.63 822.37 1623.4 1938.0 759.88 496.03 618.81 550.66
706.21 822.37 550.66 496.03 2403.8 4629.6 3164.6 1396.6 521.92 1938.0

⎤

⎥
⎥
⎥
⎥
⎦
.

(E.2)

The values for the first row were chosen randomly over the range that corresponds to the
range of values used in Irvine et al. (1991). Each of the remaining rows were obtained
from the first by doing a random reordering of the values of the first row.

The affinity selection matrix for the above matrix (the submatrix of columns 8, 9, 10,
12, 16) is

AL5 =

⎡

⎢
⎢
⎢
⎢
⎣

1623.4 4629.6 2403.8 550.66 8620.7
8620.7 4629.6 1623.4 896.06 822.37
550.66 1938 1396.6 8620.7 1623.4
1396.60 4629.6 8620.7 706.21 1938
8620.7 984.25 582.75 822.37 4629.6

⎤

⎥
⎥
⎥
⎥
⎦

. (E.3)

The classical adjoint of the preceding matrix is

adj(AL5) = 1015

⎡

⎢
⎢
⎢
⎢
⎣

−1.1585 0.7249 −0.2051 0.0800 2.0669
2.4628 4.6087 −0.0722 −1.2136 −4.8713

−1.52016 −2.1133 −0.1316 3.2899 1.8750
−0.5970 −0.3636 2.6343 −0.2150 0.3426
1.9310 −1.9990 −0.0542 −0.2669 1.6821

⎤

⎥
⎥
⎥
⎥
⎦

.

(E.4)
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For Fig. 6, we used the matrix:

A =
⎡

⎣
4629.6 1396.6 1623.4 3164.6 1091.7
3164.6 4629.6 1938.0 1623.4 1225.5
1091.7 1623.4 4629.6 1225.5 2403.8

⎤

⎦ . (E.5)

For Fig. 7 panels (a), (b) and Fig. 8, we used

A =
⎡

⎣
4629 1396.6 1623.4 3386.5 4420.2

3164.6 4629.6 1938 4800 1925.5
1091.7 1623.4 4630 2445 2103.8

⎤

⎦ . (E.6)

For Fig. 7 panels (c), (d) and Fig. 9, we used

A =
⎡

⎣
9355 5529 1987 7468 846.2
916.9 8132 3038 6451 5252

4993.4 990 9722 931.8 2026

⎤

⎦ . (E.7)
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