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Abstract We propose a spatially distributed continuous model for the spheroid response
to radiation, in which the oxygen distribution is represented by means of a diffusion-
consumption equation and the radiosensitivity parameters depend on the oxygen concen-
tration. The induction of lethally damaged cells by a pulse of radiation, their death, and
the degradation of dead cells are included. The compartments of lethally damaged cells
and of dead cells are subdivided into different subcompartments to simulate the delays
that occur in cell death and cell degradation, with a gain in model flexibility. It is shown
that, for a single irradiation and under the hypothesis of a sufficiently small spheroid ra-
dius, the model can be reformulated as a linear stationary ordinary differential equation
system. For this system, the parameter identifiability has been investigated, showing that
the set of unknown parameters can be univocally identified by exploiting the response
of the model to at least two different radiation doses. Experimental data from spheroids
originated from different cell lines are used to identify the unknown parameters and to
test the predictive capability of the model with satisfactory results.

Keywords Tumor spheroids · Radiotherapy · Linear quadratic model · Parameter
identification

1. Introduction

Multicellular tumor spheroids growing in vitro have been extensively investigated as
experimental models of avascular tumours (Mueller-Klieser, 1987; Sutherland, 1988).
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The fraction of proliferating cells decreases during the growth of the spheroid while a
population of quiescent cells arises, and when the cells become deprived of oxygen and
nutrients, and/or metabolic waste accumulates, cell death occurs. In an advanced stage
of growth, the spheroid shows an outer viable rim, whose thickness ranges from about
100 to 250 µm, surrounding a necrotic core. Because of the degradation of dead cells in
the necrotic core and the loss of waste materials, the spheroid growth eventually saturates
with a final diameter of 1–3 mm.

Since the spheroid reproduces important aspects of tumors, such as the presence of
oxygen gradients and of subpopulations of quiescent cells, the multicellular spheroids
have been used as a valuable experimental models to study the response of solid tumors
to drugs and radiation. The in vivo response of cancer cells to treatment may, in fact,
be simulated in spheroids more closely than in conventional monolayer cultures. This
aspect has originated a large amount of investigations, using ionizing radiations, high
LET radiations, radiosensitizing drugs, and cytotoxic drugs (see Mueller-Klieser, 1987
for a review).

Many mathematical models have been proposed to describe the growth of the untreated
spheroid by either a continuum or a discrete approach (Araujo and McElwain, 2004). Only
few models, however, have been devoted to represent the spheroid response to radiation.
Using a 3D cellular automata model, Düchting et al. (1992, 1995) simulated the radia-
tion response of tumor spheroids, including the cycle structure for the tumor cells and the
linear-quadratic (LQ) dose-response relationship (Thames, 1985). In that model, the rate
of cell division was assumed to decrease with the distance from the external boundary.
In Wein et al. (2000), the authors again used the LQ model and since the radiosensitivity
of cells is known to decrease as the oxygen concentration decreases, the radiosensitivity
parameters were assumed to depend on the radial distance from the spheroid boundary
according to a given law. Using several approximations to reduce the mathematical de-
scription to an ordinary differential equations (ODE) model, the authors investigated the
fractionated irradiation and the possible optimization of the scheduling. By means of a
discrete model, Zacharaki et al. (2004) simulated the radiation response of tumor spher-
oids, including the cell cycle structure and the different radiosensitivities of cells in the
different cell cycle phases. Even in this work, the oxygen distribution was not considered
and the hypoxic, less sensitive cells were assumed to be located beyond a certain distance
from the external boundary.

In the present paper, we propose a spatially distributed (PDE) continuous model for
the spheroid response to impulsive irradiation. The oxygen distribution is represented
by means of a diffusion-consumption equation and the radiosensitivity parameters of
the LQ model depend on the oxygen concentration. As in a previous model of the re-
sponse to radiation of tumor cords (Bertuzzi et al., 2008), we include the induction of
lethally damaged cells after the radiation pulse, cell death, and the degradation of dead
cells. Moreover, for a more accurate description of the process leading to cell death
and of the fate of dead cells, the compartments of lethally damaged cells and of dead
cells are subdivided into subcompartments, so simulating a delayed cell death and cell
degradation. This choice resulted in an improvement of model fitting capability. It is
also shown that, for a single irradiation and under the hypothesis of a sufficiently small
spheroid radius, the PDE model is equivalent to a linear stationary ODE system, pro-
vided that the initial condition is derived from the oxygen distribution at the time of
irradiation. The parameter identifiability property of this system has been investigated,
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showing that the set of unknown parameters can be univocally identified by exploiting
the response of the model to at least two different doses of radiation. Experimental data
of spheroids initiated from different cell lines (Jostes et al., 1985; Rofstad et al., 1986;
Evans et al., 1986) were used to identify the unknown parameters and to test the predic-
tive capability of the model with satisfactory results.

2. Model of the spheroid response to radiation

Radiation produces a variety of lesions in the cell (Sachs et al., 1997). These lesions
induce a lethal damage in a fraction of cells (clonogenically dead cells) that lose the capa-
bility of unlimited proliferation and will die, after some delay, at a subsequent time. Thus,
after irradiation, the living tumor cell population will be composed by a subpopulation of
intact, viable cells and a subpopulation of live but lethally damaged, clonogenically dead
cells. The death of lethally damaged cells may occur by premitotic apoptosis or after one
or more cell divisions (postmitotic apoptosis) (Shinomiya, 2001).

The main pathways of lethal damage production are the direct action of radia-
tion that produces unrepairable damages, and the binary misrepair of double-strand
breaks (DSB) of DNA. The kinetics of the repair/misrepair process (Hlatky et al., 1994;
Bertuzzi et al., 2008) is here disregarded because in this paper we are interested to the
response to treatments in which impulsive irradiations are delivered with intervals much
larger than the time constant of this process (of the order of one hour or less). Both the
direct action and the effect of binary misrepair will then be considered as instantaneous
and described by the LQ dose-response relationship:

S = exp
[−αd − βd2

]
, (1)

where S is the surviving fraction of cells after the irradiation, d is the dose, and α and β are
the radiosensitivity parameters related to the direct action of radiation and, respectively,
to the binary misrepair of DSBs.

Although quiescent cells have been evidenced in tumor spheroids (Freyer and Suther-
land, 1985, 1986), we assume for simplicity that all viable cells proliferate with the same
rate. In the spheroid, we will distinguish viable cells, lethally damaged cells, and dead
cells. Under the continuum hypothesis, we write the model equations in terms of the vol-
ume fractions locally occupied by these components. The spheroid is modeled as a sphere
of radius R and r denotes the radial distance from the center. Therefore, all the model
variables are functions of r and t .

The main assumptions of the model are summarized as follows. (i) The velocity of
the cellular components is radially directed and is the same for both live and dead cells.
This common velocity is denoted as u(r, t). (ii) All viable cells proliferate with a common
constant proliferation rate χ . (iii) Cells die with a constant rate when the oxygen concen-
tration σ(r, t) is smaller than a critical value σN . (iv) Only impulsive irradiations will be
considered, assuming the model (1) with α and β increasing functions of σ . (v) Lethally
damaged cells are allowed to progress across the cell cycle and may divide until they die.
The death of these cells is assumed to occur after a distributed delay modeled as the pas-
sage through a chain of n equal subcompartments having Poisson exit. (vi) Dead cells are
degraded to a fluid waste after a delay with gamma distribution still modeled by n equal
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subcompartments. (vii) The total volume fraction of cells, denoted by ν�, is constant in
space and time.

Concerning the assumptions (v) and (vi), we note that a delay between cell exposi-
tion to a cytotoxic agent and cell death has been evidenced both after radiation and drug
treatment (Montalenti et al., 1998; Sena et al., 1999). Similarly, a time gap between cell
death and cell degradation is documented in the literature (Darzynkiewicz et al., 1997).
Distributed delays have been included in models of chemotherapy (Bertuzzi et al., 2003;
Simeoni et al., 2004; Ubezio and Cameron, 2008) and antiangiogenic therapy (d’Onofrio,
2007). Assumption (vii) amounts to say that live and dead cells possess a uniform spatial
arrangement, which is quickly recovered after any perturbation caused by cell prolifera-
tion and degradation of dead cells. Here, we have adopted the approximation of an instan-
taneous removal of the waste material from the neighborhood of a degrading cell. This
approach has been widely used in the literature (Araujo and McElwain, 2004) to avoid
the complication of describing the flow of the interstitial fluid. Although no physical jus-
tification has been provided, we keep this simplification in view of the already high level
of complexity of the problem we are considering.

Assuming that all the components have equal mass density, the mass balance yields
the following conservation equations for the volume fractions:

∂ν

∂t
+ 1

r2

∂

∂r

(
r2uν

) = χν − μ(σ)ν,

∂νD1

∂t
+ 1

r2

∂

∂r

(
r2uνD1

) = χDνD1 − μDνD1 − μ(σ)νD1 ,

∂νD2

∂t
+ 1

r2

∂

∂r

(
r2uνD2

) = χDνD2 − μDνD2 + μDνD1 − μ(σ)νD2 ,

...

∂νDn

∂t
+ 1

r2

∂

∂r

(
r2uνDn

) = χDνDn − μDνDn + μDνDn−1 − μ(σ)νDn, (2)

∂νN1

∂t
+ 1

r2

∂

∂r

(
r2uνN1

) = μ(σ)

(

ν +
n∑

i=1

νDi

)

+ μDνDn − μNνN1 ,

∂νN2

∂t
+ 1

r2

∂

∂r

(
r2uνN2

) = μNνN1 − μNνN2 ,

...

∂νNn

∂t
+ 1

r2

∂

∂r

(
r2uνNn

) = μNνNn−1 − μNνNn,

where ν(r, t) denotes the local volume fraction of viable cells, νDi
(r, t), i = 1, . . . , n, is

the local volume fraction of the cells in the ith subcompartment of lethally damaged cells
and νNi

(r, t), i = 1, . . . , n, is the local volume fraction of the cells in the ith subcompart-
ment of dead cells; see Fig. 1. The proliferation rate of lethally damaged cells is denoted
by χD , while μD and μN are the exit rates from the subcompartments of lethally damaged
and, respectively, dead cells. Since all the lethally damaged cells are committed to death,
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Fig. 1 Block diagram of the model (n = 3). The dashed arrow represents the action of radiation.

we must assume μD > χD . According to Assumption (iii), the oxygen-dependent death
rate μ(σ) has the following form:

μ(σ) =
{
μ̄, σ < σN,

0, σ ≥ σN .
(3)

In view of this choice, if μ̄ � χ , a sharp transition from the region of live cells to an
almost purely necrotic core is achieved.

Since from Assumption (vii) the sum ν + ∑
(νDi

+ νNi
) = ν� is constant, by summing

up all equations in (2), the velocity field u(r, t) is found to satisfy the equation

ν� 1

r2

∂

∂r

(
r2u

) = χν − μNνNn, u(0, t) = 0. (4)

For the evolution of the spheroid radius, we have

Ṙ(t) = u
(
R(t), t

)
, R(0) = R0. (5)

According to Assumption (iv), the direct action of radiation and the misrepair of the
DSBs will be represented by suitable initial conditions. We assume that before irradiation
all live cells are viable. If a sequence of impulsive irradiations is given with dose di at
time ti , i = 1,2, . . . , with t1 = 0, we have the following initial conditions for Eqs. (2):

ν
(
r, t+i

)= exp
[−α

(
σ(r, ti)

)
di − β

(
σ(r, ti)

)
d2

i

]
ν
(
r, t−i

)
,

νD1

(
r, t+i

)= (
1 − exp

[−α
(
σ(r, ti)

)
di − β

(
σ(r, ti)

)
d2

i

])
ν
(
r, t−i

) + νD1

(
r, t−i

)
,

νDj

(
r, t+i

)=νDj

(
r, t−i

)
, j = 2, . . . , n,

νNj

(
r, t+i

)=νNj

(
r, t−i

)
, j = 1, . . . , n.

(6)

At t = 0−, we have ν(r,0−) = ν0(r), νDj
(r,0−) = 0, νNj

(r,0−) = ν0
Nj

(r), j = 2, . . . , n.
Since u(0, t) = 0, no boundary conditions are required for Eqs. (2).
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The dependence on the oxygen concentration of the radiosensitivity parameters, α and
β , is expressed as

α(σ) = αMψα(σ ), β(σ ) = βMψ2
β(σ ),

with

ψα(σ) = σ + σ̂ /2.5

σ + σ̂
, ψβ(σ ) = σ + σ̂ /3

σ + σ̂
, (7)

where σ̂ = 5.776 × 10−3 mM (Wouters and Brown, 1997).
As far as the equation for the oxygen concentration σ is concerned, we recall that

diffusion is by far the dominant transport mechanism of oxygen in tumor spheroids and
that diffusion occurs in a quasi-stationary regime. Assuming for simplicity that the oxygen
consumption rate is the same for all live cells, we can write

1

r2

∂

∂r

(
r2 ∂σ

∂r

)
= f (σ)

(

ν +
n∑

i=1

νDi

)

, (8)

where f (σ) is the ratio between the consumption rate per unit volume of live cells and
the oxygen diffusion coefficient. For f (σ), we have assumed the following form:

f (σ) = F
σ

K + σ
, (9)

with F and K suitable positive constants. At the outer boundary r = R, i.e., on the spher-
oid surface, we prescribe the constant oxygen concentration in the medium:

σ
(
R(t), t

) = σ �, (10)

with σ � > σN , whereas at r = 0 we prescribe the no-flux condition

∂σ

∂r

∣
∣∣
∣
r=0

= 0. (11)

It can be shown that in the absence of treatment the above model admits a stationary
state with constant radius. In this state, the production of cell volume by proliferation is
balanced by the volume loss caused by the elimination of the waste fluids produced by
cell degradation in the necrotic region.

3. Single irradiation response: an equivalent ODE model and its identifiability

Let us consider Eq. (8) with (9) and the prescribed boundary conditions (10), (11) in the
case in which the right-hand side of (8) is f (σ)ν�. It may be seen that a spheroid radius
RN will exist such that for R < RN we have σ(r) > σN . The value of RN depends on
σ �, σN , ν�, and the parameters that characterize the cellular consumption. In standard in
vitro conditions with σ � = 0.28 mM, the spheroid radius at which central necrosis starts
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to occur was experimentally observed to be 200–300 µm (Freyer, 1988). This range can
be taken as a reasonable interval for the RN values.

We consider now the case of a single irradiation with dose d at t = 0 with R0 < RN .
Since it is ν(r, t) + ∑

νDi
(r, t) ≤ ν�, ∀t ≥ 0, it will be σ(r, t) > σN and μ(σ) = 0 as far

as R(t) < RN . In this condition, we can derive an ODE system for the total volumes of
cells in the different cell compartments at time t . We define such volumes as

v1(t) = 4π

∫ R(t)

0
r2ν(r, t) dr,

vj+1(t) = 4π

∫ R(t)

0
r2νDj

(r, t) dr, j = 1, . . . , n,

vj+n+1(t) = 4π

∫ R(t)

0
r2νNj

(r, t) dr, j = 1, . . . , n.

By integrating from 0 to R(t) Eqs. (2) multiplied by 4πr2 and taking (5) into account, it
is easy to obtain the following equations:

v̇1 = χv1,

v̇2 = (χD − μD)v2,

v̇j = (χD − μD)vj + μDvj−1, j = 3, . . . , n + 1, (12)

v̇n+2 = μDvn+1 − μNvn+2,

v̇j = μNvj−1 − μNvj , j = n + 3, . . . ,2n + 1.

If we denote by w(t) the volume of the spheroid at time t , we have the further equation

w(t) = 1

ν�

2n+1∑

i=1

vi(t), (13)

from which the radius R(t) can be deduced. The equations (12) define a linear, time-
invariant dynamical system and (13) is the corresponding linear output equation.

By integrating the initial conditions (6) written for t1 = 0 and multiplied by 4πr2 from
0 to R0, and taking into account that ν(r,0−) = ν�, we obtain

v1

(
0+) = δ(αM,βM;R0, d)v1

(
0−)

,

v2
(
0+) = (

1 − δ(αM,βM ;R0, d)
)
v1

(
0−)

, (14)

vj

(
0+) = 0, j = 3, . . . ,2n + 1,

where

δ(αM,βM ;R0, d) = 3

R3
0

∫ R0

0
r2 exp

[−αMψα

(
σ(r,0)

)
d − βMψ2

β

(
σ(r,0)

)
d2

]
dr,

(15)
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and v1(0−) = (4/3)πR3
0ν

� = w0ν
�, with w0 denoting the spheroid volume at t = 0. There-

fore, the solution of the ODE system (12) with the initial conditions (14) gives the same
evolution of cell volumes as predicted by the PDE model (2) until R(t) ≤ RN .

This equivalence cannot be extended to describe the evolution of the spheroid for suc-
cessive irradiations because the correct re-initialization of (12) at t = ti , i > 1, would
require the knowledge of σ(r, ti) and ν(r, t−i ). However, if R(t) is sufficiently smaller
than RN , the radiosensitivity parameters α and β will be almost independent of σ and
can be assumed to be constant. Thus, the effect of treatment might be represented by the
following approximate initial conditions:

v1

(
t+i

) = exp
[−αdi − βd2

i

]
v1

(
t−i

)
,

v2

(
t+i

) = (
1 − exp

[−αdi − βd2
i

])
v1

(
t−i

) + v2

(
t−i

)
,

vj

(
t+i

) = vj

(
t−i

)
, j = 3, . . . ,2n + 1,

with

v1
(
0−) = ν�w0,

vj

(
0−) = 0, j = 2, . . . ,2n + 1.

In the following, as suggested by the comparison with experimental data, we chose
n = 3. It will be shown in the Appendix that for a treatment with a known single dose
at t = 0, the knowledge of the output w(t) on a finite time interval [0,Δ] allows the
parameters χ , χD , μD , μN in (12), and the quantity δ in (14), to be univocally identified
for any w0 > 0, provided that the remaining parameters of the model are assumed known.
This means that, given the initial volume and the dose, two different sets of parameters do
not exist that produce the same output w(t) on [0,Δ]. It will be also shown that, if two
outputs corresponding to sufficiently different doses are available, the parameters αM and
βM may also be identified. A proof of both these identifiability properties will be given in
Appendix.

Based on the above result, it is also possible to state that the identifiability of the ODE
model implies the identifiability of the PDE model (2)–(11) in case of a single irradiation
if R(t) is smaller than RN in [0,Δ], provided that the initial condition of (12) are given by
(14) and (15). We remark that the identifiability property is crucial for the well-posedness
of the problem of estimating the model parameters from experimental data.

4. Parameter estimation and model validation

We tested the model behavior and estimated the unknown model parameters by using
literature data on the untreated growth and on the single-irradiation response of spheroids
from four different cell lines (Jostes et al., 1985; Rofstad et al., 1986; Evans et al., 1986)
that show a somewhat different response pattern.

Among the parameters of model (2)–(11), the values of σN , μ̄, F and K were assumed
to be known and were derived from literature data. We set F = f Nc/(DOν�), where
f = 1.0×10−16 mol s−1 cell−1 is the maximal oxygen consumption rate per cell (Casciari
et al., 1992), Nc = 5.0 × 108 cells/cm3 (Freyer and Sutherland, 1985) is the number of
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cells per unit volume, DO = 1.82 × 10−5 cm2/s (Mueller-Klieser, 1984) is the oxygen
diffusion coefficient, and ν� = 0.6 (Freyer and Sutherland, 1985). Thus, we have F =
4.58 × 10−3 mol cm−5. For K, we have taken K = 4.64 µM (Casciari et al., 1992). We
assumed σN = 5 µM, so that the radius RN is equal to about 280 µm when σ � = 0.28 mM,
in agreement with the experimental values of the viable rim at the onset of central necrosis
(Freyer and Sutherland, 1986). For μ̄, we have chosen a value of 0.15 h−1, which is large
enough to produce an almost instantaneous cell death: for larger values, the model was
found to be virtually not sensitive to μ̄.

The remaining parameters, χ , χD , μD , μN , αM, and βM , assumed to be dose inde-
pendent, were estimated from the available measurements of spheroid radius during the
unperturbed growth and after single irradiations with different doses. We observe that the
identification problem may be tackled in two successive steps: in fact, the model response
when the dose is zero only depends on χ and, possibly, μN . Therefore, in the first step,
we have estimated these parameters by exploiting the data from the unperturbed growth
of the spheroid, and successively the remaining parameters from the data of the response
to treatment. In some experimental conditions, namely when necrosis is not formed, the
zero-dose response does not depend on μN and this parameter has been identified from
the treatment data.

As it is well known, a Markov-type estimation procedure that accounts for the vari-
ances of the different measurements, guarantees good properties for the estimates. How-
ever, the variances of the considered experimental data were not always available and,
therefore, we adopted the ordinary least-squares approach. Let us denote by θ the p-
dimensional vector of the unknown parameters, and by zij the measured spheroid radius
at time ti when the dose is dj . The least-squares estimation of θ was performed by mini-
mizing the following index:

J (θ) =
m∑

j=1

nj∑

i=1

(
R(ti, dj ; θ) − zij

)2
, (16)

where m is the number of doses, nj is the number of available measurements for the
dose dj , and R(ti, dj ; θ) denotes the model-predicted spheroid radius at time ti when the
dose given at t = 0 is dj . In the first step of our estimation procedure, it is obviously
m = 1 and d1 = 0. In all cases, the model prediction R(ti, dj ; θ) was computed by assum-
ing R(0) = R0, R0 known and equal to the radius measured at the irradiation time. The
minimization of the function (16) was performed by the Levenberg–Marquardt algorithm
(free C code available at http://www.ics.forth.gr) taking into account the physical posi-
tivity constraint for all the parameters and the constraint μD > χD . This algorithm also
allows the computation of the covariance matrix of the estimated parameters and, conse-
quently, provides the coefficients of variation (CV) of the estimates. This calculation is
based on the linearization method and yields

Cov
(
θ̂
) = s2

(
dR

dθ

∣
∣∣
∣

T

θ̂

dR

dθ

∣
∣∣
∣
θ̂

)−1

,

where θ̂ is the vector of the estimated parameters, R is the vector with components
R(ti, dj ; θ) for all i and j , and s2 is the estimate of the common variance of the mea-

http://www.ics.forth.gr
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surements, given by

s2 = J (θ̂)
∑m

j=1 nj − p
.

Although all the unknown parameters have been shown to be identifiable, in prac-
tice, likely because of the small number of data points, the estimation of five parameters
from the available data did not give sufficiently reliable results (some of the CVs greater
than 70%). Therefore, when μN could not be estimated from the zero-dose response, we
reduced the number of the unknown parameters by setting χD = χ . This simplifying as-
sumption yielded more satisfactory CV values.

4.1. Spheroid 9L (Jostes et al., 1985)

The first set of data we considered consisted of measurements of the response to radiation
of the spheroid 9L originated by rat brain tumor cells. The parameters χ and μN were
estimated from the untreated growth curve data, and the corresponding fitting is shown
in Fig. 2, left panel. The parameter values with the corresponding CVs are reported in
Table 1. The spheroid reaches a radius of about 800 µm and shows a trend to saturation.
According to our model, the onset of central necrosis should occur at about 5 days.

The other parameters, χD , μD , αM, and βM , were estimated from the data of the spher-
oids treated with doses of 4 and 8 Gy (Table 1) and the corresponding fitting is shown in

Fig. 2 Growth curves of 9L spheroid: optimal fitting (left panel) and prediction (right panel).

Table 1 Estimated parameters and corresponding CVs for the 9L spheroid

χ (h−1) μN (h−1) χD (h−1) μD (h−1) αM (Gy−1) βM (Gy−2)

Estimate 1.4 × 10−2 3.6 × 10−2 1.1 × 10−2 1.9 × 10−2 0.121 0.026
CV (%) 2.35 25.6 22.5 31.9 38.7 23.6
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the left panel of Fig. 2. As already pointed out, at least two different doses are necessary
to identify the radiosensitivities αM and βM . Even at the largest doses, the data show a
continuous, although delayed, increase of spheroid radius. The right panel of Fig. 2 shows
the prediction, obtained with the identified model, of the response to three further doses of
radiation (namely 2, 6, and 10 Gy). The predictive capacity appears to be quite good: the
model correctly reproduces the initial part of the response and the increase of the growth
delay with the dose.

4.2. Spheroid GE (Rofstad et al., 1986)

The second set of data consisted of measurements of the response to radiation of the
spheroid GE, initiated from human melanoma cells. From the untreated growth curve, the
parameter χ was estimated (Table 2) and the corresponding fitting is shown in the left
panel of Fig. 3. We observe that, in this case (and in the following), the growth curve of
the untreated spheroid made it possible to estimate χ only, because the spheroid did not
reach the radius at which the central necrosis develops. After setting χD = χ , the other
parameters, μD , μN , αM, and βM , were estimated from the data of the spheroids treated
with 2, 4 and 7 Gy (Table 2). The fitting is shown in Fig. 3, left panel. The right panel of
Fig. 3 shows the predictions for the doses of 5 and 6 Gy.

Fig. 3 Growth curves of GE spheroid: optimal fitting (left panel) and prediction (right panel).

Table 2 Estimated parameters and corresponding CVs for the GE spheroid

χ = χD (h−1) μN (h−1) μD (h−1) αM (Gy−1) βM (Gy−2)

Estimate 1.33 × 10−2 5.74 × 10−3 21.7 × 10−2 0.163 0.094
CV (%) 4.87 46.6 66.9 28.8 9.26
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4.3. Spheroid Lan-1 (Evans et al., 1986)

The response to radiation of the spheroid Lan-1, originated by human neuroblastoma cells,
exhibits a very different pattern with respect to the previous cases, showing a regression
of the spheroid radius at high radiation doses. The parameter χ was estimated from the
untreated growth curve (Table 3) and the corresponding fitting is shown in the left panel
of Fig. 4. As in the previous case, the evolution does not reach the radius at which central
necrosis develops, so we did not estimate μN from the untreated growth curve. The other
parameters, μD , μN , αM, and βM , were estimated from the data of spheroids treated with
doses of 3, 7, and 12 Gy while χD was set equal to χ (Table 3 and Fig. 4, left panel). Fig-
ure 4, right panel, shows the predictions for doses of 5 and 10 Gy. The left panel of Fig. 4
also shows (dashed lines) the fitting obtained by setting n = 1, i.e., without dividing the
lethally damaged and dead cells compartments into subcompartments. The introduction
of three subcompartments provides a better fit in the initial part of the response at higher
doses. A larger number of subcompartments did not give an appreciable improvement of
the fitting.

4.4. Spheroid NB-100 (Evans et al., 1986)

The response of the spheroid NB-100 (human neuroblastoma cells) is similar to that of
the Lan-1 spheroid and again shows a regression of the spheroid following the initial

Fig. 4 Growth curves of Lan-1 spheroid: optimal fitting (left panel) and prediction (right panel). Optimal
fitting with n = 1 (dashed lines).

Table 3 Estimated parameters and corresponding CVs for the Lan-1 spheroid

χ = χD (h−1) μN (h−1) μD (h−1) αM (Gy−1) βM (Gy−2)

Estimate 1.45 × 10−2 2.49 × 10−2 9.27 × 10−2 0.186 0.023
CV (%) 1.00 23.9 29.4 14.7 10.9
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Fig. 5 Growth curves of NB-100 spheroid: optimal fitting (left panel) and prediction (right panel). Opti-
mal fitting with n = 1 (dashed lines).

Table 4 Estimated parameters and corresponding CVs for the NB-100 spheroid

χ = χD (h−1) μN (h−1) μD (h−1) αM (Gy−1) βM (Gy−2)

Estimate 1.13 × 10−2 7.68 × 10−3 5.47 × 10−2 0.072 0.059
CV (%) 3.52 19.3 11.1 57.0 8.5

growth at the highest dose. The parameter χ , estimated from untreated data, is reported
in Table 4, and the corresponding fitting is shown in the left panel of Fig. 5. Also in this
case, to obtain reliable estimates, we set χD = χ and the parameters μD , μN , αM, and
βM were estimated from the data of spheroids treated with 5 and 9 Gy (see Table 4 and
Fig. 5, left panel). The right panel of Fig. 5 shows the predictions for the doses 3 and 7
Gy. Figure 5, left panel, also shows the fitting obtained by setting n = 1 (dashed line).
Although to a smaller extent than in the case of Lan-1 spheroid, three subcompartments
still give a better fit of the initial response at higher doses.

5. Concluding remarks

A model for the response of tumor spheroids to radiation is proposed in this paper. The
model takes into account the chain of events that follow the irradiation, namely the pro-
duction of lethally damaged cells, their death and the degradation of dead cells, and allows
to represent the distributed delays among these events. Considering the case of impulsive
irradiation, we assumed that lethally damaged cells are instantaneously induced accord-
ing to the linear quadratic dose-response relationship. The underlying spheroid model
assumes that cells die at high rate when the oxygen concentration is below a threshold
value, so producing a necrotic core. In case of small spheroids, and of a single irradiation,



1082 Bertuzzi et al.

the space dependence of variables can be disregarded and the PDE model can be reduced
to a linear ODE model. For such a model, a formal study of parameter identifiability has
been developed.

The comparison of the model response with four different sets of experimental data
gave satisfactory results either in the optimal fitting and in the prediction. Some parame-
ters were estimated with rather large coefficients of variation (μN and μD in Table 2 and
αM in Table 4), which is generally to be expected when the available measurements are
limited in number and precision. However, the main cause of the large CV values of the
above parameters was likely the low sensitivity of the model response to their changes, in
particular in certain regions of the parameter space.

The model we propose is characterized by n = 3 subcompartments of lethally damaged
and dead cells. This choice was found to be a reasonable tradeoff between the model
complexity and its fitting capability. The choice of n = 1 was less suitable to reproduce
the rapid shrinkage after the initial growth observed in the spheroids Lan-1 and NB-100
at the highest doses. Moreover, we recall that with n = 1 the parameters are not globally
identifiable (see the Appendix).

Experimental observations, as for instance the Lan-1 spheroid data, suggest that the
model parameters that characterize the behavior of the lethally damaged cells can depend
on the radiation dose. To explore this possibility, we tried to estimate the parameters χD

and μD from the Lan-1 data at each single dose by keeping the other parameters at the
values given in Table 3. The fitting results are shown in Fig. 6 and the parameters are
given in Table 5. The χD value was found to decrease as the dose increased, whereas a
clear trend was not observed for μD . The decrease of χD is reasonable, corresponding
to a decrease of the proliferative activity of lethally damaged cells with the extent of
injury. Correspondingly, we note a marked improvement of the fitting with respect to Fig.
4 especially at 7 and 12 Gy. This result suggests that the model might be improved by

Fig. 6 Growth curve of Lan-1 spheroid: optimal fitting of single-dose responses. For comparison, the
dotted lines reproduce the fitting of Fig. 4.
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Table 5 Lan-1 spheroid: parameters χD and μD and corresponding CVs estimated from the response to
the indicated doses

Dose (Gy) χD (h−1) μD (h−1)

5 1.51 × 10−2 (4.53%) 7.29 × 10−2 (43.9%)

7 1.06 × 10−2 (1.95%) 4.91 × 10−2 (10.6%)

12 0.85 × 10−2 (1.70%) 9.14 × 10−2 (20.1%)

introducing a dependence of at least χD on the dose. To conserve the predictive capacity of
the model, however, a form of this dependence should be assessed and the corresponding
parameters identified. This development may be the object of future investigation.

Finally, we observe that from the growth curves of the treated spheroid it was possible
to estimate the radiosensitivity parameters αM and βM , obtaining values for the αM/βM

ratio ranging from 1.2 to 8.1, and thus comparable with literature α/β data. A better
evaluation of the reliability of the obtained results could be achieved by the comparison of
these values with the values determined by the standard procedure involving the surviving
fractions at different radiation doses in a colony forming assay (Bristow and Hill, 1998).

Appendix: Parameter identifiability

Single radiation dose

The ODE system (12), the output equation (13), and the initial condition (14) can be
rewritten in a compact form as follows:

v̇ = Av,

w = 1

ν�
cT v, (A.1)

v(0) = bν�w0,

where, in the case of n = 3, v is the 7-dimensional state vector with components vi , and A,
cT and b are 7 × 7, 1 × 7 and, respectively, 7 × 1 matrices. In particular, for the elements
of A, we have

a11 = χ, a22 = a33 = a44 = χD − μD, a55 = a66 = a77 = −μN,

a32 = a43 = a54 = μD, a65 = a76 = μN,

all other elements being equal to zero. Moreover, ci = 1, i = 1,2, . . . ,7, and

b1 = δ, b2 = 1 − δ, bi = 0, i = 3,4, . . . ,7.

Denoting by ω the vector of parameters

ω = (χ χD μD μN δ)T
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ranging in the admissible set �, with

� = {
ω ∈ R

5 : χ > 0;μD > χD > 0;μN > 0; δ ∈ (0,1)
}
,

we can write A = A(ω) and b = b(ω). With the above notation, we have

w(t;ω) = cT exp
(
A(ω)t

)
b(ω)w0, t ≥ 0. (A.2)

With reference to model (A.1), (A.2), let us recall now the following definitions from the
linear systems theory (Kalman et al., 1969).

Definition 1. The parameter vector ω is globally identifiable in � if, given ω′, ω′′ ∈ �

and Δ > 0, the equality

cT exp
(
A(ω′)t

)
b(ω′) = cT exp

(
A(ω′′)t

)
b(ω′′), t ∈ [0,Δ]

implies ω′ = ω′′.

Definition 2. The pair (A,b) is controllable if

det C = det
(
b Ab · · · A6b

) 	= 0. (A.3)

The pair (A, cT ) is observable if

det O = det

⎛

⎜⎜
⎜
⎝

cT

cT A
...

cT A6

⎞

⎟⎟
⎟
⎠

	= 0. (A.4)

The triple (cT ,A,b) is controllable and observable if (A.3)–(A.4) hold.

The identifiability of the vector ω will be proved by using the Similarity Transforma-
tion Method (Travis and Haddock, 1981). This method is based on the following result:

Theorem. Let the triples (cT ,A(ω′), b(ω′)) and (cT ,A(ω′′), b(ω′′)) be observable and
controllable. Then

cT exp
(
A(ω′)t

)
b(ω′) = cT exp

(
A(ω′′)t

)
b(ω′′), t ∈ [0,Δ] (A.5)

if and only if a nonsingular matrix P exists such that

PA(ω′)P −1 = A(ω′′),

cT P −1 = cT , (A.6)

Pb(ω′) = b(ω′′).
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Proof: It is immediate to see that (A.6) implies (A.5) by taking into account the power
expansion of the exponential. The inverse implication that requires the controllability
and observability properties was proved by Kalman; see Appendix 10.C in Kalman et al.
(1969). �

Therefore, we have to prove the following properties.

Proposition 1. The pair (A(ω), b(ω)) is controllable and the pair (A(ω), cT ) is observ-
able for any ω ∈ �.

Proof: By symbolic computation (using MATLAB 7.6), we obtain

det C(ω) = μ12
D μ3

N(χ + μD − χD)3(μN + χ)3δ(1 − δ)6.

It is immediate to verify that, for ω ∈ �, each of the factors of the above expression is
positive. Similarly, we have

det O(ω) = −μ3
Nμ3

D(χ + μD − χD)3(μN + χ)3

× (
μ3

N + 3χDμ2
N − 3μNχDμD + 3μNχ2

D + χ3
D − 2χ2

DμD + χDμ2
D

)3
.

Also, for the above expression, it can be verified that all the factors are positive in �. The
last factor, in particular, by defining x = μD/χD > 1 and y = μN/χD > 0, can be written
in the following form:

χ9
D

[
x2 − (2 + 3y)x + (1 + y)3

]3
.

It is easy to verify that the second-order polynomial in x in square brackets is always
positive for y > 0. �

Proposition 2. Given ω� ∈ �, the matrix equations

PA(ω�) = A(ω)P,

cT = cT P, (A.7)

Pb(ω�) = b(ω),

in the unknown (P,ω),ω ∈ �, have the unique solution (I,ω�), where I is the identity
matrix.

Proof: The proof, which is rather cumbersome, has been developed by starting with the
third equation in (A.7), which allows to express the first column of P in terms of the
second column. By exploiting this relation in the first equation, it is possible to verify that
P has to be an upper triangular matrix. On the other side, the second equation establishes
that the sum of elements of each column of P is equal to 1. Using this information,
it follows that P is necessarily the identity matrix and, consequently, that ω = ω�. The
detail of the proof is reported in Papa (2009). �
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We note that the above procedure, when applied to the case of n = 1, shows that the
parameters are not globally identifiable while only a local identifiability property holds.
In fact, it is possible to see that if the parameter vector ω = (χ χD μD μN δ)T ∈ � gives
rise to a certain output of the model, the same output is also given by ω′ ∈ � defined by

χ ′ = χ, χ ′
D = χD, μ′

D = χD + μN, μ′
N = μD − χD, δ′ = δ.

Multiple radiation doses

The above results allow to state that the model response to a single radiation dose univo-
cally identifies the parameter vector ω. However, as it appears from (15), the parameter
δ depends on the pair of parameters αM and βM , and these parameters cannot be univo-
cally determined from δ. We show now that αM and βM can be univocally identified by
exploiting the model responses to at least two sufficiently different radiation doses.

Let us denote by v(1) and v(2) the state responses to the doses d1 and d2, respectively,
and by w(1) and w(2) the corresponding outputs. In the case of w(1)(0) = w(2)(0) = w0,
denoting by

v̄ =
(

v(1)

v(2)

)
, w̄ =

(
w(1)

w(2)

)
, w̄0 =

(
w0

w0

)
,

we can write

˙̄v = Āv̄,

w̄ = 1

ν�
Cv̄,

v̄(0) = Bν�w̄0,

where Ā, C, B are block matrices defined as

Ā =
(

A 0
0 A

)
, C =

(
cT 0
0 cT

)
, B =

(
b(1) 0
0 b(2)

)

with

b
(j)

1 = δj , b
(j)

2 = 1 − δj , b
(j)

i = 0, i = 3,4, . . . ,7, j = 1,2.

Recalling (15), the quantities δ1 and δ2 are given by

δj = δ(αM,βM ;R0, dj ), j = 1,2.

Let ω̄ be the parameter vector

ω̄ = (χ χD μD μN δ1 δ2)
T

ranging in the admissible set �̄,

�̄ = {
ω̄ ∈ R

6 : χ > 0;μD > χD > 0;μN > 0; δ1, δ2 ∈ (0,1)
}
,
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so that we can write Ā = Ā(ω̄) and B = B(ω̄). With the above notation, we have

w̄(t; ω̄) = C exp
(
Ā(ω̄)t

)
B(ω̄)w̄0, t ≥ 0.

In the present case, the properties of controllability and observability are defined as
follows:

Definition 3. The pair (Ā,B) is controllable if the matrix

C = (
B ĀB · · · Ā13B

)

has full rank. The pair (Ā,C) is observable if the matrix

O =

⎛

⎜⎜
⎜
⎝

C

CĀ
...

CĀ13

⎞

⎟⎟
⎟
⎠

has full rank.

Similarly to the single output case, we can now prove the following result:

Proposition 3. The pair (Ā(ω̄),B(ω̄)) is controllable and the pair (Ā(ω̄),C) is observ-
able for any ω̄ ∈ �̄.

Proof: It is immediate to verify that the controllability matrix has the following structure:

C =
(

b(1) 0 Ab(1) 0 · · · A13b(1) 0
0 b(2) 0 Ab(2) · · · 0 A13b(2)

)
.

From the above matrix, we can extract the 14 × 14 minor

M =
(

(b(1) Ab(1) · · · A6b(1)) 0
0 (b(2) Ab(2) · · · A6b(2))

)
=

(
C(1) 0
0 C(2)

)
.

Since

det M = det C(1) · det C(2),

in view of Proposition 1 we have det M > 0. A similar argument can be carried out to
verify that the observability matrix has full rank. �

To complete the proof of identifiability of ω̄, we have to prove the following proposi-
tion.
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Proposition 4. Given ω̄� ∈ �̄, the matrix equations

P̄ Ā(ω̄�) = Ā(ω̄)P̄ ,

C = CP̄ , (A.8)

P̄ B(ω̄�) = B(ω̄),

in the unknown (P̄ , ω̄), ω̄ ∈ �̄, have the unique solution (I, ω̄�).

Proof: By decomposing the matrix P̄ into four 7 × 7 submatrices

P̄ =
(

P11 P12

P21 P22

)
,

the system (A.8) can be decomposed into the four subsystems:

PjjA(ω̄�) = A(ω̄)Pjj ,

cT = cT Pjj , j = 1,2, (A.9)

Pjjb
(j)(ω̄�) = b(j)(ω̄),

and

PijA(ω̄�) = A(ω̄)Pij ,

0T = cT Pij , i, j = 1,2; i 	= j, (A.10)

Pijb
(j)(ω̄�) = 0.

Following the same procedure as in the proof of Proposition 2, from the systems (A.9),
we deduce that P11 = P22 = I and ω̄ = ω̄�. From the systems (A.10), taking into account
that ω̄ = ω̄�, we deduce that P12 = P21 = 0 (Papa, 2009). �

To establish the identifiability of αM and βM , it is useful to prove the following result.

Lemma. Let us define the function

φ(r) = ψα(σ0(r))

ψ2
β(σ0(r))

,

where ψα and ψβ are given by (7), and σ0(r) is the solution of Eqs. (8), (9) with the
prescribed boundary conditions in which R = R0 and the right-hand side of (8) is f (σ)ν�.
We have

1 < φ(R0) ≤ φ(r) ≤ φ(0) < 9/2.5, for r ∈ [0,R0]. (A.11)

Proof: First we recall that

φ(R0) = ψα(σ
�)

ψ2
β(σ �)

, φ(0) = ψα(σ0(0))

ψ2
β(σ0(0))

.
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Since the ratio ψα(σ)/ψ2
β(σ ) is decreasing for σ ≥ 0 and σ0(r) is easily seen to be in-

creasing with r , we have that, for r ∈ [0,R0], the minimum value of φ is φ(R0) and its
maximum value is φ(0). Moreover, since ψα(σ)/ψ2

β(σ ) is always smaller than 9/2.5 and
greater than 1, we get the upper and lower bounds given by (A.11). �

Finally, we have the following proposition.

Proposition 5. Let us assume

d2

d1
>

φ(0)

φ(R0)
. (A.12)

Given a pair (δ1, δ2) with δ1 and δ2 ∈ (0,1), if the system of equations

δ(αM,βM ;R0, d1) = δ1,

δ(αM,βM ;R0, d2) = δ2

admits a positive solution (αM,βM), this solution is unique.

Proof: Let us suppose (α′
M,β ′

M) and (αM,βM) are such that

δ(α′
M,β ′

M ;R0, d1) = δ(αM,βM ;R0, d1), (A.13)

δ(α′
M,β ′

M ;R0, d2) = δ(αM,βM ;R0, d2). (A.14)

Taking Eq. (15) into account and using the mean value theorem, (A.13) can be rewritten
as

3

R3
0

(
e−αMψα(σ0(r̄1))d1−βMψ2

β (σ0(r̄1))d2
1 − e−α′

M
ψα(σ0(r̄1))d1−β ′

M
ψ2

β (σ0(r̄1))d2
1
)∫ R0

0
r2 dr = 0,

where r̄1 is a suitable number of the interval [0,R0]. From the previous equation, it follows
that

(αM − α′
M)ψα

(
σ0(r̄1)

)
d1 + (βM − β ′

M)ψ2
β

(
σ0(r̄1)

)
d2

1 = 0. (A.15)

In a similar way, from (A.14), we obtain

(αM − α′
M)ψα

(
σ0(r̄2)

)
d2 + (βM − β ′

M)ψ2
β

(
σ0(r̄2)

)
d2

2 = 0. (A.16)

The determinant of the system (A.15), (A.16) is

d1d2

[
ψα

(
σ0(r̄1)

)
ψ2

β

(
σ0(r̄2)

)
d2 − ψα

(
σ0(r̄2)

)
ψ2

β

(
σ0(r̄1)

)
d1

]
,

and it is different from zero if and only if

d2

d1
	= ψα(σ0(r̄2))ψ

2
β(σ0(r̄1))

ψα(σ0(r̄1))ψ
2
β(σ0(r̄2))

= φ(r̄2)

φ(r̄1)
.

In view of (A.11), from the hypothesis (A.12), we see that the determinant is different
from zero, and consequently the system (A.15), (A.16) admits the unique solution αM =
α′

M , βM = β ′
M . �
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