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Abstract An important aspect of systems biology research is the so-called “reverse en-
gineering” of cellular metabolic dynamics from measured input-output data. This allows
researchers to estimate and validate both the pathway’s structure as well as the kinetic con-
stants. In this paper, the recently published ‘Proximate Parameter Tuning’ (PPT) method
for the identification of biochemical networks is analysed. In particular, it is shown that
the described PPT algorithm is essentially equivalent to a sequential linear programming
implementation of a constrained optimization problem. The corresponding objective func-
tion consists of two parts, the first emphasises the data fitting where a residual 1-norm is
used, and the second emphasises the proximity of the calculated parameters to the speci-
fied nominal values, using an ∞-norm. The optimality properties of PPT algorithm solu-
tion as well as its geometric interpretation are analyzed. The concept of optimal parameter
locus is applied for the exploration of the entire family of optimal solutions. An efficient
implementation of the parameter locus is also developed. Parallels are drawn with 1-norm
parameter deviation regularization which attempt to fit the data with a minimal number of
parameters. Finally, a small example is used to illustrate all of these properties.

Keywords Systems biology · Parameter estimation · Inverse modelling ·
Regularization · Proximate parameter tuning

1. Introduction

In molecular systems biology research, the dynamical properties of biochemical sig-
nalling pathways are usually represented as a set of nonlinear ordinary differential equa-
tions (ODEs) using the “well-stirred” (Conrad and Tyson, 2006) assumption. When the
pathway structure is known, the identification of uncertain kinetic parameters becomes

∗Corresponding author.
E-mail address: hefei_m@hotmail.com (Fei He).

mailto:hefei_m@hotmail.com


698 Brown et al.

the central task. However, this is still a limiting step in many systems biology studies
(Voit, 2000) due to (1) very limited time series data involving only a few of the state vari-
ables; (2) the complexity and nonlinearity of the pathways which contain a large number
of reaction species and kinetic parameters; (3) some parameter estimates are highly corre-
lated and the model’s outputs are insensitive to certain parameters. From a mathematical
viewpoint, this leads to a highly ill-conditioned system identification problem with sparse,
noisy exemplar data which produces a large uncertainty in the estimated parameters. To
try and overcome this problem, some methods attempt to (Okino and Mavrovouniotis,
1998; Liebermeister et al., 2005; Jin et al., 2007) reduce the model’s complexity, which
results in the number of parameters being (much) less than the number of experimental
data. Other approaches (Banga et al., 2003; Rodriguez et al., 2006a, 2006b) improve the
global searching ability of the optimization algorithm using hybrid methods which com-
bine stochastic and deterministic optimization techniques. However, since the biochem-
ical pathway structures are often known, the former strategy can be less appealing, and
from a computational viewpoint the later approaches are usually computationally costly
and problem dependent.

Therefore, not all of the parameters can be reliably estimated in practice due to poor
parameter identifiability (Yue et al., 2006; Gutenkunst et al., 2007). In a strict sense, pa-
rameter identifiability asks whether, for a given model structure, there exists a (hypo-
thetically noise free) data set from which the parameters can be uniquely determined.
In a systems biology context, there are limits on the amount of data and the degree of
excitation that can be used to probe the system, as well as a large amount of experimen-
tal noise that corrupts the measurements, all of which significantly affect the degree of
identifiability. The limited information content of the exemplar data when compared with
the model’s complexity results in a parameter estimation process that is singular or near
singular. As such the optimization problem is ill-posed (Muller et al., 2008) since there
are many competing parameter values which will give the same, or similar, performance
when measured against the exemplar data.

In this case, a minimal model may be used to explain the main variations in the data and
some form of model selection process is often employed to determine the most significant
components. In this paper, an alternative strategy is considered, which retains the origi-
nal model structure but seeks to make a trade-off between data fitting accuracy and the
closeness of the estimated parameters to given nominal values. This can be represented
using either a Bayesian prior or as regularization constraints (Lei and Jorgensen, 2001;
Papadopoulos and Brown, 2007; Brown et al., 2008; He et al., 2008). This is also the
approach adopted by the PPT algorithm (Wilkinson et al., 2008). By using regulariza-
tion techniques, the parameter estimation process is transformed such that the parameter
updates are not independent; rather they lie in small but important subspaces. The regu-
larization constraints penalise the movement of the parameters from their prior/nominal
values. The variances of the parameter estimates are therefore reduced at the expense of
introducing model bias (Johansen, 1997). However, for kinetic pathway models, it is usu-
ally impossible to obtain a perfect fit between dynamic experimental data and the model.
Thus, the model bias introduced by regularization is negligible provided that the weight
on the regularization term is chosen appropriately (Hansen, 1997).

In this paper, the original PPT algorithm is interpreted as a regularization algorithm
and the convergence and optimality properties of PPT are analyzed in detail. In addition,
the parameter sensitivity and efficient calculation of the optimal parameter locus are also
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analyzed and developed for both linear static and nonlinear dynamic models. The regular-
ization interpretation, noise assumptions, and convergence analysis of PPT algorithm are
analyzed in Section 2. The dual problem and geometric interpretation of optimal solution
properties are given in Section 3.1, with discussion regarding the 1-norm and ∞-norm on
the parametric constraint term. The properties and efficient implementation of the optimal
parameter locus are provided in Section 3.2. Finally, an illustrative pathway example is
studied in Section 4 which validates the theoretical analyses.

2. Regularization interpretation of the PPT algorithm

The proximate parameter tuning algorithm (PPT) (Wilkinson et al., 2008), is a sequen-
tial method for estimating the model’s parameters. The aim is to balance the model’s
data fitting ability with a measure of deviation from the given parameters’ nominal val-
ues. The nominal parameter values represent prior knowledge and, as such, are used to
constrain the final parameter estimates when information from the training data is either
weak or non-existent. However, in the original paper, only the local sequential algorithm
for iteratively updating the parameter values was described. It was difficult to analyse the
algorithm’s convergence and optimality properties as well as the similarities with other
techniques. This section addresses these gaps by introducing a constrained primal opti-
mization problem and showing that the core PPT algorithm corresponds to a sequential,
locally linearized sub-problem. Differences with the full PPT algorithm (e.g. weighting
factors and additional criteria) are then described. Local parameter convergence is then
discussed in terms of the aforementioned primal problem and links are drawn with other
regularization approaches.

2.1. Constrained primal problem

Consider a constrained optimization approach to parameter estimation where the aim is
to minimize a 1-norm of the (logarithmic) residuals while simultaneously keeping the
parameters close to the supplied nominal values. In this context, “close” is measured in
terms of the maximum absolute (logarithmic) deviation. This can be represented as a
constrained (primal) optimization problem of the form:

min f (k) = ∥
∥log y − log ŷ(k)

∥
∥

1

s.t.
∥
∥log knom − log k

∥
∥

∞ ≤ k̃
(1)

where y ∈ R
N is the vector of measured exemplars and ŷ is the corresponding vector of

predictions, k ∈ R
m is the model’s parameter vector and knom is the vector of the nominal

values supplied by the user from existing experience and k̃ is the user defined maximum
parameter deviation. A 1-norm is used to penalise the (log transformed) residuals, which
results in a median estimator, rather than the more usual mean estimator associated with
the least squares problem. This is important when the measurements are unreliable and
outliers exist. The ∞-norm constraint on the parameter values means that the maximum
deviation from the nominal values must be less than the given value k̃. The logarithmic
transformations of both the outputs and the parameters reflect the fact that the relative
(rather than absolute) change is being penalised, as discussed further in Section 2.4.
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Obviously, when k̃ is large, the optimal parameter vector is the median estimator which
simply minimizes the 1-norm of the residuals. When k̃ = 0, the only feasible solution
is k = knom and as k̃ increases in size, the optimal solution is a compromise between
minimizing the residual 1-norm whilst constraining the parameter values to lie within a
hypercube around the nominal values. The corresponding dual problem and optimality
properties are discussed further in Section 3.1.

2.2. Relation to the PPT algorithm

The original PPT algorithm was specified in terms of solving a sequence of linear pro-
gramming (LP) algorithms. In this section, the primal representation of the sequential
linear programming problem associated with (1) is derived and comparisons are drawn
with the PPT algorithm.

2.2.1. Sequential linear programming
Consider the constrained optimization problem given in (1). Introducing the non-negative
slack variable ỹ which represents the absolute value of the residuals in log space:

ỹ = ∣
∣log(y) − log

(

ŷ(k)
)∣
∣ (2)

then (1) can be re-formulated as

min f (k, ỹ) = 1T ỹ

s.t. ỹ ≥ log y − log ŷ(k)

ỹ ≥ −(

log y − log ŷ(k)
)

1k̃ ≥ log knom − log k

1k̃ ≥ −(

log knom − log k
)

(3)

where 1 ∈ R
m is a column vector of ones. Here, the objective function is linear and the

only non-linearity in (3) occurs in the constraints which represent the model’s output
dependence on its parameters. Now consider linearizing the optimization problem (3)
around the current parameter value [k0, ỹ0] where the incremental parameter updates are
defined by [�k,�ỹ] = [log(k)− log(k0), log(ỹ)− log(ỹ0)]. This produces the sequential
local, LP sub-problem:

min f (�k, ỹ) = 1T ỹ

s.t. ỹ ≥ log y − log ŷ
(

k0
) − S

(

k0
)

�k

ỹ ≥ −(

log y − log ŷ
(

k0
) − S

(

k0
)

�k
)

1k̃ ≥ log knom − log k

1k̃ ≥ −(

log knom − log k
)

(4)

where the sensitivity matrix S(k0) is the local derivative of the model’s outputs with re-
spect to the parameters, and defined as S(k0) = d log(ŷ(k0))/d log(k). When considering
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both the 1 and ∞-norms on both the residuals and parameters as in the original PPT al-
gorithm, the corresponding LP-sequential algorithm can be derived in a similar way. As
the objective and constraints are linear, the sequential PPT algorithm is computationally
efficient. This has been exploited in a recent analysis of eukaryotic protein translation
(Dimelow and Wilkinson, 2009), where the PPT algorithm was utilised to generate re-
peated solutions using nominal values that were sampled from the uncertain parameter
space. It is now possible to draw similarities and differences with the PPT algorithm.

2.2.2. Relation to the PPT algorithm
In Appendix A, the original sequential PPT algorithm is given by (A.13) and the equiv-
alent primal optimization problem is given by (A.1). The two optimization problems are
very similar and the splitting of the parameter and prediction updates into positive and
negative components in (A.13) does not alter the original optimization problem. There
exist a number of differences between the original sequential PPT algorithm (A.1) and
the simplified primal optimization problem (1):

1. The original PPT objective function (A.1) contains both 1 and ∞-norms on both the
residuals and the parameters.

2. The original PPT objective function (A.1) is a weighted combination of the different
terms, rather than the constrained approach in (1).

3. There are a number of weighting parameters in the original PPT algorithm (A.1), rather
than the single maximum deviation parameter in (1).

Each of these differences will now be discussed.

2.2.3. Residual and parameter objective norms
The reason for employing 1 and ∞-norms in the original PPT algorithm was to simplify
the transformation of the original optimization problem to an equivalent sequential LP
problem. This is because both of these norms can be expressed as linear objectives or
constraints on the parameters and residuals by introducing slack variables. Also, the rea-
son for considering a linear combination of a 1-norm and ∞-norm (of both the residuals
and the parameters) was to try and mimic a more general p-norm, where differences in
the weighing parameters would allow a gradual transition between the 1-norm and ∞-
norm optimal solutions. However, this requires the weights on the 1 and ∞-norms to be
functions of the optimal parameter estimates, which are obviously unknown prior to the
optimization calculation. Therefore, the original motivation for including weighted 1 and
∞-norms on both the residuals and parameter deviations does not apply and despite the
original PPT optimization problem involving more criteria, the core of the approach is
described by (1).

2.2.4. Constrained optimization and weighted objectives
Another obvious difference between (1) and (A.1) is that in the former, the parameter
deviations are specified as a constraint, whereas in the latter, they are included in the ob-
jective function as a weighted criterion. Whilst these are similar for convex, differentiable
problems, there is an important difference in this case.

For (1), let’s assume that the objective function is convex with a single (global) min-
imum. Then the constrained solution will lie on the boundary of the constraining hyper-
cube, assuming that k̃ is sufficiently small. Then the estimated parameters, k̂(k̃), will vary
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smoothly as k̃ is changed. Now consider the (simplified) PPT weighted primal objective:

minf (k) = ∥
∥log y − log

(

ŷ(k)
)∥
∥

1
+ α

∥
∥log knom − log k

∥
∥∞ (5)

where α is the non-negative weighing parameter. This is a piecewise continuous function,
where derivative discontinuities occur whenever a residual is zero or when the absolute
value of pairs (or more) of parameter deviations are equal to each other. As the weighting
parameter, α, is slowly varied the optimal point will remain unchanged until one of one
sided gradients at that point change sign and the optimal parameter values perform a
discrete jump to the next optimal point. Therefore, the set of solutions from the original
PPT algorithm forms a discrete subset of the continuous span of solutions given by (1)
and a small change in the PPT weighting parameter would either have no effect or would
produce a jump change.

2.2.5. Weighting parameters
In the original PPT algorithm (A.1), there are number of weighting parameters involving
both the prediction and the parameter errors, whereas in (1), only a single maximum
parameter deviation is considered. Obviously, separate non-negative weighing parameter
vectors α and β can be introduced in (1) so that each data point is weighted as

∥
∥log y − log ŷ(k)

∥
∥

1,α
=

∑

i

αi

∣
∣logyi − log ŷi (k)

∣
∣ (6)

and the parameter deviations are constrained by

βmaxk̃ ≥ log knom − log k

βmink̃ ≥ −(

log knom − log k
) (7)

Without loss of generality, all of this can be incorporated into (1), and the simplified
form (1) will be considered for the rest of the paper.

2.3. Convergence analysis

Pathway parameter estimation using the PPT algorithm involves solving a sequence of
LP sub-problems. For computational efficiency, the LP-PPT algorithm, only uses first
order gradient/sensitivity information (no second order approximation of Hessian is con-
sidered). As the PPT algorithm relies on the first order, local sensitivities, convergence to
the global minimum of the objective function (2) cannot be guaranteed. However, if both
objective function and constraints in (4) are smooth and locally convex, and good prior
(nominal) parameters knom are provided within the global minimum’s basin of attraction,
the algorithm will find the global optimal solutions. The use of only first order informa-
tion is a distinctive feature of the PPT algorithm and numerical experience on a number
of examples in the original paper indicates reasonable convergence properties. Here, the
emphasis is on the computational efficiency of a single iteration. However, the overall
performance of the algorithm is a balance between this and the total number of itera-
tions required for convergence which might well be improved by use of the second order
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Hessian, although the computational cost of computing this exactly is large. A compari-
son of the relative performance of the second approach relative to the first order approach
is beyond the scope of this paper.

It is well known that using a sequential LP optimization algorithm will converge slowly
when the problem is badly conditioned. Regularization techniques like ridge regression
which is based on measuring the 2-norm of the parameter deviation, have been shown to
implicitly improve the condition of the original ill-posed optimization problem by implic-
itly adding a small positive definite matrix onto the local Hessian. However, rather than
altering the form of the Hessian, the 1 and ∞-norm measures considered in this paper
constrain the parameter update direction to lie in a sub-space aligned with the negative
gradient. The step length for all examples in the original PPT paper (Wilkinson et al.,
2008) is considered a unity full step, although an adaptive strategy is more general and
robust.

2.4. Analysis of the cost function

In this section, the structures of both the residual objective function and the parameter
deviation constraint in (1) are analysed. The role of the log transformations in each term
is also discussed.

2.4.1. Noise assumptions
In (1), the performance function is the 1-norm of the residual between the log measure-
ments and log predictions. Usually, a (squared) 2-norm measure is employed (Hansen,
1997; Golub et al., 1999) so that the residual variance is minimized which corresponds
to an additive Gaussian, independent and identically distributed (i.i.d.) noise assump-
tion. Using a 1-norm on the untransformed residuals (Conrad and Tyson, 2006) assumes
that the noise model is additive Laplacian, which has heavier tails. Practically, it cor-
responds to a median value estimator which means that large residuals would have less
influence or leverage on the solution, and thus is more robust to outliers. The log measure-
ment/prediction transformations assume that the noise process is multiplicative Laplacian:

y = y × r (8)

where r is a Laplacian distribution with zero mean as given in Fig. 1 (upper). Residuals
that correspond to doubling or halving the prediction have the same effect, and it should
be noted that the logarithmic/exponential and multiplicative transformations ensure that
the measurements remain non-negative. There will be a tendency to under predict the
actual target value and as such the transformed residual signal will, in general, have a
positive mean value and non-negative (Fig. 1 (nether)), unlike the more normal zero mean
assumption (Kozubowski and Podgorski, 2003).

2.4.2. Parameter norm measures
The ∞-norm on the logarithmic parameter deviations in (1) is used to make the problem
well posed by introducing some bias in order to minimize the parameter variance when
the estimation variance is small. The practical effect is for the estimated parameters to
remain at their nominal values and only disturb them when there is evidence in the data.
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Fig. 1 Laplacian noise (upper) with a zero mean and standard deviation of 0.2 and the transformed
log-Laplacian noise (nether).

The ∞-norm parameter deviation measure is equivalent to

max
j

log

∣
∣
∣
∣

knom
j

kj

∣
∣
∣
∣

(9)

with all the parameters are being constrained at the same rate when the normalised up-
dates are changing equally. Clearly, the nominal values bias the final parameter values
as inferred from the data. This is often desirable for biochemical problems in which data
is scarce and expected prior values can be estimated independently by comparison with
similar parameters, de novo calculations or in vitro measurements.

3. Properties of the PPT algorithm

In Section 2, it was shown that the iterative PPT algorithm minimizes a regularization
function which is composed of a 1-norm of the log residuals and an ∞-norm of the log
parameter deviations. In this section, the optimality properties are discussed and, in par-
ticular, a technique for calculating the complete parameter locus is presented which illus-
trates the solution’s sensitivity to the empirical data. For simplicity, the theoretical analysis
is mainly based on linear static models, ŷ = Xk̂. In addition, without loss of generality, the
log transformation on the outputs and parameters are ignored. The optimization problem
can then be stated as

min
k

‖y − Xk‖1

s.t.
∥
∥knom − k

∥
∥∞ ≤ k̃

(10)

For non-linear dynamic pathway models, this linear static model representation could be
obtained by either transforming the dynamic ODE model to a static model (Papadopoulos
and Brown, 2007; Brown et al., 2008) using the “collocation” method, or by considering
the local sensitivity linearisation at a parameter point (He et al., 2008) as given in (4).
Since the former approach would generally introduce bias in the estimates (Brown et al.,
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2008), the latter approach is the focus of this paper. Accordingly, the analysis of the PPT
algorithm’s optimality properties for linear static models can also be applied to non-linear
dynamic models as discussed in Section 3.2.2.

3.1. Properties and graphical interpretation

The dual PPT optimization problem is now analyzed as it provides an important theoreti-
cal basis for understanding and constructing the parameter sensitivity locus.

3.1.1. Dual problem
At optimality, the linearized primal PPT problem (1) can be analysed as the active sets
of parameters and data are the same are the same as the original non-linear problem. The
dual of the linear programming primal problem terms can be expressed in terms of the
corresponding Lagrange multipliers, [λ1,λ2,λ3,λ4]T ≥ 0, where λi is associated with the
ith set of inequality constraints in (4). Then according to Karush–Kuhn–Tucker (KKT)
condition give

λ3 − λ4 = −XT
(

λ1 − λ2
)

λ1 + λ2 = 1
(11)

Using these conditions, a number of simple, but extremely useful insights into the La-
grange multipliers can be easily proven. In the following, the active parameters are those
parameters ki for which |knom

i − ki | = k̃ and the active residuals ri are those exemplars for
which yi − xT

i k = 0. These definitions follow directly from the KKT conditions.

Theorem 1. The Lagrange multipliers corresponding to the inactive residuals are binary
and satisfy:

λ1 − λ2 = sgn(r) (12)

where vector r denotes the set of inactive residuals that ri = yi − xT
i k �= 0.

Proof: From (11), the Lagrange multipliers associated with the residuals, {λ1,λ2}, are
non-negative and sum to unity. When a residual is non-zero, one of the corresponding La-
grange multipliers must therefore be 0 and the other must be 1. Therefore, the Lagrange
multipliers for the non-zero residuals are binary. In addition, when the residuals are pos-
itive λ1

i = 1, λ2
i = 0 and when the residuals are negative λ1

i = 0, λ2
i = 1. Therefore, (12)

holds. Alternatively, when a residual is active (zero), both constraints are active and the
corresponding Lagrange multipliers are both non-zero 0 < λ1

i , λ
2
i < 1. �

Theorem 2. In the non-zero residual sub-space, the Lagrange multipliers on the parame-
ters correspond to the gradient of the 1-norm errors:

λ3 − λ4 = ∇kp(k) (13)

where p(k) is the 1-norm residual objective function in (10).
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Proof: From (11) and (12), it follows that:

λ3 − λ4 = −XT sgn(r) (14)

when the residuals are inactive. By definition, the 1-norm objective function can be writ-
ten as p(k) = r(k)T sgn(r(k)) and differentiating with respect to the parameters gives
∇kp(k) = −XT sgn(r) where the residual sign vector is obviously constant in local re-
gions. Therefore, (13) holds. �

This demonstrates a clear relationship between the (dual) Lagrange multipliers and the
geometry of optimization problem. There is also a direct link between a residual becoming
zero and a parameter becoming inactive.

Theorem 3. In general, the number of inactive parameters is equal to the number of zero
residuals.

Proof: When a parameter is inactive, the corresponding Lagrange multipliers are zero,
i.e. λ3

i = λ4
i = 0. However, (11) demonstrates that for inactive residuals λ3 − λ4 =

−XT sgn(r), which will, in general, be a non-zero vector (note that −XT sgn(r) may be
zero for some components when the gradient of the objective function is zero for a pa-
rameter, but in general, this is unlikely to happen). When a residual ri is zero, both the
corresponding Lagrange multipliers (λ1

i , λ
2
i ) are non-zero as the corresponding constraints

are both active. Hence,

λ3
I − λ4

I = −(

XT
I,I sgn(rI ) + XT

I,A

(

λ1
A − λ2

A

)) = 0 (15)

where the subscript in λ3,λ4 and the first subscript in XT denote the inactive parameter set
I ; the second subscript in XT , i.e. I or A, refer to the sets of non-zero and zero residuals
(denoted inactive and active residuals), respectively. For the ith element of the left-hand
side to be zero (corresponding to the ith inactive parameter), there must exist at least
one corresponding zero residual associated with one data point. The residual Lagrange
multipliers λr

A, which is defined as λr
A = λ1

A − λ2
A is further determined by

λr
A = −(

XT
I,A

)−1(
XT

I,I sgn(rI )
)

(16)

where XT
I,A is required to be an invertible matrix. This is only true when each row of

the matrix XT
I,A denoting the corresponding data is linearly independent from each other.

Otherwise, linearly dependent data should be removed to ensure the invertibility (full
rank) of this matrix. �

3.1.2. Geometrical analysis of the constrained solutions
These theorems can be interpreted geometrically as the constraint parameter k̃ varies.
When k̃ is small, a much greater weight is placed on keeping the parameters close to their
nominal values. Assuming the data fitting problem is fairly ill-conditioned and that the
nominal parameter values are not chosen to lie in the small volume in parameter space
where the sensitivity derivatives are small, then the normalized parameter updates will lie
at the corner of the hypercube of size k̃ which first intersects with objective function’s
contour, as shown in Fig. 2 (left).
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Fig. 2 An illustration of the optimal solution (red dot) for the PPT algorithm when close to the nominal
parameter values (left) or close to the maximum likelihood solution (right). For simplicity, it has been
assumed that there is a linear relationship between log(y) and log(ki ) and that there exists two exemplars.

When k̃ is larger, a greater emphasis is placed on fitting the data and in general, the
optimal parameter estimate will lie at a corner (derivative discontinuity) of the objective
function contour and along a side the parameter deviation hypercube, as illustrated in
Fig. 2 (right). In this case, it corresponds to one or more of the residuals being zero and
the effect of using a 1-norm performance function is to ensure one or more residuals are
zero (distribution median). It should be noted that the number of non-active parameter
deviations is bounded above by the number of exemplars used in the objective function.

3.1.3. Minimal parameter disturbance analysis
For comparison with ∞-norm constraint, a 1-norm to parameter deviation constraint cor-
responds to a continuous, relaxed version of the discrete optimization problem which
attempts to reduce the residuals whilst minimizing the number of parameter deviations.
This is expressed as

min f (k) = ∥
∥log y − log ŷ(k)

∥
∥

1

s.t.
∥
∥log knom − log k

∥
∥

1
≤ k̃

(17)

and is illustrated in Fig. 3. Initially, one parameter deviates from its nominal value and as k̃

increases an increasing number of parameters are gradually perturbed from their nominal
values. This performs a form of “soft feature selection” (Papadopoulos and Brown, 2007;
He et al., 2008).

3.2. Optimal parameter locus of PPT algorithm

Model sensitivity is an important subject in systems biology as it can be used to identify
important parameters and perform model selection. However, the solution sensitivity to
important design parameters is often neglected and in the PPT algorithm, the most critical
parameter is maximum parameter deviation k̃. The optimal parameter estimates can there-
fore be viewed as a parameter loci k(k̃) (Papadopoulos and Brown, 2007) and the sensi-
tivity of the parameter estimates to selected values of k̃ can then be studied. This idea have
been studied for 1-norm parameter deviation constraints (Papadopoulos and Brown, 2007;
He et al., 2008), and the following sections adapt this work for ∞-norm parameter devi-
ation constraints, as used in the PPT algorithm.
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Fig. 3 Using a 1-norm to measure parameter deviation means that only a minimal number of parameters
are updated when the deviations are small, i.e. only one parameter (k1) is active when optimal parameters
left from the nominal values (left), whereas, both two parameters are active when optimal solutions are
close the maximum likelihood solutions (right).

3.2.1. Parameter locus for linear models
The properties and construction of an optimal parameter locus for linearized PPT algo-
rithm will now be developed. This is based on the simple geometric insights illustrated in
Fig. 2.

3.2.1.1. Properties of parameter locus Some basic results about the optimal parameter
locus can be easily established.

1. k(0) = knom which is the starting point for the parameter locus.
2. k(k̃) = k∗ where k∗ = arg mink ‖y − Xk‖1, for all k̃ ≥ ‖knom − k∗‖∞ which is the end

point (median estimator) for the parameter locus.
3. The optimal parameter locus, k(k̃), is piecewise linear. The locus is linear within each

region where the active data/parameter sets do not change.
4. The parameter space is partitioned into regions Ri where ‖y − Xk‖1 has constant

gradients. The boundaries of the regions occur when ri = yi − xT
i k = 0, as illustrated

in Fig. 2. Within each region, the active parameter and data sets do not alter and the
parameter locus is linear.

5. Assuming the active parameter space is non-empty, the optimal solution occurs at a
vertex of the constraining hypercube in active parameter (sub)space and in the inactive
parameter (sub)space, the optimal solution occurs in the interior of the relevant side of
the hypercube.

Two important properties about the optimal value of the active and inactive parameter sets
can also be easily established and geometrically illustrated in Fig. 4.

Theorem 4 (Active Parameters). The relevant vertex of the active parameter space cor-
responds to label −sgn(∇kA

p(k)) which is constant in the relevant region in parameter
space.

Proof: This can be easily established by considering the gradient of the linear perfor-
mance function and can be considered to be over the non-zero residual space only. Firstly,
since it is an ∞-norm constraint on the parameter deviations as in (10), in the non-zero
residual parameter space, the active parameter will evolve along one of the vertexes of the
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Fig. 4 An illustration of active and inactive parameters for PPT algorithm. For parameter estimate k1 in
region R1, both parameters k1 and k2 are active; for parameter estimate k2 that is in the boundary of
region R1 and R2, k1 is active but k2 is inactive.

∞-norm hypercube. Secondly, according to Theorem 2, the direction of the corresponding
vertex must be the one that optimally minimize the 1-norm performance function p(k).
Therefore, the direction of the relevant vertex is −sgn(∇kA

p(k)). �

This is illustrated in Fig. 4, for parameter estimate k1 in region R1, both parameters
(k1, k2) are active, and they lie on the vertex of hypercube, and the direction of corre-
sponding parameter updates in this region is labelled as −sgn(∇kp(k)),∀k ∈ R1.

Theorem 5 (Inactive Parameters). In the inactive parameter space, the optimal value
lies on the hypercube’s (inactive) face which passes through the active vertex. The value
occurs where the interior face intersects with set of zero residuals.

Proof: One parameter is defined to be inactive, only if it is no longer updated along the
mapping of the constraint hypercube’s vertex (e.g. k2 in Fig. 4). However, since the rest
active parameters would still evolve along the mapping of hypercube’s vertex in the cor-
responding coordinates, thus this inactive parameter must be positioned on the mapping
of hypercube’s (inactive) face which passes through the corresponding “active vertex”.
On the other hand, since the mapping of the negative gradients −∇kA

p(k),∀k ∈ Ri of
corresponding two neighbouring regions Ri to the inactive parameter’s coordinate would
be just opposite in direction, the value of corresponding inactive parameter could only
be where the hypercube’s inactive face intersects with the zero residual (as shown in
Fig. 4). �

The necessary but not sufficient condition, for an active parameter becoming inactive
is further discussed in the next sub-section.

3.2.1.2. Calculating the parameter locus Given these properties, it is possible to calcu-
late the optimal parameter locus in an iterative and computationally efficient manner:

1. The starting point is k = knom ∈ R0 and all the parameters can be assumed to be active.
The corresponding region is labelled Ri where i = 1.
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2. Within Ri the active parameters are updated according to

kA(k̃) = kA

(

Ri−1
) + k̃�kA

�kA ∝ sgn
(−∇kA

p(k)
)

, k ∈ Ri
(18)

The inactive parameters are the solution to the problem:

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

r1 = y1 − xT
1 [kI1; . . .kIn;kA1; . . .kA(m−n)] = 0

...

rn = yn − xT
n [kI1; . . .kIn;kA1; . . .kA(m−n)] = 0

(19)

Therefore, when there exist n inactive parameters kI = [kI1; . . .kIn], there are at least
n zero data residuals, i.e. ri = yi −xT

i k = 0 and the n inactive parameters can therefore
be uniquely determined by solving the n equations in (19), in which it is assumed that
the m − n active parameters kA = [kA1; . . .kA(m−n)] are known. The inactive parame-
ters can be updated as

kI (k̃) = kI

(

Ri−1
) + (

k̃ − k̃i−1
)

�kI

�kI ∝ (

XT
I,A

)−1
yA

(20)

where k̃i−1 denotes the value of maximum parametric deviation of the last region Ri−1

and yA is the “active” output data set associated with zero residuals.
3. When the parameter locus enters a new region Ri+1, the active and inactive sets

change.

(i) Active parameter becomes inactive. The necessary condition for an active parame-
ter becoming inactive is when a residual becomes zero and there is a corresponding
sign change in ∇kp() for that active parameter.

(ii) Inactive parameter becomes active. This occurs when the optimal solution for an
inactive parameter lies outside the hypercube’s face boundary.

4. The algorithm will terminate at k∗.

This process is illustrated in Fig. 5.

Fig. 5 A simple illustration of how the optimal parameter locus (red) evolves for PPT algorithm.
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3.2.2. PPT parameter locus for dynamic models
For dynamic pathway models, the linear static assumption made in Section 3.2.1 is only
locally valid. This means that the previously described piecewise linear parameter locus is
an approximation of the true nonlinear parameter locus, in particular, the true parameter
locus k(k̃) will be a piecewise continuous nonlinear curves and no analytic solution exists.
However, it is possible to approximate the true parameter locus because the starting point
of the parameter locus and the active/inactive constraints are equivalent to the linear, static
case. The key difference is that the parameter locus gradient ∇k̃k(k̃) is locally calculated
and then numerically integrated. This is used in the example in the following section
and a more detailed description of this process is given in a related paper (Brown et al.,
2009).

4. Example

The first illustrative pathway example in the original PPT paper (Wilkinson et al., 2008)
is revisited here. It contains two reactions in series that convert species 1 to species 3
via an intermediate species 2 as shown in Fig. 6. The initial as well as the nominal value
of reaction parameters are set to be knom

1 = 0.15 s−1 and knom
2 = 0.015 s−1, and the initial

concentration of species 1 is 1 µM whereas species 2 and 3 have zero initial concentration.
When setting model parameters the same as the optimal values in Conrad and Tyson
(2006) (k∗

1 = 0.0103 s−1, k∗
2 = 0.0152 s−1), the generated time series data of species 2 is

used as training data with additive zero mean Gaussian i.i.d. noise (σ = 0.01).
The logarithmic PPT optimization problem (1) is used for parameter estimation with a

1-norm on the residuals and a ∞-norm on the parameter deviations. The parameter devi-
ations are constrained by k̃ which lies in the range 0 to ∞, generating the parameter loci.
By sampling k̃ from 0.0001 to 40, the estimated parameter values and optimal parameter
locus are given in Table 1 and Fig. 7.

Table 1 shows that as the parameter deviation constraint bound k̃ increases from a
small value, the estimated parameter values evolve gradually from the initial nominal val-
ues to the median estimates. The optimal parameter locus that evolves as a function of
k̃ is shown in parameter space in Fig. 7. When k̃ is small, optimal parameter values are

Fig. 6 Pathway structure of the illustrative irreversible reaction example.

Table 1 Optimal estimated parameters under different regularization parameter constrain values

k̃ = 0.0001 0.001 0.005 0.01 0.05 0.1 0.5 1 5 10 20 40

k1 0.1500 0.1497 0.1483 0.1466 0.1337 0.1191 0.0474 0.0150 0.0102 0.0102 0.0102 0.0102

k2 0.0150 0.0150 0.0148 0.0147 0.0134 0.0119 0.0100 0.0138 0.0152 0.0152 0.0152 0.0152

log(k1) −0.8240 −0.8249 −0.8289 −0.8339 −0.8739 −0.9239 −1.3239 −1.8239 −1.9923 −1.9922 −1.9922 −1.9922

log(k2) −1.8240 −1.8249 −1.8289 −1.8339 −1.8739 −1.9239 −2.0012 −1.8612 −1.8195 −1.8195 −1.8195 −1.8195
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Fig. 7 Optimal parameter locus of PPT algorithm for the illustrative exemplar pathway. The logarithmic
estimated parameter deviations from the nominal values plot against the parameter deviation constrains k̃

(upper). Two dimensional optimal parameter locus plot in logarithmic parameter space (nether). The con-
tours are the 1-norm performance function, and the dashed black lines represent the ∞-norm parametric
constraints.

close to nominal values knom, and both parameters are active so they evolve along the
vertex of the ∞-norm box constraints. When the box constraint vertex hits one of the
zero residual curves, parameter k2 become inactive but k1 still remains active. At this
point, the parameter locus deviates from the −45 degree vertex direction and evolves
along the zero residual trajectory until it reaches the maximum likelihood solution k∗.
It should be noted that this zero residual curve is non-linear rather than piecewise linear
for linear static cases. This matches the theoretical analysis of optimal parameter locus
in Section 3.2. However, it is worth noting that in the parameter space where the vertex
of the ∞-norm box constraint intersects with the zero residual curve the cost function is
badly conditioned. This explains why the parameter locus evolves along the zero resid-
ual trajectory that lies in the valley of objective function contours, since these two are
fairly close to each other. This is further illustrated by the zero residual trajectory plots in
Fig. 8.

The dashed dot lines in Fig. 8 are (a subset of) the zero residual trajectories, in the
parameter space, each of which is determined by ri = yi − ŷi (k) = 0 corresponding to the
ith data point. In this example, 300 measurement data points are generated, with only 10
representative data points (yi) are shown here. It is obvious that most of the zero residual
trajectories lie along the valley of the cost function, since the 1-norm optimization cost
function is quite badly conditioned; and as can be expected, all the zero residual curves
cross at the maximum likelihood solution. The red dashed dot line denotes the “optimal”
zero residual trajectory determined by the 1-norm cost function, and the optimal parameter
locus (as in Fig. 7) only varies its direction when the vertex of ∞-norm box constraint
hits this “optimal” zero residual trajectory.
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Fig. 8 Selected zero residual curves plot (dashed dot line) in the parameter space.

Fig. 9 Optimal parameter locus of using 1-norm measure on the parameter deviation for illustrative ex-
emplar pathway.

For comparison with the ∞-norm constraint, the parameter locus using the 1-norm
parameter deviation is also given in Fig. 9.

Figure 9 verifies that using the parameter deviation 1-nom corresponds to a minimal
parameter perturbation strategy as described in Section 3.1.3. As the parameter deviation
constraint bound, k̃, initially increases, only one parameter, k2, becomes active. When
the 1-norm constraint intersects with the zero residual trajectory, both parameters become
active, and the optimal parameter locus evolves along this curve. Since the nominal value
of parameter knom

2 is very close to its optimal value k∗
2 in this example, the parameter k2
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becomes inactive (deviation to the nominal value equal to zero) when the optimal locus is
close to the maximum likelihood (median) solution.

5. Conclusions

This paper has provided a detailed analysis of the properties of the PPT algorithm, a re-
cently published method for inverse modelling in systems biology. This has been done
from a regularization perspective where the balance between the information content of
measured data and prior knowledge has been explored. In computational systems biology,
this is important since there is often limited information available, both from experimental
data and prior knowledge. It is therefore necessary to combine all sources of information
into model identification algorithms. The PPT algorithm uses prior knowledge of the net-
work structure and also best guesses for the individual parameter values.

The choice of weighting between the prior parameter values and the exemplar data is
important for the inverse modeller. In this paper, the concept of the optimal parameter lo-
cus used to explore the entire family of optimal solutions, and hence analyse the sensitivity
of the model. Another key aspect of the PPT algorithm is its computational efficiency as it
uses a relatively cheap LP sub-problem at each iteration. A rational derivation of this LP
problem for nonlinear dynamic pathway system has been provided. It is also shown that
the use of the 1-norm on the logarithmically transformed residuals essentially implies an
assumption of log Laplacian noise. The dual form of the primal PPT problem is presented
to prove the equivalence of the number of inactive parameters and the number of zero
residuals at optimality. Using this and other properties we demonstrate how the parame-
ter locus can be calculated efficiently and we provide a graphical interpretation of how it
evolves.

In computational systems biology, we are getting increasingly comfortable with
analysing underdetermined models in which the parameters are not individually iden-
tifiable. This is because our immediate aim is to characterise our model in terms of a
restricted range of outputs and these outputs may be tightly constrained by the available
data even though many individual parameter values might not be. In this context, effi-
cient algorithms for inverse modelling such as the PPT algorithm can be used to extract
maximum value from what data is currently available and help prioritise the experiments
needed to reduce the uncertainty that remains. Since the PPT regularization algorithm is
biased toward prior parameter values, a thorough understanding of its properties as pre-
sented in this paper is essential for its successful application. Such algorithms will drive
the iterative improvement between modelling and experimentation to deliver truly predic-
tive computational models for systems biology.

Appendix A: PPT algorithm

The basic PPT algorithm is focussed on the case when the information in the exemplar
data is of a lower dimension than the model, so estimating the parameters is an ill-posed
problem. As an extreme case, a situation is described in Wilkinson et al. (2008) where the
model has 83 parameters and only two features are available: the time to peak value and
the actual peak value. The PPT algorithm is formulated as an iterative sequence where,
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at each step, a linear programming (LP) problem is solved. This LP sub-problem is a
linearisation of the following unconstrained minimisation problem:

minf (k) = ∥
∥α

(

log knom − log k
)∥
∥

1
+ ᾱ

∥
∥log knom − log k

∥
∥

∞

+ ∥
∥β

(

log y − log
(

ŷ(k)
))∥

∥
1
+ β̄

∥
∥log y − log

(

ŷ(k)
)∥
∥∞ (A.1)

where α and β are diagonal matrices of positive weighting coefficients and ᾱ, β̄ are
positive scalar weighting coefficients.

This objective function given by (A.1) is a linear combination of the (weighted)
1-norm and ∞-norm of both the logarithmically transformed parameter deviations from
their nominal values and the logarithmically transformed residuals.

In order to transform (A.1) into an LP problem, we introduce two complementary
non-negative vectors �ỹ+ and �ỹ− which are defined by

�ỹ+ − �ỹ− = log y − log
(

ŷ(k)
)

(A.2)

Then it can be seen that sum of these two new vectors must be greater than or equal to the
absolute value of the right-hand side of (A.2):

�ỹ+ + �ỹ− ≥ ∣
∣log y − log

(

ŷ(k)
)∣
∣ (A.3)

and consequently we can also relate them to the 1-norm term appearing in the objec-
tive (A.1) using the following inequality:

β̂
T (

�ỹ+ + �ỹ−) ≥ ∥
∥β

(

log y − log
(

ŷ(k)
))∥

∥
1

(A.4)

where β̂ is the vector of diagonal elements of the diagonal matrix β . We also introduce
an additional slack variable ỹ to which we apply the following constraints:

1ỹ ≥ �ỹ+ − �ỹ−

1ỹ ≥ −(

�ỹ+ − �ỹ−) (A.5)

which automatically imply the following relationship with respect to the ∞-norm:

ỹ ≥ ∥
∥log y − log

(

ŷ(k)
)∥
∥

∞ (A.6)

In an entirely analogous manner, we introduce similar non-negative vectors �k̃+ and �k̃−
and a slack variable k̃ for the parameter deviations:

�k̃+ − �k̃− = log knom − log k (A.7)

1k̃ ≥ �k̃+ − �k̃−

1k̃ ≥ −(

�k̃+ − �k̃−) (A.8)

which similarly imply the following:

α̂
T
(

�k̃+ − �k̃−) ≥ ∥
∥α

(

log knom − log k
)∥
∥

1
(A.9)

k̃ ≥ ∥
∥log knom − log k

∥
∥∞ (A.10)

where α̂ is the vector of diagonal elements of the diagonal matrix α.
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Finally, the local relationship between the new residual and parameter deviation vec-
tors is established by the linearisation of the function log(ŷ(k)) about the current point in
parameter space which we shall denote by k0:

log
(

ŷ(k)
) = log

(

ŷ
(

k0
)) + S

(

k0
)(

log k − log k0
)

= log
(

ŷ
(

k0
)) + S

(

k0
)(

log k − log k0
)

log
(

ŷ(k)
) = log

(

ŷ
(

k0
)) + S

(

k0
)((

�k̃+0 − �k̃−0
) − (

�k̃+ − �k̃−))

Substituting this linearisation into (A.2) yields:

�ỹ+ − �ỹ− = log y − log
(

ŷ
(

k0
)) − S

(

k0
)((

�k̃+0 − �k̃−0
) − (

�k̃+ − �k̃−))

(A.11)

The above equality provides a step to take in parameter space in order to reduce the resid-
ual vector from its current value: log y − log(ŷ(k0)). When considering that we are using
a succession of linear approximations to the true dependence of outputs on parameters,
we may wish to be conservative in moving in some directions at a given iteration of the
algorithm. This can be achieved by the introduction of a diagonal step length matrix γ
whose diagonal elements are between zero and unity:

�ỹ+ − �ỹ− = γ
(

log y − log
(

ŷ
(

k0
))) − S

(

k0
)((

�k̃+0 − �k̃−0
) − (

�k̃+ − �k̃−))

(A.12)

Note that the inequalities (A.4), (A.6), (A.9) and (A.10) relating the new variables to
the respective 1-norm and ∞-norm terms in the unconstrained problem (A.1) become
strict equalities under the pressure of minimisation. We can therefore use these relations,
together with constraints (A.5), (A.8), and (A.12), to formulate an equivalent constrained
LP problem:

min f
(

�k̃+,�k̃−, k̃,�ỹ+,�ỹ−, ỹ
)

= α̂
T
(

�k̃+ + �k̃−) + ᾱk̃ + β̂
T (

�ỹ+ + �ỹ−) + β̄ỹ

s.t. 1k̃ ≥ �k̃+ − �k̃−

1k̃ ≥ −(

�k̃+ − �k̃−)

1ỹ ≥ �ỹ+ − �ỹ−

1ỹ ≥ −(

�ỹ+ − �ỹ−)

�ỹ+ − �ỹ− = γ
(

log y − log
(

ŷ
(

k0
)))

− S
(

k0
)((

�k̃+0 − �k̃−0
) − (

�k̃+ − �k̃−))

(A.13)

The problem above is the LP sub-problem that is solved at each iteration of the PPT
algorithm. When comparing this to the sequential LP problem (4) in the main text, the
following differences should be noted:
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1. The formulation above is more general in terms of its objective, the weightings and
the step lengths, etc. and also the symmetry between the residuals and parameter de-
viations (both norms considered for each). However, (4) in the main text is easier to
analyse.

2. The �k̃+ and �k̃− variables above relate to the parameter deviations from their nom-
inal values rather than the change from the previous (linearized) point in parameter
space which is denoted as �k in (4). This is a point of terminology only.

3. In principle, the formulation above allows positive and negative parameter deviations
and residuals to be weighted differentially so as to represent non-symmetric probability
distributions.
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