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Abstract Biological control has been attracting an increasing attention over the last two
decades as an environmentally friendly alternative to the more traditional chemical-based
control. In this paper, we address robustness of the biological control strategy with respect
to fluctuations in the controlling species density. Specifically, we consider a pest being
kept under control by its predator. The predator response is assumed to be of Holling
type III, which makes the system’s kinetics “excitable.” The system is studied by means
of mathematical modeling and extensive numerical simulations. We show that the system
response to perturbations in the predator density can be completely different in spatial and
non-spatial systems. In the nonspatial system, an overcritical perturbation of the popula-
tion density results in a pest outbreak that will eventually decay with time, which can be
regarded as a success of the biological control strategy. However, in the spatial system, a
similar perturbation can drive the system into a self-sustained regime of spatiotemporal
pattern formation with a high pest density, which is clearly a biological control failure.
We then identify the parameter range where the biological control can still be successful
and describe the corresponding regime of the system dynamics. Finally, we identify the
main scenarios of the system response to the population density perturbations and reveal
the corresponding structure of the parameter space of the system.

Keywords Biological control · Predator-prey system · Holling type III · Excitable
system · Excitability · Pattern formation

1. Introduction

Mathematical models of population dynamics are of considerable interest because of their
proven power to make important insights into the dynamics of real populations and com-
munities (May, 1974; Nisbet and Gurney, 1982; Murray, 1989; Shigesada and Kawasaki,
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1997). Much has been learned through the application of mathematical modeling. In par-
ticular, the idea of intrinsic population cycles, which is one of the basic concepts of con-
temporary theoretical ecology, would hardly have ever appeared without the mathematical
work by Lotka (1925) and Volterra (1926).

While the original idea of population cycles was obtained in terms of a simple bilin-
ear model, later studies showed that the details of the system “kinetics” are important.
Introduction of saturation into species growth leads to the limit-cycle oscillations which
are biologically more relevant than neutral stability of the Volterra model. Later, there
came the recognition that even smaller details can have a crucial effect. In a predator-prey
system where predation is described by a concave function, cf. Holling type II trophic
response, population cycles appear when the equilibrium state looses its stability through
the Hopf bifurcation. Stationary species coexistence is then not possible any more and
the large-time system dynamics is given by periodic population oscillations that can be of
various amplitude for different parameter values, ranging from very small to very large.

On the contrary, a predator-prey system with a sigmoid-shaped predator response, cf.
Holling type III, exhibits properties similar to what is known as an “excitable system”:
a sufficiently large perturbation of the locally-stable coexistence state results in a single
population cycle of large amplitude. When the system returns, in the large-time limit, into
its steady state it stays there until another supercritical perturbation will drive it away.
This model is therefore more appropriate to describe population outbreaks rather than pe-
riodical self-sustained cycles. Indeed, it was originally used to describe spruce budworm
outbreaks in forest ecosystems (Ludwig et al., 1978), and later to study the “red tides” in
marine plankton communities (Truscott and Brindley, 1994a, 1994b).

An issue that has been a challenging problem for ecology over several decades is harm-
ful species management. Application of chemical pesticides which used to be the main
tool of control is currently regarded as ineffective because its nonselective impact on
harmful and nonharmful species as well as on humans. Alternatively, an increasing at-
tention has been recently paid to a possibility of biological control (Fagan et al., 2002;
Sapoukhina et al., 2003; Briggs and Hoopes, 2004; Hajek, 2004) which is based on the
assumption that the abundance of given species is likely to become lower in the presence
of its competitors and/or predators or parasites. Indeed, there are many examples when
this strategy has been successfully implemented in practice, e.g., see Room et al. (1981),
McEvoy et al. (1991) and Mendel et al. (1998).

A broader practical application of biological control requires better understanding of
the limits of its robustness with respect to fluctuations in the species densities. It is intu-
itively clear that to keep given harmful species under control, the density of the controlling
agent, e.g., its predator, should be sufficiently high. However, what actually can happen
if the predator density falls to a low value, e.g., as a result of a fluctuation in the weather
conditions or unintentional anthropogenic impact? Apparently, the answer depends on the
type of the species interaction. While for a nonspatial system with Holling type II preda-
tor response to a perturbation in population density will promptly decay with time, for a
population system with excitable kinetics a perturbation of the same magnitude may re-
sult in a population outbreak. In the latter case, the system then eventually returns into its
equilibrium state, but not until after its trajectory in the corresponding phase space makes
a long “excursion” through the domains where the population density can be very high.

The above problem is much less understood if considered in space. Several papers have
been published to address the issue of population outbreaks, cf. Ludwig et al. (1978), Har-
rison (1997), and Hunter and Dwyer (1998); however, they were mostly concerned with
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the temporal dynamics leaving the spatial aspect of the phenomenon aside (but see Petro-
vskii and Li, 2001). Meanwhile, the spatial aspect makes the systems dynamics notably
richer and often qualitatively different, bringing phenomena that are not possible in the
corresponding homogeneous system, i.e., spatial/spatiotemporal pattern formation (Pas-
cual, 1993; Pascual and Caswell, 1997; Sherratt et al., 1995; Petrovskii and Malchow,
1999, 2001; Malchow et al., 2008). Therefore, an immediate question is how a local pop-
ulation outbreak in an excitable predator-prey system, which can be triggered by an ac-
cidental change in the population density, will evolve in space and time. In particular,
an issue that is important for credibility of the biological control strategy as a whole is
whether the original equilibrium state of the system is going to be restored or the pertur-
bation may drive the system into a self-sustained dynamical regime.

In this paper, we address this issue by means of mathematical modeling and extensive
computer simulations. We show that compared to the corresponding nonspatial system,
a spatially extended predator-prey system with excitable kinetics can have an essentially
different type of response to a perturbation of species density. While in a homogeneous
system a population outbreak eventually decays with time, so that the system gradually
returns to its locally stable steady state, in the corresponding spatial system a localized
perturbation may result in a self-sustained spatially heterogeneous structure. We also show
that the conditions of successful biological control appear to be restricted to the case when
diffusivity of the harmful species (i.e., prey) is on the same order as the diffusivity of its
predator, while both very fast and very slow species are able to escape. Finally, we identify
the main regimes of the system dynamics and reveal the structure of the parameter space
of the system.

2. Main equations

The spatiotemporal dynamics of a harmful species U , being controlled by its predator V ,
is described by the following model:

∂U(X,Y,T )

∂T
− D1∇2U = F(U) − G(U)V, (1)

∂V (X,Y,T )

∂T
− D2∇2V = κG(U)V − MV, (2)

where U and V are the densities of prey and predator, respectively, at moment T and
position (X,Y ), D1 and D2 are species diffusivities due to the motion of individuals and
κ is the prey consumption efficiency. Function F(U) describes prey reproduction, the
term G(U)V describes predation, and the term MV stands for predator mortality.

It should be mentioned that Eqs. (1–2) can be regarded as a simple ecosystem model
where prey is a producer and predator is a consumer. The impact of other trophic levels
and environmental factors is taken into account through the corresponding coefficient
values; for instance, the per capita mortality rate M may describe a combined effect of
the natural mortality and the predation by a top predator (cf. Scheffer, 1991, 1998).

We consider Holling type III predator trophic response and use the following parame-
trization:

G(U) = A
U 2

B2 + U 2
, (3)
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where A describes predation intensity and B is the half-saturation prey density.
For the prey reproduction, we assume that it can be described by the logistic growth

function:

F(U) = rU

(
1 − U

K

)
, (4)

where K is the prey carrying capacity and r is the maximum per capita growth rate.
Introducing dimensionless variables, u = U/K,v = V/(κK), x = X(a/D2)

1/2, y =
Y (a/D2)

1/2 and t = aT where a = AκK2B−2, from Eqs. (1–4), we obtain:

∂u(x, y, t)

∂t
− ε∇2u = γ u(1 − u) − u2v

1 + α2u2
, (5)

∂v(x, y, t)

∂t
− ∇2v = u2v

1 + α2u2
− μv, (6)

where α = K/B,γ = r/a,μ = M/a and ε = D1/D2.
Along with system (5–6), we consider its 1-D analogue, i.e.,

∂u(x, t)

∂t
− ε

∂2u

∂x2
= γ u(1 − u) − u2v

1 + α2u2
, (7)

∂v(x, t)

∂t
− ∂2v

∂x2
= u2v

1 + α2u2
− μv. (8)

Most of the results below will be obtained by means of numerical simulations. For
that purpose, we need specific choice of the prey growth function and the predator trophic
response, cf. Eqs. (3–4). However, we will also make use of some results that can be
proved rigorously and for a rather general case, when parametrization is not specified.
Thus, along with (5–6), we will also retain a more general form for the predator-prey
system:

∂u

∂t
− ε∇2u = f (u) − g(u)v ≡ P (u, v), (9)

∂v

∂t
− ∇2v = g(u)v − μv ≡ Q(u,v), (10)

where, for biological reasons, g(u) is a monotonously increasing function, g(0) = 0,
g(u) > 0 for u > 0. Apparently, the system (9–10) has the same structure as the origi-
nal system (1–2) but all the values are now dimensionless.

Before proceeding to the spatially explicit case, it is useful to have a look at the prop-
erties of the local dynamics, i.e., at the properties of the following system:

du

dt
= f (u) − g(u)v,

dv

dt
= g(u)v − μv. (11)

The (null-)isoclines of the system (11) are given by the following equations:

(a) v1(u) = f (u)

g(u)
(u > 0) and (b) g(ū) = μ. (12)
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Fig. 1 Phase plane of the system (11) shown for α = 10, γ = 1 and μ = 0.004. Curves 1 and 2 show the
isoclines; solid curves show different system’s trajectories for the initial perturbation of different magni-
tude, smaller loop for a subcritical initial perturbation, larger loop for an overcritical initial perturbation.

Since function g(u) is monotonously increasing, the last equation in (12) provides a
unique value ū.

In the case of the specific parameterizations considered above, it turns into

v1(u) = γ

u
(1 − u)

(
1 + α2u2

)
, (13)

and

u = ū =
(

μ

1 − μα2

)1/2

, (14)

respectively.
The shape of the isocline v1(u) appears to essentially depend on parameter α. While

for small values of α, it is a monotonously decreasing function, for α2 > α2
c = 27, it

acquires two local extremuma, so that the corresponding curve becomes S-shaped. The
corresponding phase plane of the system is shown in Fig. 1. Note that parameter μ affects
only the position of the isocline u = ū but not the shape or position of v1(u).

It is readily seen that apart from the extinction state (0,0) and the prey-only state
(1,0), system (11) can have only one coexistence steady state which is feasible for

μ <
1

1 + α2
. (15)

Note that the prey density ū in the coexistence state can be significantly lower than it
would be without predator. This simple observation makes a theoretical beachhead for bi-
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ological control strategy: an introduction of a relevant predator can make the pest density
much smaller.

The next issue is the steady state stability. It is straightforward to check that the extinc-
tion state (0,0) is always unstable. The prey-only state (1,0) is unstable when the isocline
for predator, cf. (14), crosses the u-axis on the left of u = 1, i.e., under condition (15);
otherwise, the state (1,0) is stable. Correspondingly, it means that the prey-only state
becomes stable only when the coexistence state(s) goes below the horizontal axis and,
therefore, disappears from the upper semiplane.

As for the stability of the coexistence state (ū, v̄), it depends on the position of the state
with respect to the local extremuma of the null-isocline v1(u). The coexistence steady
state is stable if and only if the vertical line (12b) crosses a descending part of the prey
isocline v1(u). In particular, it means that it is always stable for α2 < α2

c .
The standard linear stability analysis gives conditions of steady state stability with re-

spect to small perturbations. An important question is what can be the system’s response
if a perturbation is not small. A generic property of excitable systems (e.g., see Murray,
1989) is that there exists a threshold value of the density perturbations, so that a pertur-
bation of an overcritical amplitude will not decay straightforwardly. Instead, at the first
stage, the prey density may exhibit an exponentially fast growth up to very large values. At
the second stage, the prey density starts decreasing at a slow rate, which is then followed
by a fasts decay, and finally by a slow relaxation to its original steady state value. The cor-
responding system’s trajectory is shown in Fig. 1 by the long solid curve; for comparison,
the short solid curve corresponds to the fast decay of small (subcritical) perturbations.

3. Regimes of spatiotemporal dynamics

Excitable systems have been under intensive study for about 3 decades in relation to var-
ious physical, chemical, and biological phenomena (Fife, 1976; Murray, 1989; Pearson,
1993; Krischer and Mikhailov, 1994; Muratov and Osipov, 1996a, 1996b; Ermentrout
et al., 1997; Gurney et al., 1998). Yet the principal issue of identification of the main
spatiotemporal self-organization scenarios in such systems is still very far from being ad-
dressed exhaustively. One apparent reason for that is that a regular analytical study of a
system of diffusion-reaction equations is virtually impossible, subject to only a few ex-
ceptions (cf. Mimura et al., 1980; Muratov and Osipov, 1996a). Analytical approaches are
usually limited to the case when the ratio of the diffusion coefficients is either very small,
ε � 1, or very large, ε � 1. Even in these cases, however, existing analytical approaches
typically result not in a problem solution or a bifurcation diagram or a dispersion relation,
but just in a somewhat simpler system of differential equations, which still needs to be
solved numerically (Muratov, 1996).

Surprisingly enough, also direct numerical simulations of the original system have
usually been restricted to the case ε � 1 (cf. Muratov and Osipov, 1996b) while system’s
properties for ε ∼ 1 remain largely nonaddressed. That leaves a wide gap in our knowl-
edge. In order to bridge this gap (at least, partially) and to reveal the corresponding suc-
cession of dynamical regimes, in this study, we fulfilled extensive numerical simulations
varying ε from 0 to the values on the order of 1.

Let us note that the system under study depends on four parameters. Therefore, its
exhaustive numerical investigation, i.e., by varying each of the parameter in a sufficiently
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wide range, is hardly possible. Instead, we applied another strategy. Namely, we fulfilled
a detailed study varying only two of the parameters and keeping the other two fixed at a
certain hypothetical value.

In order to appropriately choose the parameters to be varied, we have to take into ac-
count some biological arguments along with a priori information about the system prop-
erties. A motivation of this study has been found in the problem of biological control, the
controlling factor being assumed to be predation. Intensity of predation can be regulated
by means of varying predator mortality; thus, a relevant controlling parameter is μ. On the
other hand, the properties of a diffusion-reaction system are known to depend significantly
on the diffusivity ratio; correspondingly, the second parameter to be varied is ε.

Equations (5–6) and (7–8) were solved by the finite difference method using an im-
plicit numerical scheme for the 1-D system and a simple explicit scheme for the 2-D
system (Thomas, 1995). Sensitivity of the results to the value of the grid steps in space
and time was checked and their values were chosen sufficiently small in order to avoid
any significant numerical artifact. At the boundaries of the numerical domain, the no-flux
conditions were applied.

For the initial conditions, we assume that perturbation of the equilibrium state origi-
nally takes place in a certain finite domain. Moreover, here we are mostly interested in
the situation when only the predator density is perturbed (decreased). Specifically, we
consider the initial conditions in the following form:

u(x,0) = ū for any x, (16)

v(x,0) = V0 < v̄ for − Δv < x < Δv, otherwise v(x,0) = v̄ (17)

in the 1-D case, and

u(x, y,0) = ū for any (x, y), (18)

v(x, y,0) = V0 + a(x − x0) + b(y − y0)

for |x − x0| < Δx and |y − y0| < Δy, and

v(x, y,0) = v̄ otherwise,

(19)

in the 2-D case. Here, V0 is the initial value of the (perturbed) predator density, Δv or Δx

and Δy give the size of the affected domain, and a and b are auxiliary parameters with an
obvious meaning.

It should be mentioned that the type of system’s dynamics crucially depends on the
“magnitude” of the initial outbreak, i.e., on the initial density perturbation |V0 − v̄| and
the size of the domain (i.e., Δv or Δx and Δy ). In a spatially extended excitable system,
in case the size is not large enough, an initial perturbation will decay promptly and the
spatially homogeneous steady state is retained, even if the value of |V0 − v̄| would be
sufficient to trigger a population outbreak in the nonspatial case. An interesting problem
here would be to estimate the critical parameter values separating different regimes (cf.
“the problem of critical aggregation,” Petrovskii and Li, 2006); however, it lies beyond
the scope of this paper. Since here we are more interested in a nontrivial spatiotemporal
evolution of the initial outbreak, in our simulations, the initial density perturbation and
the size of the perturbed domain are always chosen to be sufficiently large.
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3.1. Pattern formation in 1-D case

One issue to be addressed before proceeding to simulations is how to choose the pa-
rameter values compatible with those of real populations. It should be mentioned here
that depending on particular system, the range of possible values span over almost
two orders of magnitude. For instance, while for the rodents-weasels system the value
of α = K/B is roughly estimated to be between 5–6 (cf. Sherratt and Smith, 2008),
for a phyto-zooplankton system it is between 10–20 (Truscott and Brindley, 1994a;
Franks, 2001), and for the budworm-birds system it is on the order of 100 (Ludwig et
al., 1978). A related question is then whether thew system’s kinetics is actually excitable.
Since the plankton system has long been one of the paradigms of the excitable popu-
lation dynamics (Truscott and Brindley, 1994a,1994b), we chose it as a prototype and
look for the other parameter values accordingly, which are estimated as r = 1–2 day−1

(Edwards and Brindley, 1999), Aκ = 0.03–0.06 day−1 (Truscott and Brindley, 1994a;
Edwards and Brindley, 1999) and M = 0.01–0.02 day−1 (Truscott and Brindley, 1994a),
so that γ = 0.04–0.7 and μ = 0.0004–0.007.

Correspondingly, in order to investigate possible dynamical regimes of the system
(7–8) in computer simulations, we fix α = 10 and γ = 1. With these values, the sys-
tem’s kinetics is excitable; see Fig. 1. We then run our code for different combinations
of μ and ε, each of them being consequently varied in a wide range. For all parameter
values, we have used the initial conditions (16–17) with V0 = 16 and Δv = 2.5. Basing
on the results obtained in this way, we then construct a parametric portrait in the (μ,ε)
plane, see Fig. 2, with the examples of different regimes shown in Figs. 3, 4, 5.

For large values of ε (domain 1 in Fig. 2), a local disturbance of the homogeneous
equilibrium results in the formation of a solitary traveling patch or “pulse.” Figure 3a

Fig. 2 A map in the μ − ε parameter plane obtained for γ = 1 and α = 10 and the initial conditions
V0 = 16 and Δv = 2.5. Different domains correspond to different dynamical regimes of the system: do-
main 1 for the traveling patches or “pulses” (Fig. 3a), domain 2 for the pulses localization (Fig. 3b),
domain 3 for the formation of irregular patchy pattern (Fig. 4), domain 4 for the formation of periodic
spatial pattern and domain 5 for the formation of a solitary standing patch (Fig. 5a).
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Fig. 3 Snapshots of the prey population density. (a) Traveling patches/pulses propagation shown for
μ = 0.005 and ε = 0.3. (b) The dynamical localization of the pulses due to the catch-up of the preda-
tor; parameters are μ = 0.005 and ε = 0.2.

shows snapshots of the prey population density (the predator density forms a qualitatively
similar pattern) calculated at different moments of time for μ = 0.005 and ε = 0.3. Cor-
respondingly, ū = 0.1 and v̄ = 18. Since the problem is symmetrical with respect to the
origin, in Figs. 3–5 only half of the whole numerical domain is shown. The pulse prop-
agates with a constant speed and its shape remains unchanged. In the wake of the pulse,
the homogeneous species distribution is eventually restored. The underlying mechanism
of the pulse propagation is qualitatively similar to a prey-predator pursuit mechanism (cf.
Murray, 1989). We want to mention that this type of spatiotemporal dynamics is very
common for the systems with excitable kinetics, e.g., see Muratov and Osipov (1996b);
also Lindner et al. (2004) and references therein.

However, for somewhat smaller values of prey dispersal rate (domain 2 in Fig. 2), the
predator becomes capable to catch up with the prey and to bring it down. Figure 3b shows
snapshots of the prey density at different moments of time for the parameters μ = 0.005
and ε = 0.2. At the early stage, a traveling population pulse is formed. The pulse prop-
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Fig. 4 Snapshots of the population density (solid curve for prey, dashed for predator): Formation of an
irregular spatial pattern for parameters μ = 0.005 and ε = 0.03.

agates over a certain distance with almost constant speed. However, these dynamics are
now not self-sustained. The predator finally catches up with the prey; the pulse is blocked
and the outbreak disappears promptly. This change in the pattern of dynamics coincides
very well with what is intuitively expected basing on ecological argument. A decrease in
ε means that prey is a slower moving species compared to predator, and thus it becomes
more vulnerable, cf. Fagan et al. (2002) and the references therein.
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Fig. 5 (a) A snapshot of the population density (solid curve for prey, dashed for predator) in the case of
a solitary stationary patch, parameters are μ = 0.005 and ε = 0.001. The vertical dashed-and-dotted line
shows the position of the patch boundary. (b) The phase plane of the system, the thick curve (partially
coinciding with the isocline) corresponds to a discontinuous population density profile obtained in the
limiting case ε = 0.

Surprisingly, a further decrease in the diffusivity ratio ε results in regimes where the
prey is able to escape again. In particular, Fig. 4 shows the snapshots of the population
densities obtained for μ = 0.005 and ε = 0.03 (domain 3). Population patches now spread
over whole domain forming an irregular spatial pattern. The motion of patches is more
complicated than the simple propagation in the case of a traveling pulse. The patches
interact with each other, merge and split; some of them may disappear but new patches are
formed instead, etc. The area occupied by patches grows in size steadily so that finally, the
irregularly moving interacting patches occupy the whole domain. Long-term simulations
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prove that this regime of the system dynamics is self-sustained, and the system never
returns to its spatially homogeneous state.

For lower values of ε (see domain 4), the localized initial perturbation also spreads
over the whole domain through the dynamics of separate patches but leading to a some-
what different result. (For the sake of brevity, we do not show the corresponding snap-
shots here.) In this case, the final spatial population distribution forms a structure that is
stationary and periodical in space. The total number of the patches is determined by the
length L of the area. Formation of this type of pattern is usually attributed to Turing’s
instability. In our case, however, the mechanism is different. Indeed, it is readily seen that
in a predator-prey system with a prey-dependent predator trophic response1 and a linear
predator mortality, the conditions for Turing’s instability cannot be fulfilled; see Segel and
Jackson (1972), also Malchow et al. (2008) for more details.

For very small values of ε (domain 5), the predator becomes able to catch up with the
prey again. However, the predator can now only block the propagation of the outbreak but
cannot bring it down, and a single stationary patch with sharp boundaries is formed; see
Fig. 5a obtained for μ = 0.005 and ε = 0.001. We will make a more careful insight into
its properties in the next section.

In conclusion to this section, we also want to mention that as we observed in our
numerical experiments, variation of the parameters γ and α does not bring any qualitative
changes to the structure of the μ−ε parametric plane as long as system’s kinetics remains
to be of excitable type.

3.2. Standing patches

Our numerical simulations show that for ε being either zero or only slightly greater than
zero, the initial species outbreak always converge to a single stationary patch with a sharp
boundary, i.e., a narrow transition region, separating the areas with high and low values
of the prey density; see Fig. 5a. Outside the patch, with an increase in distance from the
patch boundary, the prey density gradually approaches its equilibrium density ū. Inside
the patch, the density reaches its minimum in the patch center and gradually increases
toward the edge. The spatial distribution of predator is given by a slowly varying dome-
shaped function.

The existence of patterns with sharp boundaries in a diffusion–reaction system with
the diffusivity ratio ε � 1 is a well-known phenomenon (cf. Fife, 1976; Mimura et al.,
1980; Hastings et al., 1997; Hosseini, 2006). The boundary width is on the order of ε1/2

which apparently means that for ε = 0 the density distribution becomes discontinuous:
for a certain critical value v∗ of the predator density, the trajectory in the phase plane of
the system “jumps” from one stable branch of the isocline to the other; see Fig. 5b.

We want to emphasize here that patterns with the features described above is not just
a mathematical toy, but is a phenomenon widely observed in various natural systems.
In population dynamics, such pattern would correspond to a stationary outbreak of a
species with very low diffusivity, its predatory or parasitoid species (with much higher
diffusivity) being distributed smoothly across the patch border. Since spatial predator-
prey systems with ε � 1 are rather common in nature, cf. plants–insects or walking

1The situation is different if predation is ratio-dependent, cf. Alonso et al. (2002).
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insects–birds interactions, it can be expected that this mechanism is in many cases re-
sponsible for formation of a patchy population structure. Indeed, Harrison (1997) ob-
served similar standing patterns in the spatial distribution of the western tussock moth
and eventually related it to the impact of a fast-moving parasitoid (Brodmann et al., 1997;
Hastings et al., 1997). Therefore, it is important to better understand the properties of the
corresponding species distribution such as what factors determine the height and width of
the patch, what are the conditions for the density jump at the border, etc.

The first issue that we are going to address is what is the typical value v∗ of the preda-
tor density corresponding to the patch boundary, i.e., the region with large gradient in
the prey density. Taking into account that v(x) is a slowly varying function (because
D2/D1 = 1/ε � 1), inside the transition region its value can be regarded as constant
(Fife, 1976). The system (7–8) is then virtually reduced to a single equation for u and
the usual condition for the front blocking can be applied, which results in the following
equation for v∗:

∫ u2

u1

P (u, v∗) = 0 (20)

(Fife, 1976; also Murray, 1989) where function P (u, v) describes the prey kinetics, cf.
Eq. (9), and u1 and u2 are respectively the smallest and the biggest roots of the equation

P (u, v∗) = 0, (21)

i.e., they are the values of the prey density on either side of the transition layer; thus,
Δu = u2 − u1 gives the magnitude of the jump. Note that u1 and u2 can also be treated
geometrically as the position of the intersection points between the isocline v1(u) and the
horizontal line v = v∗.

Apparently, u1 and u2 depend on v∗ which makes Eq. (20) analytically intractable
for all interesting cases. It should be mentioned that the “equal areas rule” (i.e., that the
areas between the line v = v∗ and the bends of the isocline v1(u) must be equal) does
not apply here. However, one prediction that can be made from relation (20) is that the
possible values of v∗ are bound, vmin < v∗ < vmax, where vmin and vmax are the values of
the predator density corresponding to the minimum and the maximum of v1(u).

The magnitude Δu of the jump in the prey density can be estimated if we take into
account the properties of specific parametrization. For u � 1, the isocline v1(u) can be
approximated as

v1(u) � vL(u) = γ (1 − u)

u
, (22)

cf. (13). Note that vL(u) < v1(u) for any u. For values of u in vicinity of u = 1, v1(u) can
be approximated as

v1(u) � vR(u) = γ
(
α2 + 1

)
(1 − u). (23)

Assuming v1(u) remains convex in the interval between its local maximum and u = 1, it
is then obvious that vR(u) > v1(u) for all u outside of some close vicinity of u = 0 (where
v1(u) is unbounded), e.g., for 0 < σ ≤ u < 1 where σ � 1 is a certain number.
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The jump in the prey density at the patch border corresponds to the jump between the
branches of the isocline, which we now can approximate as

Δu ≈ uR(v) − uL(v) =
(

1 − v

γ (α2 + 1)

)
− γ

γ + v
. (24)

The value of the jump depends on v = v∗. Equation (24) is yet of little use because v∗
cannot be calculated analytically. However, we can use it in order to estimate maximum
possible value of the jump. Indeed, it is readily seen that Δu(v), as given by (24), has a
global maximum at

ṽ = γ
(√

α2 + 1 − 1
)

(25)

so that having substituted (25) into (24), we obtain

(Δu)max =
(

1 − 1√
α2 + 1

)2

. (26)

Relation (26) gives the maximum possible value of the jump in the prey density across
the patch border. Note that it depends on the only parameter α.

Interestingly, it appears that the height and width of the stationary patch are not inde-
pendent of each other. In order to show it, let us consider a patch of width 2L with the
origin coinciding with the patch center. Outside the patch, as the distance from the patch
boundary increases, the population densities gradually approach their equilibrium values
ū and v̄. The functions u(x) and v(x) are the solution of the stationary system, i.e., sys-
tem (7–8) where ∂u/∂t = ∂v/∂t = 0. Moreover, if we focus on the case ε = 0, the system
reduces to a single differential equation:

d2v(x)

dx2
+ u2v

1 + α2u2
− μv = 0, (27)

where u and v are not independent but related by means of the equation for the prey
isocline P (u, v) = 0, cf. (9–10).

Assuming that for any |x| > L the population densities remain close to their equilib-
rium values, i.e., u(x) = ū + δu(x) and v(x) = v̄ + δv(x) where δu and δv are small,
Eq. (27) can be linearized:

d2δv(x)

dx2
+ Q′

uδu + Q′
vδv = 0, (28)

which after a little algebra, takes the following form:

d2δv(x)

dx2
+ (

2μ2v̄/ū3
)
δu = 0. (29)

To avoid tedious calculations, we assume that ū � 1, i.e., it lies in the range where the
prey isocline can be approximated as v1(u) ≈ γ /u. From P (ū + δu, v̄ + δv) = 0, we then
obtain

δu(x) ≈ − (
γ /v̄2

)
δv(x) (30)
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so that Eq. (29) turns into

d2δv(x)

dx2
= 
2δv, (31)

where 
2 = 2γμ2/(v̄ū3) ≈ 2μ(1 − α2μ). Correspondingly, the predator density profile
outside the patch is given as

v(x) = v̄ + δv ≈ v̄ + (v∗ − v̄) exp
[−


(|x| − L
)]

, (32)

where |x| ≥ L.
Equation (32) can then be used to calculate the flux of the population density through

the patch boundary:

2J = 2

∣∣∣∣dv

dx

∣∣∣∣ = 2
(v∗ − v̄). (33)

The idea of our approach is that because the patch is stationary, the diffusion flux at
the patch boundary must be balanced with the population growth inside the patch. Having
integrated Eq. (27) from −L to L, we obtain:

∫ L

−L

(
u2v

1 + α2u2
− μv

)
dx = 2J = 2
(v∗ − v̄). (34)

Now we can make use of the heuristic observation that inside the patch, the population
density varies insignificantly, cf. Fig. 5. Considering u ≈ u2 and v ≈ v∗, from (34), we
arrive at

Lv∗
(

u2
2

1 + α2u2
2

− μ

)
∼= 
(v∗ − v̄). (35)

For the specific parametrization of the functional responses, see Eqs. (7–8); an inter-
esting parameter range (when the prey isocline is N -shaped) is reached for α � 1 while
the prey density inside the patch appears to be on the order of unity. In this case, Eq. (35)
takes somewhat simpler form:

Lv∗
(

1

α2
− μ

)
∼= 
(v∗ − v̄) (36)

and finally,

Lv∗ ∼= 2μα2(v∗ − v̄). (37)

Although (37) is an estimate and not an exact relation, it clearly means that the patch
size and the typical population density inside are not independent of each other. In par-
ticular, relation (37) rules out the situations that both the size and height of the patch are
either very large or very small.
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3.3. Pattern formation in 2-D case

Understanding of the dynamics of the predator-prey system with one spatial dimension
is useful and instructive, yet the dynamics of real population communities more typically
takes place in a two dimensional spatial domain. In this section, we will try to reveal
to what extent the results of the 1-D study can be extended onto the corresponding 2-D
system. By means of numerical simulations, we will study patterns of dynamics arising in
the 2-D excitable system (5–6) and construct the corresponding map in μ − ε parametric
plane keeping the values of other parameters fixed at the same hypothetical values as in
the 1-D case (i.e., γ = 1 and α = 10).

Numerical simulations in a two-dimensional system are much more resource-
consuming; therefore, we are not able to restore the boundaries of different domains
as accurately as it was done in the 1-D case; see Fig. 2. Instead, we have varied ε by small
steps for several selected values of μ. The results are shown in Fig. 6 where different
symbols correspond to different regimes are discussed below.

In the case of a fast dispersing prey (large ε), we found that a supercritical excita-
tion (18–19) of the system results in the formation and expansion of concentric rings of
high species density. In the μ − ε diagram of Fig. 6, the corresponding domain is shown
by the circles. The predator is not able to block the spread of the outbreak. The wave of the
high density travels through the whole domain, and eventually, out of the system. In the
wake of the expanding ring, the distributions of species become spatially homogeneous

Fig. 6 A map in the μ − ε parameter plane obtained for γ = 1 and α = 10. Different symbols stand
for different dynamical regimes of the 2-D system (5–6): circles for ring-shaped pattern, crosses for the
dynamical localization of the rings, bullets for the patchy spread with rare patch density (Fig. 7), diamonds
for the patchy spread with high patch density (Fig. 8), and asterisk for the formation of labyrinthine patterns
(Fig. 9).
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again, with the population densities being at their steady state values. On the whole, this
regime looks like a natural extension of the traveling pulses scenario onto a 2-D system.

For a decrease in ε, however, rings blocking becomes possible. The predator catches
up with the prey and brings the prey outbreak down. The corresponding parameter values
in Fig. 6 are marked by the crosses. Note that the relaxation of the initial outbreak to
the spatial homogeneity takes place via a scenario which is rather different from the one
observed in the 1-D case. In the 2-D system, instead of a monotonous decay of the popu-
lation density inside the ring (as it might have been expected basing on the 1-D results, cf.
Fig. 3b), the ring is first split into an ensemble of separate patches. For a period of time,
the patches exhibit a complicated dynamics of irregular motion and interaction. Finally,
however, the patches go extinct and the homogeneous distribution of species is restored.
The patchy dynamics becomes more prominent and takes a longer time for smaller values
of ε, i.e., when the parameters approach the lower boundary of the cross-marked domain.

A slower moving prey (i.e., for smaller values of ε) regain its ability to escape from
the predator, so that the initial outbreak would never decay and the spatial homogeneity
is never restored. Particular scenarios can be different. Parameters marked by the bullets
(see Fig. 6) correspond to the patchy spatial spread of the initially localized outbreak.
A typical pattern of such dynamics is shown in Fig. 7 (obtained for μ = 0.005, ε = 0.1
and the initial conditions (18–19) with Δx = 3,Δy = 9, a = b = 0.375, x0 = y0 = 125
and V0 = 12). Only the distribution of prey is shown; the predator density shows similar
features. At a very early stage of the patchy spread, a continuous propagating front is
formed, similar to what would happen in the regime of expanding rings. However, the
front soon breaks to pieces, thus creating an ensemble of separate patches. A further
spatial spread of the outbreak takes place via irregular movement of the individual patches
and groups of patches, and a continuous front never reappears. The patches move, merge,
disappear, split, and produce new patches, etc. After the patches invade the whole area, the
spatial distribution of species at any time remains qualitatively similar to the one shown
for t = 2500, although the position and shape of specific patches change in the course of
time. This type of spread (also known as “patchy invasion”) has been previously observed
and studied in much detail for a predator-prey system with somewhat different properties;
see Petrovskii et al. (2002, 2005), Morozov et al. (2008, 2006), Malchow et al. (2008),
Sherratt and Smith (2008).

With a decrease in ε, the speed of the patchy spread becomes slower and the patches
themselves become distinctly round-shaped. With a further decrease, though, their shape
becomes elongated and the separate patches tend to give way to groups of patches, cf.
Fig. 8 obtained for μ = 0.005 and ε = 0.03 and the same initial conditions as in Fig. 7.
The pattern as a whole is now more densely packed. In the diagram of Fig. 6, the corre-
sponding domain is marked by the diamonds. We want to note, however, that the differ-
ence between the patterns shown in Figs. 7 and 8 is quantitative rather than qualitative, and
the transition between the two examples of patchy spread is gradual and not related to any
bifurcation. Correspondingly, the boundary between the bullet-marked and the diamond-
marked parameter domains is rather conventional.

For a further decrease of ε, the speed of the patchy spread becomes even slower. The
patches now create a sprout-shape structure and most of them are merged together along
a complicated curve, thus creating the so-called “labyrinthine patterns” (Muratov and Os-
ipov, 1996a, 1996b). The corresponding domain in Fig. 6 is marked by asterisks. Typical
snapshots for this case are shown in Fig. 9 obtained for μ = 0.005 and ε = 0.01. After the
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Fig. 7 Isoclines of the prey density in the 2-D system (5–6): Formation of an irregular spatial pattern
for parameters μ = 0.005 and ε = 0.1. The thick lines correspond to the areas of a large gradient in the
population density. The thin front line is the first isocline corresponding to only a slight deviation from the
steady state values ū and v̄; hence, it shows the position of the “precursor” of the spreading perturbation.
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Fig. 8 Snapshots (isoclines) of the prey density in the 2-D system (5–6): Formation of an irregular spatial
pattern for parameters μ = 0.005 and ε = 0.03.



882 Morozov and Petrovskii

Fig. 9 Snapshots (isoclines) of the population density in the 2-D system (5–6): Formation of a labyrinthine
spatial pattern for parameters μ = 0.005 and ε = 0.01.
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patches have invaded over the whole spatial domain, they slowly change their shape and
position. For very small values of ε (below the dashed curve in Fig. 6), the labyrinthine
structures become stationary.

Interestingly, in the 2-D case, formation of solitary stationary patches (i.e., the 2-D
analogue of the pattern shown in Fig. 5) in the considered domain of square shape is
suppressed. We have found that the size of the habitat plays a crucial role. In particular,
we did not find the stationary structures for L < 300. Numerical simulations show that in
the 2-D case, for small values of ε, every supercritical initial disturbance (19) results in
a spread of labyrinthine structures (even for initial perturbations with a round boundary).
However, for a square-shaped habitat of sufficiently large size (e.g., L = 600), we did
find round-shaped stationary patches. Note that numerical simulations show that in the
2-D case with a radial symmetry (for a round-shaped habitat of radius R), formation of
solitary patches can take place for somewhat smaller sizes of the habitat (R > 100) for μ

and ε approximately situated below the dashed curve in Fig. 6.

4. Concluding remarks

In this paper, we have considered the problem of harmful species management when a
pest is kept under control by its predator. The predator trophic response was assumed to
be of Holling type III, which makes the system’s kinetics excitable. In a certain parameter
range, the system was shown to have a unique stable steady coexistence state, where
the prey density is significantly lower than it would have been without the impact of
predator. Although at the first sight it may be regarded as a successful implementation of
the biological control strategy, the question remains as to how robust this situation is with
respect to various disturbances.

Here, we have been particularly interested in a situation when this predator-prey sys-
tem in its stable steady state experiences a finite local perturbation to the population den-
sity. In a real-world system, such a perturbation may come as a result of fluctuations in the
weather conditions, spatially inhomogeneous demographic, or environmental noise, etc. It
is well known (cf. Truscott and Brindley, 1994a, 1994b) that the corresponding nonspatial
system exhibits criticality in its behavior. While small (subcritical) perturbations decay
exponentially, perturbations of overcritical magnitude result in a species outbreak, so that
the system returns to its equilibrium state through a long-living transient dynamics with
high values of the prey density. Our main goal was to reveal how the system’s dynamics
can possibly change when space is taken into account.

It should be mentioned here that Holling type III tropical response is widely accepted
to originate in the specifics of the predator’s feeding behavior when it either changes its
foraging strategy or switches to some alternative resource(s) (not included into the model
explicitly) if the density of the prey drops too low. The existence of such an alternative
prey may partially account for the very high predator density at the equilibrium compare
to the density of the prey, cf. Fig. 1. Moreover, variations of alternative prey abundance
can be an additional source of spatiotemporal perturbations in predator density, which can
result in breakdown of the spatially homogeneous population distribution.

The spatiotemporal dynamics of the predator-prey system triggered by a localized per-
turbation was studied by means of extensive computer simulations. The following results
have been obtained:
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1. For an initial perturbation of a small magnitude, both the spatial and nonspatial sys-
tems promptly return into the equilibrium state. However, for a larger (overcritical)
perturbation, there is a crucial difference between the properties of a nonspatial ex-
citable system and its spatial counterpart. While the nonspatial system eventually re-
turns into its equilibrium state (although being preceded by a long excursion over the
phase space and high prey density), the dynamics of the spatially extended system can
be self-sustained. Having been once driven away by a local population outbreak, the
system never returns to its stable spatially-homogeneous equilibrium state. Instead, it
evolves into formation of complex spatiotemporal patterns.

2. On the whole, the spatiotemporal system dynamics appears to be rather rich, and a
wide variety of dynamical regimes has been observed. By means of “scanning” the
parameter space of the system, we revealed its structure and identified the parameter
domains corresponding to different dynamical regimes. In particular, we found that
a typical scenario of successful biological control in the spatially explicit excitable
system is the “dynamical localization” of the traveling pulses (cf. Fig. 3b): the predator
catch-up with the prey, blocks the pulse propagation, and then promptly brings the prey
density down to its equilibrium value.

3. The lower is the predator mortality rate μ, the wider is the range of ε corresponding
to successful biological control; see domain 2 in Fig. 2 and the cross-marked domain
in Fig. 6. That seems to agree with an intuitive expectation that a stronger predator
should be more effective as a controlling factor.

4. Rather counter-intuitively, however, both slow moving (ε > 1) and fast moving (ε � 1)
predator appears to be unable to keep the prey under control. While for ε ∼ 1 or larger
a common pattern of system’s dynamics is traveling pulses (in the 1-D case) or ex-
panding rings (in the 2-D case), for ε � 1, the typical pattern is a standing patch (see
Section 3.2). Therefore, in the latter case, predator is able to localize the outbreak, but
is not able to bring it down, so that the spatial homogeneity is never restored.

5. The parameter ranges of successful biological control appear to be different for 1-D
and 2-D systems, the conditions of successful control being less restrictive in the 1-D
case. The system’s dimensionality has therefore a noticeable impact on the robustness
of the biological control.

We want to mention that the simple model (5–6) is of course only a caricature of very
complicated processes going in ecosystems. Nevertheless, it appears capable of catching
some essential properties of real population communities and patterns of their dynam-
ics such as, for instance, formation of a standing patch in the case of a pest with a low
diffusivity (ε � 1) (Hastings et al., 1997) and formation of patchy structures or stripy
labyrinthine structures (see Figs. 7 and 9). In particular, patchy and stripy structures are
typical vegetation patterns in semiarid regions2, e.g., see White (1970) and Belsky (1986).

The results of our study lead to a few conclusions. Firstly, we want to emphasize that if
a theoretical study is done using a nonspatial model, its results should be used with great
care as the dynamics of the corresponding spatial system can be qualitatively different.
In particular, a predator-prey system with excitable dynamics was earlier used as a model

2The semiarid vegetation patterns sometimes exhibit spatial anisotropy due to an environmental forcing
(cf. Couteron and Lejeune, 2001) which is not included into our model.
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for spontaneous phytoplankton outbreak or “bloom” (also known as a “red tide”); see Tr-
uscott and Brindley (1994a, 1994b). Correspondingly, it was concluded that termination
of bloom is just an intrinsic feature of the system when the system’s trajectory leaves the
isocline and the density of prey (phytoplankton, in this context) promptly approaches its
equilibrium value (see the upper part of Fig. 1). However, the results of our study point
out that this conclusion may be wrong. An initial outbreak should more likely result in
formation of a self-sustained spatially heterogeneous structure. (Interestingly, a red tide
with a distinctive patchy structure is indeed a frequently observed phenomenon, e.g., see
Cosper et al., 1989; Smayda and Shimuza, 1993.) Termination of the bloom then should
be ascribed to the impact of some external factors (such as, for instance, depletion of
oxygen) that are not included into the baseline predator-prey model.

Another and possibly more important message from this study should be addressed to
decision-makers in the pest control management. When choosing a species that will act
as the controlling agent for a given pest, one might wish to take into consideration that a
predator with the diffusivity too high compared to the diffusivity of the pest may appear
to be ineffective and/or not robust with respect to environmental and demographic pertur-
bations; see item #4 from the list above. Interestingly, a similar conclusion was made by
Sapoukhina et al. (2003) in another theoretical study concerned with different aspects of
the predator-prey dynamics. It indicates that the optimality of predator’s diffusivity as a
controlling factor is a real issue (cf. Crawley, 1997). We want to mention here that this
theoretical prediction is in a very good agreement with some biological data: Indeed, it
was proved by Ferran et al. (1998) that a flightless strain of the ladybird Harmona axyridis
is a much more effective biological agent to control aphids than the common strain.
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