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Abstract We derive a model for describing the dynamics of imatinib-treated chronic
myelogenous leukemia (CML). This model is a continuous extension of the agent-based
CML model of Roeder et al. (Nat. Med. 12(10), 1181-1184, 2006) and of its recent formu-
lation as a system of difference equations (Kim et al. in Bull. Math. Biol. 70(3), 728-744,
2008). The new model is formulated as a system of partial differential equations that de-
scribe various stages of differentiation and maturation of normal hematopoietic cells and
of leukemic cells.

An imatinib treatment is also incorporated into the model. The simulations of the new
PDE model are shown to qualitatively agree with the results that were obtained with
the discrete-time (difference equation and agent-based) models. At the same time, for
a quantitative agreement, it is necessary to adjust the values of certain parameters, such
as the rates of imatinib-induced inhibition and degradation.

Keywords Chronic myelogenous leukemia - Gleevec - Imatinib - Mathematical models -
Agent-based models - Difference equations - Partial differential equations

1. Introduction

Chronic Myelogenous Leukemia (CML) is a cancer that results in the overproduction of
white blood cells. It represents nearly 20% of all leukemias and affects approximately 1
in 100,000 people. More than 90% of all CML cases are associated with the Philadelphia
(Ph) chromosome, a genetic abnormality caused by a reciprocal translocation between
chromosomes 9 and 22 (Thijsen et al., 1999). The recently developed, molecular targeted

*Corresponding author.
E-mail address: dlevy @math.umd.edu (Doron Levy).


mailto:dlevy@math.umd.edu

A PDE Model for Imatinib-Treated Chronic Myelogenous Leukemia 1995

drug imatinib has proven to be a highly effective treatment against CML (Druker and Ly-
don, 2000). While imatinib does not cure CML, it provides for most patients an effective
mean of controlling CML expansion without resorting to more aggressive treatments such
as chemotherapy or stem-cell transplantation (Campbell et al., 2001).

In recent years, there has been an ongoing activity in deriving mathematical models
of CML. These works were motivated by the desire to explore the mechanisms that con-
trol the disease with the hope that this will lead, e.g., to new therapeutical strategies. We
briefly mention a few and refer to the references therein for a complete picture. The first
mathematical CML model is due to Fokas et al. (1991). A model that accounts for the
immune response in CML is due to Neiman (2002). This work attempted to explain the
transition of leukemia from the stable chronic phase to the erratic accelerated and acute
phases. A more recent work is of Moore and Li (2004), whose aim was to identify the
parameters that control cancer remission. Their main conclusion was that lower growth
rates lead to a greater chance of cancer elimination. Komarova et al. used methods of
stochastic networks to study drug resistance with a particular view toward imatinib (Ko-
marova and Wodarz, 2005). Together with deConde, we have published in DeConde et al.
(2005) a model for the interaction between the immune system and cancer cells after a
stem cell (or a bone-marrow) transplant. The main result of that work was that a slightly
elevated autologous (pretransplant) immune response greatly favors remission. Hence,
mini-transplants may increase the chances of a full remission when compared with full
allogeneic transplants. These ideas were further developed in Kim et al. (2007).

Recently, two models of stem cell differentiation and imatinib treatment have been
proposed by Michor et al. (2005) and by Roeder et al. (2006). Michor et al. developed
a differential equations model, in which leukemia cells progressively differentiate from
stem cells to terminally differentiated cells (Michor et al., 2005). By comparing their
model to patient data measured up to 450 days after the start of treatment, they concluded
that leukemic stem cells are largely immune to imatinib. On the other hand, Roeder et al.
proposed an agent-based model in which stem cells circulate between proliferating and
quiescent states. The data set considered by Roeder et al. shows a sustained leukemia
remission for at least 4 years. Consequently, the conclusion of that work is that imatinib
can affect proliferating stem cells.

The different point of views were further stressed in a recent review paper by Abbott
and Michor (2006). There, the conclusion that imatinib does not affect stem cells is re-
asserted. In a related work, Dingli and Michor (2006) derive a modified model of cell
differentiation that is structurally similar to the original model in Michor et al. (2005).
The analysis of this modified model lead them to conclude that an effective therapy to
prevent a future relapse must target cancer stem cells. Hence, it still remains an important
question to what degree imatinib affects leukemia stem cells.

Offering yet another perspective, Roeder and Glauche study the same issue in a re-
view paper where they clearly point out that recently collected patient data indicates that
imatinib-induced remission is sustained for at least 4 years in nearly all cases (Roeder and
Glauche, 2008). These observations in conjunction with their mathematical models lead
them to conclude that imatinib must have a nontrivial effect on leukemic stem cells.

Both groups seem to agree that the current data does not provide sufficient grounds to
eliminate either hypothesis and that it is very important to determine the impact, if any, of
imatinib on stem cells.
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In this paper, we revisit the agent-based model of Roeder et al. (2006). This is a
stochastic agent-based model for studying the effect of imatinib on CML. This model
accounts for the progression of normal and leukemia cells through three stages of the
myeloid lineage: stem cells, precursor cells, and mature cells. Their agent-based formu-
lation captures the inherent diversity of individual members of a large population and
accounts for the probabilistic behavior of individual cells. However, to capture this level
of complexity, the algorithm is computationally demanding.

To accelerate the computational time of the Roeder model, we have recently derived
an analogous system of difference equations that captures the dynamics of the original
model (Kim et al., 2008). Our approach consisted of grouping cells with similar state
variables into clusters and treating each cluster as a collective agent. This reformulation
of the model, reduces the number of agents in the model and can be implemented deter-
ministically, which eliminates the need to generate huge numbers of random variables,
and hence it is substantially more efficient than the original ABM.

The goal of the present work is to derive a system of partial differential equations
(PDEs) that describes the Roeder model. Instead of keeping the original discretization of
time, we assume that time is continuous, an assumption that leads us to a system of PDEs
that is analogous to the original ABM. The system of PDEs presented in this paper is the
continuous version of our system of difference equations (Kim et al., 2008).

A PDE model has several advantages over the stochastic ABM: The PDE model can
be solved much faster than the stochastic ABM. Complexity issues limited the original
ABM from Roeder et al. (2006) to population sizes that were about 10% of the real sizes.
Such limitations do not exist with a PDE model as the number of variables is fixed and
is independent of the number of cells. In addition, the PDE model has the advantage of
providing a direct access to macroscopic quantities. Various quantities can now depend on
densities and constants can be treated from a macroscopic point of view instead of keep-
ing track over individual parameters that correspond to individual cells. In addition, since
the biological processes occur in continuous time—such a representation is desirable also
from a modeling perspective. Furthermore, more accurate estimates of the problem’s pa-
rameters can potentially be obtained in a continuous model that captures the dynamics in
time with better resolution.

The system of PDEs developed in this paper is an alternative to the system presented in
Roeder (2003). In this work, Roeder formulates a system in which the population variables
are functions of time, ¢, and a state variable, a. Despite the simplicity of this system,
numerical difficulties arise from an accumulation point in one of the populations at a = 1.
At this point, the population density blows up in finite time. Various strategies can be
considered for treating this problem, in particular, distributing the point mass at a = 1
over a small interval around a = 1. This is in fact the approach adopted in Roeder (2003).

The adjustment makes the system numerically solvable, but does not eliminate the
numerical difficulties that arise from the huge difference in population densities inside
and outside the interval around the point mass. Indeed, the difference between orders
of magnitude can be arbitrarily large depending on how small one makes the interval.
Alternatively, in our PDE system, we introduce a new population variable corresponding
to the point mass at a = 1. In this fashion, we eliminate the difficulties that result from
having an accumulation point. Furthermore, we also formulate our system in terms of two
state variables, a and ¢, which coincide with those used in the original ABM. Hence, we
preserve the complexity of the original ABM in Roeder et al. (2006).
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The system of equations obtained in this paper is a hyperbolic system of maturity-
structured PDEs. Several other maturity-structured models have been formulated, in par-
ticular in the context of cell differentiation. For example, Colijn and Mackey (2005)
and Pujo-Menjouet and Mackey (2004) provide two age-structured models for normal
hematopoiesis and for periodic CML, respectively. In these models, cells spend constant
amounts of time in various stages of development before progressing to successive stages.
The models are formulated as systems of delay-differential equations (DDEs), where the
delay values correspond to the time duration of each cell of the cell development. As an
alternative approach, Adimy and Pujo-Menjouet (2003) proposes a model of cell division,
in which the duration of each round of proliferation depends on the maturity of the cell.
This model is formulated as a system of hyperbolic PDEs with age and maturity variables
that both increase over time. The ABM in Roeder et al. (2006) provides, however, an al-
ternative stem cell paradigm that allows stem cells to increase or decrease in affinity over
time. Hence, affinity is not a measure of maturity, at least in the conventional sense, but
rather of a more generalized state variable. Since stem cells can switch between increasing
and decreasing their “maturity” arbitrarily many times, cells do not necessarily mature in
finite time. Furthermore, the “left-moving” and “right-moving” populations continually
interact and exchange members so that information does not only travel in one direction.
These features, inherent in the original formulation of the ABM, reappear in the analogous
PDE system presented in this paper.

The paper is organized as follows. We briefly review the Roeder agent-based model in
Section 2. A system of PDEs for the emerging cancer dynamics is then derived in Sec-
tion 3. In this context, we first derive the PDEs that govern the dynamics of the stem
cell populations, and pay special attention to the appropriate boundary conditions. We
then derive PDEs for normal (nonleukemic) differentiated cells, for leukemia cells and
imatinib-affected leukemia cells. In Section 4, we present the results of our numerical
simulations. We compare the solutions of the PDE model to the difference equation and
the agent-based models by computing steady states of nonleukemia cells, by simulating
the CML genesis, and by studying the progression in time of an imatinib treatment. Con-
cluding remarks are provided in Section 5.

2. A brief overview of the Roeder CML model

In this section, we briefly overview the Roeder CML model (Roeder et al., 2006). A state
diagram for this model is shown in Fig. 1. In this model, hematopoietic stem cells (HSCs)
are assumed to exist in two growth compartments: quiescent (denoted by A) and prolif-
erating (denoted by £2). At the beginning of every time step (representing one hour), a
stem cell may transfer from A to £2 with probability @ or from £2 to A with probability
«. Each stem cell has a time-dependent affinity, denoted by a (), and the affinity ranges
between amin and am,x (Which are estimated to be 0.002 and 1.0, respectively (Roeder
et al., 2000)).

A cell with a high affinity has a high chance of remaining in the A environment or
transferring to it. Likewise, a cell with a low affinity is more likely to remain in the 2
environment or transfer to it, where it starts proliferating. The transition probabilities w
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and « are given by

o(2(t), a(t)) = Z'&) fo(2),

a(t)

max

(D

a(A@),a(n) = fu(A@D)).
Here, A(¢) and £2(¢) denote the total number of cells in each compartment. The functions
fx and f,, are sigmoidal functions, whose definition can be found in Appendix B.

Proliferating cells in the £2 compartment progress through various stages of the cell
cycle: Gy, S, Gy, and M. The G; phase is the longest period of growth during which
the cell generates new organelles. The S phase is the period when DNA synthesis and
replication occurs. The G, phase is the short period of growth when the cell prepares for
mitosis, and the M phase, or mitosis, is when the cell replicates its DNA and divides into
two daughter cells. Only £2 cells in the G; phase of the cell cycle can transfer to A. The
§2 cells spend about two-thirds of their time in the G; phase.

For each cell that remains in the A compartment, its affinity increases by a factor of r
(estimated as 1.1). Similarly, cells that remain in §2, decrease their affinity by a factor of
d (estimated as 1.05). The affinity of a cell stops increasing once it reaches the maximal
value, anax. Stem cells whose affinity reaches the minimum affinity a,,;,, differentiate into
a proliferating precursor and then into a non-proliferating mature cell (see Fig. 1).

Each cell in £2 has an internal time counter, c(¢), that indicates its position in the cell
cycle (measured in hours). Each time step is equivalent to one hour. Consequently, at each
time step, c(¢) increases by 1. After ¢(¢) reaches its maximal value of 48, it recycles back
to O at the next time step, resulting in a 49-hour cell cycle. Cells entering §2 start with a
counter that is set at ¢(¢) = 32 corresponding to the beginning of the S phase. For the first
17 hours, the cell progresses through the S, G,, and M phases and divides into two cells
once c¢(t) = 48. Then for the next 32 hours, (¢(t) =0, ..., 31), the cell remains in the G
phase. If at the end of this period the cell has not transferred to A, it reenters the S, G,,
and M phases and the cycle repeats.

The work Roeder et al. (2006) includes an algorithm for simulating the effect of
imatinib-treatment on leukemia stem cells. For the sake of brevity, we do not describe
the full mechanism here. The complete ABM is summarized in Appendix A.

3. A PDE CML model
3.1. The stem cells

Following Kim et al. (2008), we note that the log of the affinities change linearly in time.
We thus index the stem cells with respect to the log of their affinities, by letting x =
—loga where a is the affinity. Then x € [Xpin, Xmax], Where Xmin = —10g dmax and Xy =
—log amin. In our case, we have x € [0, 6.2146].

Let A(x,t) denote the population density of Alpha cells with x = loga at time 7. As
time progresses, the x-components of these cells decrease at a constant rate until they
reach xpn,. At this point, cells start accumulating at the boundary point x = Xy;p-

We thus let A*(#) denote the population of Alpha cells at the accumulation spot, i.e.,
the population of cells with minimum log affinity x = x,,;, (consult Fig. 2).
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Fig. 1 A state diagram for the Roeder CML model (Roeder et al., 2006). (1) At every time step, stem
cells may transfer between the A (nonproliferating) and §2 (proliferating) compartments. While in A, the
affinity of each cell increases by a factor of r up to the maximal value, amax. While in £2, a cell’s affinity
decreases by a factor of d until it reaches the minimum affinity, an,;,. (2) £2 cells progress through the
Gq, S, Gp, and M phases of the cell cycle. The counter c(¢) increases cyclically from O to 48. When a
cell first enters £2, c(¢) = 32 to mark the beginning of S phase. Only cells in the G| phase can transfer
back to A. (3) When the affinity of a cell drops below ap,jp, it differentiates into a precursor cell. Precursor
cells proliferate for 20 days, dividing once per day. (4) At the end of 20 days, precursors differentiate into
mature cells and live for 8 additional days without dividing.

For cells in the Omega compartment, let §2(x, c,t) denote the population density
of these cells with log affinity x and counter ¢ at time ¢. As time progresses, the x-
components of these cells increase at a constant rate, until they reach xp,x. At the same
time, the c-components (that record the position of the cells in their cell cycle) also in-
crease at a constant rate.

There is a continuous supply of cells that are added to the Omega compartment either
by transferring from the Alpha compartment or by dividing every 49 hours. As stated in
Roeder et al. (2006), cells that transfer from the Alpha compartment, begin with their time
counters set to 32. Hence, these cells enter the Omega compartment at the line ¢ = 32.
In addition, cells that reach a time counter of 49, double and reset their time counters
to 0. The cells that transfer into Omega from the A* state are entering at a point source P
and travel along the appropriate characteristic curve with respect to x and c. Let £2*(x, 1)
denote the population of cells that transferred from A* into the point source P at time ¢
(see Fig. 2).

We let A and £2 denote the total population of cells in the Alpha and Omega compart-
ments, respectively. Then

K(t):/ A(x,1)dx + A*(1), 2

. Xmax 49 Xmax

.Q(l):/ Q(x,c,t)dcdx + 2%(x, ) dx. 3)
Xmin 0 Xmin

For the rest of this chapter, we will use the words “Alpha” and “Omega” to refer to the
collection of cells in the entire Alpha and Omega compartments, respectively, and we will
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Fig. 2 State space for the PDE CML model. The variable A(x,t) represents cells in the Alpha compart-
ment that have log affinity x at time ¢. The variable A*(¢) represents cells in the Alpha compartment that
have attained the minimum log affinity x,;,. The variable £2(x, c, t) represents the cells in the Omega
compartment that have log affinity x and time counter ¢ at time 7. The population density £2(x, c, 1) is
always 0 in the striped regions. The shaded region of §2 space between ¢ = 32 and ¢ =49 corresponds to
the S, Gy, and M phases of the cell cycle. The unshaded region between ¢ = 0 and ¢ = 32 corresponds
to the G| phase of the cell cycle. The variable £2*(x, r) corresponds to the population of Omega cells
supplied by A*. These cells travel along the characteristic curve originating at point source P. The points
Y1, Y2, ¥3» ¥4, and ys correspond to the x-values at which £2* cells attain time counters of 49, 32, 49, 32,
and 49, after entering the point source P.

use the variable names A, A*, §2, and §2* to refer to the corresponding subpopulations of
the compartments.

We are now ready to formulate the PDEs for each of the populations. For x €
[Xmin, Xmax), A satisfies

A A _ _ 2
i ,o,a = —a)(.Q, e_x)A +a(A, e_x) ; 2(x,c,t)dc
0, x € Xg,
+ {a(Z, eTR*, x€Xp, @

where X, = (Xmin, Y11 U (32, ¥31 U (34, ys1, and Xp, = (y1, ¥21 U (33, y4] U (¥s, Xmax]. The
constants y;, y2, y3, Y4, and ys correspond to the values of x at which £2* cells attain
time counters of 49, 32, 49, 32, and 49, after entering at the point source P. Assuming that
Xmin = 0, the values of y; are given by

yi=17pq4, y2=4904, y3 = 6604, y4=98py, ys = 11504,

where the advection rate p, is given by logd, and d is the differentiation factor estimated
as 1.05 in Roeder et al. (2006) (see Table B.1 in Appendix B).
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The expression on the LHS of (4) accounts for the linear advection of the A popula-
tion in the negative x-direction. The advection rate p, is given by logr, where r is the
regeneration factor estimated as 1.1 in Roeder et al. (2006).

The first term on the RHS of (4) accounts for the cells that transfer out of A into
£2. The transition rate o is given by (1), where £2 is defined in (3). The expression e~
recovers the affinity of a cell from its x-coordinate. In the original model, w is defined as
the probability that an individual cell transfers to Omega in a single time step of 1 hour,
but if we assume that time is measured in units of hours, this probability w also gives the
transfer rate out of Alpha into Omega.

The second term on the RHS of (4) is the rate in which cells transfer into A from £2.
The transition rate « is given by (1), and A is given by (2). Only £2 cells in the G, phase
(i.e., with time counters ¢ between O and 32) can transfer into A, which explains the
boundaries in the integral.

The last term on the RHS of (4) is the rate that cells transfer from £2* into A. Also in
this case, the only cells that can transfer are those with time counters between 0 and 32. As
shown in Fig. 2, cells in £2* only originate at the point source P and travel at a constant
rate along the characteristic curve. Hence, the value of an £2* cell’s time counter is a
function of its x-coordinate. The §2* cells that have time counters between 0 and 32 have
x-coordinates in the set X,. Similarly, £2* cells that do not have time counters between 0
and 32 have x-coordinates in the complementary set X, .

For A*, the following ODE holds:

dA*
dt

= pr A(Xpin, 1) — (82, e 7min) A*, (3)

The first term on the RHS of (5) is the rate in which cells flow from A into A*. These A
cells flow from the endpoint x = x;, into A*.

The second term on the RHS of (5) is the rate in which cells flow out of A* into £2*.
Cells coming from A* enter §2* at the point source P.

The PDE for 2 is
IR I I {—a(X, e )82, force(0,32], ©

eI
ar P T e T o for c € (32,49].

The second term on the LHS of (6) accounts for the advection of the §2 population in
the positive x-direction at rate p; = logd. The third term on the LHS of (6) accounts for
the constant rate of increase of the time counter c (the rate is 1). The expressions on the
RHS of (6) are the rates that cells transfer out of £2, depending the values of their time
counters. Only cells with time counters between 0 and 32 can leave 2.

Finally, the PDE for £2* is

)

— tpy—= _
ar P ox —a(A, e )VR2*, xeX,

CTo S Yol {0, xeX,,
The second term on the LHS of (7) accounts for the constant advection rate of £2* cells
in the positive x-direction. The RHS of (7) has the rates that cells flow out of £2* into A.
The RHS is the negative of the last term on the RHS of (4).
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3.1.1. Boundary conditions and source terms for stem cells

Any cell in the Omega compartment that has attained the maximal log affinity xpax is
destined to differentiate into a precursor cell. Hence, only cells with a smaller log affinity
can exist in the Alpha compartment, which means that the boundary condition for A at
the endpoint x = Xy 1S

A(Xmax, 1) =0. ®)
Once £2 cells reach the boundary ¢ = 49 they divide, and hence we have

2(x,0,1) =282(x,49,1). 9
At ¢ =32, we have:

2(x,32%,1) =2x,327, )+ 0(2,e77)A, (10)

where 327 and 32~ denote the upper and lower limits as ¢ approaches 32, respectively.
The first term on the RHS of (10) is the population of cells already in £2. The second term
on the RHS of (10) corresponds to the rate that cells transfer from A into £2 at ¢ = 32. This
term is the negative of the first term on the right-hand side of (4). Since the orthogonal
rate of advection away from the boundary ¢ = 32 is 1, the scaling factor for the second
term is also 1.

The boundary condition for £2* at the point source P is

N w (5’ e_xmin) N
2% (Xmin, 1) = ——— A" 1D
Ld
This is the rate that cells transfer from A* into £2*, scaled by the advection rate away from
P. When the time counters ¢ of the £2* cells reach 49, i.e., at y;, y3, and ys, cells divide,
and hence we have

Q@7 1)=2207 .0, i=135. 12
Note that £2* is continuous at y and y4, and hence 2(y;", 1) = 2(y; , 1), ati =2, 4.

3.2. The differentiated cells

Once the affinity of a stem cell drops to the minimal value (loga(¢) < —127p) or under it,
the cell differentiates into a proliferating precursor and later into a nonproliferating mature
cell. It then remains in the proliferating precursor state for A, = 20 days (480 hours) and
divides every 7. = 24 hours. At the end of 480 hours, the precursor cell differentiates into
a mature cell and lives for A, = 8 additional days (192 hours) without dividing. These
durations are given in Roeder et al. (2006) and are summarized in Table B.1. The time-
line diagram is shown in Fig. 3.

The PDE for the precursor cells can thus be written as a linear advection equation that
represents a simple age-based formulation

oP 0P
— 4+ — = 480). 1
a1 35 0, se€[0,480) (13)
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Fig. 3 A time-line diagram for differentiated cells. Precursor cells, P, live for 20 days (480 hours) and
divide once per day. Mature cells, M, live for eight days and do not divide.

Here, P (s, t) denotes the population density of precursor cells of age s at time 7. Due to
cell division, we consider 0, 24, 48, ..., 456, to be “boundary” points. The corresponding
boundary conditions are

P(0,) = pa(f” 2 (maxs €, 1) de + 2% (Xan 1), 1
P@*,1)=2P(v,1), v=24,48,72,...,456.
The expression on the RHS of the first line in (14) is the rate at which Omega cells with
minimum affinity flow into precursor state. The second line accounts for cell division of
precursor cells every 24 hours.
Similarly, mature cells can be represented by an advection equation

OM LM _h, sel0.192) (15)
— t—-—=0, s¢€]0, ,

ot as

where M (s, t) is the population density of mature cells of age s at time 7. Precursor cells
develop into mature cells after completing a final round of division, and hence (15) is
augmented by

M0, 1) =2P (480, 1). (16)
3.3. Leukemia cells and imatinib treatment

We label leukemia cells as Ph* and nonleukemia cells as Ph~. These labels indicate
whether or not a cell possesses the Philadelphia chromosome. We formulate a separate
set of PDEs for each subpopulation: Ph~ cells, Pht cells, and imatinib-affected Ph cells.
These PDEs are similar to (4)—(7), (13), and (15) with few modifications that depend
on the specific subpopulation. In all cases, the boundary conditions remain the same as
(8)—(12), (14), and (16).

From now on, we define A and £2 to denote the total Alpha and Omega populations
for all three populations of cells.

We denote the Ph™ populations by A=, A*~, 27, £2*~, P, and M. The equations
for these populations are the original equations (4)—(7), (13), and (15).
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We denote the unaffected Ph* populations by A*, A**, %, Q** P and M.

These cells are governed by the transition functions, f;/., that are defined in terms of
the parameters that correspond to unaffected Ph™ cells in Table B.1. Taking into account
these parameters, the populations A™, A**, PT and M ™ retain the same form as (4), (5),
(13), and (15).

On the other hand, proliferating stem cells, 2 and £2* T, become imatinib affected at
rate riy, and undergo apoptosis at rate —rgee. Let ¥ (-, -) denote the transition probability
given by (1) that corresponds to unaffected Ph* cells. Then Egs. (6) and (7) are replaced
by

92+t 92t 9T

o TPy T e
+(A »—X +
— (n + —am (A, e™)R27, c€(0,32],
= ~(imn + 7aeg) 2 +{0, e (32,49], 17
ot et
ar P Tox
o+ racg) 2+ | e Xa (18)
= —r;j T ’ —
wh T e —at (A, e, xeX,.

Finally, we denote the imatinib-affected Ph* populations by A’, A*/, ¢, 2% P! and
M. These cells are governed by the transition functions, f,,, corresponding to imatinib-
affected Ph* cells in Table B.1. Otherwise as before, the populations A’, A*/, P’ and M’
retain the same form as (4), (5), (13), and (15).

In addition, as discussed above, proliferating Ph™ stem cells become imatinib affected
at rate iy, and imatinib-affected proliferating Pht cells, £2 and £2*, also undergo apop-
tosis at rate rqee. Furthermore, the transition function f;, is the same for both unaffected
and imatinib-affected Ph™ cells, meaning that the transition probability a™ (-, -) also ap-
plies to imatinib-affected Ph™ cells. Hence, the PDEs for £2/ and 22* are

982" N 982" N 982!
ar P x T Tae
. —at(A, e R, c¢e(0,32],
:rinhQ+ —rdeng + ( ) ( ] (19)
0, c € (32,49],
39*-"+ 92!
ar P4k

0, x € Xg,

_ , 20
—at(A,e™™)2%, xeX,. 20)

— *+ *,1
—rinhs2 _"'degs2 + {

We point out that in this model imatinib directly acts on stem cells by causing them
to undergo apoptosis and by turning them into imatinib-affected cells, whose transition
functions f, and f,, are different from those of unaffected cells. In contrast, the model of
Michor et al. (2005) assumes that imatinib does not affect stem cells. Instead, in Michor
et al. (2005), the effects of imatinib only become apparent at later stages of differentiation.



A PDE Model for Imatinib-Treated Chronic Myelogenous Leukemia 2005

The terms in (17)—(20) corresponding to coefficients rq., correspond to the rate of
apoptosis of Ph* stem cells during treatment. The terms in (17)—(20) corresponding to
coefficients ry,, correspond to the rate that imatinib causes Ph* cells to become imatinib-
affected.

4. Numerical simulations
4.1. A numerical method

We start by describing the discretization of the equations for the nonleukemia (Ph™) cells.
This system is given by (4)—(7), (13), and (15).

For the stem cells, Eqs. (4)—(7), we divide the domain [Xmin, Xmax] X [0, 49] X R(J)r
into an equally spaced grid. Then the grid points are given by x; = jAx, ¢, = kAc, and
t, =nAt, where j =0,...,J,k=0,...,K,andn=0,..., N. Ax, Ac, and At denote
the spacings between grid points in the x, ¢, and ¢ directions, respectively. We let

Xmax — Xmin 49
Ax=———— and Ac=—,
J K
and set A, = Ar/Ax as the fixed mesh ratio.

We let 7,(f) denote the composite trapezoidal rule evaluated on the function f with
respect to the coordinate u. All integrals that appear in the equations are replaced by a
composite trapezoidal rule. Specifically, we let 7.(§2) denote the composite trapezoidal
rule approximation for the integral f032 Q(x,c,t)dc.

Let Zn, .5”, A s A* flj,k,,l, and f)’;n be our numerical approximations for ALy,

n’

(1), A(xj, t,), A*(t,), $2(xj, c, t,), and £2*(x;, t,), respectively. Then

-~

A, =T.(A_,) + Az,

2, =T, 0 T(2__,) + T, (2",).

From (4), we obtain the numerical scheme

A~j,n+1 = A~j.11 + )"X)Or(Aj+l,n - A~j.n)
- At(a)(ﬁn, eixj)A~j,n + Ol(Xn, e’)‘")Tc(f?j,—,n))

n 0, )CjEXa,
(ANa(A,, e_x/).Q;"n, xj € Xp.

From (8), we obtain the following boundary condition at x = x;:
A1 =0.

Next, we approximate (5) by
A:H = A~Z + At(,o,Ao,,, - a)(ﬁ,,, e_xo))A:.

Note that xo = 0 for the parameters in Table B.1.
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The equation for §2 cells, (6), is discretized as

Qj,k,rH—l = Qj,k,n - }\Xpd(éj,k,n - éj—l.k,n) - )"c(éj,k.n - éj,k—l‘n)

—(ADa(A,, e )Rk, force(0,32],
0, for ¢ € (32,49].

On the left edge x = x(, we set
Q04.=0, Vk,n.

From (9), for ¢ =0, we have
éj,(),n+1 = Zé_f,K,n-

Let k be the index between 0 and K such that c; is as close to 32 as possible. Then for
¢ =32, we have

ittt =2 +0(2,679) A, @1)

Note that (21) implies a jump discontinuity, which occurs at the transition between indices
(j, k™) and (j, k). Similar jump discontinuities occur with £2* and P.
The PDE for §£2*, (7), is discretized as

N ) O, X € Xa,
j=tm —(ADa(A, e )R%, x; € Xp.

jn

2% 1 =827, — Axpa (.Qj*n -2

The boundary condition (11) becomes

~ W (£2,,e70) -
2, =—""A,.
Pd
Fori =1, 3, and 5, let j; be the index between 0 and J such that x, is as close to y; as
possible. Then from (12), for x = x;,, x;,, and x,, we have
=20*

‘Q_;:r,n-%—l JTan+1e

For the precursor and mature cells, we use the same time discretization as above and
divide the age domains [0, 480] and [0, 192] into equally spaced meshes. For simplicity,
we choose step sizes of the form As = 1/w, where w is an integer. This way, we can use
the same step size for both precursor and mature cells. Hence, the grid points are given by
si=iAsfori=1,...,1L,,...,1,, where I,, As =192 and I, As = 480.

The explicit upwind scheme applied to Egs. (13), and (15) (for the precursor and the
mature cells) reads

ﬁj¢n+1 = ﬁj,n - )"s(ﬁj,n - ﬁj*l.ﬂ)v

MjJH—l = Mj.n - )\S(Mj,n - ~j—l,n)-



A PDE Model for Imatinib-Treated Chronic Myelogenous Leukemia 2007

N
o
[S]

— PDE: Ph- pop.w/ max affinity = 91247.3093
2 300 - ABM: Ph- pop.w/ max affinity = 91512
8
< Omega
5 200 - g
o
§ 100 M
0 P s Y —————e Alpha I !
0 20 40 60 80 100 120

k (affinity a = e"kp)

Fig. 4 Steady state profiles for the PDE model and the original agent-based model in the case where there
are no leukemia stem cell populations. Cells from the PDE model are plotted with respect to their log
affinity values, x. The number is Ph™ cells with maximum affinity is given by A*. Cells from the Roeder
ABM model are grouped into wells based on their log affinity values. The kth well corresponds to cells
with affinities between e~ ®T1/2Pd and ¢=*=1/20d for k =0, ..., 127. This grouping coincides with
what was used in Kim et al. (2008) and allows the ABM data to scale the same way as the solutions of the
difference equation model.

Here, Ay, = At/As, and P and M are the numerical approximations for P and M. The
boundary conditions are given by

I;O,n = pd(’z-:?(é],f,n) + Q}(,n)’
Pyt =2Pyy . forv=24,48,72,...,456,
Mo, = 2Pigo >

where 1/w = As as before.

The discretization of the equations for leukemia cells are derived in the same manner
as the scheme for nonleukemia cells. All equations retain the same form, and are omitted
for the sake of brevity.

4.2. Nonleukemia cells

Using the scheme from in Section 4.1, we set At = 0.1, Ax = 2p,;At = 0.0098, and
Ac = 0.2 (which corresponds to J = 636 and K = 245) and consider the scenario in
which there are no leukemia cells. With the parameters in Table B.1 for nonleukemic
cells, we obtain the steady state profile shown in Fig. 4 for the Alpha and the Omega stem
cells. Omega cells from the PDE model are plotted with respect to their log affinity values,
x. Since §2 is a function of both x and c, this variable is integrated with respect to c to
obtain the total population of £2 cells with a given log affinity x. Hence, the total Omega
population is plotted as

49
2(x,c, tg)dc+ 27 (x, 1),
0
where 1y is fixed.

Figure 4 demonstrates that our new PDE model captures the behavior of the original
agent-based model. In the same way, the PDE model agrees closely with the difference
equation model of Kim et al. (2008). Figure 5 compares the steady state profiles for non-
leukemic cells for the PDE and the difference equation models.

The steady state solution of the PDE model demonstrates that most cells in the Omega
compartment originate at the point source P shown in Fig. 2. Specifically, the £2* sub-
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Fig. 5 Steady state profiles for the PDE model and the difference equation model from Kim et al. (2008)
in the case where there are no leukemia stem cells.
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Fig. 6 Steady state profiles for the Omega subpopulations, £2 and £2*, of the PDE model.

population accounts for 95% of the total Omega population at steady state. Figure 6 shows
the steady state profile of the total Omega population and the £2* and £2 subpopulations.

4.3. CML genesis

One of the numerical studies that were conducted in Roeder et al. (2006) was of CML
genesis from one leukemia stem cell. The transition from one leukemia cell to a BCR-
ABL ratio of over 99%, was captured by simulating the dynamics for up to 15 years.

Such a long time simulation with a PDE model is challenging. We conduct a rather
straightforward study by using a coarser mesh that is given by Ar = 0.5, Ax = (0.0488,
Ac=1,and As =0.5.

Figure 7 shows the results of the numerical simulation of the PDE model. For compar-
ison, they are shown along with simulations of the difference equation model from Kim
et al. (2008) and the ABM from Roeder et al. (2006).

From Figure 7, we see that the PDE model captures the same qualitative behavior
as the ABM. At the same time, it estimates higher steady state concentrations of Ph~
and Ph™ cells. On the other hand, the difference equation model from Kim et al. (2008)
achieves essentially the same steady state concentrations as the ABM. Hence, it appears
that there is a difference between the (continuous time) PDE model and the (discrete time)
difference equation and agent-based models.

The steady state solutions of the PDE and of the discrete models have the same qual-
itative and even structural behavior as shown in Fig. 5. However, from a quantitative
perspective, the PDE model estimates higher Alpha and Omega stem cell populations,
which in turn result in higher precursor and mature cell populations. Indeed, at the steady
state for Ph™ cells, the total numbers of Alpha (dormant) and Omega (proliferating) stem
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Fig. 7 Simulations of the PDE model and of the difference equation model from Kim et al. (2008). The
plot shows the numbers of mature Ph~ and mature Ph cells for both models. The figure also shows two
examples of simulations of the ABM from Roeder et al. (2006). The two examples of ABM simulations
are the extreme cases out of 100 runs, and most ABM simulations fall between the two examples, closer
to the solution given by the difference equation model.
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Fig. 8 Comparison between population distributions of stem cells with respect to log(affinity) for the
PDE and difference equation models. (a) Ph™ cells. (b) Ph cells after CML genesis.
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cells in the PDE model are 9.32 x 10* and 2.00 x 10*, whereas for the difference equation
model the total numbers of Alpha and Omega stem cells are 9.29 x 10* and 1.94 x 10*.
The difference in the way the time variable is handled results in slight differences in
accounting for stem cell transitions. These effects accumulate over time, resulting in dif-
ferent quantitative behaviors between the two models. Figure 8 shows an example of how
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Fig. 9 Time evolution of BCR-ABL ratios under imatinib treatment. The BCR-ABL ratio is defined by
(# of mature Ph cells) /((# of mature Pht cells) + 2(# of mature Ph™ cells)) as in Roeder et al. (2006).
(a) Plots of the PDE, difference equation, and average of 20 ABM simulations using parameters from
Roeder et al. (2006) listed in Appendix B with ripy = 0.05 and rgeg = 0.033. As we can see, the differ-
ence equation and ABM simulations almost coincide, except that the ABM exhibits some stochasticity,
whereas the difference equation model is fully deterministic. (b) Numerical solutions of the PDE model
with (ripp, rdeg) values of (0.1, 0.037), (0.1,0.04), and (0.1, 0.43) for solutions 1, 2, and 3, respectively.

the population distributions of Alpha and Omega cells differ between the PDE and differ-
ence equation models. As we notice from the figure, the PDE model does not necessarily
average the behavior of the difference equation model. As we see from Figs. 8(a) and
8(b), there are slight differences at every discrete interval along the x-axis of the popula-
tion distribution. Furthermore, these differences accumulate as x increases, especially for
the Omega cells.

4.4. An imatinib treatment

Whereas the differences discussed in Section 4.3 seem relatively minor, the differences
between the continuous time and discrete time models become more pronounced in sim-
ulations of imatinib treatment. For these simulations. we use the same mesh used in Sec-
tion 4.3, except that we set Az = 0.45 rather than 0.5.

Figure 9(a) compares numerical solutions of the PDE model and the difference equa-
tion model using the parameters listed in Appendix B. Figure 9(a) shows how greatly the
dynamics vary between the PDE and difference equation models. In particular, the solu-
tion to the PDE is much flatter than that of the difference equation model and does not
exhibit the bi-phasic decline that was also observed in Roeder et al. (2006). On the other
hand, the solutions of the difference equation and agent-based models follow each other
very closely (which is not surprising since they are really two equivalent formulations of
the same problem).

It is interesting to note that we can obtain the behavior of the difference equation model
from the PDE model by increasing the values of 7y, and rgeg from 0.050 and 0.033 to 0.1
and 0.04, respectively. Figure 9(b) shows three examples of solutions of the PDE model
with (Fiph, 7aeg) values of (0.1,0.037), (0.1,0.04), and (0.1, 0.43). Like the difference



A PDE Model for Imatinib-Treated Chronic Myelogenous Leukemia 2011

equation model, these three examples all exhibit bi-phasic declines that hinge at around
200 days after the start of treatment. Example 2 is especially close to the solution of the
difference equation model. We note that in Example 2 the value of 7, is twice as high as
the original estimate of 0.050 used in the ABM and the difference equation model. This
large difference suggests that the influence of using a continuous-time versus a discrete-
time model has a significant effect on the parameter values that cannot be attributed to
estimation error alone.

5. Conclusion

In this paper, we derive a CML model that is written as a system of PDEs. This model is
a time-continuous extension of the agent-based CML model of Roeder et al. (2006) and
of our difference equation model (Kim et al., 2008).

The formulation of a PDE system from the ABM is conceptually challenging due to the
assumption that Alpha stem cells increase the affinity until they reach a maximum value,
corresponding to the boundary x = 0. While this does not pose a problem in the discrete
models, in the PDE system, it causes the population density of Alpha cells to accumu-
late at a point mass at the boundary. Although it may initially appear straightforward to
write a simple hyperbolic PDE for Alpha cells and assume that the advection rate remains
constant for all x > 0 and suddenly becomes 0 at the boundary, this approach leads to var-
ious numerical and theoretical difficulties. Various strategies to deal with these problems
are discussed in Roeder (2003). As an alternative method in this paper, we separate the
population of the point mass at x = 0 from the rest of the Alpha stem cell population by
introducing a new variable A*(#). We also introduce a corresponding variable £2*(x, 1)
for the Omega population. Our expanded system allows for faster numerical evaluation
and a natural formulation of the boundary conditions at x = 0.

We do not change any of the biological assumptions when deriving the model. The
mechanisms that govern the dynamics of the hematopoietic cells remain identical in all
models, regardless of whether the cells are leukemic or nonleukemic. The new mathemat-
ical formulation, however, is interesting on its own merit. While our PDE model should
be considered as a time-continuous limit of both discrete models, the approach we take
in deriving this new model is to consider PDEs that are directly based on the biological
assumptions. A formal reasoning of this limit is possible, though not particularly instruc-
tive.

What are the advantages of a PDE model? In the absence of our previous work
(Kim et al., 2008), we could simply claim that the PDE formulation provides a more ef-
ficient way of simulating the dynamics (when compared with the agent-based model).
In addition, realistic population sizes for the different types of cells can be used.
Unlike the agent-based model, the PDE model, has no dependence on the population size.

IThe numerical evaluation of the PDE model presented in this paper takes a little under 2 hours on our
laptop, which is much faster than the ABM model, which takes about 6 hours and 30 minutes on the
desktops in the Stanford University Mathematics Department in 2007. On the other hand, the PDE model
is still much slower than the difference equation model, which takes about 4 minutes 30 seconds on the
desktops (Kim et al., 2008).
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In the agent-based case (Roeder et al., 2006), this was a rather strict restriction that limited
the sizes of the populations simulated to 10% of their real sizes. These advantages were
already noted with our previous work (Kim et al., 2008), and indeed, when compared with
that work, our new model, does not improve the efficiency of the simulations.
Nevertheless, the PDE approach has several advantages over the discrete models:

(i) A PDE model provides an alternative representation of the dynamics of the progres-
sion of the disease that is continuous in time.

(i) The PDE approach allows a direct study (and a better fit) of the model parameters
that are sensitive to the time being a continuous or a discrete variable.

(iii)) The PDE approach allows direct adjustments of global parameters that may depend
on macroscopic quantities (such as densities of cells). These are usually less accessi-
ble in the discrete models. It also provides direct access to the macroscopic quantities
themselves, as the model is formulated in these terms.

(iv) From an implementation point of view, the present model amounts to several
(complex) equations. This should be compared with tens of thousands (of rather
simple) difference equations in the model of Kim et al. (2008), or with the hundred
thousand or so iterations of simple rules at each time step in the ABM of Roeder
et al. (2000).

Our numerical simulations demonstrate that the PDE model captures the same qual-
itative (and structural) behavior of the stem cells in the ABM. Indeed, at equilibrium,
most Alpha cells accumulate in the A* state, representing Alpha cells that have at-
tained maximum affinity. Also, the Omega cells show a step-like behavior with respect
to the x-coordinate as shown in Fig. 5. These results coincide with the behavior of
the ABM.

The PDE model starts to diverge from the discrete-time (difference equation and agent-
based) models when we compare simulations of CML genesis and imatinib treatment. In
CML genesis, the PDE model shows the same qualitative behavior as the discrete-time
models, but the initial rise of Ph™ cells occurs earlier, and the Ph* cells end at a higher
equilibrium concentration than in the discrete-time models.

In simulations of imatinib treatment, the PDE and the discrete-time models diverge
more greatly. The results of all models can match if the rates of imatinib-induced inhibi-
tion (rnn) and degradation (r4eg) are increased. These differences between the ABM and
the PDE models demonstrate that some critical aspects of the model are highly sensitive
to the discretization of time. This observation is important, because it suggests that it is
not straightforward to assume that a discrete-time ABM, albeit with small time steps,
accurately approximate the continuous-time behavior.

While it could be argued that a continuous-time description of disease dynamics may
be more realistic than discrete-time models, there still are multiple directions in which
the present model can be improved, even at the existing resolution (i.e., without adding
additional types of cells, signaling, etc.). One example is the deterministic “clock” that
governs the progression of cells in the Omega state, the deterministic nature of the affinity
variable, or the deterministic life-cycle of precursor cells. These could be ideal places to
add some uncertainty the model, an issue we plan to address in the future.
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Appendix A: The ABM algorithm

We summarize the algorithm of the ABM from Roeder et al. (2006).
At every time step, the ABM is defined as the following set of actions:

A. Preliminary calculations

1. Calculate the total populations of A and §2 cells.
2. During imatinib treatment:

e Remove the proliferative Ph* cells (£2+ and £2+/7) that undergo apoptosis.
e Determine which unaffected proliferative Pht*, 2%, become imatinib-affected.

B. Proliferation, death, change of state, clocks

At this stage, all cells fall into one of three categories: A stem cells, 2 stem cells, differ-
entiated cells.

1. For each A stem cell:

e Determine whether the cell transfers to £2. If a cell transfers, skip the remaining
actions for A cells. Note that the transition function depends on whether the cell is
Ph~, Ph*, or imatinib-affected. Calculate transition probabilities based on the total
population of §2 calculated in Step Al.

e Increase the cell’s affinity by a factor of r.

2. For each 2 stem cell:

e Determine whether the cell transfers to A. If a cell transfers, skip the remaining
actions for §2 cells. Calculate transition probabilities based on the total population
of A calculated in Step Al.

e If the cell’s affinity is less than or equal to an,, the cell becomes a differentiated cell
of age 0. If the cell differentiates, skip the remaining actions for £2 cells.

e If a cell’s affinity is greater than an,, decrease the cell’s affinity by a factor of d.

e Increase the counter ¢ by 1.

e If the counter c is greater than or equal to 49, set ¢ to 0 and create a new cell with
identical attributes and state values as the current cell.

3. For each differentiated cell:

e Increase the cell’s age by one.

o If the cell’s age is a multiple of 24 between 24 and 480, inclusively, create a new
differentiated cell with the same age as the current cell.

o If a cells age reaches 672, that cell dies.
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Table B.1 Parameters from Roeder et al. (2006)

Parameter Description Ph™ Ph /imatinib-affected
Amin Min value of affinity a 0.002 0.002

Amax Max value of affinity a 1.0 1.0

d Differentiation coefficient 1.05 1.05

r Regeneration coefficient 1.1 1.1

Tc Cell cycle duration 48 hours 48 hours

7 Duration of S phase 8 hours 8 hours

TGy /M Duration of G, and M phases 8 hours 8 hours

Ap Lifespan of proliferating precursor cells 20 days 20 days

Am Lifespan of mature cells 8 days 8 days

Te Cell cycle of proliferating precursors 24 hours 24 hours
f(0) Transition characteristic for fy 0.5 1.0

fo (N A/2) Transition characteristic for f 0.45 0.9

Fu(Ng) Transition characteristic for f 0.05 0.058
Jfa(00) Transition characteristic for fy 0.0 0.0

Ny Scaling factor 10° 10°

fw(0) Transition characteristic for f, 0.5 1.0/0.0500
fw(ﬁ A/2) Transition characteristic for f,, 0.3 0.99/0.0499
Fo(Ng) Transition characteristic for f, 0.1 0.98/0.0498
few(00) Transition characteristic for f, 0.0 0.96/0.0496
Ny Scaling factor 10° 10°

Note that differentiated cells of age less than 480 are considered to be proliferating pre-
cursors, whereas differentiated cells of age greater than or equal to 480 are considered to
be non-proliferating mature cells.

Appendix B: Parameter estimates

The sigmoidal transition functions are given in Roeder et al. (2006) by

— 1
faso(A/2) = —— + (B.1)
Vi +v2exp(v3%)

where A and £2 denote the total populations in the Alpha and Omega compartments,
respectively (see (2) and (3)). Furthermore,

vy = (hihs — h%)/(hl + h3 —2hs),
vy =h; — vy,
v3 =In(h3 —vi/v2),

V4 = fo/0(00),
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Table B.2 Imatinib-related parameters from Roeder et al. (2006). The inhibition intensity, rjyy, refers to
the probability that a proliferative Ph™ cell (i.e., an £2 cell) becomes imatinib-affected in a given time
interval. The degradation intensity, rqeg, refers to the probability that an imatinib-affected, proliferative
Ph™ cell dies in a given interval

Parameter Description Estimate
Tinh Inhibition intensity 0.050
Tdeg Degradation intensity 0.033
and

1y = (Fapo(0) = far(00)) ™
hy = (fajo(Naje/2) — fa/w(oo))fl,
hy = (fa/w(NA/Q) - fa/m(oo))71~

The values of the various parameters are listed in Table B.1.
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