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Abstract Many genes and their regulatory relationships are involved in developmental
phenomena. However, by chemical information alone, we cannot fully understand chang-
ing organ morphologies through tissue growth because deformation and growth of the
organ are essentially mechanical processes. Here, we develop a mathematical model to
describe the change of organ morphologies through cell proliferation. Our basic idea is
that the proper specification of localized volume source (e.g., cell proliferation) is able to
guide organ morphogenesis, and that the specification is given by chemical gradients. We
call this idea “growth-based morphogenesis.” We find that this morphogenetic mechanism
works if the tissue is elastic for small deformation and plastic for large deformation. To
illustrate our concept, we study the development of vertebrate limb buds, in which a limb
bud protrudes from a flat lateral plate and extends distally in a self-organized manner.
We show how the proportion of limb bud shape depends on different parameters and also
show the conditions needed for normal morphogenesis, which can explain abnormal mor-
phology of some mutants. We believe that the ideas shown in the present paper are useful
for the morphogenesis of other organs.

Keywords Limb development - Center dynamics model - Organ growth - Growth based
morphogenesis

1. Introduction

Recent advances in molecular biology have provided much information on developmental
phenomena. For each developmental event, many responsible genes have been identified,
and regulatory networks of these genes and spatio-temporal patterns of their expressions
have been clarified. On the other hand, developmental dynamics include spatial elements
as well. Each cell has to recognize its own position within a given organ and behave ap-
propriately. Concepts such as positional information and morphogen have been proposed
as a solution to this issue (Wolpert, 1969; Wolpert et al., 1998; Jaeger and Reinitz, 2006;
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Fig. 1 Scheme of developmental dynamics. Organ morphogenesis is carried out through the interaction
of several different processes, including the synthesis of morphogen at organ boundary, the decoding of
positional information provided by the morphogen in cells, and the deformation and growth of the organ
caused as a result of different cellular responses.

Morishita and Iwasa, 2008). Typically, the concentration gradients of morphogens (diffu-
sive chemicals) synthesized at the boundary of an organ provides positional information
to the cells spatially distributed. Each cell decodes its own positional value by sensing and
processing the morphogen concentrations with intra- and intercellular chemical reactions
including complex feedback loops and lateral inhibition (Gierer and Meinhardt, 1972;
Meinhardt and Gierer, 2000). Based on its positional value, each cell can respond in di-
verse manners, such as by differentiation, division, apoptosis, and movement (see Fig. 1).

However, developmental process does not end with spatially heterogeneous cellular
responses. These lead to the deformation and change in the boundary of an organ, which
may also alter the position of the morphogen source. Thus, the positional information
may change in accordance with the deformation and the growth of the organ. Hence,
development is a dynamical cycle of interaction among morphogen synthesis, decoding
of positional value, and mechanical deformation of organ. With chemical information
alone, we cannot fully understand this cycle.

Previous theoretical studies of development with mechanical processes include those
with discrete descriptions of tissues and those with continuous description. In the cel-
lular Potts models, each cell is represented as a cluster of grid points with a volume
constraint. Cell surface energy depends on cell types, and cell aggregation and sort-
ing can be realized (Graner and Glazier, 1992; Glazier and Graner, 1993; Mombach
et al.,, 1995, 2001; Savill and Hogeweg, 1997; Jiang et al., 1998; Mombach, 1999;
Scottet al., 1999; Hogeweg, 2000; Maree and Hogeweg, 2001; Kesmir and De Boer, 2003;
Savill and Sherratt, 2003; Zajac et al., 2003; Turner et al., 2004; Zeng et al., 2004;
Merks and Glazier, 2005; Merks et al., 2006). In a vertex dynamics model, a poly-
gon formed by linking several vertices represents a cell or a cluster of cells. Each ver-
tex is influenced by forces acting on it and constraints such as minimization of cell
boundaries. The vertex dynamics model has been adopted for morphogenesis in Fun-



Growth Based Morphogenesis of Vertebrate Limb Bud 1959

dulus epiboly and notochord development in Xenopus laevis (Stein and Gordon, 1982;
Weliky and Oster, 1990; Weliky et al., 1991; Brodland and Chen, 2000a, 2000b; Chen
and Brodland, 2000; Nagai and Honda, 2001; Brodland, 2002; Honda et al., 2004), as
well as for plant morphogenesis (Rudge and Haseloff, 2005). In the center dynamics
model, a node represents a cluster of cells and receives forces from its neighboring nodes,
which are linked based on actual spatial configuration. The center dynamics model has
been adopted to describe cell aggregation, locomotion, and rearrangement (Honda, 1978;
Honda et al., 1979, 1984; Graner and Sawada, 1993; Palsson and Othmer, 2000;
Palsson, 2001; Meineke et al., 2001). Drasdo et al. dealt with one-layer growing tis-
sues and explained spatial patterns such as cleavage, blastulation, and gastrulation
(Drasdo et al., 1995; Drasdo and Forgacs, 2000; Drasdo, 2000; Drasdo and Loeffler,
2001). The immersed Boundary Method (IBM) was introduced by Peskin (1972) to
describe flow patterns around heart valves. It consists of the interaction between in-
compressible viscous fluid and elastic boundary structures immersed in the fluid. IBM
has been adopted to flagella motion and swimming of microorganisms (Peskin, 1972;
Fauci and Peskin, 1988; Fauci, 1990; Dillon et al., 1995, 1996; Bottino, 1998; Bottino
and Fauci, 1998; Dillon and Fauci, 2000; Lubkin and Li, 2002), and to the growth of tro-
phoblast bilayer and the outgrowth of the vertebrate limb bud (Dillon and Othmer, 1999;
Rejniak et al., 2004).

In this paper, we attempt to answer a fundamental question: what determines organ
morphologies that change through tissue growth. Our basic idea is that the proper speci-
fication of localized volume source (realized by cell proliferation) is able to guide organ
morphogenesis, and that the specification is given by inhomogeneous chemical distribu-
tions (e.g., morphogen gradients). We call the idea “growth-based morphogenesis.” We
discovered that this morphogenetic mechanism works if the tissue is elastic for small
deformation, but plastic for large deformation. That is, when the shape of the tissue is de-
formed with small magnitude, it tends to go back to the original shape (elasticity), which
stabilizes the present organ shapes against perturbations. However, if the deformation is
large, the tissue would not go back to the original one and stay in a new shape (plasticity),
which allows the organ shapes to change.

We adopt a modeling framework based on the center dynamics model to describe
the change of organ morphologies. Our model consists of the mechanical interaction be-
tween epithelial and mesenchymal tissues with different physical properties and topolo-
gies, which are commonly observed in many developmental processes.

We illustrate the above concept by using an example of vertebrate limb bud formation
and elongation processes, the system with a long history of research (Wolpert et al., 1998).
In the limb development, the apical ectodermal ridge (AER), a thick epithelium located at
the tip is closely related to the elongation. Its removal by surgery leads to apoptosis at the
tip of the limb bud, and consequently incomplete outgrowth (Dudley et al., 2002). FGF
family is considered to be a candidate that promotes active cell proliferation (or specifies
the location of volume source) at the tip. Lu et al. observed in their experiments that
the limb bud shape becomes wider when the Fgf expression level is increased by genetic
operation and also showed that the mutant has abnormality in the digit number. Verheyden
et al. (2005) showed that the mutant without the expression of FGF receptors has a wider
limb bud in the antero-posterior direction and loses distal structures such as fingers in later
stages. In addition, Niederreither et al. observed a branched limb bud in the mutant that
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lacks the middle part of the AER. These suggest that abnormalities of limb morphology
might be caused by dysfunction of the mechanism specifying the volume source.

Previous theoretical studies on the limb development have focused on skeletal patterns
(Newman and Frisch, 1979; Oster et al., 1983, 1985; Murray et al., 1988; Hentschel et
al., 2004; Izaguirre et al., 2004; Chaturvedi et al., 2005; Cickovski et al., 2005; Miura et
al., 2006). They do not deal with the growth of the limb shape itself. An exception is the
classical work by Ede and Law (1969), who modeled limb bud shape by a set of points on
the lattice space. The outgrowth was based on cell division that places a daughter cell on
the nearest empty lattice point. Oriented division is required to achieve elongated shape
of limb bud. However, their model considers no mechanical forces such as the elasticity
between cells. Another exception is the work by Dillon and Othmer (1999). They modeled
limb bud elongation processes by using IBM. In their model, the width of the limb is
constrained by elastic fibers connecting between the anterior and posterior boundaries to
maintain the realistic limb shape.

In our model, a limb bud protrudes and elongates from a flat lateral plate with a con-
stant limb width in a self-organized manner. The morphology of the bud is controlled
by the spatio-temporal pattern of the volume source, unlike existing models for limb bud
formation. The model’s results can explain abnormal morphology of some mutants (Lu et
al., 2006; Verheyden et al., 2005; Niederreither et al., 2002). We investigate the relation
between the proportion of limb bud shape and various system parameters. We conclude
that the balance of elasticity between different tissues is important to achieve normal mor-
phogenesis with smooth boundaries.

2. Model

A vertebrate limb bud consists of two major tissues, mesenchyme, and epithelium
(Wolpert et al., 1998). In this study, these two tissues are described by a network of finite
number of nodes. Each node corresponds to the location of the center of a mesenchymal
(M) cell or an epithelial (E) cell (see Fig. 2). We can also regard a node as a cluster of M
(or E) cells instead of a single cell. In the following, we refer to a node representing an M
cell as an M-node and an E cell as an E-node.

We start with a set of E and M nodes lined in parallel, corresponding to a flat lateral
plate. By cell division, the region filled with M-nodes expands, and the chain of E-nodes
surrounding it becomes longer.

Our modeling is two-dimensional whilst the real limb-bud is three dimensional. The
main purpose of this study is to illustrate a basic idea that specifying spatio-temporal pat-
terns of active cell proliferation is able to guide organ morphologies, rather than showing
a detailed realistic description of limb-bud formation.

2.1. Generation of tissue network

In this model, the epithelium is regarded as a one-layer sheet. Adjacent epithelial cells
form with junctions. Occasionally an E-node divides, and the links between E-nodes are
relinked as explained later. This modeling of epithelium is based on that it is often re-
garded as a one-layer sheet, and that adjacent epithelial cells have tight junctions with
each other (Alberts et al., 2002).
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Fig.2 (1) A network of nodes to describe the epithelial and mesenchymal tissues. The network composed
of E- and M-nodes is constructed by the Delaunay triangulation. (2) Volonoi description of organ. The
upper figure is a magnified view of a part in (1) and (2). Black and white nodes indicate E and M-nodes,
respectively.

In the region enclosed by a chain of E-nodes, are M-nodes. To consider the linking
between M-nodes, we first separate the region into sub-triangles each having a node at
the vertex by applying Delaunay triangulation to the set of all nodes, and then each edge
of triangles including M-nodes are lined (see Fig. 2(1)). We denote the Delaunay trian-
gulation for a set S of nodes in the plane by DT(S). In triangulation DT(S) no node in
S is inside the circumcircle of any triangle (Sloan, 1987). The Delaunay triangulation is
done at each time step. Since it is mathematically equivalent to the Voronoi partition, we
can also describe the tissue as a set of polygonal cells (Fig. 2(2)). For the boundary of the
organ, we adopted a specific partition method by Bottino et al. (2002).

Each link has an optimal distance where its potential energy becomes minimal. The
nodes have an elastic property—the length of the links between them tends to return to
the optimal one when deviated. Thus, when the shape of the organ is deformed by a small
magnitude, the shape tends to return to its original one (see Fig. 3).

The shape also has plasticity—if the organ is largely deformed due to cell movement,
division, and so on, the shape would not return to the original one. The plastic behavior oc-
curs because internodal links are re-linked based on Delaunay triangulation (see Fig. 3).
In the region with high cell proliferation activity, cells move frequently, and the neigh-
boring relation among nodes change. In contrast, in the region where cell proliferation
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Fig. 3 Elastic and plastic properties of tissues. When the deformation of tissues through cell movement or
division is small, the neighboring relationships among nodes remain unchanged. Thus, each node tries to
restore equilibrium configuration (elasticity). In contrast, when the deformation is large, the neighboring
relationships change and the shape would not return to the original one (plasticity). See the text for details.

activity is low and cellular movement is slow, internodal links tend to remain unchanged.
Plasticity is required for proper growth of an organ’s shape.

2.2. Internodal potential and cellular movement

According to previous studies (Nagai and Honda, 2001; Meineke et al., 2001; Drasdo,
2000), we assume that inertial forces acting on the cellular network can be neglected and
that the displacement of each node within a small time interval At occurs in the direction
to reduce the potential energy:

X;(t + A1) =x;(t) = VO (t) At/ u;,

where x; and @; are the positional vector and the total potential energy for the node i. u;
is a friction (viscous) coefficient of the node. For simplicity, we assume w; = p for all i.
The total potential energy for an M-node i, @;, is given as follows:

oM ="MV 4N pME (1)
i J

where @i’y M is an internodal potential energy between M-nodes and the first summation
in the right-hand side is for all M—M links including the M-node i. @lf;” E is an energy
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between M and E nodes and the second summation is for all E-M links including the
M-node. Similarly, the total potential energy acting on an E-node i, <PiE , is given as fol-
lows:

@,E=Zq>55+2q>§”, 2
J J

where <P£E is an internodal energy between E-nodes. The first summation in the right-
hand side is for all E-E links including the E-node i. ®/" (= ®}*) is energy between E
and M nodes and the second summation is for all E-M links including the E-node.

In the following, the energy @}/ (k,! € {M, E}) is a function of the distance between
two linked nodes. To be specific, it is given in a manner similar to intermolecular potential
as follows:

3
@iﬁ?(n_»:skl((ﬂ) —ﬂ> (k.1 € {M,E}), ®)

ij Tij

where r;; = |r;;| = [X; —x;| and <Dikj1 (k,1 € {M, E}) are the distance and a potential energy
between two nodes, i and j whose positional vectors are x; and X, respectively. gy (k,[ €
{M, E} determines the gradient of the energy, which is related to the elasticity of tissues.
The equilibrium distances between linked nodes are given by r,?l = /30y (see Fig. 4(a)).
Around an equilibrium distance, internodal links work as a linear spring, while a steep
gradient for r;; < rj, represents a strong repulsion, and hence limited compressibility of
each cell. The elasticity vanishes for very large distance (r;; > rf,).

The elastic properties differ between epithelium and mesenchyme. Epithelial cells
form tight junction with neighboring cells and form an epithelial layer to prevent mes-
enchymal cells from leaking out. In our model, this can be realized as egg > epp. As
shown in the results section, the elastic balance between epithelium and mesenchyme is
an important factor for normal morphogenesis.

2.3. Organ growth through cell proliferation

Organ growth is controlled by “net” proliferation rate at each location, defined as the
number of cell divisions minus that of cell death “per unit time.” For example, no apparent
change in the number of cells is observed when the rates of cell division and apoptosis are
the same.

In the vertebrate limb development, the AER (apical ectodermal ridge) is closely re-
lated to its elongation. For example, when the AER is removed by surgery, apoptosis
occurs at the tip of limb bud (up to about 200 um from the tip), which leads to incom-
plete elongation (Dudley et al., 2002). Further, the rate of cell division at the tip is more
frequent than that in the proximal region in middle stages or later (e.g., from st. 23 in
chick) although the difference is hardly observed at initial stages of limb bud formation
(Hornbruch and Wolpert, 1970). In addition, according to experiments about the fate map
of cells (Vargesson et al., 1997; Sato et al., 2007), the cell fate at the tip (200~300 um
from the tip) has a large variation for the future position along the proximo-distal (P-D)
axis. These experimental observations imply that the net proliferation rate at the tip of a
limb bud (e.g., 200~300 pm from the tip) is higher than that in the proximal region (at
least in middle stages or later).
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Fig. 4 (a) Internodal potential energy okl (k,1 € {M, E}). &kl is a function of the internodal distance r.
Parameters ¢ and o determine the magnitude of energy gradient and equilibrium distance between linked
nodes, respectively. (b) Scheme of cell division. The left is a nodal network before cell division, and the
right is one just after division (center cell). In both cases, the broken lines show the Delaunay triangulation
and the red solid lines are the Voronoi partition.

In this study, we conjecture that the net proliferation rate is controlled by a gradient
signal from the tip of a limb bud, which we call an “AER-signal.” FGF family is a can-
didate of this AER-signal because FGFs are diffusive proteins synthesized at the AER
(Martin, 1998; Sun et al., 2000, 2002) and the expression patterns of down stream genes
of FGFs are reported to have a gradient along the P-D axis (Pascoal et al., 2007).

It should be noted that, as shown later, we observe that the early phase of the limb bud
formation can be performed without a clear gradient of the net proliferation rate along
the P-D axis. Instead, the bud can be formed under the condition of a uniform rate of net
proliferation. However, a difference of net proliferation between the distal and proximal
regions is required for the late phase of the limb bud elongation (see below).

Many chemicals are involved in the limb morphogenesis such as SHH from the Zone of
Polarizing Activity (ZPA) (Johnson and Tabin, 1997; Niswander, 2002; Pagan et al., 1996;
Niswander et al., 1994; Laufer et al., 1994; McGlinn and Tabin, 2006). However, there
are experiments showing that the limb continues to elongate after the removal of the ZPA
(Pagan et al., 1996). Since the purpose of this study is to develop a minimum model to
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describe limb bud formation and elongation processes, we do not include the ZPA into the
model.

2.3.1. AER and diffusion of AER-signal

Complex genetic interactions are known to regulate the position and the size of AER,
including well-studied AER-ZPA feedback, but a detailed mechanism is not identified
completely (Johnson and Tabin, 1997; Niswander, 2002). In the present model, we assume
that the position and the size of AER are given in advance: Nagg consecutive E-nodes are
AER. The AER-signal is synthesized in the AER and transported into the mesenchymal
tissue by diffusion.

Let ¢ be the AER-signal concentration at M-node i, and c¢{** that at E-node k of
AER. The diffusion of the AER-signal occurs only between linked nodes. The dynamics
of its concentration is given by the following reaction-diffusion equation on the nodal
network:

Mt +dn) =M (1) + D{Z(c;!” ) =) + D (™ =M 1) } di
j k

J

—yc@)dt, “4)

where D is a diffusion constant of the AER-signal. For each node, the flux of a chemical
is proportional to the difference between the focal node and its neighboring node. The
summation in the second term of the right-hand side is for all M-nodes j linked with
the node i, and that in the third term is for all E-nodes k linked with the node i. c{®
is assumed to be constant for all time ¢. The last term indicates the degradation of the
AER-signal at each M-node, where y is a degradation rate constant.

In the following numerical studies, we assume that the AER-signal diffusion occurs
much faster than cell proliferation and movement. Thus, the spatial pattern of the AER-
signal is always at the quasi-equilibrium state when we discuss the dynamics of limb bud
morphogenesis.

2.3.2. Cell division
M-nodes divide stochastically with the probability P, dt within a time interval dt. Py, is
assumed to be proportional to the concentration of the AER-signal, that is, Py, = fdivC,M s
where f;, is the cell division frequency per unit AER-signal concentration.

When an M-node divides, a dividing direction is chosen randomly, and two daughter
nodes are placed as follows (see Fig. 4(b)):

Xdaughterl = X — gddiv’ and Xdaughter2 = X + gddiva (5)
where X, Xqaughter1, a0d Xgaugniero are the positional vectors of the mother node and the two
daughter nodes. e is a unit vector randomly chosen and d;, is the distance between the
two daughter nodes just after the division. Since we chose the value of d;, as 40-50% of
internodal equilibrium length, daughter cells do not receive very strong forces. Further,
we confirmed that a small change of d;, did not lead to a large change of the limb shape.

Organ growth is observed throughout the limb mesenchyme after the AER removal
(Dudley et al., 2002). Thus, the mesenchyme may have a low, constant proliferation rate
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(basal rate) uniformly over the whole region in addition to the proximally-biased rate
enhancement due to the AER-signal. We examined the case where a uniform basal rate is
added to the AER-dependent proliferation and confirmed that results obtained below are
hardly affected if the added basal value is small. In the following analysis, for simplicity,
the basal net proliferation rate is not included.

We assume that the cell density in epithelial layer stays near a standard value because
the detailed mechanism of the proliferation of epithelial cells is still unknown. Due to the
proliferation of M-nodes, epithelial membrane swells and each E-E segment is stretched.
A new E-node is added in the middle of an E-E segment when the length of the E-E
segment exceeds twice its equilibrium distance.

The procedure for numerical calculations is described in the Appendix.

3. Results
3.1. Growth of the limb bud

Figure 5 shows a typical temporal change in the shape of a growing limb bud produced by
the model. The process of limb bud growth consists of two phases. In the early phase, a
small bud protrudes from a flat lateral plate and swells until it has a certain width W. Here,
the limb bud width is defined as the size measured in the anterior-posterior direction. In
the late phase, the limb continues to elongate perpendicularly to the lateral plate with a
constant width W. Since we stopped the calculation when the total node number reached a
certain value N, (N, = 800 in Fig. 5), the final length of the limb, L, is almost proportional
tol/W.

(d)

An
Di

Po

Fig.5 Temporal changes in the shape of a growing limb bud. (b—d) A limb bud protrudes from a flat lateral
plate shown in (a), and extends with a constant width (e—g) in a self-organized manner (the time passes in
an alphabet order). Pr: proximal, Di: distal, An: anterior, and Po: posterior. Parameter values: eEE — 1.44,
eMM —0.08, eEM = 0.4, 6 EE =0.809, oMM =0.809, c EM =0.104, D =0.15, y =0.10, u = 3.3,
Faiv = 0.0033, AER = 1.0, Nogr =7.
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Fig. 6 From the left to the right: organ shapes, distribution of AER-signal, energy level, and energy
gradient in a transient state. Bright colors indicate high values. (a) Reference with a standard parameters
set. (b) Case with a larger AER size. (c) Case with a higher diffusivity of the AER-signal. (d) Case with
a higher division rate of M-nodes. The distributions of the AER-signal, energy level, and energy gradient
are obtained as follows: first, we divided the region into small rectangular mashes. Then for each mesh,
the averages of the AER-signal, energy level, and energy gradient over nodes included in the mesh are
calculated.

We can explain the developmental process more intuitively by showing the spatial dis-
tribution of AER-signal concentration (clM ), the magnitude of energy gradient (||V&;|]),
and the energy level (A®;) in the mesenchyme. Here A®; is defined as &; — <D? , where
qu.O is the basal energy where all internodal links have their equilibrium length. At the
tip of the limb bud, the AER-signal concentration is high (see Fig. 6(a2)), which leads to
frequent cell divisions. Bright color at the tip in Fig. 6(a3) indicates the area with a high



1968 Morishita and Iwasa

energy level, that is, compressed region. The pressure induced by the net cell prolifera-
tion is the driving force for the elongation of limb bud. As shown in Fig. 6(a4), cellular
movement is active at the tip of the limb bud (bright color in the figure shows steep energy
gradient).

3.2. What controls the limb bud shape?

There are many parameters for mechano-chemical properties of the tissues. These para-
meters can be classified into two categories: One category includes factors determining
the spatial pattern of the net cell proliferation in the mesenchyme, such as AER size,
AER-signal diffusivity, AER-signal expression level, and division frequency of M-nodes.
These factors control the aspect ratio of the limb bud shape at the final pattern, defined as,
L/W o L?. In contrast, the second category of parameters includes the internodal poten-
tials determining the elasticity of tissues and cell mobility. Changes in the parameters in
this category can cause morphological anomalies, as shown later.

To study parameter dependences of the limb shape, we chose a standard set of parame-
ters giving the shape similar to observed one, and then examined the model with modified
parameters. Parameters are changed one by one around the standard value with all the
other parameters fixed. The results are summarized as follows:

3.2.1. Aspect ratios of the limb bud

(1) AER size A fixed number of consecutive E-nodes act as AER, the source of the AER-
signal. We call the number of these cells the AER size, and denote it by N4gx (see Fig. 2).
As illustrated in Fig. 7, the limb bud becomes wider as N4gg increases. For a larger AER
size, the spatial distribution of the AER-signal extends and the area of the net proliferation
becomes broader in the anterior-posterior direction (see Fig. 6(b)). When Nagg changes,
only the limb width changes without morphological anomalies during the transient state
(data not shown).

Figure 8 illustrates that the aspect ratio L/ W in the final pattern decreases as AER size
Nagr increases. The effect of the AER size on the aspect ratio was much stronger than the
effects of other factors. This suggests that the positioning and maintenance of the AER
and the control of its size are very important to realize the accurate proportion of the limb
bud.

(2) Diffusivity and expression level of AER-signal The diffusivity of the AER-signal is
determined by its diffusion constant D and its degradation rate y (see Eq. (4)). In a one-
dimensional diffusion with linear degradation, with the boundary concentration given by
the source strength, the concentration of the chemical at equilibrium decreases with the
distance x from the source exponentially: in proportion to exp[—x/+/D/y]. The quantity
/D]y is an indicator of the diffusivity of the AER-signal. An increase in /D/y makes
the limb bud broader and shorter, which is similar to the change caused by an increase in
the AER size (see Figs. 7 and 8).

In the apical region with strong volume source, the deformation of the nearby tissues is
large and the neighborhood relationship among cells is easy to change (i.e., the plasticity
of tissue). In contrast, in the proximal region with low activity, the configuration remains
unchanged because the deformation is small (the elasticity of tissue). As a consequence,
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AER size

¢ Diffusivity of AER-signal >
Small Expression level of AER-signal Large

Cell division activity

Fig. 7 Parameter dependence of a limb bud shape at the final state. For all parameters to specify the
spatio-temporal pattern of active proliferation area, such as AER size, diffusivity of AER-signal, expres-
sion level of AER-signal at AER, and division frequency of M-nodes, the dependence of the shape is
qualitatively same. The shape becomes narrower and longer as each parameter decreases, while becomes
wider and shorter as it increases. The figures (a)—(c) show the cases when only the AER-size is changed
with all the other parameters fixed (the same as in Fig. 5). (a) Nagg = 3, (b) Nagr = 7 (reference), and
(¢) Nagr =11.

o
~

AER size

o
N
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Division freq.
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Diffusivity of
AER-signal
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Change in parameters log(Z/Zo)

Change in aspect ratio log(A/Ag)
o

Fig. 8 Parameters dependence of the aspect ratio, length/width. The horizontal axis indicates each pa-
rameter value normalized by its standard value; the vertical axis indicates the aspect ratio normalized by
its value for the standard parameters set. Both are in a logarithmic plot. The aspect ratio monotonically
decreases with the increase of parameters; AER size, diffusivity of AER-signal, and division frequency of
M-nodes. Z: parameter value, Z: parameter value for the reference, A: aspect ratio, Ag: aspect ratio for
the reference.

the volume expansion occurring on the tip of the limb bud leads to the limb bud elon-
gation, but does not affect the proximal part at all. When the diffusivity /D/y is small,
the volume source is restricted to the limb bud tip. Thus, the limb extends in the distal
direction with a slim width. In contrast, when the diffusivity is large, the volume source
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expands to more proximal region, which makes the limb bud expand more to sideways,
i.e., the antero-posterior direction as well.

The shape of the limb bud formed also depends on the expression level of the AER-
signal at its source, c*#R (see Figs. 7 and 8). For a larger ¢*F®, active proliferation area
extends proximally, and the shape becomes shorter and wider.

(3) Division frequency ~When the frequency of cell division per unit concentration of the
AER-signal, f;;,, becomes higher, the limb bud shape becomes broader and shorter (see
Figs. 7 and 8). As shown in Fig. 6(d), the proliferation area with compression expands
proximally as f;, increases, which leads to a more sideward growth.

3.2.2. Morphological anomalies
(4) Internodal potential The change in the three factors discussed above modified the
aspect ratio of the limb bud, but no morphological anomalies were caused. In contrast,
if the balance among internodal potential changes, many different abnormal shapes were
obtained. For example, Fig. 9 shows the transient and final patterns of limb bud shapes
with different ratios of £ to ¢ . Shapes with smaller (larger) e£Z are similar to those
with larger (smaller) e,

When the ratio of ¢£Z to eM™ is small, the transient shape becomes a rugged hemi-
circle and the organ surface of the final pattern becomes also rugged. This may be be-

Transient

ref.

Final

Small «—— &7¢™

— Large
Fig. 9 Morphological anomalies. When the ratio of elasticity in epithelium to that in mesenchyme
eEE /sM M g small, the surface of limb bud becomes rugged. On the other hand, when the ratio is large,

the limb bud is hard to elongate distally and becomes balloon-like finally. The values of eEE /eM M are,
from the left, 4.5, 18, and 90.
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cause the internal pressure due to cellular proliferation freely disperses since the elasticity
between E-E links is relatively weak. These bumps do not seem to originate from the
internodal equilibrium distance or from the finiteness of the node number, because we
observed bumps of a similar size when the internodal equilibrium distance halved and the
node number increased.

In contrast, when the ratio of £ to ¢¥M is large, the transient shape becomes
Gaussian-like and the final one is balloon-like, because elasticity in the epithelium is
strong.

The change in ¥ somewhat affects the smoothness of organ surface, but hardly af-
fects the proportion of the limb bud.

M

3.3. The region for cell proliferation

In the above analysis, the division of M-nodes was regulated by the concentration of the
AER-signal, and the position of the AER moves as the organ grows. If instead the area
of active cell proliferation is fixed, rather than specified by the concentration of the AER-
signal, the model can no longer generate normal elongation of limb bud. In Fig. 10(a),
mesenchymal cells can proliferate only in a rectangular window beneath the initial epithe-
lial layer, and the size and location of the window is fixed during development. Although
a normal-shaped limb bud can be formed from the flat lateral plate in the early phase,
the organ shape gradually becomes balloon-like in the late phase of the simulation. This
remains valid for different sizes of the window of active cell division (data not shown).

The results suggest that the proliferation area needs to be dynamically specified during
organ growth to have an elongated shape of the limb bud. Moreover, the specification
is possibly realized by the gradient of chemicals (morphogen) released from the organ
boundary that moves with the growth and deformation. In contrast, the spatial gradient of
proliferation rate is not necessarily required for the initiation of bud formation.

Figures 10(b) and (c) clearly demonstrate the importance of the position of the source
of the AER-signal. We assumed that the proliferation depends on the concentration of the
AER-signal, but the position of the AER moves with time (the trajectories of AER-center
are indicated by bold white lines in both figures). In Fig. 10(b), the position of AER moves
from the tip of limb bud to the posterior side. The tissue growth tracks the trajectory of the
AER, which leads to a limb bud that bends toward the posterior direction. Such bending
is observed in the actual development of vertebrate limb bud. It may be realized when cell
proliferation area is affected by posterior tissue through chemicals such as SHH secreted
from ZPA that is another morphogen source locating at posterior mesenchyme. We also
performed a numerical experiment in which the AER bifurcates with time. Similarly, the
tissue growth tracked the trajectories of the divided AERs, and ended up with a branched
limb bud (see Fig. 10(c)). In the experiment by Niederreither et al. (2002), a branched
limb bud was observed in the mutant that lacks the middle part of the AER.

4. Discussion
We have developed a mechano-chemical model to describe the change of organ mor-

phology. We assumed that the prime force of development is the volume source realized
by cell proliferation. Our basic idea is that the proper specification of localized volume
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(a1) (a2)

<

Proliferation
window

(b1) (b2)

(c1) (c2)

Fig. 10 (a) Temporal change in limb bud shape. (al) The area in which M-nodes proliferate, which is fixed
during development. Although a small hump protrudes from the flat lateral plate in the early phase (a2), the
shape becomes more balloon-like with time (a3). (b) Temporal change in limb bud shape when the AER
shifts toward the posterior direction. (b1-b3) Tissue growth tracks the trajectory of the AER (indicated by
the white line), which leads to the shape of the limb bud that bends toward posterior direction. (c) Temporal
change in limb bud shape when the AER bifurcates. (c1—c3) Tissue growth tracks the trajectory of the
divided AERs (indicated by the white lines), which leads to a branched limb bud.
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source is able to guide organ morphogenesis, where the specification is achieved by chem-
ical gradients (e.g., FGF in the case of limb bud outgrowth). We may call this concept as
the principle of “growth-based morphogenesis.” We have found that this morphogenetic
mechanism works if the tissue is elastic for small deformation and plastic for large defor-
mation.

To illustrate our idea, we studied the developmental process of vertebrate limb bud. The
model is composed of the mechanical interaction between epithelium and mesenchyme
with different physical properties, which is realized by adopting different intercellular
potentials. The location of active cell proliferation is specified by the gradient of FGF
from the AER. We examined the relationship between system parameters and the limb
morphology.

The results can be summarized as the following three points:

First, the aspect ratio of the limb morphology, i.e., the ratio of limb bud length to limb
bud width, is determined by the spatial pattern of volume source realized by cell prolifer-
ation in the mesenchyme. If the proliferation area is limited to the tip of the limb bud, the
limb elongates in the distal direction and the aspect ratio (length/width) becomes large.
In contrast, if the proliferation area spreads to more proximal part, the shape becomes
broader and the aspect ratio becomes smaller. The mechanism can be explained as fol-
lows: In the area with active cell proliferation, the deformation of the nearby tissue is
large and the configuration among cells is easy to change due to the plasticity of tissue.
In contrast, in the area with low activity, the configuration remains unchanged due to the
elasticity of tissue. Thus, the spatial pattern of cell proliferation determines the proportion
of the limb bud. Factors that decide the spatial pattern include the AER size, the diffu-
sivity of the AER-signal, the expression level of the AER-signal at the source, and the
frequency of cell division.

Second, the balance of elasticity between mesenchymal and epithelial tissues is very
important for the normal growth of limb bud. When the elasticity of epithelial tissues is
strong, it is difficult for mesenchymal cells to push the epithelial layer distally, which
makes the limb bud elongation difficult. In contrast, a strong elasticity of mesenchymal
tissues leads to bumpy blocks because of the easy deformation of the epithelial layer.
We believe that the elastic balance between mesenchyme and epithelium is required for
normal morphogenesis with smooth organ boundary not only for the vertebrate limb bud
formation, but also for many other developmental processes.

Third, normal elongation of limb bud is not observed any longer if the area with high
proliferation activity does not dynamically change with the growth and deformation, al-
though a small bud was formed in all cases. In addition, the shape of limb bud is strongly
affected by the spatial pattern of the area for active cell proliferation, which in turn is
specified by the trajectory of the morphogen source.

Description of a tissue shape that is both elastic and plastic is a key to the modeling
of development with growth. In the model for intracellular processes, Bottino (1998) ex-
amined different linking rules to reproduce viscoelastic properties of the actin network
within a cell.

In the fluid-dynamics model by Dillon and Othmer (1999), the anterior and posterior
boundaries of the limb bud are connected by elastic links. This constraint prevents the area
from being balloon-like, and it makes possible the extension of the area in the proximo-
distal direction. In contrast, in our model, the limb bud shape develops in a manner guided
by the location of volume sources.
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Genes and their products related to developmental processes affect the mechano-
chemical properties of cells. If a mutant has abnormalities in the morphology compared
to wild types, the result of this paper suggests that the mutant is likely to have abnormali-
ties in genes or their products whose functions are related to the process of specifying the
area of cell proliferation and/or to the elasticity of tissues. For example, Lu et al. observed
in their experiments that the limb bud shape becomes wider when the Fgf expression
level is increased by genetic operations (see Fig. 1 in Lu et al., 2006). This observation is
consistent with the prediction of the present paper (see Section 3.2). In addition, the ex-
periment also showed that the mutant has abnormality in the digit number, which clearly
suggests that the abnormalities in the position of morphogen source and in the morphogen
amount that determine active proliferation area cause critical morphological deficiencies.
Another example is the observation by Verheyden et al. (2005), who showed that the mu-
tant without the expression of FGF receptors has a wider limb bud in the antero-posterior
direction and loses distal structures such as fingers in later stages. Since FGF receptors are
required to specify active proliferation area by FGF signal, their absence may make the
organ difficult to elongate as expected by the results in Section 3.3 of the present paper.

In this study, the size and the position of the AER are treated as given. It is known that
these are regulated by the interaction between the AER and the ZPA (Niswander et al.,
1994; Laufer et al., 1994; McGlinn and Tabin, 2006; Hirashima et al., 2008). The ZPA
is another morphogen source located at a posterior mesenchyme in the vertebrate limb
development, and is required to maintain the AER activity (Wolpert et al., 1998). The ZPA
also plays an important role to give the positional information along anterior-posterior
axis. An extended model including the interaction between AER and ZPA will be an
important target of future theoretical study. Further, in the present study, the driving force
for cell migration is assumed to be the pressure caused by cell proliferation. However,
there is an ongoing discussion about what is the driving force to cellular migration. Li and
Muneoka (1999), for example, showed that the AER has a chemoattractive function and
distal mesenchymal cells move toward the AER. We think that the investigations on the
relation between the organ shape and the factors other than pressure due to proliferation
are also important future works. In addition, our modeling deals with a two-dimensional
projection. The fact that the dorso-ventral distance in a real limb bud is smaller than the
antero-posterior distance may present a problem for a three-dimensional extension of this
model. We believe that most of qualitative properties observed in this paper can be seen
in the three-dimensional model. However, clarifying the difference between 2D and 3D
systems is an important open issue.

Appendix: Procedure of numerical simulations
Initial conditions

We start with a flat network composed of 1 layer of E-nodes and 3 layers of M-nodes
(Fig. 5(a)). This initial configuration corresponds to the lateral plate without the protru-
sion of a limb bud yet. Several central E-nodes are defined as AER with the constant con-
centration of the AER-signal, ¢*£R. The concentration of the AER-signal in mesenchyme
is set to be zero, that is, c’}” (0) = 0 for all M-nodes j.
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Updating states

In each time step, the following processes are done.

(i) Specifying AER. An E-node i satisfying {i| min; |y; — y,|} is defined as the center of
AER, where y; and y, are y-coordinates of each E-node and a constant.

(ii) Diffusion. According to Eq. (4), the concentrations of the AER-signal cj-"’ are calcu-
lated for all j until their values become close to the equilibrium ones.

(iii) Cell movement. One node i is randomly chosen. Depending on the node type of i,
the gradient of potential energy V@M or V@F is calculated. The position of the
nodes x; is updated to x; — V®;dt/u; (D; € {(D,.M, (DiE}). This process is repeated
for N times, where N is the total number of E and M-nodes. The results were the
same between if the update of all the cells occurs simultaneously and if the cells are
updated one by one according to random order.

(iv) Division of E-nodes. If the length of an E-E segment becomes the twice of its equi-
librium distance due to cell movements, a new E-node is added in the middle of the
E-E segment. For each division, links for all E and M-nodes are relinked by the
Delaunay triangulation.

(v) Division of M-nodes. One M-node is randomly chosen. According to the probability
Py, = fdl»vclM , whether the M-node divides or not is determined. If the node divides,
the positions of daughter nodes are calculated based on Egs. (5), and links for all
E and M-nodes are also relinked by the Delaunay triangulation. This process is re-
peated N times.

(vi) Relinking. For every time step, the link for all M—M and E-M links are relinked
by using the Delaunay triangulation to determine the neighboring relation for each
node.

For almost all simulation runs, we start with the total number of nodes N = 205 (41
E-nodes and 164 M-nodes). When N becomes 800 by the proliferation of nodes, M-nodes
stop their divisions. Each run is stopped when the change in a network configuration
becomes sufficiently small, which we call a “final” state.
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