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Abstract After a single dose of radiation, transient changes caused by cell death are
likely to occur in the oxygenation of surviving cells. Since cell radiosensitivity increases
with oxygen concentration, reoxygenation is expected to increase the sensitivity of the
cell population to a successive irradiation. In previous papers we proposed a model of the
response to treatment of tumour cords (cylindrical arrangements of tumour cells growing
around a blood vessel of the tumour). The model included the motion of cells and oxygen
diffusion and consumption. By assuming parallel and regularly spaced tumour vessels, as
in the Krogh model of microcirculation, we extend our previous model to account for the
action of irradiation and the damage repair process, and we study the time course of the
oxygenation and the cellular response. By means of simulations of the response to a dose
split in two equal fractions, we investigate the dependence of tumour response on the time
interval between the fractions and on the main parameters of the system. The influence
of reoxygenation on a therapeutic index that compares the effect of a split dose on the
tumour and on the normal tissue is also investigated.

Keywords Radiotherapy · Reoxygenation · Dose splitting · Krogh model · Tumour
cords

1. Introduction

After the delivery of a dose of radiation, important changes that will influence the effect
of a subsequent dose occur in the irradiated tumour cell population. The most impor-
tant processes occurring after irradiation are denoted as the 4R’s of radiotherapy: repair
of radiation damage, redistribution of cells among the cell-cycle phases, reoxygenation,
and repopulation due to regrowth of surviving cells (Wong and Hill, 1998). Redistribu-
tion and reoxygenation are expected to recover and, respectively, to transiently increase
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the pretreatment radiosensitivity (Wong and Hill, 1998). A simple representation of this
resensitization that contrasts the effects of damage repair and repopulation has been in-
corporated in an extension of the so-called LQ model (Thames, 1985) for the response to
two dose fractions (Brenner et al., 1995).

We will focus mainly on cell reoxygenation (Vaupel et al., 1984; Goda et al., 1995;
Crokart et al., 2005), and will model this phenomenon in the framework of an ideal-
ized representation of tumour vascularization, i.e. by adopting the geometry of the Krogh
model of microcirculation (Krogh, 1919; Popel, 1989). In this model, the vascular net-
work is assumed to be an array of parallel and regularly spaced vessels, so that the tissue
can be partitioned into identical cylinders, each surrounding a central vessel (Krogh cylin-
ders). Observations of experimental tumours suggest that the increased oxygenation level
that occurs after irradiation can be caused by an increase in blood perfusion (Sonveaux
et al., 2002; Crokart et al., 2005) and/or by a decrease in the oxygen consumption by the
tissue (Crokart et al., 2005; Ljungkvist et al., 2006). In our theoretical study, we restrict
ourselves to assuming that the decrease in oxygen consumption due to treatment-induced
cell death is the only cause of reoxygenation.

In previous papers (Bertuzzi et al., 2003, 2004, 2007) we proposed a mathematical
model of the response to single-dose treatments of cylindrical arrangements of tumour
cells growing around blood vessels of the tumour (tumour cords). That model included
the spatial distribution of cells, cell motion, and oxygen diffusion and consumption. To
describe the response to irradiation, the model has been extended in the present paper by
including the kinetics of the repair/misrepair process of radiation damage. By means of
this model, we have investigated the time course of oxygenation after a single dose and
the influence of reoxygenation on the response to two impulsive irradiations separated by
a time interval (split-dose response). Experimental evaluations of the split-dose response
have been reported, e.g. by Belli et al. (1967), Jostes et al. (1985), O’Hara et al. (1998).

The paper has the following outline. In Section 2, we illustrate the general modeling
assumptions concerning the kinetics of radiation damage production and repair. In Sec-
tion 3, the mathematical model for the tumour cord response is formulated. Section 4
reports the results of model simulation of the single-dose response, and of the split-dose
response compared with the response to the single undivided dose. Still in Section 4, the
influence of reoxygenation on a therapeutic index, which compares the effect of a split
dose on the tumour and on the normal tissue, is investigated. Some concluding remarks
are given in Section 5.

2. Kinetics of damage production and repair

Radiation produces a variety of lesions in the cell, with some of the most important repair
and misrepair reactions involving the double strand breaks (DSB) of DNA (Sachs et al.,
1997). These lesions induce a lethal damage in a fraction of cells that lose the capacity
of continuous proliferation and will die at a subsequent time (clonogenically dead cells).
Thus, after irradiation, the living tumour cell population will be composed by a subpop-
ulation of viable cells and a subpopulation of live but lethally damaged, clonogenically
dead cells. We assume that before irradiation all cells are viable.

Several mathematical models have been proposed to describe the kinetics of radiation
damage production and repair (Sachs et al., 1997). We have adopted the model originally
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proposed by Curtis (1986) and subsequently by Hlatky et al. (1994). In this model two
pathways of lethal damage production are considered: the direct action of radiation and the
binary misrepair of the DSBs. Denoting by N the number of viable cells in a homogeneous
population and by U the mean number of DNA double strand breaks per cell, the model
can be written as

dN

dt
= −

[
αḊ + 1

2
kU 2

]
N, (1)

dU

dt
= δḊ − ωU − 2kU 2, (2)

where Ḋ is the dose rate, α represents the direct lethal action of radiation due to non-
repairable lesions, δ is a coefficient that represents the production of (potentially) re-
pairable DSBs, ω is the rate constant of DSB repair, and k is the rate constant of binary
DSB misrepair. As shown by Eq. (2), in addition to the correct repair process that occurs
with rate constant ω, DSBs may undergo misrepair due to the encounter of two DNA
fragments belonging to different chromosomes. For each binary misrepair, which occurs
with rate kU 2, two DSBs are removed. On average, one-half of these misrepairs is lethal
to the cell because of the formation of a dicentric chromosome plus an acentric fragment.
The proliferation of viable cells is disregarded in Eq. (1).

The above kinetic model explains the empirical dose-response relationship known as
the linear quadratic (LQ) model (Thames, 1985; Bristow and Hill, 1998). By identifying
the surviving fraction after a single impulsive dose D at the time t = 0 as the ratio S =
N(∞)/N(0−), the model (1), (2) predicts for S the following approximate expression
(Hlatky et al., 1994, see also Appendix A):

S = exp
[−αD − βD2

]
, (3)

where the coefficient β is given by

β = δ2k

4ω
. (4)

Equation (4) shows that the quadratic dependence on the dose is related to the process of
binary misrepair. If the radiation dose is split into two half-doses delivered with a time
interval T , the surviving fraction, according to model (1), (2), becomes

S = exp

[
−αD − β

(
1 + e−ωT

)D2

2

]
. (5)

The survival after the split-dose delivery, according to the above equation, is larger than
the survival after the undivided dose, because part of the damage caused by the first dose
is repaired in the time interval between the two fractions.

It is well known that the radiosensitivity parameters of a cell population, α and β , de-
pend on the oxygenation of the cells (Chapman et al., 1974; Wouters and Brown, 1997).
The increase of oxygenation observed in tumours after a dose of radiation and the re-
growth of surviving cells are not accounted for in the expression (5). The effects of these
phenomena will be studied by the tumour model illustrated in the following sections.
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3. Tumour cord model

We model the tumour vascular network according to the Krogh model of microcircula-
tion. This model is a highly idealized representation when dealing with tumours (Secomb
et al., 1993), because it is well known that tumour vasculature has a very irregular struc-
ture. However, this assumption allows to develop a relatively simple analytical study, and
similar assumptions on the structure of vascular network have indeed been adopted by
Kocher and Treuer (1995), Kocher et al. (2000), and Alarcón et al. (2003).

Therefore, the tumour tissue will be partitioned into circular cylinders of radius B

around straight central blood vessels, with B the half-distance between adjacent vessels
(see Fig. 1A). We assume that vessels move solidly with the tumour tissue always keep-
ing their symmetry, so their distance will increase during tumour expansion and will de-
crease during tumour regression. In view of this assumption, we can take that there is
no exchange of matter across the surfaces of radius B and each cylinder of cells can be
studied independently of any other. We denote by r the radial distance from the axis and
by r0 the radius of the central vessel. If the distance among vessels exceeds a limiting
value, necrosis will appear in the regions more distant from the vessels, and isolated
cylindrical regions of viable cells of radius ρN will form (see Fig. 1B). These cellu-
lar arrangements are called tumour cords (Tannock, 1968; Hirst and Denekamp, 1979;
Moore et al., 1985). Necrotic regions may be observed in tumours at an advanced stage
of growth. In the following, we will refer to tumour cords also for the Krogh cylinders of
tumour cells in the absence of necrosis.

In a cord we will distinguish viable proliferating (P) and quiescent (Q) cells, lethally
damaged cells, and dead cells. Under the continuum hypothesis, we can consider the
volume fractions occupied locally by these components, denoting these fractions as νP ,

Fig. 1 Scheme of the assumed vascular geometry. Panel A: vessels close enough to sustain the viability
of all surrounding cells. Panel B: increased distance among vessels causes distal necrosis. Symbols are
explained in the text.
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νQ, ν† and, respectively, νN . We assume that radiation treatment does not affect the tumour
vasculature in the time horizon considered.

The main assumptions of the model are summarized as follows. (i) The cord has cylin-
drical symmetry, and all the model variables are independent of the axial coordinate.
Therefore, all the model variables are functions of r and t . (ii) The velocity of the cellular
component is radially directed and is the same for both live and dead cells. This common
velocity is denoted as u(r, t). (iii) Cells can undergo transitions between the proliferating
and the quiescent state, and the transition rates are regulated by the oxygen concentration
σ(r, t). (iv) We assume that cells die instantaneously when σ falls to a critical value σN .
(v) Only impulsive irradiations will be considered. According to the model by Hlatky et
al. (1994), a fraction of lethally damaged cells is formed instantly after a radiation pulse
because of the direct action of radiation. Subsequently, lethally damaged cells will be
formed with rates dependent on the misrepair process (see Fig. 2A). The radiosensitivity
parameters α and β are increasing functions of σ , possibly different for P and Q cells.
(vi) Lethally damaged cells cease to progress across the cell cycle and die with rate con-
stant μ. (vii) Dead cells are degraded to a fluid waste with rate μN and are drained away
by the flow of extracellular fluid along the axial direction of the cord. (viii) The total vol-
ume fraction of cells is constant in space and time. In other words, it is assumed that live

Fig. 2 Panel A: block diagram illustrating the cell subpopulations included in the model. The meaning
of the symbols is explained in the text; the terms α

P
Ḋ and α

Q
Ḋ represent the direct damaging action of

radiation. Panel B: profile of the functions λ(σ) and γ (σ ) that govern the transitions from proliferation
into quiescence and from quiescence to proliferation.
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and dead cells possess a uniform spatial arrangement, which is quickly recovered after
any perturbation caused by cell proliferation and degradation of dead cells. Experimen-
tal measurements support assumption (viii) in the absence of treatment, since data from
tumour cords show small changes in the cell density with the radial distance (Moore et
al., 1984, 1985). However, the hypothesis that total cell volume fraction is constant is
an oversimplification in the transient that follows a treatment, when an increased volume
fraction of extracellular fluid has been observed (Zhao et al., 1996). This hypothesis might
be relaxed by adopting the two-fluid model of tumour tissue (Byrne and Preziosi, 2003).

Assuming that all the components have equal mass density, the mass balance yields
the following conservation equations for the volume fractions:

∂νP

∂t
+ 1

r

∂

∂r
(ruνP ) = χνP + γ (σ )νQ − λ(σ)νP − mP (r, t)νP , (6)

∂νQ

∂t
+ 1

r

∂

∂r
(ruνQ) = −γ (σ )νQ + λ(σ)νP − mQ(r, t)νQ, (7)

∂ν†

∂t
+ 1

r

∂

∂r
(ruν†) = mP (r, t)νP + mQ(r, t)νQ − μν†, (8)

∂νN

∂t
+ 1

r

∂

∂r
(ruνN) = μν† − μNνN, (9)

where λ(σ) and γ (σ ) denote the transition rate from proliferation into quiescence and,
respectively, the transition rate from quiescence into proliferation. The rates mP and mQ

represent the production of lethal damage due to the misrepair process. Since from as-
sumption (viii) the sum νP + νQ + ν† + νN = ν is constant, the velocity field u(r, t)

satisfies the equation

ν 1

r

∂

∂r
(ru) = χνP − μNνN, u(r0, t) = 0.

The rates λ and γ will be taken as a nonincreasing and, respectively, a nondecreasing
function of σ . In particular, we assign two threshold values for σ , σP > σQ, and we
assume: λ = λmax and γ = γmin for σ ≤ σQ, λ = λmin and γ = γmax for σ ≥ σP , with
λmax > λmin ≥ 0 and γmax > γmin ≥ 0. λ(σ) decreases linearly and γ (σ ) increases linearly
in the interval (σQ,σP ) (see Fig. 2B). Although experimental data suggest a reduction in
the rate of progression across the cell cycle as the nutrient concentration decreases, for
simplicity we take a constant proliferation rate χ independent of σ .

In view of the model by Hlatky et al. (1994) for the kinetics of DSB repair/misrepair,
for the rates mP and mQ we will assume

mP (r, t) = 1

2
kX2

P (r, t), mQ(r, t) = 1

2
kX2

Q(r, t), (10)

where XP (r, t) and XQ(r, t) denote the mean number of DSBs in an “equivalent” P cell
and, respectively, Q cell at the position r at time t (see Appendix B). These quantities, as
derived in the Appendix, satisfy the following equations:

∂XP

∂t
+ u

∂XP

∂r
= −ωXP − 2kX2

P , (11)
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∂XQ

∂t
+ u

∂XQ

∂r
= −ωXQ − 2kX2

Q. (12)

The rate constants ω and k are taken to be independent of the oxygen concentration.
Because we are considering only impulsive irradiation, the direct action of radiation

(the term αḊ in Eq. (1)) and the production of repairable DSBs (δḊ in Eq. (2)) will
be represented in the initial conditions. The DSB production will occur with sensitivity
coefficients δP (σ (r, t)) and δQ(σ (r, t)). If a sequence of impulsive irradiations is given
with dose Di at time ti , i = 1,2, . . . , t1 = 0, we have the following initial conditions for
Eqs. (6)–(8), (11), (12):

νP

(
r, t+i

) = exp
[−αP

(
σ(r, t−i )

)
Di

]
νP (r, t−i ),

νQ

(
r, t+i

) = exp
[−αQ

(
σ(r, t−i )

)
Di

]
νQ(r, t−i ),

ν†
(
r, t+i

) = (
1 − exp

[−αP

(
σ(r, t−i )

)
Di

])
νP (r, t−i )

+ (
1 − exp

[−αQ

(
σ(r, t−i )

)
Di

])
νQ(r, t−i ) + ν†(r, t−i ),

XP

(
r, t+i

) = δP

(
σ(r, t−i )

)
Di + XP (r, t−i ),

XQ

(
r, t+i

) = δQ

(
σ(r, t−i )

)
Di + XQ(r, t−i ).

The dependence on the oxygen concentration of the radiosensitivity parameters of LQ
model, α and β , was expressed as (Wouters and Brown, 1997)

αP (σ ) = αP
Mψα(σ ), αQ(σ ) = α

Q
Mψα(σ ), (13)

βP (σ ) = βP
Mψ2

β(σ ), βQ(σ ) = β
Q
Mψ2

β(σ ). (14)

According to (4), δP (σ ) and δQ(σ ) are thus given by

δP (σ ) =
√

4ω

k
βP

M ψβ(σ ), δQ(σ ) =
√

4ω

k
β

Q
M ψβ(σ ).

At t = 0−, we have νP (r,0−) = νP0
(r), νQ(r,0−) = νQ0

(r), and all the other state vari-
ables are zero. Note that, since u(r0, t) = 0, no boundary conditions are required for
Eqs. (6)–(9).

Concerning the equation for the oxygen concentration, σ , we recall that diffusion is the
dominant transport mechanism for oxygen and that it occurs in a quasi-stationary regime
(Tannock, 1968). Assuming for simplicity that the oxygen consumption rate is the same
for all live cells, we can write

1

r

∂

∂r

(
r
∂σ

∂r

)
= f (σ)

(
νP + νQ + ν†

)
, (15)

where f (σ) is the ratio of the consumption rate per unit volume of live cells to the dif-
fusion coefficient. We require f (σN) > 0. At the inner boundary r = r0, i.e. at the vessel
wall, we have prescribed the constant oxygen blood concentration σb > σP ,

σ(r0, t) = σb.
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In the absence of necrosis, the symmetry of vascularization implies that there is no flux of
oxygen across the boundary r = B . Therefore, we must impose the boundary condition

∂σ

∂r

∣∣∣∣
r=B(t)

= 0. (16)

From the assumption that vessels move solidly with the tissue we have the following
equation for B(t):

Ḃ = u
(
B(t), t

)
,

with the initial condition B = B0.
In the presence of surrounding necrosis, the cord/necrosis interface r = ρN(t) is a

free boundary of the domain in which oxygen diffusion occurs. This boundary can be
determined by noting that the necrotic material cannot be converted to living cells and that
assumption (iv) forbids to have living cells for σ < σN . Thus, the following inequalities
must be satisfied:

u
(
ρN(t), t

) − ρ̇N (t) ≥ 0, (17)

σ
(
ρN(t), t

) ≥ σN, (18)

together with the no-flux condition

∂σ

∂r

∣∣∣∣
r=ρ

N
(t)

= 0. (19)

Therefore, if the cells cross the interface ρN(t), i.e. if u(ρN, t) − ρ̇N > 0, the cord radius
ρN is defined by

σ
(
ρN(t), t

) = σN,

and the interface is a non-material free boundary. Otherwise, as (17) imposes, the cord
boundary becomes a material free boundary carrying the condition (19) and its motion is
given by

ρ̇N = u
(
ρN(t), t

)
,

whereas σ(ρN(t), t) can be greater than σN . In the presence of necrosis and in the absence
of treatment, the cord model admits a stationary state (see Bertuzzi et al., 2007). In this
stationary state the (constant) interface ρN is always a non-material boundary. Switching
to the material boundary may occur during the treatment. This boundary is however sub-
ject to the constraint (18), so that if during the cord repopulation σ(ρN(t), t) tends to drop
below σN , the free boundary must become non-material again (Bertuzzi et al., 2004).

4. Numerical results

4.1. Single-dose response

To analyze the response to a single dose of radiation, we first simulated the response of a
growing cord in the absence of necrosis (as in Fig. 1A). The state of the cord at the time
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of irradiation was obtained by allowing the cord to evolve from an initial condition with
small B (B0 = 30 µm), νP = ν∗ = 0.85, and νQ = 0 up to a prefixed radius B . In all the
simulations that follow, we assumed r0 = 20 µm and the function f (σ) in Eq. (15) of the
form

f (σ) = F
σ

K + σ
,

with F = 0.016 mmHg/µm2 and K = 4.32 mmHg (Casciari et al., 1992). Moreover, we
chose the following parameter values (O2 concentration in mmHg and time in h): λmin =
γmin = 0, γmax/χ = λmax/χ = 1, χ = log 2/24, σb = 40, σP = 15, σQ = 1.125, σN = 0.5.
The unperturbed growth of the cord with the above set of parameters leads to a stationary
state with cord/necrosis interface ρN = 125 µm, in agreement with the measurements of
cord radius by Moore et al. (1984).

The dependence of the radiosensitivity parameters on the oxygen concentration was
taken as in Wouters and Brown (1997), with the functions ψα(σ) and ψβ(σ) in Eqs. (13)
and (14) having the form

ψα(σ) = 1

2.5

2.5(σ − σN) + 3.28

σ − σN + 3.28
,

ψβ(σ ) = 1

3

3(σ − σN) + 3.28

σ − σN + 3.28
.

In the simulations that follow we have assumed equal radiosensitivity for P and Q cells,
i.e. αP

M = α
Q
M = αM and βP

M = β
Q
M = βM .

Figure 3 shows a typical response to a single dose. Panel A reports the volumes (per
unit cord length) of the different subpopulations of living cells normalized to the volume
of viable cells immediately before the irradiation time, t = 0. By defining

P (t) =
∫ B(t)

r0

rνP (r, t) dr, Q(t) =
∫ B(t)

r0

rνQ(r, t) dr,

e.g. in the case of the proliferating viable cells, we have plotted the quantity P (t)/

[P (0−) + Q(0−)]. Before irradiation, the volume fraction of proliferating cells in the
whole cord is 86.5%. Following the instantaneous drop caused by the direct action of
radiation, there is a further decrease of viable cells due to the misrepair process. When
the repair process is virtually completed, the viable (P + Q) cells exhibit a minimum at
about 2 h (= 4/ω). The decrease of the live cells is instead slower, and their minimum is
delayed according to the death rate constant μ of the lethally damaged cells. This popu-
lation, which is dominant in the present case during the first stage, becomes practically
extinct after about 48 h, as shown by the confluence of the curves representing live cells
and P + Q viable cells. The decrement in the amount of live cells reduces oxygen con-
sumption and thus causes a general reoxygenation of the cord, as shown by the time course
of mean oxygen concentration and of the oxygen concentration at the boundary B (panel
B). These profiles are in a qualitative agreement with the measured oxygen concentrations
reported in Crokart et al. (2005).

The reoxygenation shown by panel B produces a transient increment in average ra-
diosensitivity above the pretreatment value. Panel D shows the equivalent α and β values
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Fig. 3 Single-dose response: time course of live cells and viable subpopulations (panel A), mean oxy-
gen concentration (B), cord radius (C), and equivalent radiosensitivities (D). The difference between live
cells and viable P + Q cells in panel A represents the time course of lethally damaged cells. Parame-
ter values: D = 4 Gy, α

M
= 0.4 Gy−1, β

M
= 0.1 Gy−2, ω = 2 h−1, k = 2 × 10−4 h−1, μ = 0.25 h−1,

μ
N

= 0.02 h−1, B(0) = 100 µm.

ᾱ and β̄ that characterize the overall sensitivity of the viable cell population in the cord
(see Appendix C). These parameters synthetically define the radiobiological status of a
cell population with heterogeneous radiosensitivity (Brenner et al., 1995) and are com-
puted here for the cell population in the heterogeneous microenvironment of the tumour
cord. The time course of ᾱ and β̄ is reported starting 24 h before irradiation. Before ir-
radiation, the average radiosensitivities decrease, because the cord expansion reduces the
mean oxygenation of the cells. Immediately after irradiation, a slight instantaneous in-
crease of radioresistance occurs because of the preferential sparing of less oxygenated
cells. Thereafter, the radiosensitivity increases due to the reoxygenation process. Panel C
reports the time evolution of the cord radius B that shows an initial cord regression fol-
lowed by regrowth. The decrement of cord radius contributes to the increase in oxygen
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Fig. 4 Single-dose response of a cord surrounded by necrosis: time course of live cells and viable sub-
populations (panel A) and cord radius (B). Parameter values as in Fig. 3. At t = 0 the cord is at the steady
state.

concentration because of the boundary condition (16). The panel also shows the time
course of the radii ρP and ρQ where oxygen concentration is equal to σP and, respec-
tively, σQ. During cord regrowth the radius B increases beyond the value at t = 0, which
allows the normalized volume of viable cells to attain later values larger than 1, as shown
in panel A. The simulation was stopped before the appearance of the necrotic region.

In the presence of necrosis, the response of the cord to a single dose is qualitatively
similar to that illustrated in Fig. 3. However, some differences may be found as shown
in Fig. 4. Figure 4 displays the response to irradiation of a cord initially in the stationary
state that occurs in the absence of treatment. The cord/necrosis interface, plotted in panel
B, shows that the regrowth occurring after the initial shrinkage is interrupted when the
interface switches from material to non-material. This event is indicated by the corner
point of the curve. Thereafter, the interface tends to the steady-state value and the volume
of live cells in panel A eventually tends to the initial value. Note that the time course of
the volume of P and Q cells differs from that in Fig. 3A because the initial values of the
proliferating and quiescent cell fractions are in this case about the same.

4.2. Split-dose response

After the radiation dose, as seen in panel D of Fig. 3, a transient increase in the radiosensi-
tivity of cells occurs in the cord because of the reoxygenation. The reoxygenation is thus
expected to affect the split-dose response modifying the response beyond the prediction
of Eq. (5) that only incorporates the effect of repair.

We have compared the response to a single dose D, given at time t = 0, with the
response to two doses D/2 delivered with a time interval T . Figure 5 reports an example
of the time course of viable cells in the two cases, with T chosen equal to 36 h. The
comparison has been made by computing the survival ratio

SR = min[P2(t) + Q2(t)]
min[P1(t) + Q1(t)]

,
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Fig. 5 Example of the cord response (time course of viable P + Q cells) to a single 8 Gy dose compared
with the split-dose response with T = 36 h. Cord surrounded by necrosis.

where the subscripts 1 ,2 refer to the single-dose response and to the split-dose response,
respectively. We recall that the survival ratio predicted by the LQ model is obtained by
dividing the surviving fraction of Eq. (5) by the surviving fraction of Eq. (3), which yields

SR = exp

[
β
(
1 − e−ωT

)D2

2

]
. (20)

Note that the SR given by (20) is equal to 1 for T = 0 and tends to the constant value
exp(βD2/2) for T large enough to allow the completion of the repair process. The fact
that the survival ratio (20) is larger than 1 for T > 0 indicates that, according to the LQ
model, the dose fractionation always produces the sparing of the cell population.

Figure 6, panel A, shows the behavior of the survival ratio predicted by our model as
a function of the interfraction interval T (closed symbols). We note preliminarily that the
inclusion in the model of a non-instantaneous repair process implies that the SR curve
is equal to unity as T approaches zero, as it is physically reasonable. The initial rising
branch of the curve corresponds to the repair process, whose duration is proportional to
1/ω. The increase for large T is due to the regrowth of surviving cells in the time interval
between the two doses. In coincidence with the time window of increased radiosensitivity,
the SR decreases and attains a relative minimum. As a comparison, the open symbols
represent the SR computed by a simulation in which the parameters α and β were taken
independent of σ and equal to the equivalent values, ᾱ and β̄ , in the cord before irradiation
(ᾱ = 0.304 Gy−1 and β̄ = 0.054 Gy−2). Except for the steady SR increase due to the
regrowth in the interfraction interval, the SR pattern in this case approximately follows
Eq. (20). It is thus quite evident that reoxygenation makes the second dose more effective.

Panel B of Fig. 6 shows the effects of changes in the intrinsic radiosensitivities that
increase the pretreatment ᾱ/β̄ ratio from 5.6, as in panel A, to about 10. The increased
ᾱ/β̄ is obtained either by increasing αM or by decreasing βM . When αM is increased
(open circles) with respect to the reference value (closed circles), the SR curve shows
a pronounced lowering of the minimum, due to the stronger reoxygenation caused by
increased cell death after the first dose. Thus, unlike the LQ model, the present model
predicts that the SR curve also depends on the parameter α. The maximum is less af-
fected, in agreement with the LQ model which predicts that the maximum of survival
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Fig. 6 Survival ratio predicted by the cord model with B(0) = 100 µm, D = 8 Gy, μ = 0.125 h−1, other
parameters as in Fig. 3. Panel A. Closed symbols: α

M
= 0.4 Gy−1, β

M
= 0.1 Gy−2. Equivalent radiosen-

sitivities at t = 0−: ᾱ = 0.304 Gy−1, β̄ = 0.054 Gy−2. Open symbols: SR predicted with α and β in-
dependent of σ and equal to ᾱ and β̄ . Panel B: SR for different values of α

M
(Gy−1) and β

M
(Gy−2)

with ᾱ/β̄ constant. Closed circles, α
M

= 0.4 and β
M

= 0.1 (reference curve); open circles, α
M

= 0.7 and
β
M

= 0.1; open squares, α
M

= 0.4 and β
M

= 0.05.

ratio depends only on β (see Eq. (20)). Conversely, when βM is decreased (open squares),
the whole SR curve is lowered with respect to the reference curve, as it is also expected
from Eq. (20). Moreover, the curvature is milder because of the reduced reoxygenation.

Figure 7, panel A, shows the effect of changes in the repair rate ω. The decrease in
ω, besides affecting the rising branch of the curve as expected, also produces a decrease
in the SR values at large interfraction intervals. Panel B shows the pattern of the survival
ratio for different intervessel distances. The split-dose response of the cord was simulated
for three different values of B at t = 0. In addition, the response of a cord surrounded
by necrosis was also simulated. When B increases, the whole SR curve is lowered and
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Fig. 7 Panel A: effect of the repair rate on the survival ratio. Closed squares, ω = 2 h−1; open
squares, ω = 0.5 h−1; open circles, ω = 0.25 h−1. B(0) = 90 µm, D = 8 Gy, α

M
= 0.192 Gy−1,

β
M

= 0.096 Gy−2, μ = 0.125 h−1, other parameters as in Fig. 3. Panel B: Effect of the intervessel dis-
tance on the survival ratio. Closed squares, B(0) = 80 µm; open circles, B(0) = 90 µm; open squares,
B(0) = 100 µm; stars, SR when necrosis occurs (ρ

N
= 125 µm). ω = 2 h−1, other parameters as in

panel A.

reaches a minimum in the case of necrosis, a behavior explained by considering that the
mean oxygen concentration decreases and therefore the average β value also decreases.
Moreover, if the cord radius is small, the reoxygenation induces only a small increase
in radiosensitivity because the initial mean oxygen concentration is high and then the σ

values fall in the saturating portion of the α(σ) and β(σ) curves (see equations of ψα

and ψβ ).

4.3. Split-dose response in tumour and normal tissue

The LQ model allows comparison of the effects of the split-dose delivery in the tumour
and in the surrounding normal tissue. By using the LQ model extended to take into account
both repair and cell repopulation (Brenner et al., 1995), the surviving fraction after two
half-doses is given by

S = exp

[
−αD − β

(
1 + e−ωT

)D2

2
+ T/τp

]
, (21)

where τp is the time constant of tumour cell repopulation. Similarly, for the surviving
fraction of the normal population we have

S ′ = exp

[
−α′D − β ′(1 + e−ω′T )D2

2
+ T/τ ′

p

]
. (22)

To maximize the effect of irradiation on the tumour, we may use the maximal dose
which is compatible with an assigned level of damage to normal tissue. Let S∗

n be the
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Fig. 8 Panel A. Therapeutic index I for the two-fraction treatment, as predicted by the extended LQ model
for two different values of S∗

n . Tumour: α = 0.5 Gy−1, β = 0.05 Gy−2, ω = 2 h−1, τ
P

= 24 h. Normal

tissue: α′ = 0.2 Gy−1, β ′ = 0.067 Gy−2, ω′ = 2 h−1, 1/τ ′
P

= 0. Panel B. Therapeutic index I com-

puted by using the cord model for the tumour. Tumour: αM = 0.6 Gy−1, βM = 0.075 Gy−2, ω = 2 h−1,
χ = (ln 2)/24 h−1, μ = 0.125 h−1, B(0) = 90 µm, other parameters as in Fig. 3. Normal tissue, parameters
as in panel A.

minimal surviving fraction that may be accepted for normal tissue. From Eq. (22) we
can compute for each T the dose D∗(S∗

n, T ) that produces a survival S ′ = S∗
n . Then, by

substituting this dose D∗ in Eq. (21), we obtain the survival of tumour cells, S∗
t , which

is compatible with the assigned damage to normal cells. A “therapeutic index” may be
defined as I = S∗

n/S
∗
t .

Figure 8A shows an example of the behavior of the therapeutic index I as a function
of the interfraction interval T for given values of the parameters in (21), (22) and two
different values of S∗

n . The index I reaches a maximum as the repair process is completed
and then decreases with T since the regrowth of the tumour after the first dose is assumed
faster than the regrowth of normal tissue. When the required S∗

n is higher, the dose D∗
which may be administered will be smaller, and then I will also be smaller. The possibility
of having I > 1 relies on the difference in the α and β values between the tumour and the
normal tissue. From Eqs. (21) and (22) it is easy to see that if α/β > α′/β ′, τp < τ ′

p , and
ω′ ≤ ω , then α > α′ is a necessary condition to have I > 1.

The above analysis disregarded the effect of reoxygenation that may be accounted
for by using the tumour cord model. As an example, the tumour may be represented as
an array of cords of radius B = 90 µm (in the absence of necrosis), with αM and βM

such that the pretreatment ᾱ and β̄ values are approximately equal to the values of α

and β chosen in Fig. 8A. Moreover, χ may be chosen equal to ln 2/τp , with τp as in
Fig. 8A, and similarly for ω. A cord representation might also be used for the normal
tissue. However, because of the uniformly high oxygenation level in normal tissue due
to the small intercapillary distances, the reoxygenation occurring after the first irradiation
should not significantly increase the apparent values of the radiosensitivity coefficients.
Therefore, in our simulations, we have used the LQ model (22) with constant parameters
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for the surviving fraction of normal tissue. Moreover, we have assumed ω′ = ω and no
proliferation of normal tissue.

Figure 8B depicts the therapeutic index as a function of T , computed as described
above. The comparison of Figs. 7A and 7B shows that the reoxygenation increases the
therapeutic index, in particular at T values much larger than the time when repair is com-
pleted.

5. Concluding remarks

In the present study we have proposed a mathematical model for the tumour response to
impulsive irradiations. The model assumes an ideal Krogh-type geometry of vasculariza-
tion and explicitly describes the oxygenation status of tumour cells. Model simulations,
using reasonable parameter values in agreement with data from experimental tumours,
have shown that substantial reoxygenation may occur after doses of 4 Gy or greater,
even if the decrease in oxygen consumption due to treatment-induced cell death is the
only cause of reoxygenation. This reoxygenation, whose maximum after a single dose is
reached at a time depending on the death rate of lethally damaged cells, appears to reduce
the sparing effect of dose fractionation. The model also predicts that the sparing effect of
fractionation is remarkably modulated by the intervessel distance. A complex pattern of
behaviors of the survival ratio, when the parameter values are changed, has been found in
the case of the split-dose response. Values of the survival ratio smaller than 1 were also
achieved in the case of cord surrounded by necrosis (data not shown).

The prediction of the reoxygenation time course might be useful in determining the
optimal time for delivering the subsequent doses. We must stress, however, that our model
assumes that vessels are not affected by the treatment, and thus its application is restricted
to the analysis of short sequences of irradiations.

Unlike the extended LQ model proposed by Brenner et al. (1995), in which the resensi-
tization after the first dose only recovers the pretreatment value, the present model predicts
that radiosensitivities greater than the pretreatment value can be transiently achieved.

The model could be extended in several directions. The increase in blood perfusion,
which has been recognized in some cases to be an important cause of reoxygenation
(Sonveaux et al., 2002; Crokart et al., 2005), might be incorporated in the model by a
modulation of the oxygen concentration in blood. Moreover, suitable modifications could
account for more detailed mechanisms of lethal damage induction and death of damaged
cells (Obaturov et al., 1993; Sachs et al., 1997). Finally, we note that our model takes
into account the processes of repair, reoxygenation, repopulation and redistribution be-
tween proliferating and quiescent cells. To take fully into account the redistribution of
cells among the cell cycle phases after irradiation, a more complex, although feasible
model should be devised. This model should incorporate a partition of cells into the cell
cycle compartments to account for the different phase-specific sensitivities of the cells
(Dionysiou et al., 2004; Ribba et al., 2006).
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Appendix A

In this appendix we show that the model (1), (2), in the case of an impulsive dose D,
predicts the expression (3) for the surviving fraction if 2kδD/ω � 1. Let the dose D be
given at t = 0. Equations (1), (2) rewrite as

dN

dt
= −1

2
kU 2N,

dU

dt
= −ωU − 2kU 2,

with the initial conditions

N(0+) = N(0−) exp(−αD),

U(0+) = U(0−) + δD, U(0−) = 0.

The solution of the above system for t > 0 may be written as

U(t) = ωδDe−ωt

ω + 2kδD(1 − e−ωt )
,

log
N(t)

N(0+)
= ω

8k

(
log

[
1 + 2kδD

ω

(
1 − e−ωt

)]

− 2kδD

ω

(ω + 2kδD)(1 − e−ωt )

ω + 2kδD(1 − e−ωt )

)
.

The latter equation, in the limit t → ∞, provides the surviving fraction S =
limt→∞ N(t)/N(0−) as

logS = −αD + ω

8k

(
log

[
1 + 2kδD

ω

]
− 2kδD

ω

)
. (A.1)

For 2kδD/ω � 1, which corresponds to neglecting the quadratic term in (2), the 2nd-
order approximation of the second term in the r.h.s. of (A.1) is −kδ2D2/(4ω), so that

S = exp
[−αD − βD2

]
,

with β given by (4).

Appendix B

We observe preliminarily that Eq. (2) of the model by Hlatky et al. (1994) can be reformu-
lated in terms of the mean DSB density in the cell nucleus, x = U/V , where V denotes
the volume of cell nucleus. In the case of an impulsive irradiation at time t = 0, from
Eq. (2) we obtain

dx

dt
= −ωx − 2k̃x2, x

(
0+) = δ̃D + x(0−),

where k̃ = V k and δ̃ = δ/V .
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Let us now consider the cord cell population. According to the continuum ap-
proach, we may define the density of P-cell DSBs, xP (r, t), as the function such that
xP (r, t)θνP (r, t)2πr dr gives their number in the annular region between r and r + dr

per unit cord length at time t . Here, θ represents the fraction of cell volume occupied
by the nucleus, and it is assumed constant. Similarly, we can define the density of Q-cell
DSBs, xQ(r, t). Writing the balance of double strand breaks in the elementary volume
between r and r + dr , we obtain

∂

∂t
(xP νP ) + 1

r

∂

∂r
(ruxP νP ) = γ xQνQ − λxP νP − mP xP νP − ωxP νP − 2k̃x2

P νP ,

∂

∂t
(xQνQ) + 1

r

∂

∂r
(ruxQνQ) = −γ xQνQ + λxP νP − mQxQνQ

− ωxQνQ − 2k̃x2
QνQ.

Taking into account Eqs. (6), (7), the above equations become

∂xP

∂t
+ u

∂xP

∂r
= −χxP + γ

νQ

νP

(xQ − xP ) − ωxP − 2k̃x2
P ,

∂xQ

∂t
+ u

∂xQ

∂r
= λ

νP

νQ

(xP − xQ) − ωxQ − 2k̃x2
Q.

Since the repair/misrepair process is in general very fast, we can disregard the terms in χ ,
γ and λ. Thus, we have

∂xP

∂t
+ u

∂xP

∂r
= −ωxP − 2k̃x2

P , (B.1)

∂xQ

∂t
+ u

∂xQ

∂r
= −ωxQ − 2k̃x2

Q. (B.2)

Defining

XP (r, t) = V xP (r, t), XQ(r, t) = V xQ(r, t),

we can rewrite (B.1) and (B.2) getting Eqs. (11), (12). Note that XP [XQ] can be inter-
preted as the number of double strand breaks in an “equivalent” cell having a uniform
DSB concentration xP [xQ] in its nucleus.

Appendix C

The radiosensitivity of the cell population in the cord can be traced at any time t by
considering the fraction of cells expected to survive, after the delivery of an impulsive
dose D at that time, according to the LQ model (with instantaneous repair). This survival,
S(t,D), can be expressed as

S(t,D) =
∫ B(t)

r0
r[νP (r, t)sP (r, t) + νQ(r, t)sQ(r, t)]dr∫ B(t)

r0
r[νP (r, t) + νQ(r, t)]dr

, (C.1)
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with

sP (r, t) = exp
[−αP

(
σ(r, t)

)
D − βP

(
σ(r, t)

)
D2

]
, (C.2)

sQ(r, t) = exp
[−αQ

(
σ(r, t)

)
D − βQ

(
σ(r, t)

)
D2

]
. (C.3)

We define as “equivalent radiosensitivities” the quantities ᾱ(t) and β̄(t) such that

S(t) 	 exp
[−ᾱ(t)D − β̄(t)D2

]
. (C.4)

Considering the second-order expansion of lnS(t,D) about D = 0, we obtain

lnS(t) 	 −〈α〉(t)D − 1

2

(
2〈β〉(t) − 〈

α2
〉
(t) + 〈α〉2(t)

)
D2,

where

〈α〉(t) =
∫ B(t)

r0
r[νP (r, t)αP (σ (r, t)) + νQ(r, t)αQ(σ (r, t))]dr∫ B(t)

r0
r[νP (r, t) + νQ(r, t)]dr

,

and 〈β〉, 〈α2〉 are averages similarly defined. If we define

ᾱ = 〈α〉,
β̄ = 〈β〉 − 1

2

(〈
α2

〉 − 〈α〉2
) = 〈β〉 − 1

2
Var(α),

we get Eq. (C.4).
We note that the third-order term of the expansion of lnS is given by

1

6

(−〈
α3

〉 − 2〈α〉3 + 3〈α〉〈α2
〉 + 6〈αβ〉 − 6〈α〉〈β〉)D3,

and therefore its extent is related to the heterogeneity of the coefficients α and β in the
cord.
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