
Bulletin of Mathematical Biology (2008) 70: 189–209
DOI 10.1007/s11538-007-9248-3

O R I G I NA L A RT I C L E

Optimal Reproduction Strategies in Two Species
of Mound-Building Termites

David A. Camerona, David J. Iversa, Theodore A. Evansb,
Mary R. Myerscougha,∗

aSchool of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia
bCSIRO Entomology, GPO Box 1700, Canberra, ACT 2601, Australia

Received: 10 October 2006 / Accepted: 22 June 2007 / Published online: 2 October 2007
© Society for Mathematical Biology 2007

Abstract We formulate a mathematical model for food collection and production of
workers and nymphs in 2 species of mound building termites. We maximise the num-
ber of nymphs (reproductives) produced by each colony over its lifetime with respect to
the proportion of eggs that hatch as nymphs as opposed to workers. The results predict
that food storage has a very important influence on the pattern of nymph and worker
production. Food storage affects the part of the year that nymph production dominates,
whether nymphs and workers are produced at the same time or not, and the existence of
a final phase in the colony’s life when a very large number of nymphs but no workers are
produced.

Keywords Optimal control · Ordinary differential equations · Bang-bang control ·
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1. Reproduction by mound-building termites

Termites (Isoptera) are ubiquitous throughout the tropical and temperate areas of the
world. Termites are essentially social cockroaches that have evolved to feed on dead plant
matter, especially cellulose. Primitively, termites eat wood and many species live in living
or dead wood, or in cryptic underground nests. The most obvious and famous examples
of termites live in mounds that are constructed by large colonies over a number of years.

In general, colonies are established by a reproductive pair, the founding king and
queen. These reproductives produce all the brood in the colony, which are of three types
called castes: workers, soldiers and nymphs. Workers build and maintain the nest and
mound, forage for food, clean and care for the eggs, young, and the reproductives, and
perform other tasks that are needed to keep the colony healthy (Grassé, 1986). Soldiers
are derived developmentally from workers and are specialised for defence. Workers and
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soldiers are sterile in mound building termites although in other species they may develop
into reproductives. Nymphs are the reproductive caste and perform little work. Instead,
they channel energy into growth; nymphs are larger than workers and soldiers and de-
velop wings and eyes. The final adult stage of the nymph is the imago or alate, which
disperses from the natal colony to find a mate and establish a new colony.

It appears that all termite eggs have the potential to develop into any caste. Differ-
entiation occurs at the second larval instar; that is, after the second moult. The colony
appears to have an influence on differentiation, but it is not known how this influence
operates (Watson and Sewell, 1981). The more alates the colony produces, the greater the
reproductive fitness of the colony and its established reproductives. The number of alates
that are produced will depend on the queen’s laying capacity, the proportion of eggs that
become nymphs and not other castes, and the proportion that survives to adulthood to
become alates. Evolutionary theory suggests that termites evolve so that alate production
is maximised.

Workers are essential to the growth of the colony and the development of healthy
nymphs and alates. They provide the resources such as food and water, and construct and
maintain the mound. In this study, we will focus on food as the limiting factor on nymph
production. Under this assumption, the most critical role of the worker is as a collector
and consumer of food.

Modelling has a useful role to play in prediction and in establishing hypotheses
about termite behaviour. In general, termite behaviour is not well studied, especially
life history and reproductive strategies. Field studies are expensive, particularly for
insects with colonies comprised of millions of individuals and with foraging territo-
ries of over 10,000 square metres (Holdaway et al., 1935; Gay and Greaves, 1940;
Ratcliffe and Greaves, 1940; Lee and Wood, 1971; Evans et al., 1998; Evans, 2002). Given
that colonies may persist for 50 years (Ratcliffe et al., 1952) or even 100 years (Watson,
1972), lifetime reproductive success may not be measurable by any individual scientist.
Laboratory experiments are also problematic. Large scale foraging and the total popula-
tion of colonies must be restricted for termite colonies to be kept indoors and this will
almost certainly alter reproductive behaviour. Termites are sensitive to their environment
and difficult to observe even without disturbing their behaviour.

Because of the paucity of observational data, the models we present here are very sim-
ple and contain a number of assumptions that might be viewed as oversimplifications of
what actually happens in a termite colony. It is of little value, however, to have an elabo-
rate model when some parts of the model are purely speculative and numerical parameters
may only be known to within an order of magnitude at best. For this reason, we have cho-
sen to make the model as simple as possible while still incorporating essential behaviour,
and to use a straightforward differential equation model rather than a more complicated
approach such as individual-oriented simulation.

The philosophy of this model is to work with fundamental ecological processes—
reproduction and food collection and consumption—to explore the effects of these
processes over the lifetime of the colony.

The termites are an amazingly diverse order. Some species live in small colonies with
multiple reproductives with populations in the tens or hundreds inside the wood that they
feed on. Other species have only a single pair of reproductives in each colony, but millions
of workers that cultivate fungus gardens inside massive mounds. Reproductive behaviour,
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foraging behaviour, individual development and life cycles vary enormously across the
order.

In this study, we formulate and use models specifically for two particular termite
species. This ensures that there is no confusion about the type of behaviours that the
models represent and that the modelling can produce testable predictions that may, in
principle, be investigated in field studies.

The two species, Coptotermes lacteus (subfamily Rhinotermitidae) and Nasutitermes
exitiosus (subfamily Termitidae), that we use as a focus for modelling are both native to
broad areas of southern Australia, often found in the same habitats (Hill, 1942; Watson
and Abbey, 1993) and both build mounds (Hill, 1942; Lee and Wood, 1971). They eat
sound or partially decayed wood, which is foraged by obligately sterile workers who
never become reproductives. Nests, built as mounds on the surface of the ground, have
many functions including the maintenance of constant conditions conducive to termite
growth and reproduction (Fyfe and Gay, 1938; Watson and Abbey, 1986).

The two species have differences also. C. lacteus workers do not digest their wooden
food completely, but produce a nutrient rich material that encloses their nests (i.e.,
nursery chambers and royal cells) and forms the bulk of their mounds (Hill, 1942;
Lee and Wood, 1971). This mound material represents stored food (Gay et al., 1955) and
can be eaten. The C. lacteus mound is covered with a thick layer of mud (Hill, 1942), pre-
sumably to protect the contents, including the mound material. Interestingly, old mounds
of this species appear hollow, with little mound material remaining. In contrast, N. ex-
itiosus workers appear to digest the majority of the cellulose from their wooden food,
so the mound material is of little nutritional value (around 5% cellulose: Cohen, 1933;
Holdaway, 1933; Fyfe and Gay, 1938). Perhaps corresponding to this, N. exitiosus mounds
have only a thin layer of mud (Hill, 1942). N. exitiosus mounds in which the colony of
termites has died are very similar to those containing live termites; the major difference
is the ambient temperature inside the mound (Watson and Abbey, 1986).

In the paper, we formulate a model for food collection and consumption, and for the
population of nymphs and workers in a colony for each species. We use this model to find
the optimal proportion of eggs that should develop into nymphs as a function of time. In
each section of the paper, the model for C. lacteus is discussed first, followed by the model
for N. exitiosus. This enables the models to be compared easily and keeps repetition to a
minimum.

2. Formulating the models

2.1. Coptotermes lacteus

Let t be the age of the colony in years, n(t) the number of nymphs and w(t) the number of
workers at time t . We model the nymphs and workers only, and assume that the numbers
of soldiers are sufficiently small that the presence of soldiers has little direct influence on
the population and food dynamics of the colony. Let f (t) be the amount of food stored
in the mound at time t , in suitable units. We assume that each egg laid by the queen
becomes either a worker or a nymph. Let p(t) be the proportion of eggs laid at time t ,
that will develop into nymphs. Then (1 − p(t)) is the proportion of eggs laid at time t ,
that will develop into workers.
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We assume that the lifetime of the colony is fixed at tf , which we take to be 20
years when obtaining our results. Once a Coptotermes lacteus colony has become ma-
ture enough to produce alates, its average lifespan is roughly 20 to 30 years. A colony
may suffer premature death or be disrupted in some other way after starting to produce
alates before reaching this age, but we assume that such occurrences are sufficiently rare
that they have had little impact on the evolution of the pattern of alate production.

It is not known what mechanism would enable a colony to sense its approaching end.
A colony that is not invaded by predators will die when its reproductives die or cease
to lay viable eggs. Few animals in their natural state die of old age, but is it possible
that this is the case with termite reproductives. The mound defenses reduce the effect of
predation and disease and because the colony relies on dead or living wood, food supply is
usually very reliable. There may be hormonal changes in aging C. lacteus queens that are
perceptible in the colony. It is also known (Roisin and Lenz, 1993) that following the death
of the founding reproductives, C. lacteus colonies install one or more pairs of “home-
grown” neotenic reproductives in the mound. The presence of secondary reproductives
may signal that the colony is coming to an end of its life.

2.1.1. Egg laying
In this model, the queen lays eggs at a constant rate of r eggs per year. In reality, the egg
laying rate is relatively constant for an established colony, but lower at the start of the
colony’s life when the queen is involved in foraging and building as well as reproduction.
As the colony grows and acquires a large number of workers, the queen’s fecundity in-
creases as she develops highly enlarged ovaries and abdomen (physogastry). We chose to
keep r constant here, however, to keep the model as simple as possible.

We assume that the effect of seasonal climate change is negligible, so that the egg
laying rate does not change over the course of each year. This assumption is likely to be
valid for tropical areas with more constant climate, such as temperature, but is less likely
to be valid for temperate areas with fluctuating climate. Because both C. lacteus and
N. exitiosus are wood feeders, they are likely to experience less seasonal disturbance than
species which rely on more seasonally dependent food source such as grass or litter. Evans
and Gleeson (2001) showed that the foraging worker populations are larger in summer
compared with winter in both C. lacteus and N. exitiosus, which suggests that the queen’s
egg laying rate will be affected. Nest temperature fluctuations observed in temperate areas
are likely to slow the queen’s egg laying rate (Holdaway and Gay, 1948), but again, in the
interests of keeping the model simple, we assume that r is constant.

2.1.2. Food collection and consumption
Food is gathered primarily by workers. We assume that only workers collect food, that
there is always plenty of available food to collect, and that the rate of food collection per
worker, denoted by q , is constant. Because both the species under consideration rely on
large, immovable sources of forage (living and dead trees), this is a reasonable assump-
tion.

Food consumption per individual is assumed to be at constant rates, cw and cn for
the worker and nymph castes, respectively. Since nymphs grow to around three times
the size of workers (Hill, 1942), cn will most likely be larger than cw . No quantitative
experimental data exists for food consumption in either species of termite modelled in
this study. We choose cn/cw to be 1.5, for the purpose of finding numerical solutions to
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the models. Similarly, we choose q/cn to be 1.5, since the workers collect more food than
they can eat themselves. These values are arbitrary, but reasonable. Parameter searches
(see Section 4.3) show that changes to the values of cn/cw and q/cw do not change the
qualitative nature of the solutions significantly, although they are quantitatively sensitive
to changes in either.

2.1.3. Food stores
The colony populations of C. lacteus are eventually large (Gay and Greaves, 1940; Evans
et al., 1998), but colony growth rates are poorly known, although some indication can be
inferred from other species (e.g., Thorne et al., 1997; Fei and Henderson, 2003). We will
assume that colony populations are sufficiently large that food storage and nymph and
worker populations can be modelled as continuous variables using ordinary differential
equations (ODEs). Changes in stored food are given by

df

dt
= qw − cww − cnn, (1)

where f (t) is the food stored in the nest, w(t) is the number of workers in the nest, n(t)

is the number of nymphs, cw is the rate of food consumption per worker per year, and cn

is the rate of food consumption per nymph per year. Equation (1) is valid for t ∈ [0, tf ],
and depends on w(t) and n(t).

Clearly f (0) = 0, because the colony starts without any stored food. Also, because
food stores in the model cannot become negative, f (t) is subject to the constraint

f (t) ≥ 0, ∀t ∈ [0, tf ]. (2)

Furthermore, it is reasonable to assume that the colony has no food left over at the end of
its lifetime:

f (tf ) = 0. (3)

This constraint is likely to be optimal since excess food could be used to produce more
nymphs. It has also been observed that extinct Coptotermes lacteus mounds are rarely
found with leftover food.

2.1.4. Worker population
The rate of change of the worker population is modelled by

dw

dt
= r

(
1 − p(t)

) − β(t)w. (4)

The first term represents the birth rate of workers which is given by the egg laying rate r

multiplied by the proportion of eggs that develop into workers. The second term represents
the death rate of workers, where β(t) is the death rate per worker, i.e. the number of deaths
per worker per unit time. If the age of workers is always uniformly distributed, and all
workers live the same length of time τw , then

β(t) ≡ 1

τw

.
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The age profile, however, is not constant throughout the life of the colony. The average
age of the workers is younger at the start of the colony, because the colony begins with
no workers and so the death rate is lower in the early years. As t gets larger, the age
distribution becomes more uniform, and so β(t) → 1/τw , as t → ∞. This suggests that a
reasonable form for β(t) is

β(t) = a

(
1 − 1

1 + bt

)
, (5)

where a and b are positive constants with a = 1/τw ≈ 1
3 . This assumes that the average

age of a C. lacteus worker at death is 3 years. This is a reasonable assumption for this
species. Mark and recapture studies show that C. lacteus workers can live at least 16
months (Evans et al., 1998), and it is known that workers of other species may live for
several years; for example, Reticulitermes workers can survive for up to 10 years (Lainé
and Wright, 2003). The constant b controls the rate that β(t) approaches a and we choose
b = 3 as this allows β(t) to be within 10% of a after 3 years.

C. lacteus and N. exitiosus workers start to forage outside the nest from a few months
of age, well before they reach their final instar. To model this explicitly would require
the introduction of delays into the differential equations which introduces considerable
mathematical complexity. Analysis of similar models (Evans et al., in preparation) suggest
that including such delays has no significant effect on the qualitative outcomes on the
model. Therefore, we will not include these delays here.

A suitable initial condition for w(t) is w(0) = 0. This assumes that the colony starts
with zero workers.

2.1.5. Nymph population
Young nymphs do not appear to feed themselves, as they lack the necessary gut microflora
and their mandibles have little or no wear (Watson and Abbey, 1977; Lee and Wood, 1971;
Watson et al., 1978). Furthermore, few nymphs are found in foraging sites away from the
mound (Evans et al., 1998), suggesting that nymphs rely on workers for all or part of their
food. Consequently, nymph mortality is likely to be low. Hence, we model the change in
nymph population with a leaving rate rather than a death rate:

dn

dt
= rp(t) − γ (t)n, (6)

where rp(t) is the egg laying rate multiplied by the proportion of eggs that develop into
nymphs, and γ (t) is the leaving rate of nymphs. We ideally take

γ (t) = 10


tf �∑

i=1

δ(t − i), (7)

where 
tf � = max{i ∈ Z | i ≤ tf } is the floor of tf , that is, the greatest integer that is less
than or equal to tf , and δ(t) is the Dirac delta function. This expression ensures that the
nymphs leave annually when t is an integer. We use the factor of 10 in Eq. (7) to amplify
the delta-functions, so that n(t) drops to nearly zero at the end of each year, modelling the
mass departure of nearly all of the nymphs. In fact, n(i+) = e−10n(i−), i.e. n decreases
by a factor e−10 at t = i.
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The delay between the hatching of the alates and their release is not included in this
model. Including such a delay merely moves the time of alate hatching back in time by
an amount equivalent to the delay between hatching and emergence from the mound and
produces no new insights. Therefore, we have chosen not to include it in this very simple
model.

2.1.6. Total nymph output
The purpose of this model is to find a breeding strategy, which maximises the total nymph
output of a colony over its lifetime. This is given by the integral of the birth rate of nymphs
over [0, tf ]. Let the total number of nymphs be denoted by I , where

I =
∫ tf

0
rp(t) dt = r

∫ tf

0
p(t) dt. (8)

The function p(t) must lie between 0 and 1, as it is a proportion:

0 ≤ p(t) ≤ 1, ∀t ∈ [0, tf ]. (9)

Therefore, the optimisation problem is to determine the optimal functions f ∗, w∗, n∗

and p∗, which satisfy the ODE’s (1), (4) and (6) subject to the constraints (2), (3) and (9),
and which maximise the integral (8).

If β(t) is given by (5), f (t) is always positive, so the constraint (2) is non-active and
can be ignored. This makes the problem much easier to solve. If β is a constant, then f (t)

is negative for small t, and so in this case, the constraint (2) is active and must be retained.

2.1.7. Non-dimensionalisation
We partially non-dimensionalise the equations in the model to remove the constant cw .
We denote old variables with a bar and let the new variables be barless.

f = f̄

cw

, (10)

q = q̄

cw

, (11)

cn = c̄n

cw

. (12)

It is also possible to non-dimensionalise the time but we prefer the timescale to be in years
so that γ (t) has a spike at every integer, and so that important qualitative information
contained in the optimal solution is not obscured.

2.2. Nasutitermes exitiosus

Nasutitermes exitiosus, unlike Coptotermes lacteus do not store food in their mound. This
difference requires a modification to the model and to the optimisation problem. It is
interesting to see how this modification affects the nature of the solutions.
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Because no food is stored in the mound, it is unnecessary to include a differential
equation for f (t). It is necessary, however, to ensure that the amount of food collected is
always greater than or equal to the amount of food consumed. This leads to the constraint

qw ≥ cww + cnn, (13)

or, in non-dimensional form,

(q − 1)w ≥ cnn, (14)

where the new variables are given by Eqs. (10)–(12).
Removing food storage from the colony does not change the differential equations

for worker population or nymph population, since f (t) is not present in either of these
equations.

Therefore, the N. exitiosus problem is to maximise (8) subject to the constraints (9)
and (14) where the dynamics are given by (4) and (6).

Differences between the constraints in the C. lacteus problem and on the N. exitiosus
problem necessitate quite different approaches to the optimisation and are reflected in the
nature of the solutions.

3. Solving the optimisation problems

3.1. Coptotermes lacteus

We use the Pontryagin Maximum Principle (PMP) (see, for example, Seierstad and Syd-
saeter, 1987) to solve the optimisation problem described in Section 2.1. We use the PMP
to obtain a feasible solution, which we argue satisfies the necessary conditions for op-
timality. We then show that the solution also satisfies sufficient conditions for the PMP
(see, for example, Seierstad and Sydsaeter, 1987) and hence, maximises the total nymph
output I .

Let

x(t) =
⎡

⎢
⎣

f (t)

w(t)

n(t)

⎤

⎥
⎦

and define f : R
3 × [0,1] × R → R

3 to be the function

f (x,p, t) := ẋ =
⎡

⎢
⎣

(q − 1)w − cnn

r(1 − p(t)) − β(t)w

rp(t) − γ (t)n

⎤

⎥
⎦ .

Care must be taken not to confuse f (x,p, t) with the food variable f (t).
For the PMP to be valid, we need to check the continuity conditions that fi, ∂fi/∂xj ∈

C0, ∀i, j ∈ {1,2,3} with respect to x, p and t . These conditions are clearly satisfied if
γ (t) ∈ C0, but we defined γ (t) in Eq. (7) as a sum of Dirac delta functions, so it cannot
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be C0. We can, however, approximate each Dirac delta function with a very tall C∞ spike,
that has unit area. This approximation is consistent with the biological modelling because
it still reduces the nymph population to almost zero at the end of every year. Moreover, we
expect the approximation to be mathematically valid, because we can take the widths of
the spikes to be arbitrarily small, such that they simulate Dirac delta functions arbitrarily
closely.

For now, we ignore the constraint (2), that the food stores cannot be negative, on the
assumption that (2) is not active. If, however, the final solution violates this assumption,
we would need to solve the problem with (2), which would require more complicated
techniques. We verify that the constraint is not active by observing the value of f (t)

in the results. The inactivity of this constraint is necessary for us to obtain an analytic
solution.

We find the Hamiltonian of the dynamical system, in a suitable form for the application
of the PMP:

H = g + λ · f , (15)

where g = rp(t) is the function whose integral is to be maximised, f has already been
defined and λ is found from the relation

λ̇i = −∂H

∂xi

, for i = 1,2,3. (16)

So the Hamiltonian is

H = r
[
1 − λ2(t) + λ3(t)

]
p(t) + rλ2(t) + w

[
λ1(t)(q − 1) − λ2(t)β(t)

]

+ n
[−λ1(t)cn − λ3(t)γ (t)

]
. (17)

Given H , we find the equations for λ1(t), λ2(t), and λ3(t) using Eq. (16).

λ̇1 = −∂H

∂f
= 0, (18)

λ̇2 = −∂H

∂w
= −λ1(q − 1) + λ2β(t), (19)

λ̇3 = −∂H

∂n
= λ1cn + λ3γ (t). (20)

Equation (18) gives λ1(t) ≡ λ0, a constant. However, we cannot immediately solve for
λ0 because f (tf ) is fixed at 0, implying λ1 has no transversality condition. Finding λ0

accurately turns out to be the crux of the problem.
Solving Eq. (19), using the transversality condition λ2(tf ) = 0, gives

λ2(t) = λ0(q − 1)

∫ tf

t

eB(t)−B(s) ds, (21)

where we have defined

B(t) :=
∫ t

0
β(τ) dτ = at − (a/b) ln(1 + bt).
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We can solve Eq. (21) analytically, in terms of the upper incomplete Gamma function to
give

λ2(t) = λ0(q − 1)eB(t)

[
− 1

a

(
eb

a

)a/b

�

(
a + b

b
,
a

b

(
1 + bs

))]tf

t

.

However, this form of the solution is not useful for computation in Matlab.
Solving Eq. (20), using the transversality condition λ3(tf ) = 0, gives

λ3(t) = −λ0cne
∫ t

0 γ (τ) dτ

∫ tf

t

e− ∫ s
0 γ (τ) dτ ds.

If we use the assumption that γ (t) is a C∞ function, which closely approximates
10

∑tf
i=1 δ(t − i), then we can simplify the expression for λ3 to

λ3(t) ≈ λ0cn

(

t − 
t� −
tf −1∑

i=
t�
e10(
t�−i)

)

, (22)

where for all intents and purposes, we may assume equality.
Hence, if λ0 is known, both λ2 and λ3 can be found explicitly.
By the PMP, any control that optimises the problem, must also maximise the Hamil-

tonian at x∗, where x∗ is the state variable that corresponds to the optimal control p∗.
That is,

H(x∗,p∗,λ, t) ≥ H(x∗,p,λ, t), ∀p(t) ∈ [0,1].

From (17), H is maximised at a fixed x with respect to p by a bang-bang solution with
p = 1 or p = 0 (that is, where either all nymphs are produced or all workers), since H is
linear in p. As the coefficient of p in H is r[1 − λ2(t)+ λ3(t)], p must be maximal when
1 − λ2(t)+ λ3(t) > 0, and minimal when 1 − λ2(t)+ λ3(t) < 0. Since p is constrained to
the closed set [0,1], we get

p∗(t) =
{

1, when 1 − λ2(t) + λ3(t) > 0;
0, when 1 − λ2(t) + λ3(t) < 0.

(23)

Notice that Eqs. (21), (22) and (23) determine the functions λ2 and λ3, and hence
the function p∗, in terms of the unknown constant λ0. To find λ0, we use the constraint
condition f ∗(tf ) = 0. We regard f ∗(tf ) as a function of λ0, and use a numerical root
finding routine to find the value of λ0, for which the constraint condition is satisfied.

To determine the optimal function f ∗(t) we must first find w∗(t) and n∗(t) in terms
of λ0. Using the expression for p∗(t) given in (23), we can solve (4) for w∗(t):

w∗(t) =
∫ t

0
r
(
1 − p∗(s)

)
eB(s)−B(t) ds. (24)
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The integral depends on λ0 through p∗(t), which ultimately depends on the unknown λ0

through λ2(t) and λ3(t). The nymph population n(t) is reset to almost zero at the end of
each year, when t is an integer. Therefore, we can approximate n∗(t) as

n∗(t) ≈
∫ t


t�
rp∗(s) ds. (25)

Since w∗(t) and n∗(t) are now known we can write

f ∗(tf ) =
∫ tf

0

[
(q − 1)w∗(t) − cnn

∗(t)
]
dt = 0. (26)

The integral depends on the remaining unknown λ0 through w∗(t) and n∗(t).
We define the function F(λ0) = f ∗(tf ) and use standard numerical root-finding pro-

cedures to find where F(λ0) = 0. The evaluation of F(λ0) requires p∗(t) to be found for
the given input λ0, which in turn depends on finding where 1 − λ2(t) + λ3(t) = 0, and
using this to evaluate w∗(t) and n∗(t). To do this, the time domain is discretised with a
variable mesh which is finest close to where t is an integer, as this is most likely to be
where p(t) switches from 0 to 1. The trapezoidal rule was used to calculate integrals over
the time domain. We found that higher level integration techniques were not well suited
to the bang-bang variable p∗. Analytic solutions for w and n were found for fixed values
of p, but these solutions did not significantly aid the computation of results.

The function F(λ0) is illustrated in Fig. 1. For the given parameters, it has one root
near 0.225.

Fig. 1 The function F(λ0)/r is plotted over the domain [0,1]. The values of the parameters in this case
are: q = 1.5, cn = 1.5, tf = 20, a = 1/3 and b = 3. As λ0 → −∞, the graph tends to a horizontal
asymptote, since the function sgn(1 − λ2 + λ3) is little changed and hence there is little change to p∗. For
the same reason, the graph will tend toward a horizontal asymptote as λ0 → ∞. The graph suggests that
F(λ0) is a monotonic function and has only one root, which is near 0.225.
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We have used the PMP to show that this solution satisfies the necessary conditions
for optimality. But in order to satisfy sufficient conditions for optimality, we also need
to show that the maximum of the Hamiltonian with respect to p, which is given by the
bang-bang solution calculated above, is concave in x for all t ∈ [0, tf ] (see, for example,
Seierstad and Sydsaeter, 1987).

Let

Ĥ (x,λ, t) := max
p∈[0,1]

H(x,λ,p, t). (27)

We show that Ĥ is concave in x by showing that −Ĥ is convex in x. Both Ĥ and −Ĥ

are C1. Let x,y ∈ [0,∞)3. By inspection, we can see that

−∇Ĥ (x) · (x − y) = −Ĥ (x) + Ĥ (y),

so clearly,

(−Ĥ )(x) − (−Ĥ )(y) ≤ ∇(−Ĥ )(x) · (x − y), ∀x,y ∈ [0,∞)3.

Hence, −Ĥ is convex, i.e. Ĥ is concave, and the bang-bang solution with appropriate
choice of λ0 is indeed optimal.

3.2. Nasutitermes exitiosus

Although the equations for the Nasuititermes exitiosus model are not very different from
those of the C. lacteus model, the active constraint (14) precludes an analytic solution
similar to that of the C. lacteus case. We chose instead to discretise the system and use
linear programming. The advantage of this approach is that it is easy to implement but the
discretisation, and hence, the accuracy is limited by the size of the LP problems which
can be solved.

We discretise the interval [0, tf ] into N subintervals of width h = tf /N by setting

t =
(

h

2
,

3h

2
, . . . , tf − h

2

)
= (t1, . . . , tN )

and assign values wi , ni and pi to w(t), n(t) and p(t), respectively, at integer values of
h. That is, values of wi , ni and pi are defined midway between the points ti and at t = 0
and t = tf . Using the integral expressions (24) and (25) for w(t) and n(t), we write wi

and ni in terms of pi . So

wi = rh

[
i∑

k=1

eB(tk)−B(ti+ h
2 )

(
1 − p(tk)

)
]

,

for i ∈ {1, . . . ,N} or in matrix form

w = c − Ap,
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where

ci = rh

i∑

k=1

eB(tk)−B(ti+ h
2 ),

and the matrix A is defined by

Ai,k = rh

{
eB(tk)−B(ti+ h

2 ), for 1 ≤ k ≤ i;
0, for k > i.

Similarly, we can find an approximation to ni = n(ti +h/2) in terms of p, by applying the
same discretisation to Eq. (25). An important difference is that when t = 
t�, n(t) = 0.
So using the composite midpoint quadrature rule,

ni =
{

0, for ti ∈ N;
rh

∑i

k=mi
p(tk), for ti /∈ N,

where mi := 
ti�/h + 1, and we choose h such that this mi is an integer. In matrix form,

n = Dp,

where, for ti ∈ N, Di,k = 0, and for ti /∈ N, the matrix D is defined by

Di,k = rh

{
1, mi ≤ k ≤ i;
0, k > i or k < mi .

We note that both A and D are lower triangular matrices. In this discretisation, we use
Riemann sum approximations rather than the midpoint, trapezoidal or other more sophis-
ticated integration methods. The more sophisticated methods appear to introduce instabil-
ities into the linear programming routine in Matlab, which we used.

In the discretised problem, the constraints (14) and (9) become

(c − Ap)(q − 1) ≥ cnDp, (28)

0 ≤ p ≤ 1. (29)

The first inequality can be rewritten as

Ep ≤ c, where E = cn

q − 1
D + A. (30)

Therefore, the problem reduces to finding the p that maximises

I = rh

N∑

j=1

p(tj ),

with respect to the constraints (29) and (30).
This problem can be directly solved in Matlab without further analytical manipula-

tion, using the command linprog. We found that we could not take our step size h to
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be arbitrarily small, because Matlab cannot handle linear programming problems with
vectors longer than a particular length. Tests with smaller and larger step sizes for various
values of tf , indicated that the results were not too sensitive to step size changes, around
the value that was used (h = 0.05).

4. Results

Figures 2–6 show the optimised variables p∗(t), w∗(t), n∗(t) and f ∗(t) for Coptotermes
lacteus and Nasutitermes exitiosus. These figures were obtained with the specific parame-
ter values: tf = 20, q = 1.5, cn = 1.5, a = 1/3, b = 3. The function p∗ is independent
of r , and the equations for w∗, n∗ and f ∗ contain r only as a constant multiple. Calcu-
lating w∗/r , n∗/r and f ∗/r avoids the need to estimate r and gives a useful measure of
nymph production relative to the queen’s egg laying rate.

4.1. Coptotermes lacteus

Figure 2 clearly displays the bang-bang nature of p∗(t) for C. lacteus. Workers are always
produced at the start of each year (corresponding to p = 0), and nymphs at the end (cor-
responding to p = 1). This is optimal as the colony uses less food per nymph, because the
nymphs are in the nest for the shortest possible time.

Looking at the widths of the p = 1 segments of p∗ in Fig. 2, we see that the number
of nymphs produced each year increases with time. The model predicts that only nymphs
will be produced in the final years of the colony’s life.

Figure 3 shows the optimal worker and nymph populations. As expected, the worker
population climbs rapidly when the colony is very young. It remains steady, apart from

Fig. 2 Optimised p∗(t) (the ratio of eggs laid that will become nymphs) in the C. lacteus model.
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Fig. 3 Optimised w∗ (worker population) and n∗ (nymph population) in the C. lacteus model.

Fig. 4 Optimised f ∗(t) in the C. lacteus model. The characterising constraint on the solution was that
f (tf ) = 0. Notice also that f (t) ≥ 0 is always satisfied.

annual fluctuations, through the middle part of the colony’s life and declines significantly
toward tf once no further workers are produced. The nymph population fluctuates sea-
sonally. The peak each season gives the total number of nymphs produced in that year.
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Fig. 5 Optimised p∗ (proportion of eggs laid that become nymphs) for the N. exitiosus problem is shown
as a solid line. The optimal excess food g∗(t) (multiplied by the constant 1

10r
, so that is easy to compare

with p∗(t)) is shown as a dashed line.

Fig. 6 Optimised w∗ (worker population) and n∗ (nymph population), for the N. exitiosus problem.

This is more or less constant through the middle of the colony’s life, but increases rapidly
in the last few years before the colony dies.
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Colony food stores are shown in Fig. 4. The total stored food increases (aside from sea-
sonal variations) until the last phase of the colony’s life when the food stores are rapidly
consumed by the large number of nymphs that the colony produces. In the seasonal cycle,
food stores are always lowest just after the nymphs leave the nest. In the first part of the
year, when there are no nymphs in the nest, workers collect more than they consume. Once
nymph production starts, as the number of nymphs increase, food levels start to decline
until the next group of nymphs leave.

4.2. Nasuititermes exitiosus

Figure 5 shows the optimal p(t) for N. exitiosus (upper line) and the amount of excess
food collected as a function of time (lower line). For this model, p(t) is never zero; there
are always some nymphs being produced. In contrast to C. lacteus, the main season of
nymph production, when p(t) = 1, takes place immediately after the mature nymphs have
left the nest. This effectively minimises the amount of food that goes to waste, or, alter-
natively, makes best use of the nest’s food collection capacity. After an initial period of
higher worker production as the nest becomes established, the annual pattern of nymph
and worker production settles to a repeating stable cycle that is not disrupted by the im-
pending end of the nest at tf . The populations of workers and nymphs in Fig. 6 show
similar behaviour.

4.3. Parameter searches

As there is very little firm observational data on the values of parameters in the models,
we investigated whether these results were robust to parameter changes. We changed q ,
cn and tf for each species in turn, and found the value for I ∗/r where I ∗ is the optimal
number of nymphs produced over the colony’s lifetime. Figure 7 shows the results for
varying q , cn, and tf for C. lacteus. The results for N. exitiosus were similar.

In Fig. 7(a), the independent variable, q , is the rate of food collection per worker,
scaled by the rate of food consumption per worker. As q increases, the nymph output
rises rapidly at low q and more slowly as q gets larger. The value of q used in the model
is 1.5 and is on a part of the curve where the total number of nymphs increases rapidly.
Hence, we expect the model to be somewhat sensitive to changes in q . In Fig. 7(b), the
total number of nymphs produced by a colony falls as cn (the ratio of the rate of food
consumption by nymphs to food consumption by workers) decreases. At cn = 8 the curve
appears to be levelling out. In our model, we used cn = 1.5, and so we might expect some
sensitivity of our results to changes in cn.

In Fig. 7(c), the dependent variable is the average scaled number of nymphs produced
per year I ∗/rtf , rather than I ∗/r , which was graphed in (a) and (b). The trend indicates
that the longer a colony lives, the more nymphs it can produce per year, tending toward a
horizontal asymptote at around tf = 10. The calculations in this study take tf = 20. This
value lies in an area of the graph that is not changing rapidly for either species of termite,
and hence, the solution is not sensitive to changes in tf .

5. Discussion

This study is the first to use a mathematical model to investigate reproductive patterns
in termites. There are few observational studies in this area and most of the information
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Fig. 7 Parameter sensitivity in the C. lacteus model. Each plot shows the effect on nymph output I∗/r

of varying a particular parameter. When parameters are fixed, their values are, q = 1.5, cn = 1.5, a = 1
3 ,

b = 3, tf = 20 (a) varying the food collection rate q; (b) varying the nymph food consumption rate cn;
(c) varying the colony lifespan tf .

available is anecdotal rather than systematically obtained. Therefore, the predictions of
the model and the questions that it raises are significant and useful.

The most important outcome of the model is to predict that whether or not a mound-
building termite stores food will determine both its seasonal pattern of nymph and alate
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Fig. 7 (Continued.)

production, and the overall pattern of worker and nymph production over the life of the
colony. At one level, this is surprising: C. lacteus and N. exitiosus live in similar environ-
ments and have similar behaviours (Hill, 1942; Evans and Gleeson, 2001). The similari-
ties of the models reflect this. Once the mathematical theory for solving the optimisation
problem is invoked, however, it becomes clear that the difference in food storage leads to
structurally different mathematical optimisation problems and, not surprisingly, qualita-
tively different results.

Food storage by Coptotermes lacteus has a number of consequences. First, nymph
production occurs as close as possible to the time when they will leave the nest. In the
model, we have not introduced a delay between hatching and leaving, but it is unlikely that
such a delay will significantly change the prediction that C. lacteus nymphs spend as little
time in the nest as possible. Further, the bang-bang solution to the optimisation problem
predicts that at any given time, all the new offspring produced in a C. lacteus mound will
either be workers or be all nymphs. Secondly, the model predicts that C. lacteus mounds
will have a distinct phase at the end of their natural life where almost all new offspring
are nymphs, worker production is minimal, and stored food is rapidly consumed.

In contrast, the model predicts that once a N. exitiosus mound is well established, it will
settle down into what is essentially a steady state with a recurrent annual cycle, that is not
affected by the impending extinction of the mound. Nymphs are produced throughout the
year, but mainly immediately after the previous year’s nymphs have left the mound, so that
the colony’s food collection capacity can be used to the best advantage. This suggests that
there should always be nymphs of every stage of growth in a N. exitiosus mound, unlike
a C. lacteus mound where the model predicts that for some of the year, immediately after
the alates leave, there will be no nymphs.

In this study we set out to maximise the number of nymphs that a colony could produce
with a fixed egg-laying rate. For N. exitiosus, exactly the same results can be obtained by
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minimising the amount of food wasted, that is, minimising (1−q)f (t)−cnn(t) under the
constraint that it must always be non-negative. This can also be interpreted as minimising
the amount of unused foraging capacity.

The models in this study are very simple and clearly could be made more realistic.
Changes that could be made include introducing a delay in the equation for nymph popu-
lations so that nymphs do not leave the nest until they are mature, introducing explicit age
structure into the worker population so that the age-dependent death rates at the start and
end of the colony’s life can be more accurately modelled, introducing a time dependent
egg-laying rate to reflect the queen’s development early in the colony’s life, including
seasonal cycles in temperature and food consumption and availability, and introducing a
soldier caste. Workers develop into soldiers, but can do so from mid to late instars, (that
is, as they approach maturity) which would be a loss to the worker population. Soldiers
are unable to feed themselves and must be fed by workers, which is another constraint
on the food available for nymph development. We have chosen, however, to keep the
model uncomplicated so as not to obscure the main results and to permit some measure
of analysis.

This study predicts observable differences in nymph and alate production between two
species of Australian termites that relate to their foraging strategies. We hope that it will
provide a focus for experimental research in the area of termite reproductive strategies not
only for the species investigated here, but also for other types of termite in other ecologies
and in other parts of the world.
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