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Abstract We study a recently discovered class of models for plateau bursting, inspired by
models for endocrine pituitary cells. In contrast to classical models for fold-homoclinic
(square-wave) bursting, the spikes of the active phase are not supported by limit cycles of
the frozen fast subsystem, but are transient oscillations generated by unstable limit cycles
emanating from a subcritical Hopf bifurcation around a stable steady state. Experimen-
tal time courses are suggestive of such fold-subHopf models because the spikes tend to
be small and variable in amplitude; we call this pseudo-plateau bursting. We show here
that distinct properties of the response to attempted resets from the silent phase to the
active phase provide a clearer, qualitative criterion for choosing between the two classes
of models. The fold-homoclinic class is characterized by induced active phases that in-
crease towards the duration of the unperturbed active phase as resets are delivered later
in the silent phase. For the fold-subHopf class of pseudo-plateau bursting, resetting is
difficult and succeeds only in limited windows of the silent phase but, paradoxically, can
dramatically exceed the native active phase duration.

Keywords Bursting · Calcium oscillations · Pituitary · Stable and unstable manifolds ·
Fast-slow systems

1. Introduction

Bursting is a ubiquitous phenomenon found in electrically excitable cells, consisting of a
slow alternation between a depolarized spiking or active phase and a hyperpolarized low-
voltage or silent phase. Slow is a relative term, meaning slow compared to the timescale
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of the spiking. From a physiological point of view, bursting appears, in general, to be a
way for cells to construct slow oscillations out of fast oscillations. Burst periods range
from less than a second in fast cortical neurons, for which bursting has been suggested
to enhance the reliability of synaptic transmission (Lisman, 1997), to tens of seconds
or minutes in secretory cells, which modulate organismal homeostasis over the course
of a day. The bursting patterns that cells exhibit are diverse both in appearance and in
the ionic mechanisms that produce them, but considerable progress has been made in
developing a general theory that ties them together (Rinzel, 1987; Bertram et al., 1995;
Izhikevich, 2000; Golubitsky et al., 2001).

A pattern of particular interest is the “square-wave” burst, which was among the first
to be understood because it looks like a relaxation oscillation but with spikes superim-
posed on the depolarized plateau. Indeed, by averaging the fast equations, one can derive
an equivalent relaxation oscillator system that is a good approximation to the original
bursting system (Bertram et al., 1995). When the spikes are initiated by calcium currents,
as is generally the case in endocrine cells, such plateaus enable the cell to generate main-
tained elevations of cytosolic Ca2+, which are very effective at driving secretion. Two
well-studied examples of non-endocrine square wave bursting are the pacemaker neurons
of the pre-Bötzinger complex, whose bursts of Na+ spikes underlie the respiratory rhythm
(Butera et al., 1999) and the chick spinal cord (Tabak et al., 2000).

Here we introduce a generic model for bursting in pituitary secretory cells, adapted
from a previous model for the pituitary corticotroph (LeBeau et al., 1998). The model
exhibits what we call pseudo-plateau bursting, because the plateau is not necessarily at-
tracting throughout the active phase. A typical experimental recording from a pituitary
somatotroph, which secretes growth hormone, is shown in Fig. 1. Note the short period
(<5 s), the small amplitude of the spikes on the plateaus and the sawtooth shape of the

Fig. 1 A representative recording of membrane potential (upper) and cytosolic Ca2+ (lower) from a
rat pituitary somatotroph using the perforated patch-clamp recording configuration in the current-clamp
mode. (Reprinted with permission from Fig. 1, van Goor et al., 2001, Copyright 2001 by the Society for
Neuroscience.)
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cytosolic Ca2+ time course, which strongly suggests that the rise in [Ca2+]i is the agent
that terminates each active phase.

Similar patterns have been observed in other pituitary cells, such as lactotrophs (Sto-
jilkovic et al., 2005, Fig. 4), which secrete prolactin, and corticotrophs (Kuryshev et al.,
1996, Fig. 3), which secrete adrenocorticotrophic hormone. Another pituitary cell, the
gonadotroph, which secretes luteinizing hormone and follicle stimulating hormone, does
not show spontaneous bursting, but simulations suggest that it could if it were augmented
with a large-conductance (BK) Ca2+—and voltage-activated K+ channel (van Goor et al.,
2001).

Another much studied example is the pancreatic β-cell, which secretes insulin. It
shows a similar pattern to its pituitary cousins when recorded in isolation and has a short
period (Kinard et al., 1999, Fig. 3). In the more physiological situation, in which β-cells
are situated in the electrically coupled islets of Langerhans, the bursts have periods of tens
of seconds to minutes and taller spikes (Kinard et al., 1999, Fig. 1).

The β-cell was the first square-wave burster to be modeled (Chay and Keizer, 1983),
and a simulation of a version of that model (Sherman et al., 1988) is shown in Fig. 2(a).
We will refer to this model as “Chay–Keizer,” although it differs in a number of details

Fig. 2 The bursting profile for the Chay–Keizer model (left column) compared with that for the pituitary
model (right column). Panels (a) and (b) show V (purple, left axis) and Ca (orange, right axis) versus t .
Panels (c) and (d) show these orbits in the (Ca,V )-plane overlaid on the bifurcation diagrams of the
corresponding fast subsystems. (Color figure online.)
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from the original, because it shares the key feature that the sole slow negative feedback
variable is cytosolic Ca2+ acting on a Ca2+-activated K+ (K(Ca)) channel.

Alongside the Chay–Keizer simulation is one done with the pituitary model in
Fig. 2(b). Both models produce square-wave bursts driven by Ca2+ acting on K(Ca) chan-
nels and have similar ion channels for spiking. The pituitary model output resembles the
somatotroph data in Fig. 1 somewhat better than that of Chay–Keizer in that the spikes on
the plateau are smaller, but the differences are not clear cut enough to be decisive. Expe-
rience has also shown that the appearance of the time course can be deceptive (Bertram
et al., 1995). The more critical difference between the two models, which can be taken as
representative of two classes of models, is in the bifurcation diagrams of the respective
fast subsystems, as described below.

In this study, we show that even if the data are not precise enough to choose between
the two classes of models quantitatively, they can be distinguished qualitatively by their
resetting properties, that is, by the ability of brief perturbations to switch the system from
the active to the silent phase and vice versa. The Chay–Keizer model resets in essentially
the same manner as a relaxation oscillator, but the pituitary model turns out to be rather
different. Thus, resetting offers an experimentally feasible way to distinguish which is
the appropriate class of model to use for pituitary cells and other cells that show similar
voltage patterns.

This paper is organized as follows. In the next section, we present the system equations
for the pituitary model and describe the techniques used for the analysis; complete details
and values of the parameters are given in Appendix A. Section 3 gives detailed results of
the behavior of the pituitary model. We first contrast the possibilities for upward resetting
of the Chay–Keizer and the pituitary models in Section 3.1, which is determined by the
bifurcation structure of the respective fast subsystems. We then continue with a detailed
discussion of the effects of upward resetting on the pituitary model both in the fast sub-
system with Ca frozen (Section 3.2) and in the full system with dynamic Ca (Section 3.3).
We end with an extensive discussion in Section 4, starting with a summary of the results
in Section 4.1. Section 4.2 addresses the robustness of the results. We explain the conse-
quences both from a theoretical and an experimental point of view in Sections 4.3 and 4.4,
respectively.

2. Modeling and methods

The model used here was developed by modifying a previously published model for the
pituitary corticotroph (LeBeau et al., 1998). Our aim is to explore the potentially rich
dynamical behavior that pituitary cells can display. Therefore, we simplified the model
and reduced the number of variables only to the extent that existing numerical tools are
able to tackle the analysis. In this way, the complexity of the model still reflects the actual
biological system. The model is described by four differential equations, one for mem-
brane potential, two for channel gating using the Hodgkin–Huxley formalism, and one for
calcium balance:

Cm

dV

dt
= −ICaL(V ,mL) − ICaT(V ) − IK(V ,n) − IKCa(V ,Ca)

− ILeak(V ) + Iapp, (1)
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dmL

dt
= mL,∞(V ) − mL

τm,L(V )
, (2)

dn

dt
= n∞(V ) − n

τn

, (3)

dCa

dt
= Jexchange + fβ(Jinflux − Jefflux). (4)

The details of parameters and auxiliary activation, inactivation, and time functions for
channel gating are in Appendix A. Source files can be downloaded from http://lbm.niddk.
nih.gov/sherman.

Dynamically, the equations partition into a fast subsystem, consisting of V , mL, and
n, that is responsible for the spikes on the plateau, and a slow subsystem, consisting of
Ca, that drives the system between active and silent phases. In the fast system for fixed
(frozen) Ca the active and silent phases are identified by (stable) steady states, which we
call the high-voltage and low-voltage states, respectively. The identification of Ca as the
slow negative feedback variable that drives the bursts is suggested by the sawtooth Ca
waveform (Fig. 1). By itself, this waveform is not decisive, as Ca could just be following
V , instead of driving V . In the somatotroph, however, there is direct evidence supporting
this mechanism, because the Ca2+ chelator BAPTA suppresses the [Ca2+]i rise and kills
the bursts (van Goor et al., 2001, Fig. 3).

For comparison with classical square-wave bursting models, we show some results
with a simplified form of the Chay–Keizer model for pancreatic β-cells (Sherman et al.,
1988). Like the pituitary model, the Chay–Keizer model has a fast subsystem for the
spiking dynamics, which are driven by voltage-dependent Ca2+ and K+ currents, and
a slow subsystem consisting of Ca, which provides negative feedback onto the K(Ca)
current to switch the spikes on and off. The models differ in parameter values and in some
details. For example, the Chay–Keizer model has no T-type Ca2+ current, only the L-type
current, and the version used here has only three variables because the gating variable mL

for that current is set to its steady-state value. However, the only differences that matter
for our purposes are in the bifurcation structure of the fast subsystem; see Fig. 2(c and d).

We use several techniques to analyse the models. Resetting experiments are simulated
by briefly turning on the applied current Iapp in Eq. (1). These simulations are carried
out by integrating the equations using Matlab (The MathWorks, Natick, MA) or XPP

(Ermentrout, 2002). The bifurcation diagrams of the fast subsystem are computed us-
ing AUTO (Doedel, 1981). Finally, an important part of our analysis involves the com-
putation of global invariant manifolds for fixed Ca-values in the fast subsystem. In the
three-dimensional fast subsystem (1–3) the two-dimensional global stable manifolds of a
saddle equilibrium or a saddle periodic orbit are of interest, because these may separate
the basins of attraction of the low- and high-voltage steady states.

The computation of two-dimensional global manifolds is a serious challenge, espe-
cially for systems with multiple time scales, and appropriate computational techniques
have only recently become available (Krauskopf et al., 2005). Our analysis, therefore, also
provides for the first time insight into higher-dimensional effects on the phase-resetting
of excitable cells. We find that for the pituitary model the effects are only at a quantita-
tive level and the qualitative structure remains intact. We computed the two-dimensional
global manifolds with the specialized method GLOBALIZEBVP (England et al., 2007;
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Krauskopf and Osinga, 2003) that builds the surface up as a collection of geodesic level
sets, that is, a collection of closed curves (topological circles) with the property that points
on the same curve lie at the same geodesic distance from the equilibrium or periodic or-
bit. The geodesic distance is the arclength of the shortest path on the manifold that con-
nects the two objects, which need not be a trajectory. Hence, GLOBALIZEBVP computes
the manifold as a geometric object and ignores the dynamics on it. The key step in this
method is the observation that points on a geodesic level set can be found as end points of
orbit segments that are the solution of a two-point boundary value problem. These two-
point boundary value problems are solved by continuation using the collocation routines
in AUTO, which makes the method particularly suitable for systems with multiple time
scales. We refer to England et al. (2007) for more details. Visualization of the manifolds
was done in GEOMVIEW (Phillips et al., 1993).

3. Results

The results of our numerical analysis are presented in the following sections. We first
discuss the bifurcation diagram of the fast subsystem of the pituitary model and compare
it with that of the Chay–Keizer model. We then focus on upward resetting in Sections 3.2
and 3.3. Section 3.2 concentrates on resetting in the frozen system, where Ca acts as a
parameter. These results give qualitative information about the effects of resetting in the
full dynamic case, which we discuss in Section 3.3.

3.1. Contrast of dynamical structure of Chay–Keizer and pituitary models

The bifurcation diagrams of the fast subsystems for the Chay–Keizer and pituitary models
are compared in Fig. 2(c and d), respectively. In Chay–Keizer, bursting is due to the com-
bination of slow negative feedback mediated by cytosolic Ca2+ with bistability between a
low-voltage steady state and a high-voltage oscillatory state, the latter consisting of a one-
parameter family of stable limit cycles. In the pituitary model, bursting is similarly depen-
dent on slow negative feedback and hysteresis between the low- and high-voltage states,
but the active-phase limit cycles are saddle periodic orbits. Thus, the spikes (or spikelets)
are generated by transient oscillations around a stable high-voltage steady state. In order
to obtain spikes in such a case, the slow variable (Ca) cannot be too slow; if Ca were very
slow, the trajectory would compress onto the high-voltage steady-state branch, producing
a flat plateau without spikes. This constraint does not generally apply to Chay–Keizer,
where a slowing down of Ca just increases the number of spikes per burst, although there
are marginal cases in which the speed of the slow variable matters.

In the terminology of Izhikevich (2000), Chay–Keizer is classified as a fold-
homoclinic burster because the active phase begins at a fold (LP) and terminates at a
homoclinic orbit of a saddle steady state (HHS). In contrast, the pituitary model is a
fold-subHopf burster, because the active phase begins at a fold (LP) and terminates at a
sub-critical Hopf bifurcation (H). Note that, strictly speaking, it is the branch of unstable
limit cycles associated with the active phase, and not necessarily the active phase itself
that terminates at H, as seen in Fig. 2(d). The branch of unstable limit cycles begins at a
homoclinic orbit of the saddle steady state (HHS) that lies in between LP and H.
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Fig. 3 Basins of attraction (shaded) of the depolarized state xh in the fast subsystem. Panel (a) shows the
Chay–Keizer model with Ca = 0.55. Panel (b) shows a projection of a similarly large basin for the pituitary
model with Ca = 0.55 (region I in Fig. 2(d)), but the basin is dramatically smaller for the pituitary model
at Ca = 1.0 (region II in Fig. 2(d)) shown in panel (c). In each panel the horizontal axis is V and the
vertical axis is n. The periodic orbit and the high-voltage, low-voltage and saddle steady states are labeled
�, xh , xl , and xs , respectively. Panel (a) shows the one-dimensional stable and unstable manifolds Ws(xs)

and Wu(xs) of xs , respectively, while panels (b) and (c) show projections of the one-dimensional unstable
manifold Wu(xs) and a one-dimensional slice W

s
(xs) of the two-dimensional stable manifold of xs .

Figure 3(a) shows the phase portrait in the (V ,n)-plane of the fast subsystem of the
Chay–Keizer model with Ca = 0.55. The high-voltage state (the stable limit cycle �)
has a large basin of attraction with a neck that is near the low-voltage steady state xl .
Specifically, Fig. 3(a) suggests that arbitrarily brief pulses can cause upward resetting
provided Iapp is large enough.

Figures 3(b and c) show projections of the three-dimensional phase portraits into the
(V ,n)-plane of the fast subsystem of the pituitary model with Ca = 0.55 and Ca = 1.0,
corresponding to Regions I and II in Fig. 2(d), respectively. In addition to the steady states
xh, xl , and xs and the one-dimensional unstable manifold Wu(xs) of the saddle steady
state xs , we project a one-dimensional slice, denoted W

s
(xs), of the two-dimensional sta-

ble manifold Ws(xs) of xs . In order to obtain a truthful relative location with respect
to Wu(xs), we slice the two-dimensional manifold with a plane through the three steady
states and project this slice onto the (V ,n)-plane. The stable manifold acts as a basin
boundary in Fig. 3(b), but plays no role in separating the two stable steady states in
Fig. 3(c). The basin boundary for Ca = 1.0 is the stable manifold of the periodic or-
bit; note that only the projection of the periodic orbit is shown in Fig. 3(c). See Figs. 6
and 8 for corresponding images in the three-dimensional phase space.

Figure 3(b) is similar to Fig. 3(a), with the stable limit cycle replaced by the high-
voltage steady state. In Fig. 3(c), the projected basin of attraction of the high-voltage
steady state shrinks to a small circle and there is no neck. Therefore, upward resetting is
no longer possible if instantaneous pulses are used, but it is possible with sufficiently long
pulses that allow mL and, especially, n to increase. To the right of H, it becomes even more
difficult to reset, because the high-voltage steady state becomes unstable (i.e., the basin
shrinks to a point); we limit our discussion to regions I and II as the trajectories do not
extend past H with the parameters we have chosen. These two-dimensional projections
lead us to expect that, whereas it is easy to reset the Chay–Keizer model throughout
the silent phase of the bursts, the pituitary model will have trouble, at least in region II.
(Resetting downwards from active phase to silent phase is easy and the same for both
models, so we do not address that.)
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It is not obvious, however, if the two-dimensional projections are sufficient to predict
the effect of upward resetting for the three-dimensional subsystem (1–3) of the pituitary
model. For example, in Region II, the unstable periodic orbit � cannot be the boundary
of the basin of attraction of the high-voltage steady state. In three dimensions, the basin
boundary is formed by the two-dimensional stable manifold Ws(�), which could widen
very quickly and create a much larger basin of attraction that could make upward resetting
just as easy as for the Chay–Keizer model. On the other hand, Ws(�) could also form an
even smaller basin that could virtually preclude resetting. In order to assess the difficulty
of upward resetting in the fast subsystem of the pituitary model, it is necessary to calculate
the two-dimensional surface that separates the basins of attraction of the low- and high-
voltage steady states. Recently, techniques have been developed that allow to compute
two-dimensional separating manifolds (see Section 2 for references). We describe the
results of these techniques and of resetting simulations in the next section.

3.2. Resetting in the frozen system

Figure 4(a) shows how the bifurcation diagram of Fig. 2(d) is altered when a constant-
current pulse Iapp = 6.69 is applied and maintained indefinitely. Two things happen: the
fold LP is pulled to the right, allowing the phase point to escape, and a new high-voltage

Fig. 4 Influence of applied current Iapp on the fast subsystem of the pituitary model. Panel (a) shows
how the bifurcation diagram for Iapp = 0 changes when Iapp is increased to 6.69 pA. The Hopf bifur-
cation H for Iapp = 0 has disappeared altogether. Panel (b) shows how the equilibria and periodic orbits
for Ca = 1.0 µM vary with Iapp. The dot labeled bb indicates the value of Iapp at which the perturbed
depolarized state leaves the basin of attraction of the unperturbed state. Panel (c) shows how the fold and
Hopf bifurcation curves vary in (Iapp,Ca)-space.
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steady state is created. If the applied current is not too large, there is a good chance that
the new steady state will lie in the basin of attraction of the old high-voltage state, leading
to a successful reset. If the current is too large, the high-voltage state will move out of the
basin of attraction of the unperturbed high-voltage state. As an example, consider upward
resetting from Ca = 1.0. Figure 4(b) shows how the steady states and periodic orbit for
Ca = 1.0 depend on Iapp. For small enough Iapp the low-voltage steady state persists, but it
disappears in a fold (LP) at Iapp ≈ 6.49 pA and for larger Iapp escape from the silent phase
is possible at Ca = 1.0, as shown in Fig. 4(a); the vertical line in Fig. 4(b) shows that for
Iapp = 6.69 only a high-voltage steady state exists. Note that the periodic orbit disappears
in a homoclinic bifurcation (HHS) well before the fold. The point labeled bb on the branch
of high-voltage steady states in Fig. 4(b) lies on the boundary of the basin of attraction
of the unperturbed high-voltage steady state and marks the minimum value of Iapp that is
large enough for the high-voltage state to lie outside this basin of attraction. As shown in
Fig. 4(b), for any value of Iapp large enough to cause escape from the low-voltage state,
the asymptotic limit of the trajectory lies outside the basin for resetting upwards. It is still
possible to achieve a reset if the orbit transiently passes through the basin and the current
is turned off in time, but this is more delicate. For smaller Ca, the minimum value of Iapp

decreases because the inhibitory effect of Ca on V via the BK channels is smaller. This
is summarized in Fig. 4(c). Putting the three views together suggests that resetting should
be easiest in region I, where the basin of attraction is larger and the minimum value for
Iapp is lower.

Let us now study what happens to the (unperturbed) low-voltage steady state in the
fast subsystem (1–3), for a fixed value of Ca, if we apply a constant current pulse Iapp

only for a finite duration w. Figure 5 shows the applied current strength-duration relation-

Fig. 5 Strength-duration diagram constructed by forward integrations for 10 s of the fast subsystem with
Ca = 0.55 µM, starting at the low-voltage steady state. Points in the black region correspond to values of
pulse strength Iapp and pulse duration w that give rise to successful resets (i.e. the associated trajectories
terminate at the high-voltage steady state). The grid resolution was 0.001 pA × 0.001 s. A minimum value
of Iapp is needed for the phase point to be captured in the basin of attraction of the high-voltage steady
state (a). For larger values of Iapp, there is a minimum duration w for success. For Iapp > ≈12.87 pA there
is also a maximum value of w generating successful capture (b).



Resetting Behavior in a Model of Bursting 77

ship determined by forward integrations on a grid of (Iapp,w)-values for Ca = 0.55 µM;
the figure is representative for Ca values in region I as indicated in Fig. 2(d). The two-
parameter bifurcation diagram in Fig. 4(c) predicts that for this value of Ca, resets are
not possible for Iapp < 3.35 pA because the pulse is too weak to drive the fold (LP) be-
yond Ca = 0.55 µM. The results of forward integration are consistent with this, showing
no resets for Iapp < 3.376 pA with stimulus durations up to 1 s (the results in Fig. 5(a)
are displayed for w ≤ 0.5 s). For 3.35 ≤ Iapp < ≈12.87 pA the perturbed system has a
unique steady state that lies in the basin of attraction of the high-voltage steady state of
the unperturbed system. In this range, resetting is guaranteed provided the duration is
long enough. With forward integrations, we found successful resets for all sufficiently
long pulses for 3.376 ≤ Iapp < 12.886 pA, which agrees with the prediction given the
accuracy with which we can calculate the manifold that forms the basin boundary. Note
further that there is a horizontal band of failures; in this region the trajectory winds tran-
siently out of the basin. If the pulse is maintained a little longer, however, the reset is
successful. For Iapp > 12.87 pA, the induced high-voltage steady state lies outside of the
basin, and resetting is not possible except for a narrow strip corresponding to the time
when the trajectory transiently passes through the neck of the basin. Such delicate resets
are possible for arbitrarily large Iapp, but the window of duration shrinks to 0. Thus, in
practice resetting is not possible for large Iapp and would appear as an overshoot, i.e.,
V would go above the unperturbed plateau but would not stay up significantly longer than
the pulse.

The most interesting region is the wavy boundary that straddles the line Iapp =
12.87 pA; an enlargement is shown in Fig. 5(b). For any Iapp in this region, failures
alternate with successes as the trajectory winds in and out of the basin of attraction on
the way to the induced high-voltage steady state. There can be failures when the induced
high-voltage state lies inside the basin, because the trajectory leaves the basin transiently
on the way to this induced high-voltage steady state, and there can be successes when the
steady state lies outside the basin but the trajectory enters the basin transiently. Figure 6
shows an example taken from the wavy region with Iapp = 12.87 pA, the value where the
induced high-voltage steady state lies approximately on the boundary of the basin. On
the way to the induced high-voltage steady state, the trajectory winds in (cyan) and out
(orange) of the basin.

We next examine the strength-duration relationship for Ca = 1.0 µM (Fig. 7), which
is in region II. In this region, any stimulus strong enough to move the trajectory out of
the silent phase is strong enough to move the induced high-voltage steady state out of
the basin of the unperturbed high-voltage steady state, which is in any case much smaller
than in region I. That is, any value of Iapp to the right of the fold LP in Fig. 4(b) is also to
the right of the dot labeled bb at which the induced high-voltage steady state first leaves
the basin. Thus, the only possibility of resetting is for the trajectory to visit the basin
transiently, which leads to the narrow bands in Fig. 7.

Figure 8 shows a resetting trajectory with Iapp = 6.69 pA superimposed on the phase
portrait with the two-dimensional manifold that forms the basin boundary, with frozen
Ca = 1.0 µM. In this example, the induced high-voltage steady state lies outside the basin
of attraction of the unperturbed high-voltage steady state. The cyan portions of the tra-
jectory that are visible in Fig. 8b indicate successful resets when the basin is transiently
visited and correspond to values of duration in the two black bands in Fig. 7. Figure 8 also
gives an impression of the effect of the additional gating variable mL in the model. The
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Fig. 6 Three-dimensional phase portrait of the fast subsystem with Ca = 0.55 µM. The V axis is horizon-
tal. The blue surface in panel (a), which is rendered transparent in panel (b), is the stable manifold Ws(xs)

of the saddle steady state xs (see also Fig. 3(b)) and defines the basin boundary of the high-voltage steady
state xh . Red curves are the unstable manifolds of xs (green dot). Shown in orange is the trajectory for
Iapp = 12.87 pA, with segments that lie inside the basin of attraction shown in cyan. A large enough ap-
plied current Iapp will move the system out of the low-voltage steady state xl , so that only very specific
durations capture the trajectory inside the basin of attraction of xh . (Color figure online.)

Fig. 7 Strength-duration diagram of the fast subsystem as in Fig. 5 but with Ca = 1.0 µM (region II in
Fig. 2(d)). A minimum value for Iapp is needed for the trajectory to be captured in the basin of attraction
of the high-voltage steady state. There is also a maximum value of Iapp for which this can be achieved (not
shown).

resetting trajectory clearly moves away from the plane through the steady states xl , xs , and
xh, while the saddle periodic orbit � lies almost entirely in this plane. If the basin bound-
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Fig. 8 Three-dimensional phase portrait of the fast subsystem with Ca = 1.0 µM. Colors are as in Fig. 6
but now the basin boundary (blue surface) is the stable manifold Ws(�) of the unstable periodic orbit �

(dark green curve). The horizontal axis is V in panel (a), while the view is rotated in panel (b) and part
of the basin boundary chopped off so one can see inside. Any applied current Iapp large enough to move
the system out of the low-voltage steady state xl will converge to a point outside the basin of attraction
of the high-voltage steady state xh . Shown in orange is the trajectory for Iapp = 6.69 with segments that
lie inside the basin of attraction shown in cyan. Red indicates the unstable manifolds Wu(xs) of xs (green
dot). (Color figure online.)

ary Ws(�) had more of a trumpet shape, successful resetting would have been achieved
by arbitrarily brief pulses, just as for the Chay–Keizer model.

3.3. Resetting in the full system (Ca dynamic)

We now examine resetting in the full four-dimensional system (1–4) in which Ca is a
slow variable rather than a frozen parameter. This is the situation that corresponds to the
experimental setting and hence is in principle testable. The analysis of the frozen system
suggests that it should be relatively easy to reset upwards at late points in the silent phase
for which the frozen system lies in region I (Figs. 5 and 6), and nearly impossible to reset
at early points in the silent phase, for which the frozen system lies in region II (Figs. 7
and 8). However, the dynamics of Ca complicate the picture.

Figure 9 shows examples of successful resetting of the full system in the time domain
(a and b) and in the (Ca,V ) phase plane (e and f). Success is defined as an induced plateau
that outlasts the applied current (Fig. 9(c and d)). The left panels (a, c, e) show an example
late in the silent phase, when the frozen system lies in region I. A subtlety that does not
arise in the frozen system is that if the duration of the applied current is too long, Ca can
increase, pulling the trajectory into region II. Thus, even though the induced high-voltage
steady state lies in the basin for this value of Iapp, the current cannot be maintained too
long, because the rise in Ca will deform the manifolds and shrink the basin of attraction.

The right panels (b, d, f) of Fig. 9 show an example of resetting early in the silent phase,
when the frozen system lies in region II. In this case, Ca initially decreases because the
phase point lies below the Ca null surface. This increases the size of the basin of attraction,
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Fig. 9 Phase-resetting profiles with applied current Iapp = 6.48 pA and duration w = 0.15 s initiated at a
late (left column) and early (right column) state in the silent phase. Panels (a) and (b) show V (purple, left
axis) and Ca (orange, right axis) versus t with Iapp versus t underneath in panels (c) and (d). Panels (e)
and (f) show these as orbits in the (Ca,V )-plane overlaid on the corresponding bifurcation diagram of the
fast subsystem. The start and end of the pulse is indicated by a thick dot, and the unperturbed oscillation is
shown in light gray. (Color figure online.)

and allows the reset to succeed, even though the frozen picture suggests that it would fail.
Note that in this example, the induced plateau is longer than the unperturbed plateau.

Figure 10(a) shows how the duration of the induced excursion varies with the point in
the silent phase at which the pulse is applied for the Chay–Keizer model. Broadly, the later
the pulse is applied, the longer is the induced active phase. (The curve is not monotonic
because there is a bump every time a spike is added. The spike-adding canard bifurcation
is described by Terman, 1991.)

The increase of excursion length with phase of reset is not surprising, as at later times
the trajectory is closer to where it would jump up anyway. In contrast, Fig. 10(b) shows
that resetting does not necessarily become easier later in the silent phase for the pituitary
model. Resetting is only successful during narrow windows of the silent phase because of
the influence of the Ca dynamics on the manifolds of the frozen system. Remarkably, the
successful resets can be much longer than the duration of the unperturbed active phase,
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Fig. 10 Phase-resetting diagrams for the Chay–Keizer model with Iapp = 2 pA, w = 0.2 s (a) and the
pituitary model (b) with Iapp = 6.48 pA, w = 0.15 s. Plotted is the return time to low-voltage values
(V = −55 mV for Chay–Keizer and V = −30 mV for the pituitary model) after resetting at the given
phase, that is, the time relative to the duration of the silent phase. The upper (orange) horizontal line
indicates the duration of the unperturbed active phase and the lower (purple) horizontal line indicates the
duration of the current pulse. The large peak in panel (b) is cut off to keep the smaller peak visible; the
maximal �t is 13.3 s. (Color figure online.)

a phenomenon that is never seen in the Chay–Keizer type models. Also, the left (stronger)
peak corresponds to the situation in Fig. 9(b and d), in which the reset trajectory begins in
region II—the frozen analysis predicted that resetting would be difficult for this region—
whereas the right (weaker) peak corresponds to Fig. 9(a and c), in which the trajectory
begins in region I.

4. Discussion

We have considered two classes of candidate models for a particular flavor of pseudo-
plateau bursting observed so far in several pituitary cell types (Kuryshev et al., 1996;
Stojilkovic et al., 2005) and at times in isolated pancreatic β-cells (Kinard et al., 1999).
These bursts are relatively brief (a few seconds) and have small-amplitude spikes that are
suggestive of fluctuations rather than full-blown action potentials. The classical model for
square-wave bursters, developed first by Chay and Keizer (1983) for pancreatic β-cells
(when studied in coupled islets of Langerhans) and later applied to other cell types, such
as respiratory pacemaker neurons (Butera et al., 1999), and to networks of neurons (Tabak
et al., 2000), is classified as fold-homoclinic based on how the active phase begins and
terminates (Izhikevich, 2000). As an alternative, we have presented here a model classified
as fold-subHopf (Izhikevich, 2000) because the branch of limit cycles associated with the
active phase ends at a sub-critical Hopf bifurcation (Fig. 2d); the termination of the active
phase itself is more complex, as discussed below.

A diagram with fold-subHopf structure was exhibited using a particular parameter set
for the original corticotroph model from which the present model was derived (LeBeau
et al., 1998, Fig. 13). A recent model for pituitary lactotrophs has also been shown to
have the same structure (Tabak et al., 2007, Fig. 3). Finally, the gonadotroph model of
van Goor et al. (2001) has the same structure when shifted into a pseudo-plateau bursting
mode by “transfection” of a large-conductance Ca2+-activated K+ channel (unpublished
observations). The investigation of the properties of this class of models is in its infancy,
but it is already clear that they are rather different from and more complex than those of
the older fold-homoclinic class in many respects. (See for example, some of the counter-
intuitive effects of changing calcium pump rates in Tabak et al., 2007.)
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4.1. Summary of results

In this study, we have focused on the response to resetting pulses, which has not been
addressed previously. We have only discussed in detail upward resetting from the silent
phase to the active phase, as the properties of downward resetting do not differ signifi-
cantly between the two classes of models. The differences in the properties of upward re-
setting, on the other hand, do provide a clear-cut experimental signal for choosing whether
a fold-homoclinic or a fold-subHopf model is more appropriate for a given system. (There
could be other types of models that work even better, so the determination is only relative;
see caveats below.)

We first considered resetting with the slow variable, cytosolic calcium (Ca), frozen
and identified two distinct regions, labeled I and II in Fig. 2(d). Consideration of two-
dimensional projections of the three-dimensional fast subsystem suggested that in re-
gion I, between the lower knee (LP) and the homoclinic orbit (HHS), resetting would
be relatively easy as the projected basin of attraction is large and contains both the low-
and high-voltage steady states (Fig. 3(b)). In contrast, in region II, between the homoclinic
orbit (HHS) and the Hopf bifurcation (H), resetting was expected to be more difficult as
the projected basin is very small, shrinking to a point as H is approached (Fig. 3(c)).

Confirmation of these predictions required calculation of the three-dimensional phase
portraits. In region I, forward integrations showed that resetting is possible for sufficiently
prolonged depolarizing stimuli, as long as the current strength is not so great that it pushes
the high-voltage steady state of the perturbed system out of the basin of attraction of the
unperturbed high-voltage steady state (Fig. 5). In region II, we found that any stimulus
strong enough to escape the low-voltage steady state pushes the induced high-voltage
steady state out of the basin. Hence, resets are possible only in very narrow bands of
duration (Fig. 7). The two-dimensional separating manifolds that bound the basins of
attraction of the high-voltage steady state gave further information about the conditions
for success of upward resetting with a constant-current pulse of a given strength and
duration when they were overlaid with the trajectory generated by a pulse of this strength
with infinite duration. Specifically, they showed that the wavy border of the resetting
region in Fig. 5 and the narrow bands in Fig. 7 were due to the reset trajectory repeatedly
intersecting the manifolds (Figs. 6, 8).

In the full four-dimensional system, with Ca dynamic, the situation is more complex
because the dynamics of Ca deforms the basin of attraction of the high-voltage steady
state and can drive a reset trajectory that begins in region I into region II and vice versa.
The end result is that resetting is difficult whether initiated in either region, with one
narrow window of propitious phases corresponding roughly to each region (Fig. 10(b)).
Surprisingly, resets initiated in region II, expected to be more difficult based on the frozen
analysis, led to much longer excursions that could exceed the native active-phase duration
by an order of magnitude. This is dramatically different from the situation in the fold-
homoclinic burster, where resetting is possible throughout the silent phase and the excur-
sion durations are generally bounded by the native active-phase duration (Fig. 10(a)).

4.2. Robustness of results

We believe that the three-dimensional fast subsystem is representative for the dynamics
of possibly more detailed higher-dimensional models of a pituitary cell. Any additional
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variable in the model would have faster kinetics than mL, which already has fast kinet-
ics relative to n. This relatively faster kinetics of mL causes the flow to compress rapidly
towards the high-voltage steady state, rendering the flow nearly two-dimensional. A pri-
ori one might expect differences between a three-dimensional fast subsystem and a two-
dimensional reduced version, obtained by setting the L-type Ca2+ channel activation vari-
able mL to steady state, because the basin of attraction of the high-voltage steady state,
bounded by the stable manifold of the saddle periodic orbit surrounding it, could bend
significantly as one moves transverse to the periodic orbit. However, we have checked
that such a reduced version of the pituitary model with a two-dimensional fast subsystem
qualitatively shows the same pattern of dynamic resetting as shown in Fig. 10(b). Whether
there are genuine differences between the two- and three-dimensional cases beyond the
aspects we have examined is an open question.

The marked difference in resetting patterns between fold-homoclinic and fold-subHopf
does not depend on the choice of the resetting parameters Iapp and w; we find the same
pattern of strong and weak resets if either pulse strength or duration is varied over a
wide range and the other parameter is kept fixed (not shown). The results can, however,
depend on model parameters if these influence the locations of the homoclinic and Hopf
bifurcations relative to the fold. In the case considered here, the time spent in regions I and
II is comparable. If region I is enlarged by moving the homoclinic bifurcation to the right,
resetting becomes easier and begins to exhibit a pattern similar to the fold-homoclinic
burster. We have observed this for a closely related model (Tsaneva-Atanasova et al.,
2007) in which region II is very small.

4.3. Mathematical directions

An issue for further analysis is precisely how the active phase is terminated. Although the
model is classified as fold-subHopf by the criteria of Izhikevich (2000), the active phase
ends well before the Hopf bifurcation is reached. In the model of Tsaneva-Atanasova et al.
(2007), where the Hopf bifurcation is right-shifted, the active phase ends even before the
homoclinic orbit. On the other hand, in the two-dimensional reduced version of the model,
the trajectory approaches the high-voltage steady-state branch more rapidly. Because of
this compression, the trajectory can tunnel through the Hopf bifurcation and stay up for a
significant time and distance even though there is no stable steady state to support it (see
also, Izhikevich, 2000, Fig. 103). Similar behavior is seen in subHopf-fold cycle bursters
(Izhikevich, 2000, Fig. 80), also known as “elliptic” bursters. This tunneling phenom-
enon (Baer and Rinzel, 1988) is responsible for the exceptionally long resets recorded in
Fig. 10(b), a mild example of which is shown in Fig. 9(b and d). The ratio of the speed
of the slow variable to the strength of attraction of the high-voltage steady state would
seem to be an important parameter in determining where the active phase ends. The exit
from the active phase also depends on how the trajectory intersects the basin of attraction,
which may be complex due to the wrapping of the basin around the high-voltage steady
state. Furthermore, the manifolds deform as Ca varies, making it difficult to predict the
exit from the frozen system, just as it was difficult to predict the dynamic resets from the
frozen system. Analyzing the full four-dimensional system may be necessary (cf. Terman,
1991).

If the Hopf bifurcation is moved to the left, towards the fold, the active phases be-
come shorter, and the spikes become taller. Eventually, bistability is lost as the homoclinic
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orbit coalesces with the fold to form a saddle-node loop. This is proposed in Tsaneva-
Atanasova et al. (2007) as an explanation for both the natural variability of burst periods
in somatotrophs and the conversion of pseudo-plateau bursting to beating by block of BK
Ca2+-activated K+ channels (van Goor et al., 2001). In the model presented here, which
lacks BK channels, the same transition can be achieved by increasing the time constant
τn of the voltage-dependent K+ channel or increasing the conductance gCaL of the L-type
Ca2+ channel. The same parameter manipulations convert the Chay–Keizer model from
a fold-homoclinic burster to a beater, but it does not seem possible to compose the two
transformations to convert fold-subHopf to fold-homoclinic; at least one additional pa-
rameter change is required. It would be of interest to determine if there is a simple way
to carry out this conversion, as this might indicate how close the two classes of bursters
are in parameter space. That is, in spite of the similar appearance, they may actually be
far apart in the sense of plausible biophysical modifications. The unfolding approach of
Golubitsky et al. (2001) may be helpful here.

4.4. Caveats and guidance for experimental testing

For the benefit of those who may be interested in testing the predictions of the model, we
summarize the key results and give some supplementary advice.

The basic conclusion from the study is that one can determine which of the two classes
of bursting models considered here is more appropriate for a given cell type or prepara-
tion. In one type, the spikes are generated by slowly modulated stable oscillations whereas
in the other, they are generated by transients. In the latter case, it is much more difficult
to reset the oscillations from the silent phase to the active phase because the basin of at-
traction of the depolarized state is much smaller. However, in the rare cases when success
is achieved, the induced active phases may significantly exceed the duration of the native
active phase (Fig. 10(b)). A limitation of the test proposed here is that it is one-sided: it is
possible for a model with transient spikes to show a resetting pattern similar to that of the
classical square-wave burster so the test is only decisive if a pattern of Fig. 10(b) is ob-
served. We expect the pattern of Fig. 10(a) in cases where the high-voltage steady state is
stable throughout the active phase (i.e. the fold-fold burster described above), and we have
seen it in a model that is close to fold-fold (Tsaneva-Atanasova et al., 2007). Resetting
from the active phase to the silent phase should be similarly easy in all the above types of
models and can be used as a positive control to test that the protocols are working.

Another prediction of the study, which applies to both classes of models is that pulses
that are too strong or too long will result in failures to reset because the trajectory over-
shoots the high-voltage steady state. This is not obvious from purely biophysical consid-
erations, and in fact, similar failures do not occur when resetting from active to silent
phase. Because it tends to be harder to reset in the early part of the silent phase, failures
may be detected early when late resets are still successful; this may be an indication to
reduce the stimulus strength or duration slightly. Note that overshoots are predicted for
both the Chay–Keizer type model and the pituitary model, so this phenomenon is itself of
interest independent of the class of burster.

Since the spikes in the type of model described here are generated by transient oscil-
lations decaying to a steady state, one would not expect the model to apply to cells with
very long bursts; if the burst duration is long compared to the kinetics of cytosolic cal-
cium, the membrane potential would have enough time to settle down to a plateau without
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spikes. Thus, likely candidates to be fit by the pituitary model are cases in which the bursts
are relatively short and the spike amplitude is small. Conversely, one might expect cells
with larger spike amplitude to be much slower than the pituitary cells that motivated this
study. A cautionary exception to this inference is the pre-Bötzinger pacemaker neuron,
but note that in those cells, the function of the somatic spikes is to drive Na+-mediated
action potentials down the axon to the nerve terminal, not to drive Ca2+ entry directly into
the soma.

The emphasis here has been on the dynamical structures of the models rather than the
more usual approaches of comparing appearance of the output or biophysical mechanisms
(e.g. Stojilkovic et al., 2005). It is entirely possible for cells to achieve the same structure
with different ion channels or different structures with the same ion channels. Thus, the
tests choose between classes of models rather than models per se.
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Appendix A: Model equations

In addition to the four differential equations (1–4) given in Section 2, the ionic currents
and auxiliary expressions given below are needed to complete the specification of the
model.

The ionic currents are:

– L-type Ca2+ current

ICaL = gCaLm2
L(V − VCa); (A.1)

– T-type Ca2+ current

ICaT = gCaTm2
T,∞(V )hT,∞(V )(V − VCa); (A.2)

– Voltage-dependent K+ current

IK = gKn(V − VK); (A.3)

– Leak current

ILeak = gLeak(V − VLeak); (A.4)

The leak stands in for a variety of subthreshold currents that play important modulatory
roles in models for specific pituitary cell types. Such currents include the A-type K+
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Table A.1 Parameter values for the pituitary model (1–4)

Parameter Description Value or Definition

dcell Cell diameter 10 µm
Acell Cell surface area 314.16 µm2

Vcell Cell volume 523.6 µm3

f Fraction of free calcium 0.01
α 1

zCaFAcell
; F is Faraday’s constant 16.49 µM µm nA−1 s−1

β
Acell
Vcell

0.6 µm−1

Cm Capacitance 0.00314 nF
VCa Calcium reversal potential 60 mV
VK Potassium reversal potential −80 mV
gCaL L-channel conductance 1.366 nS
gCaT T-channel conductance 0.001 nS
gK V -dependent K channel conductance 4.1 nS
gKCa KCa channel conductance 0.25 nS
KKCa Ca for half-maximal KCa activation 0.5 µM
gLeak Leak conductance 0.3 nS
VLeak Leak reversal potential −50 mV
Vm V for half-max L-channel activation −25 mV
km L-channel slope factor 12 mV
VmT V for half-max T-channel activation −45 mV
kmT T-channel activation slope factor 8 mV
VhT V for half-max T-channel inactivation −52 mV
khT T-channel inactivation slope factor −5 mV
Vn V for half-max K channel activation 5 mV
kn K channel activation slope factor 8 mV
Vτ L-channel time function reference V −60 mV
kτ L-channel time function slope factor 22 mV
τ̄m,L L-channel time function scale factor 0.027 s
τn K-channel time constant 0.02 s
νP Maximal pump rate 40.0 µM µm s−1

KP Ca for half-maximal pump activation 0.08 µM
τCa ER exchange time constant 0.5 s
Caeq Background Ca 0.1 µM

current, which has been suggested to mediate the effects of dopamine in lactotrophs
(Tabak et al., 2007), and the inward-rectifier K+ current and the cyclic-nucleotide
gated non-selective cation current, which have been suggested to mediate the effects
of somatostatin and growth hormone releasing hormone in somatotrophs (Tsaneva-
Atanasova et al., 2007).

– Ca2+-activated K+ current

IKCa = gKCa
Ca4

Ca4 + K4
KCa

(V − VK); (A.5)

In particular cell models, this current has been suggested to be the small-conductance
(SK) channel (Tabak et al., 2007; van Goor et al., 2001) or the current through a subset
of the big-conductance (BK) channels (Tsaneva-Atanasova et al., 2007).
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The steady-state activation functions take the form

X∞(V ) = 1

1 + exp(−(V − VX)/kX)
, (A.6)

with X = mL,mT, hT, and n. The time functions are constants except for

τm,L(V ) = τ̄m,L

exp((V − Vτ )/kτ ) + 2 exp(−2(V − Vτ )/kτ )
. (A.7)

The calcium balance Eq. (4) has a term for exchange between the cytosol and the internal
(endoplasmic reticulum) store,

Jexchange = Caeq − Ca

τCa
, (A.8)

a term for influx through calcium channels,

Jinflux = −α(ICaL + ICaT), (A.9)

and a term for pumping calcium out of the cell,

Jefflux = νP
Ca2

Ca2 + K2
P

. (A.10)

The factors α in Eq. (A.9) and β in Eq. (4) combine to convert units of flux to units of
current (see Table A.1).

References

Baer, S.M., Rinzel, J., 1988. Threshold for repetitive activity for a slow stimulus ramp: a memory effect
and its dependence on fluctuations. Biophys. J. 54(3), 551–555.

Bertram, R., Butte, M., Kiemel, T., Sherman, A., 1995. Topological and phenomenological classification
of bursting oscillations. Bull. Math. Biol. 57, 413–439.

Butera, R. Jr., Rinzel, J., Smith, J.C., 1999. Models of respiratory rhythm generation in the pre-Bötzinger
complex. I. Bursting pacemaker neurons. J. Neurophysiol. 82(1), 382–397.

Chay, T.R., Keizer, J., 1983. Minimal model for membrane oscillations in the pancreatic β-cell. Biophys.
J. 42, 181–190.

Doedel, E., 1981. AUTO: A program for the automatic bifurcation analysis of autonomous systems. Cong.
Num. 30, 265–284.

England, J.P., Krauskopf, B., Osinga, H.M., 2007. Computing two-dimensional global invariant manifolds
in slow-fast systems. Int. J. Bifurc. Chaos 17(3), 805–822.

Ermentrout, B., 2002. Simulating, Analyzing, and Animating Dynamical Systems. SIAM, Philadelphia.
Golubitsky, M., Josic, K., Kaper, T.J., 2001. An unfolding theory approach to bursting in fast-slow systems.

In: H. Broer, B. Krauskopf, G. Vegter (Eds.), Analysis of Dynamical Systems: Festschrift Dedicated
to Floris Takens on the Occasion of his 60th Birthday, pp. 277–308. Institute of Physics, Bristol.

Izhikevich, E.M., 2000. Neural excitability, spiking, and bursting. Int. J. Bifurc. Chaos 10, 1171–1266.
Kinard, T.A., de Vries, G., Sherman, A., Satin, L.S., 1999. Modulation of the bursting properties of single

mouse pancreatic β-cells by artificial conductances. Biophys. J. 76, 1423–1435.
Krauskopf, B., Osinga, H.M., 2003. Computing geodesic level sets on global (un)stable manifold of vector

fields. SIAM J. Appl. Dyn. Syst. 2(4), 546–569.



88 Stern et al.

Krauskopf, B., Osinga, H.M., Doedel, E.J., Henderson, M.E., Guckenheimer, J.M., Vladimirsky, A., Dell-
nitz, M., Junge, O., 2005. A survey of methods for computing (un)stable manifolds of vector fields.
SIAM J. Appl. Dyn. Syst. 15(3), 763–791.

Kuryshev, Y.A., Childs, G.V., Ritchie, A.K., 1996. Corticotropin-releasing hormone stimulates Ca2+ entry
through L- and P-type Ca2+ channels in rat corticotropes. Endocrinology 137(6), 2269–2277.

LeBeau, A.P., Robson, A.B., McKinnon, A.E., Sneyd, J., 1998. Analysis of a reduced model of corti-
cotroph action potentials. J. Theor. Biol. 192, 319–339.

Lisman, J., 1997. Bursts as a unit of neural information: making unreliable synapses reliable. Trends
Neurosci. 20(1), 38–43.

Phillips, M., Levy, S., Munzner, T., 1993. Geomview: an interactive geometry viewer. Not. Am. Math.
Soc. 40, 985, http://www.geomview.org.

Rinzel, J., 1987. A formal classification of bursting mechanisms in excitable systems. In: E. Teramoto,
M. Yamaguti (Eds.), Mathematical Topics in Population Biology, Morphogenesis, and Neurosciences.
Lecture Notes in Biomathematics, vol. 71, pp. 267–281. Springer, New York.

Sherman, A., Rinzel, J., Keizer, J., 1988. Emergence of organized bursting in clusters of pancreatic β-cells
by channel sharing. Biophys. J. 54, 411–425.

Stojilkovic, S.S., Zemkova, H., van Goor, F., 2005. Biophysical basis of pituitary cell type-specific Ca2+
signaling-secretion coupling. Trends Endocrinol. Metab. 16(4), 152–159.

Tabak, J., Senn, W., O’Donovan, M.J., Rinzel, J., 2000. Modeling of spontaneous activity in developing
spinal cord using activity-dependent depression in an excitatory network. J. Neurosci. 20(8), 3041–
3056.

Tabak, J., Toporikova, N., Freeman, M.E., Bertram, R., 2007. Low dose of dopamine may stimulate pro-
lactin secretion by increasing fast potassium currents. J. Comput. Neurosci. Epub. Ahead of print DOI
10.1007/s10,827-006-0008-4.

Terman, D., 1991. Chaotic spikes arising from a model of bursting in excitable membranes. SIAM J. Appl.
Math. 51, 1418–1450.

Tsaneva-Atanasova, K., Sherman, A., van Goor, F., Stojilkovic, S.S., 2007. Mechanism of spontaneous
and receptor-controlled electrical activity in pituitary somatotrophs. J. Neurophysiol. 98(1), 131–144.

van Goor, F., Li, Y.X., Stojilkovic, S., 2001. Paradoxical role of large-conductance calcium-activated K+
(BK) channels in controlling action potential-driven Ca2+ entry in anterior pituitary cells. J. Neurosci.
21, 5902–5915.

http://dx.doi.org/10.1007/s10,827-006-0008-4

	Resetting Behavior in a Model of Bursting in Secretory Pituitary Cells: Distinguishing Plateaus from Pseudo-Plateaus
	Abstract
	Introduction
	Modeling and methods
	Results
	Contrast of dynamical structure of Chay-Keizer and pituitary models
	Resetting in the frozen system
	Resetting in the full system (Ca dynamic)

	Discussion
	Summary of results
	Robustness of results
	Mathematical directions
	Caveats and guidance for experimental testing

	Acknowledgements
	Appendix A: Model equations
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


