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Abstract Habitat edges can have a number of effects on populations, including modify-
ing their patterns of dispersal. Dispersal patterns can influence population dynamics. In
this paper, we explore the possible effects of a pattern of dispersal where the response of
organisms to the boundary of a habitat patch depends on their local density. We model
a population of organisms diffusing and growing logistically inside a patch, but with the
likelihood of an individual crossing the patch boundary to leave the patch decreasing as
the local density of conspecifics within the patch increases. Such behavior at patch bound-
aries has been observed among Glanville fritillary butterflies, and has been proposed as a
mechanism for generating an Allee effect at the patch level. Our models predict that the
behavior can indeed induce an Allee effect at the patch level even though there is no such
effect built into the local population dynamics inside the patch. The models are relatively
simple and are not intended to give a complete description of any particular population,
but only to verify the idea that the mechanism of density-dependent dispersal behavior at
a patch boundary is capable of altering population dynamics within the patch.

Keywords Reaction–diffusion · Logistic equation · Allee effect · Edge-mediated
effects · Nonlinear boundary conditions · Population dynamics

1. Introduction

1.1. Background and motivation

Habitat edges can have a number of effects on populations. Those include modifying
their patterns of dispersal; see Fagan et al. (1999). The dynamics of populations and the
structure of communities can be influenced by dispersal patterns; see Cantrell and Cosner
(2003). In this paper, we explore the possible effects of a particular type of response to
the boundary of a habitat patch. We construct and analyze a simple diffusion model for
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a population growing logistically inside a patch with boundary conditions corresponding
to a situation where the likelihood of an individual crossing the patch boundary to leave
the patch is a decreasing function of the density of conspecifics at the point where the
individual encounters the patch boundary. It turns out that such behavior at the patch
boundary can induce a version of bistable population dynamics (i.e., something similar
to an Allee effect) at the patch level even though there is no such effect present in the
local population dynamics at locations within the patch. Our interest in the possibility
of such a phenomenon arises partly from the observations of Kuussaari et al. (1998) of
Glanville fritillary butterflies on habitat patches. They observed that the butterflies were
less likely to leave a patch when conspecifics were present, and that populations within
patches showed an Allee effect. They speculated that the Allee effect might arise from the
behavior of individuals at the patch boundary. The model we will study is not intended
to be a detailed or precise description of the system studied by Kuussaari et al. (1998).
Rather, it is intended to be a simple caricature, designed to test the concept that such
behavior at a patch boundary might induce an Allee effect at the patch level. We chose
to use a model where the tendency of organisms to cross the patch boundary at a given
point depends on the density of conspecifics at that point because that seems to be the
simplest type of model that can support the effect of interest. An alternate approach might
be to assume that the tendency of an organism to cross the patch boundary depends on
the average density of conspecifics within some distance or within the entire patch. Such
an assumption would lead to a model similar to (1) but with α depending on the integral
of u over part or all of Ω . Such a model should display behavior similar to (1) but the
nonlocal nature of the boundary conditions would complicate the analysis. In any case,
our goal is just to show that density-dependent dispersal at a patch boundary can induce
“bistability” or an “Allee effect” at the patch level even if it is not present in the local
population dynamics within the patch. For that purpose, a simple model is adequate.

In a previous paper (Cantrell and Cosner, 2002), we showed that a type of nonlinear
diffusion proposed by Turchin (1989) as a mechanism for aggregation can induce a ver-
sion of bistability or an Allee effect at the patch level even if those are not present in the
local population dynamics at locations within the patch. An important difference between
the mechanism studied previously by Cantrell and Cosner (2002) and the one treated here
is that in (Cantrell and Cosner, 2002), it was assumed that there is density-dependent dis-
persal within the patch but the boundary conditions are not density dependent, while here
the dispersal inside the patch is not density-dependent but the boundary conditions are.
Thus, although there may be some relationships or similarities between the mechanisms,
they are based on different assumptions about individual dispersal behavior. This suggests
that the phenomenon of density-dependent dispersal inducing Allee effects or bistability
when such effects would not otherwise be present might occur in a variety of models,
perhaps including more realistic models for the system studied by Kuussaari et al. (1998).

1.2. Model formulation

The model we will study is a diffusive logistic equation with density-dependent boundary
conditions. Only the boundary conditions are novel; otherwise, the model is of a type
widely used in ecology (Cantrell and Cosner, 2003). In the model u(x, t) represents the
density of a population on a patch Ω , normalized so that the carrying capacity is equal to



Density Dependent Behavior at Habitat Boundaries 2341

one. The patch Ω is a bounded region in R
n, with n = 1,2, or 3. The boundary of Ω is

denoted by ∂Ω . The variable x represents the spatial location within Ω . The model is

ut = d∇2u + ru(1 − u) in Ω × (0,∞),

α(u)
∂u

∂n
+ (

1 − α(u)
)
u = 0 on ∂Ω × (0,∞).

(1)

The term ∂u/∂n in the boundary condition is the normal derivative of u. The parameter
d is the diffusion rate for the population, which is equal to half the mean square distance
traveled by an individual in unit time. The parameter r is the intrinsic local growth rate
of the population at low density. Both r and d are always positive. The function α(u)

in the boundary condition is related to the fraction of individuals that remain in patch if
they reach its boundary. If α(u) ≡ 0 then the boundary is absorbing, that is, all individ-
uals that encounter it leave the patch. If α(u) ≡ 1, then the boundary is reflecting, that
is, no individuals leave the patch. For α(u) ≡ α0 with 0 < α0 < 1, the boundary condi-
tions describe a situation where some individuals leave the patch when they encounter the
boundary and some do not. It is tempting but not necessarily accurate to interpret α0 as the
fraction of individuals that remain in the patch after reaching its boundary. The detailed
interpretation of α0 in the case where α(u) = α0 ∈ (0,1) depends on the derivation used
to obtain the boundary conditions and the parameters and scalings used in that derivation.
This point is discussed in detail in Appendix A. However, under any reasonable interpre-
tation of α0, we can view α0 as increasing with the fraction of individuals that remain in
the patch upon reaching the boundary. In the model (1) we will take α(u) to be a nonde-
creasing function of u such that α(0) = α0 with 0 < α0 < 1 and α(1) = 1. Thus, as the
local density u increases, the fraction of individuals that remain the patch upon reaching
the boundary also increases. We will require that α0 > 0 because if α0 = 0 then we would
have α(u) = uβ(u) for some function β(u), so that the boundary condition would factor
as

u

[
β(u)

∂u

∂n
+ 1 − α(u)

]
= 0.

That condition could be satisfied by having either u or the expression in brackets equal
to zero, which leads to an ill-posed problem. This issue does not arise if α0 > 0. We will
always assume that the patch Ω is bounded. For technical reasons we will assume ∂Ω

and α(u) are smooth. The model (1) describes the density u of a theoretical population
on the patch Ω . At any given site within the patch, the local dynamics of the population,
without regard to dispersal, are given by the logistic term ru(1 − u). The patch Ω could
be a part of a collection of patches supporting a metapopulation. Although the model (1)
operates on the scale of a patch, we would need to consider both the within-patch and
metapopulation scales to adequately discuss the sense in which the nonlinear boundary
conditions describing the dependence of individual behavior at the patch boundary on
the local population density can induce bistability or Allee effects. Note that at a scale
smaller than that of a single patch the local population growth rate in (1) is logistic and
thus the model does not reflect an Allee effect at that scale. Typically nonspatial models
for population dynamics with Allee effects take the form

du

dt
= f (u), (2)
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where u is a population density and f (u) is a bistable nonlinearity, that is, where (2) has
stable equilibria u = 0 and u = K > 0 and an unstable equilibrium u = a with 0 < a < K .
A typical choice for f (u) is

f (u) = ru(u − a)(1 − u/K), (3)

but various other choices have been used; see for example Boukal and Berec (2002).
A model with such a reaction term would describe a situation where the population dy-
namics at a scale smaller than that of a single patch already display an Allee effect.

1.3. Structure of the paper

In Section 2 we perform a linear stability analysis of the equilibria u ≡ 0 and u ≡ 1
of (1). The analysis at u ≡ 1 leads to eigenvalue problems with a nonstandard form of
linear boundary conditions, which we reduce to a standard form by making a change
of variables. In Section 3 we analyze the dynamics of the model by using upper and
lower solutions, and discuss a specific example where our theoretical results apply. In
Section 4 we discuss how the phenomenon modeled here fits into the broader subject
of Allee effects in general and describe some possible extensions or variations on the
modeling and analysis. In Appendix A we give derivations of linear boundary conditions
with α(u) ≡ α∗ ∈ [0,1] in the context of population models and a discussion of what such
conditions mean biologically.

Remarks on notation:
Ω represents a bounded habitat patch.
∂Ω represents the boundary of Ω .
u represents a population density on Ω .
r represents the local population growth rate in Ω .
d represents the diffusion rate of the population.
1 − α describes the rate at which individuals leave the patch Ω if they encounter the

boundary ∂Ω . Specifically, if 1 − α = 0 then no individuals leave the patch
but if 1 − α = 1 then all individuals that reach the boundary leave the patch.
In general, we will allow α to depend on u but in some cases we will set α

equal to a constant. (In the models α appears as a coefficient in the boundary
conditions.)

λ1(α
∗) is the principal eigenvalue of the negative Laplace operator on Ω under the

boundary conditions that would arise if α ≡ α∗ for some constant α∗. (This
eigenvalue synthesizes the geometry of Ω with the boundary conditions deter-
mined by α∗. It measures the rate at which a population with no births or deaths
and with diffusion rate d = 1 would diffuse out of Ω under the boundary con-
ditions defined by α. It is formally defined in Lemma 1 of Section 2.)

In general we will use σ to denote eigenvalues of operators arising in our analysis, and
ψ and φ to denote eigenfunctions. We will sometimes distinguish particular cases of
variables by subscripts, superscripts, etc. so that u, ũ, ū, and uα∗ might all be used to
represent population densities of some sort, and similarly for other variables.
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2. Linearized stability analysis

In this section we will perform a linearized stability analysis of some of the equilibria of
(1). We will find conditions under which the equilibrium u ≡ 0 is locally stable but where
u ≡ 1 is also a positive equilibrium which is locally stable, so that (1) is bistable, i.e.,
(1) has an Allee effect in the sense described in Section 1. The equilibria of (1) satisfy

d∇2u + ru(1 − u) = 0 in Ω,

α(u)
∂u

∂n
+ (

1 − α(u)
)
u = 0 on ∂Ω.

(4)

Recall that α is related to the fraction of individuals that leave Ω when they encounter
the boundary ∂Ω . If α ≡ 0, all individuals encountering ∂Ω leave Ω . If α ≡ 1, then no
individuals leave Ω . We will assume that 0 ≤ α(u) ≤ 1 for 0 ≤ u ≤ 1. We will also assume
that α′(u) ≥ 0, which reflects the idea that individuals become less likely to leave Ω as
the density u increases. Finally, we assume that α(1) = 1, so that when the population is
at carrying capacity no individuals leave Ω . Under that assumption u ≡ 0 and u ≡ 1 are
equilibria of (1) for any d and r . Linearizing the equilibrium Eq. (4) at u ≡ 0 yields the
eigenvalue problem

d∇2ψ + rψ = σψ in Ω,

α(0)
∂ψ

∂n
+ (

1 − α(0)
)
ψ = 0.

(5)

Linearizing (4) at u ≡ 1 yields

d∇2ψ − rψ = σψ in Ω,

∂ψ

∂n
− α′(1)ψ = 0 on ∂Ω.

(6)

The boundary condition in (5) is classical because α(0) and 1−α(0) are both nonnegative
and at least one is positive, so the standard theory applies to (5). The boundary condition
in (6) is generally nonclassical because the coefficients of ∂ψ/∂n and ψ have opposite
signs, but we will show that (6) can be made classical by a change of variables. It turns
out that both (5) and (6) admit principal eigenvalues, which are the largest eigenvalues of
(5) and (6) respectively, and which are characterized by having positive eigenfunctions. If
the principal eigenvalue for (5) is negative then u ≡ 0 is linearly stable; if that eigenvalue
is positive then u ≡ 0 is unstable. Similarly, u ≡ 1 is linearly stable or unstable if the
principal eigenvalue of (6) is negative or positive, respectively.

For any α(0) ∈ [0,1] the eigenvalue problem (5) is classical. The sign of the principal
eigenvalue for (5) is related to the size of the principal eigenvalue of the negative Laplace
operator −∇2 on Ω under the boundary conditions of (5). For any fixed α∗ ∈ [0,1] con-
sider the eigenvalue problem

−∇2φ = λφ in Ω,

α∗ ∂φ

∂n
+ (1 − α∗)φ = 0 on ∂Ω.

(7)

We have the following (see Cantrell and Cosner, 2003, Section 2.2):
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Lemma 1. The eigenvalues of (5) and (7) are real. For each fixed α∗ ∈ [0,1] the prob-
lem (7) has a principal eigenvalue λ1(α

∗) which is the smallest eigenvalue of (7) and
which is characterized by having a positive eigenfunction φ1. We have λ1(1) = 0 and
λ1(α

∗) > 0 for α∗ ∈ [0,1). The problem (5) has a principal eigenvalue σ1 character-
ized by having a positive eigenfunction. We have σ1 = r − dλ1(α(0)). Thus, the principal
eigenvalue of (5) is negative so that u ≡ 0 is linearly stable in (1) provided that

r/d < λ1

(
α(0)

)
. (8)

Discussion. The existence of principal eigenvalues (characterized by positive eigenfunc-
tions) is classical; see for example the discussion in Cantrell and Cosner (2003). If φ1 > 0
is the eigenfunction corresponding to λ1(α(0)) then we may use ψ = φ1 > 0 to conclude
that σ1 = r − dλ1(α(0)) is the principal eigenvalue for (5). The interpretation of (8) is
that σ1 < 0, so that u ≡ 0 is linearly stable, if the local growth rate r is too small or the
diffusion rate d is too large relative to the principal eigenvalue λ1(α(0)) of the negative
Laplace operator with boundary conditions determined by α(0). The eigenvalue λ1(α(0))

in effect synthesizes the geometric features of the patch Ω with the boundary condition
determined by α(0) to describe the rate at which individuals would diffuse out of Ω for
a population with no births or deaths, with α(u) ≡ α(0), and with diffusion rate d = 1.
Thus, (8) relates the demographic parameters r and d to the boundary conditions when
u = 0 and to the geometry of Ω . In particular, for any fixed value of α(0) ∈ (0,1], the
eigenvalue λ1(α(0)) will decrease if the size of the domain Ω is increased without chang-
ing its shape. Thus, the condition (8) can be used to determine the minimum size that a
patch of a given shape must have to be able to support a population with a given diffu-
sion rate and tendency to disperse across the patch boundary. This observation was the
basis for the pioneering work of Skellam (1951) and Kierstead and Slobodkin (1953) on
minimal patch size; see Cantrell and Cosner (2003), Chap. 2, for further discussion.

As we noted previously, the eigenvalue problem (6) is not classical unless α′(1) = 0
because the coefficients of ψ and ∂ψ/∂n in the boundary condition are of opposite signs.
If α′(1) = 0, the boundary condition in (6) becomes an ordinary no-flux (i.e., Neumann)
condition, so the eigenfunction ψ1 corresponding to the principal eigenvalue σ1 of (6)
may be chosen as ψ1(x) ≡ 1, which yields σ1 = −r < 0. Thus, we immediately obtain
the following:

Lemma 2. If α′(1) = 0 and (8) holds then the equilibria u ≡ 0 and u ≡ 1 of (1) are both
linearly stable.

It turns out that in general the equilibrium u ≡ 1 is linearly stable if α′(1) ≥ 0 is suffi-
ciently small, but to obtain a specific condition on α′(1) for stability we must construct
an auxiliary function depending on Ω . Thus, we state the following lemma in terms of
requiring α′(1) to be sufficiently small, but the proof of the lemma gives a way of quanti-
fying how small α′(1) needs to be. We will return to this point in the discussion following
the proof.

Lemma 3. If α′(1) ≥ 0 is sufficiently small and (8) holds then the equilibria u ≡ 0 and
u ≡ 1 of (1) are both linearly stable.
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Biological Interpretation. Lemmas 2 and 3 show that a version of bistability or an Allee
effect at the patch level can indeed be induced by density dependent dispersal behavior
at the patch boundary. Specifically, they give conditions under which the equilibria u ≡ 0
and u ≡ 1 of (1) are both stable in some sense. The condition for u ≡ 0 to be stable
is for the local growth rate r to be relatively small compared to the rate dλ1(α(0)) at
which individuals would disperse out of the patch in the absence of conspecifics. (Recall
that d is the diffusion rate, α(0) describes the response individuals would have to the
patch boundary if no conspecifics were present, and λ1(α(0)) is the principal eigenvalue
for the Laplace operator under boundary conditions defined by α(0).) The condition for
u ≡ 1 to be stable means that no individuals leave the patch when the population is at
carrying capacity, i.e., α(1) = 1, and that the tendency of individuals to leave the patch
(as measured by 1 − α(u)) is small relative to r/d when the population is near carrying
capacity. (Recall that if α(1) = 1 and α′(1) is small then α(u) ≈ 1 when u ≈ 1.)

Proof of Lemma 3: To convert (6) to a classical form we will rewrite it in terms of a new
function ρ = ψ/h where h > 0 is a function related to the patch Ω . It is easy to see that
for any smooth function h we have

∇ψ = h∇ρ + ρ∇h,

∇2ψ = h∇2ρ + 2∇ρ · ∇h + ρ∇2h.
(9)

From (6) and (9) we readily obtain

d∇ · h2∇ρ + (
dh∇2h − rh2

)
ρ = σh2ρ in Ω,

∂ρ

∂n
+

[
1

h

∂h

∂n
− α′(1)

]
ρ = 0 on ∂Ω.

(10)

To define h, choose w to be a function so that ∂w/∂n = 1 on ∂Ω then let h = eα′(1)w . (If
the geometry of Ω is simple then it may be possible to explicitly construct w. It is always
possible to construct w by solving the equation ∇2w − w = 0 subject to the boundary
condition ∂w/∂n = 1 on ∂Ω .) We then have ∂h/∂n = α′(1)h on ∂Ω so the boundary
condition in (10) becomes

∂ρ

∂n
= 0. (11)

Thus, the change of variables converts (6) into a classical eigenvalue problem. Multiplying
(10) by ρ, integrating by parts via the divergence theorem and using (11) yields

σ

∫

Ω

h2ρ2 dx = −
∫

Ω

dh2 |∇ρ|2 dx +
∫

Ω

(
dh∇2h − rh2

)
ρ2 dx

≤ d

∫

Ω

[(∇2h

h
− r

d

)]
h2ρ2 dx.

(12)

Since ∇2h = (α′(1)∇2w + α′(1)2|∇w|2)h it follows from (12) that σ < 0 provided

α′(1)∇2w + α′(1)2|∇w|2 < (r/d) on Ω. (13)
�
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Discussion and Example. Since the function w depends on Ω but not on α′(1), the
condition (13) will be satisfied if α′(1) is sufficiently small. Suppose that Ω is the unit
disc x2

1 + x2
2 < 1 in R

2. Let w = (x2
1 + x2

2 )/2. Then, ∇w = (x1, x2) so ∂w/∂n = 1 on ∂Ω ,
|∇w|2 ≤ 1 on Ω , and ∇2w = 2. Thus, we may use w in (13) to see that (13) would hold
if

2α′(1) + α′(1)2 < r/d. (14)

We can combine the proof of Lemma 3 with Lemma 1 to obtain the following:

Theorem 1. If there is a function w satisfying ∂w/∂n = 1 on ∂Ω such that

α′(1)sup
Ω̄

∇2w + α′(1)2sup
Ω̄

|∇w|2 <
r

d
< λ1

(
α(0)

)
(15)

holds, where λ1(α(0)) is the principal eigenvalue of (7) with α∗ = α(0), then the equilibria
u ≡ 0 and u ≡ 1 of (1) are both linearly stable.

Proof: If (15) holds then both (8) and (13) hold so the hypotheses of Lemmas 1 and 3
are met. �

Discussion. Condition (15) will hold for some values of the ratio r/d if α′(1) ≥ 0 is
sufficiently small, but how small α′(1) has to be depends on Ω . When (15) holds, it says
that the local population growth rate r inside the patch is large enough to compensate for
the rate of loss of individuals across ∂Ω scaled by the diffusion rate d when the population
density is near carrying capacity, but not large enough to compensate when the population
density is low.

3. Analysis of dynamics

In this section, we will examine the dynamics of solutions to (1). Specifically, under suit-
able hypotheses on the terms d, r, and α(u) in (1), we will find conditions on the initial
population density u(x,0) which imply u(x, t) → 0 as t → ∞ and other conditions which
imply u(x, t) → 1 as t → ∞. The general type of conditions we will impose on u(x,0)

to conclude that u(x, t) → 0 (respectively u(x, t) → 1) as t → ∞ are that u(x,0) be suf-
ficiently small (respectively large) on all of Ω . The analysis will be based on upper and
lower solutions. We will first consider a simple special case, then a more general case,
and conclude with an example.

To perform the analysis we first need to recall some basic facts regarding the model

ut = d∇2u + ru(1 − u) in Ω × (0,∞),

α∗ ∂u

∂n
+ (1 − α∗)u = 0 on ∂Ω × (0,∞),

(16)

which is the case of (1) where α(u) ≡ α∗. Let λ1(α
∗) be the principal eigenvalue for (7)

and let σ1(α
∗) be the corresponding eigenvalue for (5), so that σ1(α

∗) = r − dλ1(α
∗).
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Lemma 4. If the inequality

r/d ≤ λ1(α
∗) (17)

is satisfied then u ≡ 0 is a global attractor for nonnegative nontrivial solutions of (16). If

r/d > λ1(α
∗) (18)

then (16) has a unique positive equilibrium uα∗ which is a global attractor for nonnegative
nontrivial solutions of (16).

Discussion. This is a standard result; see Cantrell and Cosner (2003, Chap. 3). Note that
the strict inequality corresponding to (17) is the inequality (8) with α(0) = α∗, which
implies the linear stability of u ≡ 0.

Theorem 2. Suppose that (17) holds for some r, d > 0 and α0 ∈ (0,1). Suppose that there
are numbers u1, u2 with 0 < u1 < u2 < 1 such that

α(u) = α0 for u ≤ u1, while α(u) = 1 for u ≥ u2. (19)

Let ψ1 > 0 be the eigenfunction corresponding to σ1 in (5), normalized so that maxΩ̄ ψ1 =
1. (Note that α(0) = α0 by (19).) If u(x, t) is a solution of (1) with u(x,0) < u1ψ1(x) then
u(x, t) → 0 as t → ∞. If u(x, t) is a solution to (1) with u(x,0) > u2 then u(x, t) → 1
as t → ∞.

Remark. A sketch of a function α(u) satisfying (19) is shown in Fig. 1.

Fig. 1 This figure shows the graph of an example of a function α(u) satisfying (19).



2348 Cantrell and Cosner

Proof: By Lemma 1, (17) implies σ1 < 0. For ε > 0 we have

d∇2(εψ1) + r(εψ1)(1 − εψ1) = ε
[
d∇2ψ1 + rψ1 − rεψ2

1

]

= εψ1

[
σ1(α0) − rεψ1

]
< 0

(20)

on Ω̄ , so that εψ1 is an upper solution of the equilibrium Eq. (16) with α∗ = α0. Con-
sequently, as in Aronson and Weinberger (1975, 1978) it follows that for any ε > 0 the
solution ū(x, t) of (16) with ū(x,0) = εψ1 is decreasing in t and converges to the equi-
librium solution u ≡ 0 as t → ∞. Suppose that ũ is a solution of (1) with ũ(x,0) < u1ψ1.
Then for some t0 > 0 we have ũ(x, t) < u1ψ1 ≤ u1 on Ω̄ for t ∈ (0, t0]. Consequently,
α(ũ) = α0 for t ∈ (0, t0] so that ũ is a solution of (16) for t ∈ (0, t0] with ũ(x,0) < u1ψ1.
It follows that ũ ≤ ū ≤ u1ψ1 for t ∈ (0, t0]. Iterating this argument gives ũ(x, t) ≤ ū(x, t)

for all t > 0, so ũ(x, t) → 0 as t → ∞.
For α∗ = 1, we have σ1(1) = r > 0 and we may choose ψ1 ≡ 1. For any constant

k ∈ (0,1) we have

d∇2k + rk(1 − k) > 0 (21)

so u ≡ k is a lower solution to the equilibrium problem for (16) with α∗ = 1. Conse-
quently, the solution u

¯
(x, t) of (16) with α∗ = 1 and u

¯
(x,0) = k is increasing in t and

converges to the unique positive equilibrium u ≡ 1.
Suppose now that k > u2 and that û = û(x, t) is a solution to (1) with û(x,0) ≥ k. Then

for some t1 > 0, û(x, t) > u2 on Ω̄ for t ∈ (0, t1]. Hence α(û(x, t)) = 1 for t ∈ (0, t1],
so that û is a solution to (16) (with α∗ = 1) on Ω × (0, t1) and û(x,0) ≥ k. As a result
û(x, t) ≥ u

¯
(x, t) ≥ k for t ∈ [0, t1]. Again, by iterating this argument, we establish that

û(x, t) ≥ u
¯
(x, t) for all t > 0, so that û → 1 as t → ∞. �

Discussion. Theorem 2 gives estimates for the basins of attraction for the equilibria u ≡ 0
and u ≡ 1 of (1). The condition (19) is simple but it requires that α(u) be constant when
u ≈ 0 or u ≈ 1. In particular, it is stronger than the conditions for linear stability derived
in Section 2. (If α(u) ≡ 1 for u2 ≤ u ≤ 1 then α′(1) = 0, but u ≡ 1 is linearly stable in
(1) even if α′(1) > 0 provided α′(1) is sufficiently small.) However, it does establish that
the model (1) can support an Allee effect in the dynamic sense as well as in the sense of
linear stability. Specifically, it gives conditions under which populations with uniformly
small densities will decline toward zero but populations with densities uniformly close to
carrying capacity will approach carrying capacity. A schematic of this is shown in Fig. 2.

The hypothesis (19) of Theorem 2 is easy to state and interpret, but the requirement
that α(u) must be constant for u ≈ 0 and u ≈ 1 is admittedly rather specialized. We now
derive an analogous result under more general hypotheses. The hypotheses are a bit more
subtle than (19) but they are related to those needed for the linear stability analysis in
Theorem 1. We will discuss that point and provide an example where the hypotheses can
be verified after the proof of the next result. Recall that we always assume α′(u) ≥ 0. The
proof of our next result uses the assumption for u ≈ 0 and u ≈ 1 but it could be relaxed for
intermediate values of u. Recall also that for α∗ ∈ [0,1] with λ1(α

∗) < r/d we denote the
unique positive equilibrium of (16) by uα∗ . Finally, for any α∗ ∈ [0,1] denote by σ1(α

∗)
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Fig. 2 For 0 < r/d < λ1(α0), solutions to (1) with initial conditions less than u1 decay to 0 over time.
Solutions to (1) with initial conditions greater than u2 converge over time to 1. This shows the Allee effect
in (1) under assumption (19).

the principal eigenvalue of

d∇2ψ + rψ = σψ in Ω,

α∗ ∂ψ

∂n
+ (1 − α∗)ψ = 0 on ∂Ω

(22)

and denote by ψ1 > 0 the corresponding eigenfunction.

Theorem 3. Suppose that there are numbers α1, α2 and δ with 0 < α1 < α2 < 1 and δ > 0
such that

λ1(α1) > r/d > λ1(α2), (23)

α(δ) < α1 (24)

and

α
(

min
Ω̄

(uα2)
)

> α2. (25)

If u is a solution to (1) with u(x,0) > uα2(x) on Ω̄ then

u(x, t) > uα2(x) (26)

on Ω̄ for all t > 0. Let ψ1 > 0 denote the eigenfunction corresponding to σ1(α1) in (22),
normalized by maxΩ̄ψ1 = 1. If u(x,0) < δψ1(x) on Ω̄ then u(x, t) → 0 as t → ∞.

Discussion. In this case we do not require that α(1) = 1, so we do not necessarily have
u(x, t) → 1 as t → ∞ even if u(x,0) is large. The graph of a function α(u) satisfying
(24) and (25) is shown in Fig. 3.
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Fig. 3 This figure shows the graph of a function α(u) satisfying (24) and (25).

Proof: Suppose u(x, t) is a solution of (1) with u(x,0) > uα2(x). Then there exists t0 > 0
so that u(x, t) > minΩ̄uα2 on Ω̄ for 0 < t < t0. Since α(u) is nondecreasing, we have
α(u(x, t)) > α(minΩ̄uα2) > α2 for x ∈ ∂Ω and t ∈ (0, t0). It follows that u(x, t) is a strict
upper solution to (16) with α∗ = α2 for t ∈ (0, t0). Since uα2 is an equilibrium solution
of (16) it follows from the method of upper and lower solutions that u(x, t) > uα2 on
t ∈ [0, t0]. Iteration of this argument allows us to conclude that in fact (26) holds for all
x ∈ Ω̄ and t > 0.

Since r/d < λ1(α1), any positive solution of (16) with α∗ = α1 will approach zero as
t → ∞ by Lemma 4. As in the proof of Theorem 2, δψ1 can be seen to be a strict upper
solution to the equilibrium problem for (16) with α∗ = α1. If ũ(x, t) is the solution to (16)
with α∗ = α1 and ũ(x,0) = δψ1 then ũ(x, t) decreases to zero as t → ∞ by the properties
of upper and lower solutions, as in Aronson and Weinberger (1975, 1978). On the other
hand, if u(x,0) < δψ1(x) on Ω̄ then there exists t1 > 0 such that u(x, t) < δ on Ω̄ for
t ∈ (0, t1). Thus, α(u(x, t)) < α1 for t ∈ (0, t1) and hence u(x, t) is a strict lower solution
to (16) with α∗ = α1, so u(x, t) ≤ ũ(x, t) < δψ1(x) on Ω̄ for t ∈ (0, t1). In particular
u(x, t1) ≤ ũ(x, t1) < δ so the argument can be iterated to show that u(x, t) ≤ ũ(x, t) for
t > 0. Since ũ(x, t) → 0 as t → ∞ the conclusion that u(x, t) → 0 as t → ∞ follows. �

Discussion. The hypotheses of Theorem 3 are related to the hypotheses needed for the
linear stability of u ≡ 0 and u ≡ 1 in Theorem 1. It follows from the variational character-
ization of eigenvalues (see, for example, Cantrell and Cosner, 2003, Chap. 2) that λ1(α

∗)
depends continuously on α∗ for α∗ > 0 in (7). Thus, if r/d < λ1(α(0)) as in (15), then
r/d < λ1(α

∗) for α∗ ∈ (α(0), α3) for some α3 > α(0). Since α(u) is smooth there will be
a δ > 0 such that α(0) ≤ α(δ) < α3. For any α1 ∈ (α(δ),α3) inequality (24) and the first
inequality in (23) will hold. Suppose now that α(1) = 1 so that u ≡ 1 is an equilibrium
of (1). Since λ1(α

∗) → 0 as α∗ → 1, the second inequality in (23) will hold if α2 is suffi-
ciently close to 1. It can be shown that as long as (16) has a positive equilibrium uα∗ , that
equilibrium depends smoothly on α∗ in C1(Ω̄). (See Cantrell et al., 1998.) In particular,
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Fig. 4 This figure shows the graphs of α(u) and α̃(u) as described in the example for the case
Ω = (−1,1). The graph of α(u) is shown with short dashes while that of α̃(u) is shown with long dashes.
The graphs coincide when u is near 0 or 1.

if M(α∗) = minΩ̄uα∗ then M(α∗) depends smoothly on α∗ for α∗ < 1, α∗ ≈ 1. Consider
g(α∗) = α∗ −α(M(α∗)). We have g(1) = 0 since uα∗ = 1 when α∗ = 1 and we are assum-
ing α(1) = 1. We have g′(α∗) = 1 − α′(M(α∗))M ′(α∗) so g′(1) = 1 − α′(1)M ′(1) > 0 if
α′(1) is sufficiently small. Thus, g(α∗) < 0 if α∗ < 1, α∗ ≈ 1. It follows that if α′(1) is
sufficiently small then (25) will hold for all α2 ∈ (α4,1) for some α4. Thus, if α(1) = 1 and
α′(1) is sufficiently small then the second inequality in (23) and inequality (25) will hold,
as well as the hypotheses for the linear stability of u ≡ 1 in Theorem 1. Thus, although
the hypotheses of Theorems 1 and 3 are not the same, they are compatible in the sense
that both can be satisfied if α(1) = 1, λ1(α(0)) > r/d , and α′(1) is sufficiently small.

We believe that it is beneficial to illustrate our results further via a concrete example.
We will construct the example by choosing Ω to be the one dimensional habitat (−1,1)

and taking α(u) to be linear for u ≈ 0 and u ≈ 1 but with different slopes for u ≈ 0
and u ≈ 1. For our results to apply α(u) must be smooth, so instead of taking α(u) to
be piecewise linear and using it directly in our example, we construct a piecewise linear
function α̃(u) with the correct behavior when u ≈ 0 and u ≈ 1 and then replace α̃(u) with
a function α(u) such that α(u) = α̃(u) when u ≈ 0 or u ≈ 1 but with α(u) smooth for
u ∈ [0,1]. An illustration of how α(u) would be related to α̃(u) is given in Fig. 4. To
construct our example we will take Ω to be the one dimensional habitat (−1,1). Then for
α∗ ∈ [0,1], if

b = √
λ1(α∗) (27)

then b ∈ [0,π/2]. It follows from the method of upper and lower solutions, (7), (16), and
(22) that for general Ω if r/d > λ1(α

∗), then

uα∗ >

(
1 − dλ1(α

∗)
r

)
ψ1, (28)
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where ψ1 is the principal eigenfunction for (22) normalized so that maxΩ̄ψ1 = 1. In the
case Ω = (−1,1),

ψ1(x) = cosbx. (29)

It follows from (27–29) that when Ω = (−1,1) and r/d > λ1(α
∗), then

min
Ω̄

uα∗ >

(
1 − db2

r

)
cosb. (30)

Furthermore, we have from (22) that in this case

α∗ψ ′
1(1) + (1 − α∗)ψ1(1) = 0,

so that

α∗ = cosb

b sinb + cosb
(31)

for b ∈ [0,π/2]. (Note that α∗ decreases from 1 to 0 as b increases from 0 to π/2.)
Combining (30) and (31), we have that α(minΩ̄uα∗) > α∗ provided that

α

((
1 − db2

r

)
cosb

)
>

cosb

b sinb + cosb
. (32)

Now suppose for the sake of illustration that we choose b1 = π
3 and b2 = π

6 . Here

b1 = √
λ1(α1) and b2 = √

λ1(α2), where by (31) α1 =
√

3
π+√

3
(≈ .3554) and α2 = 6

√
3

π+6
√

3
(≈ .7679). Our analysis shows that (1) exhibits an Allee effect for a particular choice of
α(u) and values of r

d
in the interval [ r0

d0
, π2

9 ] where r0
d0

∈ ( π2

36 , π2

9 ) provided

α(0) <

√
3

π + √
3

= α1 (33)

and

α

((
1 − d0π

2

36r0

)√
3

2

)
>

6
√

3

π + 6
√

3
. (34)

(There can be such a value of r0
d0

if and only if (34) holds when r0
d0

= π2

9 ; i.e., α( 3
√

3
8 ) >

6
√

3
π+6

√
3
.) Since 3

√
3

8 ≈ .6495, a way in which to choose a smooth, nondecreasing α(u) so

that (1) exhibits an Allee effect for all r > 0, d > 0 with r
d

∈ [ r0
d0

, π2

9 ] would be to take
the piecewise linear function

α̃(u) =
{

(4/3)u, u ∈ [0,3/5],
(1/2)u + 1/2, u ∈ (3/5,1],

which will satisfy the conditions needed for an Allee effect when u ≈ 0 and u ≈ 1, and
modify it by smoothing out the corner at u = 3/5 without changing it for u ≈ 0 and u ≈ 1
to obtain α(u) as in Fig. 4.
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4. Discussion

The most common model for density-dependent population dynamics is the logistic equa-
tion, which embodies the assumption that the net growth rate of the population decreases
with population density. For some populations that assumption is not valid, and the net
population growth rate increases with population density. That phenomenon was noted
by Allee (1931,1938) and is sometimes called an Allee effect. There has been consider-
able discussion of the nature and causes of Allee effects in the biological literature. In
the case of a sufficiently strong Allee effect it may happen that small populations can
be expected to decline while larger populations can be expected to persist. That phe-
nomenon is sometimes called bistability in the context of mathematical models because
it corresponds to a situation where a model has both zero population density and some
positive population density as stable equilibria. There are various social mechanisms that
have been proposed for Allee effects. Recently Kuussaari et al. (1998) have employed an
empirical study of the Glanville fritillary butterfly to identify mechanisms which might
produce Allee effects. One of the possible mechanisms they uncovered was a lowering
of the rate of emigration from habitat patches as the density of butterflies increases near
patch edges. The observations of Kuussaari et al. (1998) suggest that Allee effects may
arise from edge-mediated alteration of species’ movement patterns. In a previous paper
(Cantrell and Cosner, 2002) we showed that density-dependent aggregative movement
within a patch can sometimes induce an Allee effect in mathematical models where the
term describing population dynamics without dispersal is logistic. In the present paper we
showed that a similar phenomenon can arise from density-dependent behavior at patch
boundaries. The common feature of the two mechanisms is that in both cases the density-
dependence in dispersal behavior could be interpreted as a tendency to aggregate with
conspecifics. In both papers we used generalizations of reaction–diffusion equations to
construct the models.

Roughly speaking, a population is said to exhibit an Allee effect if, at low densities,
its per capita rate of growth declines as density declines, or equivalently its per capita
rate of growth increases as density increases. Allee (1931, 1938) discussed this effect in
the context of social behavior of animals. Generally Allee effects have been accounted
for in the ecological literature as resulting from social and behavioral traits such as less
efficient feeding at low densities (Way and Banks, 1967; Way and Cammell, 1970) or
reduced effectiveness of antipredator defenses (Kruuk, 1964; Kenward, 1978), or from
difficulty in finding mates (Stephens and Sutherland, 1999; Boukal and Berec, 2002). Al-
though the general idea of Allee effects is widely known, the question “What is the Allee
effect?” remains sufficiently interesting that Stephens et al. (1999) have used it as the title
of a paper. The definition they give is “A positive relationship between any component of
individual fitness and either numbers or density of conspecifics” (Stephens et al., 1999,
p. 186). Stephens et al. (1999) also distinguish between “component Allee effects” which
act on some component of fitness and “demographic Allee effects” which act on total fit-
ness and hence influence population dynamics. Finally, Stephens et al. (1999) point out
that whether or not a particular type of behavior can induce an Allee effect may depend
on the spatial scale on which the focal population is being considered. We have been
concerned with what Stephens et al. (1999) called demographic Allee effects at the scale
of a patch. (Kuussaari et al., 1998 used the term “Allee effect” to describe the phenom-
enon they observed at the scale of a patch.) It is possible to consider Allee effects at the
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metapopulation level; see, for example, Amarasekare (1998). It is not clear how “Allee ef-
fects” at the patch level might influence metapopulation dynamics. That topic is certainly
worthy of study but it is beyond the scope of this article.

Reaction-diffusion equations provide a modeling framework for studying population
dynamics that is well-suited to the examination of edge-mediated effects (Fagan et al.,
1999). In particular, a reaction–diffusion model for the density of some species in a
bounded patch of habitat requires both an equation that tracks the propagation and disper-
sal of the species within the patch and an equation describing the behavior of the species
at the interface between the patch and the environs surrounding it, i.e., a boundary con-
dition. Frequently, this second equation prescribes a balance between a tendency of the
species to be lost through the boundary of the patch to its surroundings and a tendency of
the species to remain within the patch, and takes the form

α
∂u

∂n
+ (1 − α)u = 0 (35)

with α ∈ [0,1]. As α increases, the tendency of the species to remain within the patch
becomes more and more dominant.

In this article we analyzed a reaction–diffusion model for the density of a species in
a focal patch of habitat with a density-dependent boundary condition of the form (35)
where the coefficient α increases with the density u. We made that assumption in order to
account for an edge-mediated reduction in the tendency of the species to be lost through
the patch boundary. Within the patch we assumed that population growth was governed
by a logistic equation with diffusion, so that no Allee effect was built into the local popu-
lation dynamics. Our analysis of the model showed that it can exhibit an Allee effect for
appropriate ranges of model parameter values provided that α is sufficiently small when
the population density is low and sufficiently large at higher density levels, as shown in
Fig. 1. Since an increase in α would correspond to a decrease in the tendency of a species
to be lost through the patch boundary, our analytical results complement the empirical
results of (Kuussaari et al., 1998). Our analysis was based on comparison principles for
elliptic and parabolic partial differential equations and did not require a terribly precise
determination of the asymptotics of the model. Further insight into when the model admits
Allee effects can be gained through a more detailed mathematical analysis of its longterm
behavior. Such a mathematical analysis is the subject of a separate article (Cantrell and
Cosner, 2006). In previous work (Cantrell and Cosner, 2002), we showed that a similar
phenomenon could occur in models of the form

∂u

∂t
= ∇ · d(u)∇u + ru(1 − u) in Ω × (0,∞),

u = 0 on ∂Ω × (0,∞),

(36)

provided d ′(0) is negative and |d ′(0)| is sufficiently large. In (36) there is density depen-
dence in the way organisms move within the patch but not in their behavior at the patch
boundary. The assumption that d(u) is decreasing at low densities in (36) reflects the idea
that organisms reduce their movement rate in the presence of conspecifics, which induces
a form of aggregation (Turchin, 1989). What the models (1) and (36) have in common is
that in both cases inverse density dependence in some sort of movement rate can induce
bistability or Allee type effects at the patch level even if population dynamics within the
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patch are logistic. This suggests that there may be other related mechanisms that can do
the same thing, or perhaps that the mechanisms leading to bistability or Allee type effects
in (1) and (36) are special cases of some more general principle.

Reaction–diffusion equations with bistability built into the reaction terms have been
studied in a variety of contexts, including ecology (see Lewis and Kareiva, 1993; Cantrell
et al., 1996.) Typically such models use reaction terms of the form

f (u) = ru(u − a)(1 − u/K)

shown in (3). When diffusion is combined with such reaction terms the resulting model
may or may not remain bistable. If the underlying spatial domain for the model is noncon-
vex the model may support multiple stable spatially varying equilibria (Matano, 1979).
(This can occur only if the underlying spatial domain has dimension greater than one.)
Thus, saying that such a model is bistable or has an Allee effect may not necessarily give
a complete and accurate description of its dynamics. Such models do often have the fea-
ture that solutions whose initial density u(x,0) is uniformly small on Ω will tend toward
zero as t → ∞ while if u(x,0) is uniformly large then solutions will tend toward some
positive equilibrium; see, for example, Cantrell et al. (1996). In some cases, it is possible
to show that some initial densities that are not uniformly large will still tend toward a
positive equilibrium by using Lyapunov functions or constructing lower solutions. Such
results are obtained in Aronson and Weinberger (1975, 1978) and Cantrell et al. (1996).
However, those methods yield conditions on initial data that are more complicated or sub-
tle to verify and interpret than the simple hypothesis that the initial data are uniformly
large. It is conceivable that models such as (1) could support these or other phenomena
that are known to occur in models with bistable reaction terms, but we did not address
that question in this paper.

Appendix A

There are a number of ways that Robin boundary conditions have been presented in the
literature on heat transfer and diffusion. In the case of the heat equation, where u(x, t)

represents the temperature inside an object, many standard texts on partial differential
equations derive Robin boundary conditions by using Newton’s law of cooling to con-
clude that the heat flux across the boundary of an object is proportional to the difference
between the temperature of the object and the ambient temperature u0. The heat flux into
the object across the boundary is proportional to the normal derivative ∇u · n, so one ob-
tains a∇u · n = b(u0 − u) where a and b are positive constants. For diffusion equations
arising as population models, a derivation in the equilibrium case in one space dimension
is given by Ludwig et al. (1979). The idea there is to assume that outside a habitat patch
a population experiences a linear death rate, disperses via diffusion, but has a population
density that decays to zero at infinity. That leads to a model

∂w

∂t
= D0

∂2w

∂x2
− s0w
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for the population outside the patch. The equilibrium solution which is bounded as
x → ∞ is ce−√

s0/D0x ; the one which is bounded as x → −∞ is ce
√

s0/D0x , where c is
a constant. If the population inside the patch is described by

∂u

∂t
= D

∂2u

∂x2
+ f (u)

then matching fluxes and densities across the patch boundary leads to a Robin condition.
Specifically, suppose the patch is the interval (0,L). Matching densities at x = 0 gives
u(0, t) = w(0, t); matching fluxes gives D∂u/∂x = D0∂w/∂x at x = 0. For x < 0, w =
ce

√
s0/D0x so matching across x = 0 yields

−D∂u/∂x = −D0(
√

s0/D0)c, u = c, (A.1)

from which one obtains −D∂u/∂x + √
s0D0u = 0 at x = 0. (See Ludwig et al., 1979.)

The derivation given by Ludwig et al. assumes that individuals do not respond to the
patch boundary but diffuse freely across it. Models for movement across interface with
a preferred direction have been proposed in more recent work by Cantrell and Cosner
(1999) and Ovaskainen and Cornell (2003). Those models do not address the issue of
boundary conditions per se (as opposed to conditions at an interior interface), but they
could be used to modify the process of matching densities and fluxes across the patch
boundary which was introduced by Ludwig et al. (1979). The conditions used by Cantrell
and Cosner (1999) involve terms other than just the density and flux except in special situ-
ations, so in general those would lead to nonclassical forms of boundary conditions. Those
used by Ovaskainen and Cornell (2003) introduce a constant into the matching condition
for the density at the patch boundary which describes the preference of individuals at the
patch boundary to move into or out of the patch. Suppose for simplicity that the diffusion
process describing dispersal arises as the continuum limit of a random walk where the
step size and the rate at which steps are taken are the same inside and outside of the patch.
Suppose also that the probability of an individual moving left or right are both 1/2 for
x = 0,L but that at x = 0,L the probability of moving to the right is different than the
probability of moving to the left. Specifically, suppose that at x = 0 the probability that
an individual moves to the left (leaving the patch) is (1 − z)/2 for some z ∈ [−1,1] while
the probability of moving to the right is (1 + z)/2. Then in the matching procedure used
by Ludwig et al. (1979), the equation u = c when x = 0 would be replaced by

(1 − z)u = (1 + z)c (A.2)

(see Ovaskainen and Cornell, 2003, Eq. (2.2)). The other equation in (A.1) would remain
as it stands. The boundary condition obtained by using (A.2) and the first equation in
(A.1) would be

−D(1 + z)(∂u/∂x) + √
s0D0(1 − z)u = 0. (A.3)

If z = −1, so all individuals that reach x = 0 leave the patch, (A.3) becomes the Dirichlet
condition u = 0. If z = 1, so that no individuals leave the patch, then (A.3) becomes the
Neumann or no-flux condition ∂u/∂x = 0. For intermediate values of z, (A.3) is a Robin
condition. To capture the situation where the probability of leaving the patch depends on
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the density at the patch boundary, we would let z depend on u. If z = z(u) we can rewrite
(A.3) as

−α(u)
∂u

∂x
+ (

1 − α(u)
)
u = 0 at x = 0 (A.4)

by taking α(u) = D(1 + z(u))/[D(1 + z(u)) + √
s0D0(1 − z(u))]. The condition (A.4)

is the special case of the boundary condition (2) at the left endpoint of a one-dimensional
patch Ω . If all individuals that reach the boundary x = 0 cross it when the density at the
boundary is less than or equal to u1, then z(u) = −1 and hence α(u) = 0 for 0 ≤ u ≤ u1.
If no individuals cross the boundary when the density is greater than or equal to u2 then
z(u) = 1 so α(u) = 1 when u2 ≤ u ≤ 1. If the fraction of individuals that leave the patch
decreases with respect to the density at the boundary then we have 0 ≤ α(0) < α(1) ≤ 1,
which is the type of situation addressed in Section 3.

The preceding derivation explains how a density-dependent Robin condition can be
obtained by combining the approach of Ludwig et al. (1979) based on matching solutions
inside a patch with an equilibrium solution outside with the model of Ovaskainen and
Cornell (2003) for the effects of biased movement at an interface, and then assuming that
the bias depends on population density at the patch boundary. The model of Ovaskainen
and Cornell (2003) is derived from a consideration of random walks but the matching
approach of Ludwig et al. (1979) is not, and it requires that we make some fairly specific
assumptions about population dynamics and dispersal in the matrix habitat surrounding
the patch. It is also possible to derive Robin conditions directly from a random walk
model under appropriate scaling, without any reference to population dynamics outside
the patch. We will present such a derivation, partly to avoid assumptions about popula-
tion dynamics outside the patch, and partly for the additional insight it may provide into
the mechanisms that produce the boundary conditions. The derivation is similar both in
concept and in terms of the type of scalings that are needed in the derivation of diffu-
sion equations with advection given by Okubo (1980, Section 5.3), although the details of
our presentation differ somewhat from Okubo’s. A similar but less detailed derivation of
boundary conditions in reaction–diffusion models is given by Van Kirk and Lewis (1999).

Let p(x, t) denote the probability that an individual is at location x ∈ (0,L) at
time t . Discretize (0,L) × (0,∞) with time step �t and space step �x. Thus, p(x, t) =
p(j�x, k�t). For points in the interior of the spatial domain, i.e. for j ≥ 1, assume
that at each time step the individual moves one (space) step to the left with proba-
bility 1/2 or moves one step to the right with probability 1/2. Suppose also that if
the individual is at x = 0 it moves one step to the right with probability 1/2, leaves
the patch with probability δ/2 and stays at x = 0 with probability (1 − δ)/2. It will
turn out that δ must be scaled appropriately to obtain Robin boundary conditions in
the continuum limit. For j ≥ 1, p(x, t) = p(j�x, k�t) will satisfy p(x, t + �t) =
(1/2)p(x − �x, t) + (1/2)p(x + �x, t) so that

p(x, t + �t) − p(x, t) = (1/2)
[
p(x − �x, t) − 2p(x, t) + p(x + �x, t)

]
. (A.5)
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If we divide both sides of (A.5) by �t and introduce the scale factor D = (�x)2/2�t ,
then taking the limit of (A.5) as �x → 0, �t → 0 so that the scaling D = (�x)2/2�t is
preserved yields the diffusion equation

∂p

∂t
= D

∂2p

∂x2
.

At x = 0 there is also the parameter δ which must be considered. The cases where δ = 0
or δ = 1 will yield no-flux and Dirichlet boundary conditions respectively. The case 0 <

δ < 1 leads to Robin conditions if δ is scaled correctly. Note that δ is independent of D.
We have

p(0, t + �t) = (1/2)p(�x, t) + [
(1 − δ)/2

]
p(0, t). (A.6)

Suppose δ = 0, so that no individuals leave the patch. We may rewrite (A.6) as

(
p(0, t + �t) − p(0, t)

�t

)
= D

(�x)2

(
p(�x, t) − p(0, t)

)
(A.7)

(since D�t/(�x)2 = 1/2) so that

(�x)

(
p(0, t + �t) − p(0, t)

�t

)
= D

(
p(�x, t) − p(0, t)

�x

)
.

Letting �x, �t → 0 we obtain

0 = (0)

(
∂p

∂t
(0, t)

)
= D

∂p

∂x
(0, t)

so that D∂p/∂x = 0 at x = 0, which is in the no-flux condition. Suppose δ = 1, so that no
individuals remain at x = 0; i.e. any individual that does not move to x = �x leaves the
patch. We then have

p(0, t + �t) − p(0, t) = (1/2)p(�x, t) − p(0, t)

= (1/2)
[
p(�x, t) − p(0, t)

] − (1/2)p(0, t)

so that we obtain

p(0, t + �t) − p(0, t) = D�t

(�x)2

[(
p(�x, t) − p(0, t)

) − p(0, t)
]

so that

p(0, t + �t) − p(0, t) = D�t

(�x)2

[(
p(�x, t) − p(0, t)

) − p(0, t)
]

(A.8)

which can be written as

(�x)2

(
p(0, t + �t) − p(0, t)

�t

)
= D

[
p(�x, t) − p(0, t)

] − Dp(0, t).
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Letting �x, �t → 0 yields

0 = (0)
∂p

∂t
(0, t) = D(0) − Dp(0, t)

so that p(0, t) = 0, a Dirichlet condition. Finally, suppose that 0 < δ < 1. In that case
(A.6) can be written as

p(0, t + �t) − p(0, t) = D�t

(�x)2

[
p(�x, t) − p(0, t)

] − Dδ�t

(�x)2
p(0, t), (A.9)

which yields

�x

(
p(0, t + �t) − p(0, t)

�t

)
= D

(
p(�x, t) − p(0, t)

�x

)
− Dδ

�x
p(0, t). (A.10)

If we scale δ as δ = E�x, so that Dδ/�x = DE, then letting �x, �t → 0 in (A.10)
yields

0 = (0)
∂p

∂t
(0, t) = De

∂p

∂x
(0, t) − DEp(0, t),

so that

−D(∂p/∂x) + DEp = 0 at x = 0, (A.11)

which is a Robin condition. (Note that DE = δ�x/2�t is in units of velocity. The scaling
used here is analogous to the scaling for the drift or advection terms in the derivation of
advection-diffusion equations by Okubo, 1980, Section 5.3.) An equation for the density
of a dispersing population can be obtained by multiplying p(x, t) by the total population
to obtain a population density. The boundary conditions will carry over from those for
p. To obtain a formulation such as the boundary condition in (1) we would allow E, the
rescaled term corresponding to the probability an individual at x = 0 leaves the patch in a
given time step, to depend on the density u in such a way that E(u) is small when u is large
but large when u is small. If the boundary condition (A.11) is divided by D(1 + E(u))

we obtain the condition in (1) with α(u) = 1/(1 +E(u)). (If E(u) is decreasing, which is
consistent with the scenario we want to model, then α(u) is increasing.)
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