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Abstract The numerical solution of the coupled system of partial differential and ordi-
nary differential equations that model the whole heart in three dimensions is a consid-
erable computational challenge. As a consequence, it is not computationally practical—
either in terms of memory or time—to repeat simulations on a finer computational mesh
to ensure that convergence of the solution has been attained. In an attempt to avoid this
problem while retaining mathematical rigour, we derive a one dimensional model of a
cardiac fibre that takes account of elasticity properties in three structurally defined axes
within the myocardial tissue. This model of a cardiac fibre is then coupled with an electro-
physiological cell model and a model of cellular electromechanics to allow us to simulate
the coupling of the electrical and mechanical activity of the heart. We demonstrate that
currently used numerical methods for coupling electrical and mechanical activity do not
work in this case, and identify appropriate numerical techniques that may be used when
solving the governing equations. This allows us to perform a series of simulations that:
(i) investigate the effect of some of the assumptions inherent in other models; and (ii) re-
produce qualitatively some experimental observations.

Keywords Cardiac modelling · Electrophysiology · Soft tissue modelling

1. Introduction

The electrical activity of the heart generates an active tension that causes the heart to
deform. It is therefore clearly evident that the mechanical activity of the heart is heavily
dependent on the electrical activity. In turn, the mechanical activity affects the propagation
of electrical activity, although this dependence is believed to be much weaker than the
dependence in the opposite direction.

There is a substantial body of literature devoted to modelling the electrical activity
of the heart, resulting in the development of a very large number of mathematical mod-
els. For a comprehensive selection of these models see, for example, the cellML website
(cellML) or Nickerson (2004). Almost all of these models neglect the effect of mechanical
contraction.
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Any elasticity model of mechanical deformations requires a relationship between
stress and strain. For cardiac tissue it has long been known that a nonlinear relation-
ship between stress and strain is required to calculate accurate deformations (Janz et al.,
1974). Two families of nonlinear relationships have been used: exponential relationships
(Costa et al., 2001; Guccione et al., 1995; Janz et al., 1974); and pole–zero relationships
(Hunter et al. 1997, 1998; Nash and Hunter, 2000). In this paper we focus on a pole–zero
stress–strain relationship: similar results would be obtained with an exponential stress–
strain relationship. A further requirement of a stress–strain relationship for cardiac tissue
is that it enforces incompressibility of the tissue. This requirement has not always been
enforced or, in some cases, has been enforced incorrectly. We discuss this further later on
in this study.

Cardiac tissue consists of sheets of fibres stacked on top of each other. The more de-
tailed stress–strain relationships that have been proposed (Costa et al., 2001; Guccione et
al., 1995; Hunter et al. 1997, 1998; Nash and Hunter, 2000) take account of both fibre and
sheet orientation in order to allow the tissue to have preferred directions for deformation.
At each point within the tissue, a set of orthogonal, right-hand oriented axes is defined in
which the first axis is along the cardiac fibre, the second axis is in the sheet of fibres and
orthogonal to the first axis, and the third axis is orthogonal to the first two axes.

The governing equations for soft tissue deformations arise from Newton’s second law,
i.e. the net force acting is equal to the rate of change of momentum. All studies to date as-
sume that the timescale on which the elastic force balances the active tension is negligible
compared to other timescales in the problem. A consequence of this assumption is that
the term that includes the second time derivative in the governing equations may be ne-
glected. This is an attractive assumption from a computational viewpoint as the governing
equations are elliptic instead of hyperbolic, and there is no need to address the stability
issues associated with the solution of hyperbolic equations. This assumption has, to the
best of our knowledge, never been validated for cardiac modelling.

In this study, we begin by writing down a soft tissue model of a cardiac fibre that in-
cludes all the features of the more detailed strain energy functions described above. The
numerical solution of the coupled system of partial differential and ordinary differential
equations that model the whole heart in three dimensions is a considerable computational
challenge. Hunter et al. (2003) report that solving only the electrical activity requires
“many days on a high-performance computer”. As a consequence, it is not computation-
ally practical—either in terms of memory or time—to repeat simulations on a finer com-
putational mesh to confirm that the solution has indeed converged. To avoid this problem,
we restrict ourselves to one spatial dimension. We use uniaxial tension to derive a stress–
strain relationship for extension and compression of a cardiac fibre that takes account of
differing elasticity properties in three orthogonal directions. This model of a cardiac fi-
bre is then coupled with the electrophysiological model described by Noble et al. (1998)
and a recently published model of cellular electromechanics (Niederer et al., 2006). We
then investigate appropriate numerical methods for use when solving the coupled system
of differential equations. First, we show that currently used numerical methods exhibit
unstable behaviour, and identify a method that is stable. We use this stable numerical
technique to perform numerical simulations. The first set of simulations investigate the
effect of some of the assumptions inherent in other models. The second set of simulations
match qualitatively some experimental observations.
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2. The governing equations

Throughout this study we denote the coordinates of the undeformed, stress-free body
by X = (X1,X2,X3)

t and the coordinates of the deformed body by x = (x1, x2, x3)
t . The

region occupied by the undeformed body is denoted by Ω0, and the time period of interest
is given by t0 < t < t1. We begin by describing separately mathematical models of the
mechanical and electrical activity of the heart, and then describe a model that is used to
couple these components via the generation of active tensions.

2.1. Soft tissue mechanics

2.1.1. The governing equations
The deformation gradient tensor F , the Cauchy–Green deformation tensor C, and the
Lagrange–Green strain tensor E are defined by

FiM = ∂xi

∂XM

, C = F tF, E = 1

2
(C − I ). (1)

Note that we follow the convention of using lower case indices for quantities associated
with the deformed body, and upper case indices for quantities associated with the unde-
formed body.

The second Piola–Kirchoff stress tensor T has entries TMN , M,N = 1,2,3, that are
defined to be the force per unit undeformed area acting on the undeformed body in the
direction of XM on a surface with normal in the XN direction. As well as being dependent
on the displacement, the entries of T are also functions of an unknown function p(X) that
is a Lagrange multiplier used to enforce incompressibility of cardiac tissue. Calculation
of the entries of T in terms of the entries of E and p is discussed in Section 2.1.3.

The deformed coordinates satisfy, for X ∈ Ω and t0 < t < t1, the hyperbolic partial
differential equation (Makridakis, 1993):

ρ
∂2xi

∂t2
= ∂

∂XM

(
TMN

∂xi

∂XN

)
, i = 1,2,3, (2)

det(F ) = 1, (3)

where ρ is the density of the body. The boundary ∂Ω0 should be partitioned into two non-
intersecting sets—one set ∂ΩD

0 where Dirichlet boundary conditions apply, and another
set ∂ΩN

0 where Neumann boundary conditions apply. Boundary conditions are then given
by

xi(X) = x̂i (X), X ∈ ∂ΩD
0 , i = 1,2,3,

TMN

∂xi

∂XN

νM = si(X), X ∈ ∂ΩN
0 , i = 1,2,3,

where, for i = 1,2,3, x̂i and si are prescribed functions, and ν is the outward pointing
normal vector. Finally, initial conditions x(X, t0) = x0(X) should be specified.

As discussed in the Introduction, all previous work (Nash and Hunter, 2000; Nash
and Panfilov, 2004) has made the assumption that the second time derivative on the left-
hand side of (2) may be neglected. Note that (2) and (3) comprise four equations for four
dependent functions x1, x2, x3,p.



2202 Whiteley et al.

2.1.2. Fibre orientation
As discussed in the Introduction, realistic strain energy functions require the use of a
right-hand coordinate system where, at each point of the tissue, the first axis is in the
direction of the fibre, the second axis is in the plane of the fibre sheet and perpendicular
to the first axis, and the third axis is perpendicular to the sheet of the fibre. Fibre direction
varies throughout the heart, and so there is no fixed global coordinate system that satisfies
these conditions. Instead, at each point of the tissue, we specify a rotation of the original,
fixed axes that give a set of axes aligned with the fibre and the fibre sheet. Denoting a set
of basis vectors for the axes aligned with the fibre and the fibre sheet by N∗

1 , N∗
2 and N∗

3 ,
we may write the vector X in terms of this basis as

X = X∗
1N

∗
1 + X∗

2N
∗
2 + X∗

3N
∗
3 .

An orthogonal matrix P that rotates axes aligned with the fibre and fibre sheet onto the
original axes has entries

PMS = ∂XM

∂X∗
S

.

Using P t = P −1 allows us to interchange between tensors in the original frame and ten-
sors in the fibre and fibre sheet oriented frame as follows:

E∗ = P tEP, (4)

C∗ = P tCP, (5)

T ∗ = P tT P, (6)

where we use the superscript ∗ to denote a tensor with respect to axes aligned with the
fibre and fibre sheet, and no superscript to denote the tensor with respect to the original
axes.

2.1.3. Calculating the entries of the second Piola–Kirchoff stress tensor
The strain energy function, W(X, t), is defined to be the elastic energy per unit unde-
formed volume. We therefore have

Elastic energy =
∫

Ω0

W(X, t)dX.

In this study we use the pole–zero strain energy function that has been used by other
authors (Hunter et al. 1997, 1998; Nash and Hunter, 2000). This strain energy function
is defined in terms of the strain tensor with respect to axes aligned with the fibre and the
fibre sheet, and so we first use (4) to compute E∗ from E. The strain energy function is
then given by

W = k1

(E∗
11+)2

(a1 − E∗
11)

b1
+ k2

(E∗
22+)2

(a2 − E∗
22)

b2
+ k3

(E∗
33+)2

(a3 − E∗
33)

b3

+ k4

(E∗
12+)2

(a3 − E∗
12)

b4
+ k5

(E∗
13+)2

(a5 − E∗
13)

b5
+ k6

(E∗
23+)2

(a6 − E∗
23)

b6
, (7)
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where we use the notation

E∗
MN+ =

{
E∗

MN, E∗
MN ≥ 0,

0, E∗
MN < 0.

The entries of T ∗ are given by

T ∗
MN = 1

2

(
∂W

∂E∗
MN

+ ∂W

∂E∗
NM

)
− p(C∗)−1

MN + TaδM1δN1(C
∗)−1

MN, (8)

where C∗ is computed from C using (5). The first two terms on the right-hand side of the
expression above for T ∗

MN are the elastic forces arising, with the second of these terms
enforcing incompressibility of the body. The final term includes the active tension Ta that
is generated by the model that will be discussed in Section 2.3. Although the active tension
has components that act in all spatial directions (Usyk et al., 2000) we use the common
assumption that components orthogonal to the fibre direction may be neglected (Nash and
Hunter, 2000; Remme et al., 2005; Smith et al., 2004). Finally, T can be computed from
T ∗ using (6), allowing us to solve (2) and (3) to compute x and p.

2.2. Cardiac electrophysiological models

The general form of the monodomain equations that may be used to model the generation
and propagation of electrical activity in the heart is given by (Keener and Sneyd, 1998):

C
∂v1

∂t
= 1

χ

∂

∂XM

(
DMN

∂v1

∂XN

)
+ f1(v, t), (9)

∂vi

∂t
= fi(v, t), i = 2,3, . . . ,N, (10)

where v(X, t) : �N × � → �N is the dependent variable of the system of equations with
action potential v1(X, t), C is the capacitance, χ is the membrane surface-to-volume ratio,
D is the conductivity tensor, f(v, t) : �N × � → �N is a prescribed function describing
the changes in ion concentrations and membrane ionic currents, and N is the number of
equations in the system. f is a highly nonlinear function, and N is typically around 20
for a reasonably complex electrophysiological model. This model neglects mechanical
deformation of the tissue. To take account of the mechanical deformation we modify (9)
as described by Nash and Panfilov (2004) to give, for X ∈ Ω and t0 < t < t1:

C
∂v1

∂t
= 1

χ det(F )

∂

∂XM

(
det(F )DMNC−1

NL

∂v1

∂XL

)
+ f1(v, t). (11)

In contrast to Nash and Panfilov (2004) we enforce incompressibility of cardiac tissue,
and use (3) to simplify (11):

C
∂v1

∂t
= 1

χ

∂

∂XM

(
DMNC−1

NL

∂v1

∂XL

)
+ f1(v, t). (12)
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To close this system we require a boundary condition for v1, and initial conditions for all
components of v. These are given by

∂v1

∂n
= 0, X ∈ ∂Ω0, t0 < t < t1,

v(X, t0) = v0(X), X ∈ Ω,

where ∂/∂n denotes the normal derivative and ∂Ω0 denotes the boundary of the unde-
formed body.

There are a large number of different functions f that have been proposed: for a collec-
tion of such functions see the cellML website (cellML) or Nickerson (2004).

2.3. The generation of active tensions

The active tension is a function of, amongst other things, the extension ratio in the direc-
tion of the fibre, denoted by λ1, that may be calculated from a soft tissue model of the
heart. By using (1) and (4) we may deduce that

λ1 = √
2E∗

11 + 1.

The model of active tension generation described by Niederer et al. (2006)—which has
been developed from the Hunter–McCulloch-ter Keurs model (Hunter et al., 1998)—may
then be written for some state vector w:

dw
dt

= g
(

w, λ1,
dλ1

dt
,
[
Ca2+]

i

)
, (13)

Ta = h(w), (14)

where g and h are prescribed nonlinear functions. The precise form of these equations are
given in Appendix B.

3. Numerical simulations in one dimension

We simulate a fibre of cardiac cells that occupies the region 0 < X < 10 mm. We use the
electrophysiological model described by Noble et al. (1998) to simulate the electrical ac-
tivity of the heart. The governing equations for this model are summarised in Appendix A.
(2) and (3) are used to simulate the mechanical activity. The electrical and mechanical ac-
tivity are coupled using the model of Niederer et al. (2006). The governing equations for
this model are listed in Appendix B. Note that both the electrophysiological cell model
and the coupling model that we use contain a differential equation that models the binding
kinetics of troponin C and calcium—(A.1) for the model described by Noble et al. (1998)
and (B.1) for the model described by Niederer et al. (2006). We use the equation from
Niederer et al. (2006) as this takes account of the effect of actively developed tension on
the unbinding rate of calcium from troponin. In common with ten Tusscher et al. (2004)
we take D/(χC) = 0.154 mm/ms in (10). We take ρ = 1.05 × 10−6 kPa mm−2 s2 as used
by Schneider et al. (2000). Stimulation is performed at the end X = 0 which is fixed. The
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other end of the fibre is stress-free: this is modelled by the boundary condition ∂x/∂X = 1
at X = 10 mm.

Before we can perform this simulation we need (i) a suitable stress–strain relationship
and (ii) a suitable numerical method for computing the solution. We have described how
the strain energy function given by (7) may be used with (8) to calculate a strain tensor
in three dimensions. In Section 3.1 we explain how this strain energy function may be
used to calculate a stress–strain relationship for use with a fibre that takes account of
three dimensional properties. The numerical methods currently used lead to instabilities
in the numerical solution, and so in Section 3.2 we develop the numerical methods that
are currently used to ensure numerical stability of the resulting scheme.

3.1. The stress–strain relationship

Using the strain energy function (7) we derive a stress–strain relationship for one dimen-
sional simulations by considering uniaxial extension and compression of cardiac fibres in
the absence of active tensions. Other authors (Hunter et al. 1997, 1998) have used uni-
axial tension to derive a stress–strain relationship in this way, but made the assumption
that any deformation perpendicular to the axis of the fibre is independent of direction, and
so a2 = a3, b2 = b3 and k2 = k3 in (7). In addition in this previous work, in the entries
of TMN given by (8), the term that was used to enforce incompressibility corresponds to
the Cauchy stress tensor and not the 2nd Piola–Kirchoff stress tensor. These two stress
tensors model different quantities: the entries of the Cauchy stress tensor are the force
per unit deformed area acting on the deformed body; the entries of the 2nd Piola–Kirchoff
stress tensor are the force per unit undeformed area acting on the undeformed body. Using
terms from the Cauchy stress tensor when the theory is based on the 2nd Piola–Kirchoff
stress tensor does not correctly enforce incompressibility.

For the analysis that follows we assume that the axes coincide with those aligned with
the fibre and fibre sheet, and so there is no need to distinguish the axes in which the tensor
is defined. As such we neglect the superscript ∗ for these tensors and proceed by seeking
a solution

x1 = x1(X1), x2 = x2(X2), x3 = x3(X3),

giving

F =
(

x ′
1(X1) 0 0

0 x ′
2(X2) 0

0 0 x ′
3(X3)

)
,

E = 1

2

(
(x ′

1(X1))
2 − 1 0 0

0 (x ′
2(X2))

2 − 1 0
0 0 (x ′

3(X3))
2 − 1

)
, (15)

C−1 =
(

(2E11 + 1)−1 0 0
0 (2E22 + 1)−1 0
0 0 (2E33 + 1)−1

)
.
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Using (8) we may write

T =
⎛
⎝

∂W
∂E11

− p

2E11+1 0 0

0 ∂W
∂E22

− p

2E22+1 0

0 0 ∂W
∂E33

− p

2E33+1

⎞
⎠ . (16)

The undeformed body is subject only to a force acting in the direction of the fibre and so
we may write

T22 = T33 = 0. (17)

A further relation is the incompressibility constraint

(2E11 + 1)(2E22 + 1)(2E33 + 1) = 1. (18)

We now derive a relationship between stress and strain separately for extension (where
E11 > 0) and compression (where E11 < 0).

3.1.1. Extension of the fibre
For extension E11 > 0 and E22,E33 < 0, and so ∂W/∂E22 = ∂W/∂E33 = 0. (16) gives

T22 = − p

2E22 + 1
, T33 = − p

2E33 + 1
,

and (17) then implies p = 0. We may now use (16) to write

T11 = ∂W

∂E11
= k1E11

(a1 − E11)b1

(
2 + b1E11

a1 − E11

)
, E11 > 0. (19)

3.1.2. Compression of the fibre
For compression E11 < 0 and E22,E33 > 0. (16) and (17) give

∂W

∂E22
− p

2E22 + 1
= 0, (20)

∂W

∂E33
− p

2E33 + 1
= 0. (21)

Given a value of E11, we may solve (18), (20) and (21) to give values of p, E22 and E33.
Finally, noting that ∂W/∂E11 = 0 for E11 < 0, (16) implies that

T11 = − p

2E11 + 1
, E11 < 0. (22)

Using the parameters given by Remme et al. (2005) we plot the relationship between
E11 and T11 given by (19) and (22) in Fig. 1.
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Fig. 1 The relationship between E11 and T11 given by (19) and (22).

3.2. Numerical methods

Unless otherwise stated, we discretise in space using 100 equally spaced points in our
simulations. The effect of using more points was tested, but gave no noticeable difference
to the solution. Spatial derivatives occur in the equations governing the transmembrane
potential, (10), and the tissue deformation, (2). We use the finite element method in space
for both of these quantities. In common with other authors (Smith et al., 2004; Nickerson
et al., 2005) we use a continuous piecewise linear approximation was used for the trans-
membrane potential and a cubic Hermite approximation was used for the tissue deforma-
tion. We compute the mechanical deformations by writing (2) as the first order system of
equations

∂x1

∂t
= u1, (23)

ρ
∂u1

∂t
= ∂

∂X1

(
T11

∂x1

∂X1

)
, (24)

where u1 is the velocity. As discussed earlier, other authors assume that deformations
occur instantaneously. This assumption is equivalent to writing ρ = 0 in (2). We may test
the validity of this assumption by setting ρ = 0 in (24) and neglecting (23).

3.2.1. Previously used methods for discretising in time
Other workers who have coupled the electrical and mechanical activity of the heart (Smith
et al., 2004; Nickerson et al., 2005) have suggested updating (2) using a timestep of 1 ms,
and other equations using a timestep of 0.01 ms. Such an approach requires using values
of λ1 and dλ1/dt calculated at a previous timestep when updating the electromechanical
cell model using (13) and (14). This approach therefore necessitates at least a partially
explicit approximation to time derivatives in any equations that contain the quantities λ1 or
λ1/dt—namely the equations arising from the model described by Niederer et al. (2006)
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Fig. 2 The displacement of one node of the finite element scheme when the mechanical activity is updated
separately from the electrical activity. The solid line refers to ρ = 1.05 × 10−6 kPa mm−2 s2, the broken
line to ρ = 0. The true solution is shown by the dot-dashed line for ρ = 1.05 × 10−6 kPa mm−2 s2, and
the dotted line for ρ = 0. (a) shows the solution until the displacements become too big for the pole–zero
strain energy function to hold, (b) shows a magnified portion of (a).

that are given in Appendix B. This approach cannot be guaranteed to be numerically
stable.

To investigate the stability of this approach, we update separately both the mechanics
and the electrics using a timestep of 0.01 ms. Fully implicit backward Euler approxima-
tions are used for all time derivatives in the problem with the exception of the terms in the
equations that include the quantities λ1 or dλ1/dt , as described in the previous paragraph:
for these equations as many of the terms as possible were treated implicitly in order to
give the scheme the maximum chance of being numerically stable. In Fig. 2, we plot the
position of the 9th node as a function of time. The solid line corresponds to the simulation
with ρ = 1.05 × 10−6 kPa mm−2 s2, the broken line to ρ = 0. We have also plotted the
true solution in this figure, which we describe how to calculate later. The dot-dashed line
corresponds to the true solution with ρ = 1.05 × 10−6 kPa mm−2 s2, the dotted line to
the true solution with ρ = 0. We see from Fig. 2a that both values of ρ eventually lead
to instabilities in the displacement, and eventually the simulation is terminated because
the strains computed were outside the range of the strain energy function given by (7).
In Fig. 2b a small region of Fig. 2a is magnified. Even when the timestep was reduced
to 1.0 × 10−8 s, the same instability is observed. In the next section, we explain why
this numerical approach is not appropriate. We then present a numerical approach that is
suitable.

3.2.2. The hyperbolic nature of the PDE governing mechanical deformations
In this section, we show that the equation that arises from neglecting the left-hand side
of (24) by writing ρ = 0 is at least partially hyperbolic when the stress tensor includes
an active tension component as in (8). This explains why the explicit method used in the
previous section was always unstable even when we reduced our timestep to many orders
of magnitude smaller to the shortest timescale in the problem.
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From (B.2) we may re-write the equation for Qi as a “fading memory” integral equa-
tion:

Qi = Ai

∫ t

−∞
e−αi (t−τ) dλ

dτ
dτ, i = 1,2,3.

Qi is therefore a weighted average of dλ
dτ

, heavily weighted towards the value when t = τ .
Using any numerical approximation to this integral, together with (B.3) allows us to write

Q(t) = Kλ1 λ̇(t) + Kλ2 , (25)

where Kλ2 is a function of values of λ̇ at times less than t , which are assumed known.
Using (B.4), we may then write

Ta = T0fQ(Q),

for a suitable function fQ. Alternatively, on noting that λ̇ = ∂2x/(∂X∂t), and using (25),

Ta = T0fλ

(
∂2x

∂X∂t

)
,

for a suitable function fλ. (8) then allows us to write

T11 = ∂W

∂E11
− p

(
∂x

∂X

)−2

+ T0fλ

(
∂2x

∂X∂t

)(
∂x

∂X

)−2

.

Using (24) we may deduce that, for T0 	= 0, we have a third order derivative,

∂3x

∂t ∂2X
,

in our governing equation. The slopes of the characteristics of a third order partial differ-
ential equation are given by the solution of a cubic polynomial, and so will therefore have
at least one real root. It is the presence of this real root that gives at least some hyper-
bolic nature to the governing equation. Hyperbolic partial differential equations are noto-
riously hard to solve numerically as some simple schemes are unconditionally unstable—
see Morton and Mayers (1994) for a detailed discussion. In the next section, we describe
a technique that does not suffer from numerical instability.

3.2.3. Proposed methods for discretising in time
In order to ensure stability of the governing equations, we repeat the simulations described
above using a backward Euler approximation to all time derivatives, which requires us to
update both the mechanical and electrical activity using the same timestep. The results of
these simulations are shown in Fig. 3, where the solid line corresponds to the simulation
with ρ = 1.05 × 10−6 kPa mm−2 s2, and the broken line to ρ = 0. In Fig. 3a both lines are
indistinguishable. The fibre contracts at the rate that would be expected. Relaxation to the
undeformed state is slower than would be expected—we discuss this later.

In Fig. 3b—where the initial period of contraction shown in Fig. 3a is magnified—we
see that there is a only very small period of time where the solution with ρ = 0 differs from
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Fig. 3 The length of the fibre when both the mechanics and the electrics are updated using a stable
numerical scheme. The solid line refers to ρ = 1.05 × 10−6 kPa mm−2 s2, the broken line to ρ = 0.
(a) shows the solution over the time interval 0 < t < 4 s, (b) shows a magnified portion of (a).

the solution with ρ = 1.05 × 10−6 kPa mm−2 s2. The difference between the solutions is
insignificant, and so the approximation ρ = 0 is a valid approximation. The insignificance
of the acceleration term on the left hand side of (2) may be deduced by considering the
magnitude of the quantities appearing in this equation. From Fig. 3a we see that changes
in x are of order 1.8 mm and changes in T are of order 0.9 kPa. Noting that this happens
over the interval 0 < X < 10 mm and a time interval of around 0.115 s, we see that,
for ρ = 1.05 × 10−6 kPa mm−2 s2, the acceleration term is over two orders of magnitude
smaller than the right hand side of this equation and so may be neglected with minimal
error. We would, however, suggest using ρ = 1.05 × 10−6 kPa mm−2 s2 when solving
these equations, as this leads to faster convergence of the nonlinear solver.

We conclude this section by showing plots of the transmembrane potential, calcium
transient, length of fibre and active tension generated during the time interval 0 < t <

0.5 s. These may all be seen in Fig. 4.

4. Results of the simulations

4.1. The timescale for the extension ratio λ1

In Section 3.2.3 we demonstrated that the approximation ρ = 0 is valid. A consequence
of this assumption is that the deformation of heart tissue may be modelled as an instan-
taneous reaction to the generation of active tensions. We therefore expect the quantity
λ1—and therefore dλ1/dt—to vary very rapidly with time. This is confirmed in Fig. 5
where we plot the value of dλ1/dt at the midpoint of the fibre. The rapid variation of
dλ1/dt is particularly apparent in Fig. 5b where a small portion of Fig. 5a has been mag-
nified. We see from (B.2–B.4) that the active tension used when calculating the mechani-
cal deformations is dependent upon the quantity dλ1/dt . As dλ1/dt is calculated from the
mechanical activity, an accurate calculation of dλ1/dt requires that this component of the



Soft Tissue Modelling of Cardiac Fibres for Use in Coupled 2211

Fig. 4 The results of the simulation where a stable numerical scheme was used. (a) The transmembrane
potential. (b) The calcium transient. (c) The length of the fibre. (d) The active tension generated.

whole problem should be updated much more frequently than every 1 ms as is proposed
by other workers.

We now turn our attention to investigating the choice of timestep and mesh spacing that
should be used when calculating the numerical solution of the coupled system. Accurate
computation of the transmembrane potential may be achieved with a timestep of 0.1 ms
providing the numerical scheme chosen is numerically stable (Whiteley, 2006). In Fig. 6a
we investigate choice of timestep on the length of the deformed fibre. We use the same
spatial mesh as before, but in these simulations we use a timestep of 0.1 ms (solid line),
0.2 ms (broken line) and 0.5 ms (dotted line). Note that we use the same timestep for both
the electrical and mechanical component of the model. While a timestep of 0.5 ms would
give a large error in the computation of the action potential (Whiteley, 2006), this error
does not pollute the computation of the contraction of the fibre. A timestep of 0.5 ms does
not accurately compute dλ1/dt as shown in Fig. 5b—we may therefore conclude that the
mechanical deformation of the fibre is only weakly dependent on dλ1/dt in this case.
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Fig. 5 dλ1/dt calculated at X = 0.5 mm. (b) shows a magnified portion of (a).

Fig. 6 (a) The length of the fibre calculated using different timesteps: 0.1 ms (solid line); 0.2 ms (broken
line); and 0.5 ms (dotted line). (b) The length of the fibre calculated using different space steps: 0.1 mm
(solid line); 0.2 mm (broken line); and 0.4 mm (dotted line).

In Fig. 6b, we use a timestep of 0.1 ms and investigate the spacing between nodes:
0.1 mm (solid line); 0.2 mm (broken line); and 0.4 mm (dotted line). We see that the
contraction of the fibre is not unduly affected by increasing the spacing between nodes
from 0.1 mm to 0.4 mm.

4.2. A demonstration of the mechanical activity of the heart affecting the electrical
activity of the heart

There is a large body of work where electrophysiological cell models are used to model
the electrical activity of the whole heart, neglecting the influence of the deformation of
the heart. This is equivalent to solving (12) with the matrix C equal to the identity ma-
trix. In Fig. 7, we stimulate the end of the fibre X = 0 every 0.18 s. In Fig. 7a, we take
account of deformations of the heart when solving (12). In Fig. 7b, we neglect the ef-
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Fig. 7 The transmembrane potential at X = 0 (solid line) and X = 10 mm (broken line). (a) shows the
simulation when using (12), (b) shows the simulation when the mechanical deformation is neglected in
(12).

fect of deformations of the heart when solving (12). In both figures, the solid line is the
transmembrane potential at the stimulated end (X = 0), and the broken line is the trans-
membrane potential at the other end of the fibre (X = 10 mm). We see that in Fig. 7a
the stimulus at t = 0.18 s is not sufficient to generate an action potential that propagates
along the deformed fibre. However, in Fig. 7b an action potential is propagated along the
fibre, where no account has been taken of deformation of the fibre. This is an example of a
situation where the electrical activity of the heart depends significantly on the mechanical
activity. When taking account of heart deformations, the action potential propagates along
the deformed fibre: If an action potential is generated when the fibre has contracted, the
far end of the fibre is nearer and so it can reach it faster. As a result, the stimulation may
arrive during the refractory period and so an action potential will not be generated.

We should point out that in the simulation described above there is only a very small
window where a stimulus will generate a propagating action potential when the mechan-
ical deformation is neglected, and no propagating action potential when the mechanical
deformation is taken into account. In general, the electrical activity of the heart is only
very weakly dependent on the mechanical activity. Nevertheless, given the dramatic ef-
fect, when simulating the electrical activity of the heart the possibility of this phenomenon
should always be considered.

4.3. The effect of [Ca2+]i on Ta

The model described by Niederer et al. (2006) requires [Ca2+]i as input from an electro-
physiological cell model. As such, it seems sensible to investigate the effect of [Ca2+]i on
Ta predicted by the numerical techniques we have used in this study. It has been observed
experimentally (Choi and Salama, 2000) that the amplitude of the [Ca2+]i transient may
be lowered significantly by pacing the heart at a faster frequency. In order to model this,
we pace our fibre at different frequencies. We simulate until a regular pattern emerges
and then record the amplitudes of [Ca2+]i and Ta . In Fig. 8a, we plot the amplitude of the
[Ca2+]i transient against the interval between successive stimulations and observe that the
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Fig. 8 (a) The amplitude of the [Ca2+]i transient as a function of the pacing period. (b) The amplitude of
the active tension as a function of the [Ca2+]i transient.

amplitude of the [Ca2+]i transient decreases when the fibre is stimulated more frequently,
in agreement with Choi and Salama (2000). In Fig. 8b, we see that the amplitude of the
active tension generated increases with the amplitude of the [Ca2+]i transient. As a con-
sequence, the model used predicts that the amplitude of the active tension will be lower
when the fibre is stimulated more frequently.

5. Discussion

We have coupled: (i) the electrophysiological model described by Noble et al. (1998);
(ii) a soft tissue model of a cardiac fibre that takes account of some three-dimensional
properties; and (iii) a model that may be used to describe the generation of active ten-
sions (Niederer et al., 2006). We identified why the simplest numerical techniques did
not work for this coupled problem, and the identified suitable numerical methods for the
coupling of these models. This allowed us to perform numerical simulations and carry out
convergence tests without requiring excessive computing time.

Our first simulations were concerned with verifying the universally made assumption
that cardiac tissue may be modelled as having zero density. While this assumption is
valid for the simulations carried out in this study, we do not recommend using it, as
the nonlinear solver used when solving the system of differential equations converged
faster when the true (nonzero) value of density was used. We used the results of these
simulations to argue that the validity of the assumption of zero density implied that λ1

and dλ1/dt varied rapidly with time—while the simulations carried out in this study were
not heavily dependent on these rapid variations, it is possible that simulations in higher
dimensions may be affected.

We observed that the deformation of the cardiac fibre shown in Fig. 3a did not return to
its original value as quickly as expected. This is partly because we have not modelled the
force that would be exerted on the fibre by the heart filling with blood as would be seen in
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a realistic whole-heart model. However, the fact that the fibre has not returned to its un-
deformed state within 1 second indicates that a significant active tension is still acting at
this time. This may be because the parameters used in the model of active tension are only
very rarely measured at temperatures greater than 22°C (see Niederer et al., 2006). Sim-
nett et al. (1998) have demonstrated that the relaxation transient occurs on a much faster
timescale at 20°C compared to 12°C—it is therefore possible that the coupled model may
predict a much faster relaxation if parameters measured at 37°C were available. Another
possible explanation is that there is always considerable active tension in heart muscle
fibres. More experimental research is required to identify the correct explanation of these
observations.

Although the mechanical activity of the heart is more dependent on the electrical activ-
ity than electrical activity on mechanical activity, we did manage to demonstrate in Fig. 7a
situation where the electrical activity of the heart depends significantly on the mechanical
activity. In this case, during rapid pacing, we demonstrated that if the mechanical activ-
ity of the heart were neglected then an action potential did propagate along the fibre. If
mechanical activity was taken account of, the action potential did not propagate. Realis-
tic whole-heart electrical simulations should therefore consider the possibility that heart
deformations may affect the propagation of an action potential.

Appendix A The electrophysiological cell model used

Below we summarise the equations given by Noble et al. (1998) that are used in (9) and
(10).

A.1 Initial values

Quantity Symbol Initial value Unit

First of two gates for the ACh dependent potassium current ActFrac 0.0042614 none
Second of two gates for the ACh dependent potassium current ProdFrac 0.4068154 none
Inactivation gate of fast sodium current h 0.9944036 none
Activation gate of fast sodium current m 0.0016203 none
Calcium bound to calmodulin CaCalmod 0.0005555 mM
Calcium concentration in the diadic subspace Cads 1.88 × 10−5 mM
Intracellular calcium concentration Cai 1.4 × 10−5 mM
Calcium concentration in the junctional SR release store Carel 0.4481927 mM
Calcium bound to troponin CaTrop 0.0003542 mM
Calcium concentration in the network SR uptake store Caup 0.4531889 mM
Intracellular potassium concentration Ki 136.5644281 mM
Intracellular sodium concentration Nai 7.3321223 mM
Activation gate of the L-type calcium channel d 0 none
First inactivation gate for L-type calcium current f 1 none
Second inactivation gate for L-type calcium current
in the membrane outside the diadic subspace f2 0.9349197 none
Second inactivation gate for L-type calcium current
in the membrane when open into the diadic subspace f2ds 0.9651958 none
Transmembrane potential V −92.849333 mV
Fast gate of rapid component of delayed rectifier current xr1 1.03 × 10−5 none
Slow gate of rapid component of delayed rectifier current xr2 2 × 10−7 none
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Slow component of delayed rectifier current xs 0.001302 none
Second gate of transient outward current r 0 none
First gate of transient outward current s 0.9948645 none

A.2 Parameter values

Value Unit

gbca 0.00025 μS
Kleakrate 0.05 s−1

KmCacyt
0.0005 mM

KmCads
0.01 mM

Kmrel 250 s−1

Cao 2 mM
Ko 4 mM
Nao 140 mM
gNa 2.5 μS
δm 1 × 10−5 none
αCalmod 100,000 s−1

αTrop 100,000 s−1

βCalmod 50 s−1

βTrop 200 s−1

Calmod 0.02 mM
Kdecay 10 s
length 74 μm
radius 12 μm
Trop 0.05 mM
Vdsratio 0.1 none
Veratio 0.4 none
Vrelratio 0.1 none
Vupratio 0.01 none
speedd 3 none
δf 0.0001 none
speedf 0.3 none
FrICa 1 none
Kmf2 100,000 mM
Kmf2ds 0.001 mM
PCaL

0.1 nA/mM
PCaK 0.002 nA/mM
PCaNa 0.01 nA/mM
Rdecay 20 mM/s
Cm 9.5 × 10−5 μF
F 96,485.3415 C/M
R 8,314.472 mJ/(M K)
T 310 K
gpna 0.004 μS
gKr1 0.0021 μS
gKr2 0.0013 μS
Pkna 0.03 nA/mM
αup 0.4 s−1

βup 0.03 s−1

Kcyca 0.0003 mM
Ksrca 0.5 mM
Kxcs 0.4 mM
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gKs 0.0026 μS
gbna 0.0006 μS
dNaCa 0 none
FRiNaCa 0.001 none
gamma 0.5 none
kNaCa 0.0005 nA
nNaCa 3 none
iNaKmax 0.7 nA
KmK 1 mM
KmNa 40 mM
gK1 0.5 μS
Kmk1 10 mM
gto 0.005 μS
gtos 0 μS

A.3 The differential equations

A.3.1 Calcium background current

ibCa = gbca · (V − ECa).

A.3.2 Calcium release

VoltDep = e0.08·(V −40),

CaiReg = Cai

Cai + KmCacyt

,

CadsReg = Cads

Cads + KmCads

,

RegBindSite = CaiReg + (1 − CaiReg) · CadsReg,

ActRate = 0 · VoltDep + 500 · RegBindSite2,

InactRate = 60 + 500 · RegBindSite2,

SpeedRel =
{

5 if V < −50,
1 otherwise,

PrecFrac = 1 − ActFrac − ProdFrac,

dActFrac

dtime
= PrecFrac · SpeedRel · ActRate − ActFrac · SpeedRel · InactRate,

dProdFrac

dtime
= ActFrac · SpeedRel · InactRate − SpeedRel · ProdFrac,

irel =
((

ActFrac

ActFrac + 0.25

)2

· Kmrel + Kleakrate

)
· Carel.

A.3.3 Calcium translocation

itrans = 50 · (Caup − Carel).
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A.3.4 Fast sodium current

iNa = gNa · m3 · h · (V − Emh).

A.3.5 Fast sodium current h gate

αh = 20 · e−0.125·(V +75),

βh = 2,000

1 + 320 · e−0.1·(V +75)
,

dh

dt ime
= αh · (1 − h) − βh · h.

A.3.6 Fast sodium current m gate

E0m = V + 41,

αm =
{

2,000 if |E0m| < δm,
200 · E0m

1 − e−0.1·E0m
otherwise,

βm = 8,000 · e−0.056·(V +66),

dm

dtime
= αm · (1 − m) − βm · m.

A.3.7 Intracellular calcium concentration

VCell =
3.141592654 · ( radius

1,000 )2 · length

1,000
,

Viratio = 1 − Veratio − Vupratio
− Vrelratio ,

Vi = VCell · Viratio ,

dCai

dtime
= −1

2 · Vi · F · (iCaLCacyt
+ ibCa − 2 · iNaCacyt ) + Cads · Vdsratio · Kdecay

+ irel · Vrelratio

Viratio

− dCaCalmod

dtime
− dCaTrop

dtime
− iup,

dCads

dtime
=

−iCaLCads

2 · Vdsratio · Vi · F − Cads · Kdecay, (A.1)

dCaup

dtime
= Viratio

Vupratio

· iup − itrans,

dCarel

dtime
= Vupratio

Vrelratio

· itrans − irel,

dCaCalmod

dtime
= αCalmod · Cai · (Calmod − CaCalmod) − βCalmod · CaCalmod,

dCaTrop

dtime
= αTrop · Cai · (Trop − CaTrop) − βTrop · CaTrop.
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A.3.8 Intracellular potassium concentration

dKi

dtime
= −1

Vi · F · (iK1 + iKr + iKs + iCaLKcyt
+ iCaLKds

+ ito − 2 · iNaK).

A.3.9 Intracellular sodium concentration

dNai

dtime
= −1

Vi · F · (iNa + ipNa + ibNa + 3 · iNaK + 3 · iNaCacyt

+ iCaLNacyt
+ iCaLNads

).

A.3.10 L type calcium channel

iCaLCacyt
=

(1−FrICa)·4·PCaL
·d·f ·f2·(V −50)·F

R·T
1 − e

−(V −50)·F ·2
R·T

· (Cai · e 100·F
R·T − Cao · e −(V −50)·F ·2

R·T
)
,

iCaLKcyt
=

(1−FrICa)·PCaK ·PCaL
·d·f ·f2·(V −50)·F

R·T
1 − e

−(V −50)·F
R·T

· (Ki · e 50·F
R·T − Ko · e −(V −50)·F

R·T
)
,

iCaLNacyt
=

(1−FrICa)·PCaNa·PCaL
·d·f ·f2·(V −50)·F

R·T
1 − e

−(V −50)·F
R·T

· (Nai · e 50·F
R·T − Nao · e −(V −50)·F

R·T
)
,

iCaLCads
=

FrICa·4·PCaL
·d·f ·f2ds·(V −50)·F
R·T

1 − e
−(V −50)·F ·2

R·T
· (Cai · e 100·F

R·T − Cao · e −(V −50)·F ·2
R·T

)
,

iCaLKds
=

FrICa·PCaK ·PCaL
·d·f ·f2ds ·(V −50)·F

R·T
1 − e

−(V −50)·F
R·T

· (Ki · e 50·F
R·T − Ko · e −(V −50)·F

R·T
)
,

iCaLNads
=

FrICa·PCaNa·PCaL
·d·f ·f2ds·(V −50)·F

R·T
1 − e

−(V −50)·F
R·T

· (Nai · e 50·F
R·T − Nao · e −(V −50)·F

R·T ),

iCaL
= iCaLCacyt

+ iCaLKcyt
+ iCaLNacyt

+ iCaLCads
+ iCaLKds

+ iCaLNads
.

A.3.11 L type calcium channel d gate

E0d = V + 24 − 5,

αd =
{120 if |E0d | < 0.0001,

30·E0d

1−e
−E0d

4

otherwise,

βd =
{120 if |E0d | < 0.0001,

12·E0d

e
E0d
10 −1

otherwise,

dd

dtime
= speedd · (αd · (1 − d) − βd · d)

.

A.3.12 L type calcium channel f gate

E0f = V + 34,
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αf =
⎧⎨
⎩

25 if |E0f | < δf ,
6.25·E0f

e

E0f
4 −1

otherwise,

βf = 12

1 + e
−1·(V +34)

4

,

df

dtime
= speedf · (αf · (1 − f ) − βf · f )

.

A.3.13 L type calcium channel f2 gate

df2

dtime
= 1 −

(
Cai

Kmf 2 + Cai

+ f2

)
.

A.3.14 L type calcium channel f2ds gate

df2ds

dtime
= Rdecay ·

(
1 −

(
Cads

Kmf2ds + Cads
+ f2ds

))
.

A.3.15 Membrane

Iion = iStim + iK1 + ito + iKr + iKs + iNaK + iNa + ibNa + ipNa + iCaLNacyt

+ iCaLNads
+ iNaCacyt + iNaCads + iCaLCacyt

+ iCaLCads
+ iCaLKcyt

+ iCaLKds
+ ibCa .

A.3.16 Persistent sodium current

ipNa = gpna · 1

1 + e
−(V +52)

8

· (V − ENa) .

A.3.17 Rapid delayed rectifier potassium current

iKr = (gKr1 · xr1 + gKr2 · xr2) · 1

1 + e
V +9
22.4

· (V − EK).

A.3.18 Rapid delayed rectifier potassium current xr1 gate

αxr1 = 50

1 + e
−(V −5)

9

,

βxr1 = 0.05 · e −(V −20)
15 ,

dxr1

dtime
= αxr1 · (1 − xr1t) − βxr1 · xr1.

A.3.19 Rapid delayed rectifier potassium current xr2 gate

αxr2 = 50

1 + e
−(V −5)

9

,
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βxr2 = 0.4 · e−( V +30
30 )3

,

dxr2

dtime
= αxr2 · (1 − xr2) − βxr2 · xr2.

A.3.20 Reversal potentials

ENa = R · T
F

· ln
Nao

Nai

,

EK = R · T
F

· ln
Ko

Ki

,

EKs = R · T
F

· ln
Ko + Pkna · Nao

Ki + Pkna · Nai

,

ECa = 0.5 · R · T
F

· ln
Cao

Cai

,

Emh = R · T
F

· ln
Nao + 0.12 · Ko

Nai + 0.12 · Ki

.

A.3.21 Sarcoplasmic reticulum calcium pump

K1 = Kcyca · Kxcs

Ksrca
,

K2 = Cai + Caup · K1 + Kcyca · Kxcs + Kcyca,

iup = Cai

K2
· αup − Caup · K1

K2
· βup.

A.3.22 Slow delayed rectifier potassium current

iKs = gKs · x2
s · (V − EKs).

A.3.23 Slow delayed rectifier potassium current xs gate

αxs = 14

1 + e
−(V −40)

9

,

βxs = e
−V
45 ,

dxs

dtime
= αxs · (1 − xs) − βxs · xs.

A.3.24 Sodium background current

ibNa = gbna · (V − ENa).



2222 Whiteley et al.

A.3.25 Sodium calcium exchanger

iNaCacyt = (1 − FRiNaCa) · kNaCa

× (e
gamma·(nNaCa−2)·V ·F

R·T · Na
nNaCa
i · Cao − e

(gamma−1)·(nNaCa−2)·V ·F
R·T · NanNaCa

o · Cai )

(1 + dNaCa · (Cai · NanNaCa
o + Cao · NanNaCa

i )) · (1 + Cai

0.0069 )
,

iNaCads = FRiNaCa · kNaCa

× (e
gamma·(nNaCa−2)·V ·F

R·T · NanNaCa
i · Cao − e

(gamma−1)·(nNaCa−2)·V ·F
R·T · NanNaCa

o · Cads)

(1 + dNaCa · (Cads · NanNaCa
o + Cao · NanNaCa

i )) · (1 + Cads
0.0069 )

,

iNaCa = iNaCacyt + iNaCads .

A.3.26 Sodium potassium pump

iNaK =
iNaKmax ·Ko

KmK+Ko
· Nai

KmNa + Nai

.

A.3.27 Time_independent_ potassium_current

iK1 =
gK1·Ko

Ko+Kmk1
· (V − EK)

1 + e
(V −EK −10)·F ·1.25

R·T
.

A.3.28 Transient outward current

ito = gto · (gtos + s · (1 − gtos)
) · r · (V − EK).

A.3.29 Transient outward current r gate

dr

dtime
= 333 ·

(
1

1 + e
−(V +4)

5

− r

)
.

A.3.30 Transient outward current s gate

αs = 0.033 · e −V
17 ,

βs = 33

1 + e−0.125·(V +10)
,

ds

dtime
= αs · (1 − s) − βs · s.

Appendix B The model used to generate active tensions

Below we summarise the equations given by Niederer et al. (2006).
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B.1 Initial values

Initial value Units

[Ca2+]Trpn 0 μM
z 0 Dimensionless
Qi, i = 1,2,3 0 Dimensionless

B.2 Parameter values

Value Unit

kon 100 μM−1 s−1

krefoff 200 s−1

γ 2 Dimensionless
[Ca2+]TrpnMax 70 μM
αr1 2 s−1

αr2 1.75 s−1

KZ 0.15 Dimensionless
nr 3 Dimensionless
β1 −4 Dimensionless
α0 8 s−1

n 3 Dimensionless
zp 0.85 Dimensionless
[Ca2+]50ref 1.05 μM
Tref 56.2 kPa
β0 4.9 Dimensionless
a 0.35 Dimensionless
A1 −29 Dimensionless
A2 138 Dimensionless
A3 129 Dimensionless
α1 30 s−1

α2 130 s−1

α3 625 s−1

B.3 The differential equations

d

dt

[
Ca2+]

Trpn
= kon

[
Ca2+]

i

([
Ca2+]

TrpnMax
− [

Ca2+]
Trpn

)

− krefoff

(
1 − Ta

γ Tref

)[
Ca2+]

Trpn
, (B.1)

dz

dt
= α0

( [Ca2+]Trpn

[Ca2+]Trpn50

)n

(1 − z) − αr1z − αr2

znr

znr + K
nr
z

,

[
Ca2+]

Trpn50
= [Ca2+]TrpnMax[Ca2+]50ref(1 + β1(λ1 − 1))

[Ca2+]50ref(1 + β1(λ1 − 1)) + krefoff
kon

(1 − 1+β0(λ1−1)

2γ
)
,
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K1 = αr2z
nr−1
p nrK

nr
z

(z
nr
p + K

nr
z )2

,

K2 = αr2z
nr
p

z
nr
p + K

nr
z

(
1 − nrK

nr
Z

z
nr
p + K

nr
z

)
,

zmax = α0 − K2[Ca2+]Trpn50

α0 + (αr1 + K1)[Ca2+]Trpn50
,

T0 = zTref(1 + β0(λ1 − 1))

zmax
,

dQi

dt
= Ai

dλ1

dt
− αiQi, i = 1,2,3, (B.2)

Q = Q1 + Q2 + Q3, (B.3)

Ta =
{

T0
1+(2+a)Q

1+Q
Q > 0,

T0
1+aQ

1−Q
Q ≤ 0.

(B.4)
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