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Abstract Continuous-time birth-death Markov processes serve as useful models in pop-
ulation biology. When the birth-death rates are nonlinear, the time evolution of the first n

order moments of the population is not closed, in the sense that it depends on moments of
order higher than n. For analysis purposes, the time evolution of the first n order moments
is often made to be closed by approximating these higher order moments as a nonlinear
function of moments up to order n, which we refer to as the moment closure function.

In this paper, a systematic procedure for constructing moment closure functions of ar-
bitrary order is presented for the stochastic logistic model. We obtain the moment closure
function by first assuming a certain separable form for it, and then matching time deriv-
atives of the exact (not closed) moment equations with that of the approximate (closed)
equations for some initial time and set of initial conditions. The separable structure en-
sures that the steady-state solutions for the approximate equations are unique, real and
positive, while the derivative matching guarantees a good approximation, at least locally
in time. Explicit formulas to construct these moment closure functions for arbitrary order
of truncation n are provided with higher values of n leading to better approximations of
the actual moment dynamics.

A host of other moment closure functions previously proposed in the literature are also
investigated. Among these we show that only the ones that achieve derivative matching
provide a close approximation to the exact solution. Moreover, we improve the accuracy
of several previously proposed moment closure functions by forcing derivative matching.

Keywords Moment closure · Stochastic logistic model · Stochastic hybrid systems

1. Introduction

Continuous-time birth-death Markov processes have been extensively used for modeling
stochasticity in population biology (Matis and Kiffe, 1996, 2002; Matis et al., 1998; Kr-
ishnarajah et al., 2005). The time evolution of these processes is typically described by a
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single equation for a probability function, where time and species populations appear as
independent variables, called the Master or Kolmogorov equation (Bailey, 1964). Analyt-
ical solutions to the Master equations are generally not possible, however, solutions can
be obtained numerically for small populations. For large populations, a more reasonable
goal (and one that is of primary interest in applications) is to determine the time evolution
of a few low-order statistical moments.

In this paper, a method for estimating low-order statistical moments is introduced for
the stochastic logistic model. This model is the stochastic counterpart of the deterministic
version of the logistic model (Verhulst, 1838; Pearl and Reed, 1920) and was first formu-
lated by Feller (1939) as a continuous-time birth-death Markov process involving a single
species, with birth and death rates being polynomials of degree 2. Although one can di-
rectly use the Kolmogorov equation to derive differential equations for the time evolution
of moments of the process, in this paper we use an alternative method. We model the sto-
chastic logistic model as a stochastic hybrid system (SHS) whose state x is the population
size of the species. Then, the time evolution of the moments is obtained using results from
the SHS literature (e.g., Hespanha, 2004). Details of the stochastic logistic model and its
modeling as a SHS are presented in Section 2.

It is well known that for the stochastic logistic model x = 0 is an absorbing state and
eventual convergence to the origin is certain. For most biologically relevant problems,
one is typically interested in the distribution of the process conditioned on the event that
absorption has not occurred. Let Px(t) = P{x(t) = x | x(t) > 0} denote the probability
density function of the conditioned processes and μm(t) = ∑∞

x=1 xmPx(t) its mth order
uncentered moment. We show in Section 3 that the time derivative of the vector μ =
[μ1, . . . ,μn]T ∈ R

n, where n is the order of the truncation, is given by

μ̇ = (
A + λext(t)I

)
μ + Bμn+1, (1)

where A and B are appropriately defined matrices, I is the identity matrix, and λext(t) an
extinction rate. Assuming that the mean time to extinction is very large, the perturbation
term λext(t)I is very small when compared to the matrix A and can be ignored (Nåsell,
2003a). In spite of this, the dynamics of the above system is not closed, in the sense that
the time evolution of the vector μ depends on the (n+ 1)th order moment μn+1. We close
the system by approximating μn+1 as a nonlinear function ϕn+1(μ) of the moments up
to order n. This procedure is commonly referred to as moment closure. We call ϕn+1(μ)

the moment closure function for μn+1. Let ν = [ν1, . . . , νn]T denote the state of the new
closed system. Then, its dynamics is given by

ν̇ = Aν + Bϕn+1(ν) (2)

and is referred to as the truncated moment dynamics. We denote the states of (1) and (2)
using different symbols because μ refers to the actual moment dynamics, whereas, ν to
an approximated moment dynamics.

In Section 4, we consider moment closure functions which have the following separa-
ble form:

ϕs
n+1(ν) = ν

γ1
1 ν

γ2
2 · · ·νγn

n (3)

for appropriately chosen constants γm ∈ R. These constants are obtained by matching
time derivatives of μn+1 and ϕs

n+1(ν) in (1) and (2) respectively, at some initial time t0
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Table 1 Separable derivative-matching moment closure function ϕs
n+1(μ) for n ∈ {2,3,4}

n = 2 n = 3 n = 4

ϕs
n+1(μ)

μ3
2

μ3
1

μ4
1μ4

3

μ6
2

μ10
2 μ5

4

μ5
1μ10

3

and initial condition x(t0) = x0 with probability one. We refer to this moment closure as
the separable derivative-matching (SDM) moment closure. We show that for all n ≥ 2,
this determines the function ϕs

n+1 uniquely, which is independent of the birth and death
rates. Table 1 shows the functions ϕs

n+1 that we obtained for truncations of degree n = 2,

3 and 4. The striking feature of the SDM moment closure is that the accuracy of the
approximate moment dynamics improves by increasing the order of truncation and the
dependence of higher order moments on lower order ones is consistent with x(t) being
lognormally distributed, in spite of the fact that the derivative matching procedure used to
construct ϕs

n+1 did not make any assumption on the distribution of the population.
Alternative moment closure methods that have appeared in literature typically con-

struct the moment closure functions ϕ by directly assuming the probability distribution
to be normal (Whittle, 1957; Nåsell, 2003b), lognormal (Keeling, 2000), Poisson or bi-
nomial (Nåsell, 2003a). We refer to them as normal, lognormal, Poisson and binomial
moment closures, respectively, and review them in Section 5. In Section 6, they are com-
pared with the SDM moment closure based on how well the moment closure function
ϕn+1(μ) approximates μn+1. Toward that end, we introduce the error

en+1(t) := μn+1(t) − ϕn+1
(
μ(t)

) =
∞∑

i=0

(t − t0)
i

i! εi
n+1(x0),

where we expanded the error as a Taylor series with εi
n+1(x0) defined to be

εi
n+1(x0) := diμn+1(t)

dt i

∣
∣
∣
∣
t=t0

− diϕn+1 (μ(t))

dt i

∣
∣
∣
∣
t=t0

.

We call εi
n+1(x0) the ith order derivative matching error. Ideally one would like this error

to be zero but this is generally not possible. When x(t0) = x0 with probability one, the
derivative matching error is typically a polynomial in x0. For example, for the SDM mo-
ment closure function, the 0th order derivative matching error is zero while for i ≥ 1 the
ith order error is a polynomial in x0 of degree i + 1. Typically, the lesser the order of this
polynomial, the lesser is the error en+1(t), and hence the better is ϕn+1(μ) in approximat-
ing μn+1.

We show that for n = 2, all the above moment closure functions perform derivative
matching except the Poisson moment closure function proposed by Nåsell (2003a). This
is because, it has a 0th order derivative matching error ε0

3(x0) which grows linearly with x0

while for SDM, lognormal, binomial, and normal moment closure functions the 0th order
error is always zero. Hence, Nåsell’s Poisson moment closure function exhibits a larger
initial error than the others. We propose an alternative Poisson moment closure function,
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for which ε0
3(x0) = 0, and show that it performs better than the one proposed by Nåsell

(2003a).
Although the above moment closures provide good estimates for a second order of

truncation (n = 2), it is typically beneficial to consider higher order of truncations be-
cause they lead to better moment approximations and reduce the errors by a few orders
of magnitude. To the authors knowledge, moment closure for n ≥ 3 has always been
done in literature by assuming a normal distribution for the population (Nåsell, 2003b;
Matis and Kiffe, 1996). We show that for n = 3 the normal moment closure function also
performs derivative matching with similar derivative matching error as for the SDM mo-
ment closure function, and hence, gives fairly good estimates of μ4. However, for n = 3
we further propose a new moment closure function that yields lesser derivative match-
ing errors when compared to separable derivative matching and normal moment closure
functions, thus providing better estimates for μ4, at least locally in time.

In Section 7, we find the steady-state solutions of the truncated moment dynamics (2),
(3). We show that the separable structure of the SDM moment closure leads to analytical
expressions for the approximate steady-state moments ν(∞), which are always unique,
real, and positive for every order of truncation n ≥ 2. In contrast, finding expressions
for the steady-state moments using normal moment closure is typically done numerically
for n > 2, as this involves solving an nth degree polynomial and then identifying the
biologically relevant steady-state among the n roots of the polynomial (Matis and Kiffe,
1996).

Due to space limitations, the reader is sometimes referred to the technical report (Singh
and Hespanha, 2006) for detailed derivations and extended discussions of some results.

2. Stochastic logistic model

2.1. Model formulation

The stochastic logistic model is the stochastic birth-death analogous model of the well-
known deterministic Verhulst–Pearl equations (Verhulst, 1838; Pearl and Reed, 1920;
Pielou, 1977) and has been extensively used for modeling stochasticity in population bi-
ology (Matis and Kiffe, 1996, 2002; Matis et al., 1998; Krishnarajah et al., 2005). For
this continuous-time birth-death Markov process, the conditional probabilities of a unit
increase and decrease, respectively, in an “infinitesimal” time interval (t, t +dt] are given
by

P
{
x(t + dt) = x + 1 | x(t) = x

} =
{

η(x) dt, ∀x ≤ U,

0, otherwise,

P
{
x(t + dt) = x − 1 | x(t) = x

} = χ(x)dt,

where x(t) ∈ N represents the population size at time t ,

η(x) := a1x − b1x
2 > 0, χ(x) := a2x + b2x

2 > 0, ∀x ∈ (0,U) (4)

and

U := a1/b1 ∈ N, a1 > 0, a2 > 0, b1 > 0, b2 ≥ 0.
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We assume that the initial condition satisfies x(t0) ∈ {1,2, . . . ,U}, and hence, x(t) ∈
{0,1, . . . ,U}, ∀t ∈ [0,∞) with probability one. We call U the population limit.

2.2. Stationary and quasi-stationary distributions

Since the birth and death rates are zero for x = 0 (η(0) = χ(0) = 0) we have that the
state x = 0 is absorbing and eventual convergence to the origin is certain. However, it is
common to use the stochastic logistic model mainly in the case where the mean time to
extinction is very large. As the stationary distribution is degenerate with probability one
at the origin, one is typically interested in the distribution of the process conditioned on
the event that absorption has not occurred. In the sequel we denote by P̄x(t) and Px(t) the
probability density function of the unconditioned and conditioned processes, respectively.
Thus for x ∈ {1, . . . ,U} we have

Px(t) = P
{
x(t) = x | x(t) > 0

} = P̄x(t)

1 − P̄0(t)
, (5)

where P̄x(t) = P{x(t) = x}. The limit of Px(t) as t → ∞ is known as the quasi-stationary
distribution.

2.3. Transient distributions

Using the Kolmogorov equations for P̄x(t) one can show that Px(t) satisfies the following
differential equations

Ṗ1 = χ(2)P2 − [
η(1) + χ(1)

]
P1 + P1λext(t), (6a)

Ṗx = χ(x + 1)Px+1 − [
η(x) + χ(x)

]
Px + η(x − 1)Px−1 + Pxλext(t),

∀x ∈ {2,3, . . . ,U − 1}, (6b)

...

ṖU = −χ(U)PU + η(U − 1)PU−1 + PUλext(t), (6c)

where λext(t) := χ(1)P1(t) (Bailey, 1964; Nåsell, 2001). The variable λext(t) is an extinc-
tion rate in the sense that the conditional probability of extinction in an “infinitesimal”
interval (t, t + dt] is given by

P
{
x(t + dt) = 0 | x(t) > 0

} = λext(t) dt.

When the population limit U is small, the above system of equations can be solved numer-
ically. However, for large U , a more reasonable goal (and one that is of primary interest
in applications) is to determine the evolution of the some lower-order moments of Px(t).

3. Time evolution of moments

3.1. Modeling the stochastic logistic model

To model the time evolution of x(t), we consider a special class of systems known as
stochastic hybrid systems (SHS). These systems were introduced by Hespanha and Singh
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(2005) to model the stochastic time evolution of the populations of different species in-
volved in a chemical reaction. More specifically, to fit the framework of our problem,
these system are characterized by two reset maps:

x 	→ φ1(x) := x + 1, x 	→ φ2(x) := x − 1 (7)

one corresponding to a birth and the other to a death, with associated transition intensities
given by

λ1(x) := η(x), λ2(x) := χ(x). (8)

Between births and deaths the population remains constant and thus ẋ = 0. In essence,
whenever a “birth event” or a “death event” takes place, the corresponding reset φi(x)

is “activated” and x is reset accordingly. Furthermore, the probability of the activation
taking place in an “infinitesimal” time interval (t, t + dt] is determined by the associated
transition intensities λi(x) dt .

3.2. Moment dynamics

Given m ∈ {1,2, . . .}, we define the mth order (uncentered) moment for both the uncon-
ditioned and conditioned process as

μ̄m(t) =
∞∑

x=1

xmP̄x(t) := E
[
x(t)m

]
, μm(t) =

∞∑

x=1

xmPx(t), ∀t ≥ 0, (9)

respectively. The time evolution of μ̄m(t) is given by the following result, which is a
straightforward application of results by Hespanha (2004, Theorem 1) to the above SHS.

Theorem 1. The time evolution of μ̄m is given by

dμ̄m

dt
= E

[
2∑

i=1

[(
φi(x)

)m − xm
]
λi(x)

]

.

Using Theorem 1 (as in Appendix A, Singh and Hespanha, 2006) one can conclude
that

˙̄μm =
2∑

p=1

m+1∑

r=1

Cm
m+p−rf (m + p − r,p)μ̄r , (10)

where we define Cm
j and f (j,p) as follows1 ∀j,m,p ∈ N,

Cm
j :=

⎧
⎨

⎩

m!
(m − j)!j ! , m ≥ j ≥ 0,

0, m < j,

(11)

1n! denotes the factorial of n.
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f (j,p) :=

⎧
⎪⎨

⎪⎩

0, j = 0,

a1 + (−1)j a2, j > 0, p = 1,

−b1 + (−1)j b2, j > 0, p = 2.

(12)

One can see from the right-hand side of (10), that the time derivative of μ̄m is a linear
combination of the moments μ̄r , up to order r = m + 1. Hence the time evolution of the
vector μ̄ = [μ̄1, μ̄2, . . . , μ̄n]T ∈ R

n is given by

˙̄μ = Aμ̄ + Bμ̄n+1, (13)

for some n × n and n × 1 matrices A and B which have the following structure

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∗ ∗ 0 0 . . . 0
∗ ∗ ∗ 0 . . . 0
...

...
...

. . .
. . .

...

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
0
...

0
∗

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (14)

where each ∗ denotes a possibly nonzero entry. From (5), (9) we have

μm(t) = μ̄m(t)

1 − P̄0(t)
, (15)

which using (13) and ˙̄P 0(t) = χ(1)P̄1(t) leads to

μ̇ = (
A + λext(t)I

)
μ + Bμn+1, (16)

where μ = [μ1,μ2, . . . ,μn]T ∈ R
n and λext(t) := χ(1)P1(t) is the extinction rate. The

dynamics of this system is not closed because the time-derivative of the vector μ depends
both on the (n + 1)th order moment μn+1 and on the extinction rate λext, which are not
part of the state μ. However, when the mean time to extinction is very large, the pertur-
bation term λext(t)I is very small when compared to the matrix A and can be ignored
(Nåsell, 2003a). Our goal now is to close the dynamics of (16) by approximating μn+1 as
a nonlinear function of μ given by ϕn+1(μ). This gives the closed approximate moment
dynamics

ν̇ = Aν + Bϕn+1(ν), ν = [ν1, ν2, . . . , νn]T . (17)

We call (17) the truncated moment dynamics and ϕn+1(μ) the moment closure function
for μn+1.

When a sufficiently large but finite number of derivatives of μ(t) and ν(t) match point-
wise, then, the difference between solutions to (16) and (17) remains close on a given
compact time interval. This follows from a Taylor series approximation argument. To be
more precise, for each δ > 0 and integer N , there exists a time T > t0, for which the
following result holds: Assume that for every t0 ≥ 0,

μ(t0) = ν(t0) and
diμ(t)

dt i

∣
∣
∣
∣
t=t0

= diν(t)

dt i

∣
∣
∣
∣
t=t0

, ∀i ∈ {1, . . . ,N} (18)
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where diμ(t)

dti
and diν(t)

dti
represent the ith time derivative of μ(t) and ν(t) along the trajec-

tories of system (16) and (17) respectively. Then,
∥
∥μ(t) − ν(t)

∥
∥ ≤ δ, ∀t ∈ [t0, T ]. (19)

In the next section we use (18) to construct moment closure functions ϕn+1(μ).

4. Separable derivative-matching moment closures

In this section we construct truncated moment dynamics (17) for the stochastic logistic
model using (18). After replacing (16) and (17) in (18), the equality (18) becomes a PDE
on ϕn+1. We will seek for solutions ϕn+1(μ) to this PDE that have the following separable
form

ϕs
n+1(μ) =

n∏

m=1

μm
γm (20)

for appropriately chosen constants γm ∈ R. In the sequel we refer to such ϕs
n+1(μ) as a

separable derivative-matching (SDM) moment closure function for μn+1.
One can see that the infinite vector μ∞ = [μ1,μ2, . . .]T ∈ Ω∞ can be expressed as

μ∞(t) =
∞∑

x=1

⎡

⎢
⎢
⎢
⎣

x

x2

x3

...

⎤

⎥
⎥
⎥
⎦

Px(t).

Hence, the infinite vectors [x, x2, x3, . . .]T , which corresponds to a degenerate distribution
x(t) = x with probability one, form a natural basis for Ω∞. In particular, we will find
constants γm that satisfy (18) for each initial vector μ∞(t0) belonging to this basis, i.e., for
the class of deterministic initial conditions. Also note from (6) that the ith time derivative
of λext(t) := χ(1)P1(t) is a function of P1(t),P2(t), . . . ,Pi+1(t). Thus for x(t0) = x0 with
probability one, we have that

di(λext(t)μ(t))

dt i

∣
∣
∣
∣
t=t0

= 0, ∀x0 ≥ i + 2

and hence, these terms do not contribute when we calculate the ith time derivatives of
μ(t) using (16).

Generally it is not possible to find γm for which (18) holds exactly. We will therefore
relax this condition and simply demand the following

μ(t0) = ν(t0) and
diμ(t)

dt i

∣
∣
∣
∣
t=t0

= diν(t)

dt i

∣
∣
∣
∣
t=t0

+ E
[
εi

(
x(t0)

)]
, (21)

∀i ∈ {1,2, . . .}, where each element of the vector εi(x(t0)) is a polynomial in x(t0). One

can think of (21) as an approximation to (18) that is valid as long as diμ(t)

dti
|t=t0 dominates
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E[εi(x(t0))]. The following theorem summarizes the main result (see proof in Appen-
dix B, Singh and Hespanha, 2006).

Theorem 2. Let γm, m ∈ {1, . . . , n} be chosen as

γm = (−1)n−mCn+1
m . (22)

Then, for every deterministic initial condition ν(t0) = μ(t0) = [x0, x
2
0 , . . . , x

n
0 ]T , x0 ≥

n + 1 that corresponds to x(t0) = x0 with probability one, we have that

dμ(t)

dt

∣
∣
∣
∣
t=t0

= dν(t)

dt

∣
∣
∣
∣
t=t0

(23a)

d2μ(t)

dt2

∣
∣
∣
∣
t=t0

= d2ν(t)

dt2

∣
∣
∣
∣
t=t0

+ ε2(x0), (23b)

where diμ

dti
and di ν

dti
denote the ith time derivative of μ and ν along the trajectories of

the systems (16) and (17), respectively, and the nth element of the vector ε2(x0) is a
polynomial in x0 of degree 2 with all other elements being zero.

Remark 1. Using (10) and (15) it can be shown that d2μn(t)

dt2 is a linear combination of

moments of x up to order n + 2 and therefore d2μn(t)

dt2 |t=t0 is a polynomial in x0 of degree
n + 2. We thus conclude from Theorem 2 that2

εn
2 (x0)

d2μn(t)

dt2 |t=t0

= O
(
x−n

0

)
(24)

where εn
2 (x0) is the nth element of ε2(x0). This shows that the term d2μn(t)

dt2 |t=t0 dominates
εn

2 (x0) by x−n
0 .

Remark 2. It can be verified that the SDM moment closure function also matches deriva-
tives of degree higher than 2 in (23a), (23b) with small errors. For example for n ∈ {2,3,4}
and i ∈ {2, . . . ,9}, we have

dμ(t)

dt

∣
∣
∣
∣
t=t0

= dν(t)

dt

∣
∣
∣
∣
t=t0

, (25a)

diμ(t)

dt i

∣
∣
∣
∣
t=t0

= diν(t)

dt i

∣
∣
∣
∣
t=t0

+ εi(x0), (25b)

and as in (24) the elements of vector diμ(t)

dti
|t=t0 dominate the corresponding elements

of εi(x0) by x−n
0 . We conjecture that the above equality holds ∀n ∈ N and ∀i ∈ N but

we only verified it for n up to 4 and i up to 9. Hence, with increasing n, the truncated

2We recall the “big-O” notation, according to which f (z) = O(g(z)) means that ∃z0,M > 0 such that
|f (z)| ≤ M|g(z)|, ∀z ≥ z0.
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moment dynamics ν(t) should provide a more accurate approximations to the lower order
moments μ(t).

Remark 3. Table 1 shows the functions ϕs
n+1 corresponding to γm chosen according

to (22) for n = 2, 3 and 4. The dependence of μn+1 on lower order moments μ1, . . . ,μn

as given by the SDM moment closure function, is consistent with x(t) being lognormally
distributed (see Example 3, Section 5, Singh and Hespanha, 2006, for details).

5. Distribution-based moment closures

Most moment closure techniques that appeared in the literature start by assuming spe-
cific distributions for the population, and use this assumption to express higher or-
der moments as a function of the lower order ones. This has been done for well
known classes of distributions, such as normal (Whittle, 1957; Matis and Kiffe, 1996;
Nåsell, 2003b), lognormal (Keeling, 2000), Poisson and binomial (Nåsell, 2003a), and
for these distributions we simply say that ϕn+1 is the normal, lognormal, Poisson, or bi-
nomial moment closure function.

For a second order truncation (n = 2), Table 2 lists several moment closure functions
for μ3, including the SDM. Nåsell–Poisson refers to the Poisson moment closure func-
tion proposed by Nåsell (2003a), while new-Poisson refers an alternative Poisson moment
closure function that we propose, which as we will see in the next section, performs bet-
ter than the one proposed by Nåsell (2003a). The explanation for this lies in the fact that
the new-Poisson has better derivative matching properties than the Nåsell–Poisson, in the
sense of (21). In the sequel we use superscripts s, l, g, p1, p2 and b to denote SDM, log-
normal, normal, Nåsell–Poisson, new-Poisson and binomial moment closure functions,
respectively. In most of the literature, moment closure for orders of truncation higher than
2 (n ≥ 3), is typically done by assuming a normal distribution for the population (Matis
and Kiffe, 1996; Nåsell, 2003a). Then, using the property of the normal distribution that
all 3rd and higher order cumulants are zero, one obtains a normal moment closure func-
tion by setting the (n + 1)th order cumulant equal to zero. We recall that the third and

Table 2 Moment closure functions for second order truncation (n = 2), corresponding to the different
moment closure techniques discussed in this paper

Moment Closure Technique Moment Closure Functions

SDM ϕs
3(μ) = μ3

2
μ3

1
Normal ϕ

g
3 (μ) = 3μ2μ1 − 2μ3

1

Lognormal ϕl
3(μ) = μ3

2
μ3

1

Nåsell–Poisson ϕ
p1
3 (μ) = μ1 + 3μ1μ2 − 2μ3

1

New-Poisson ϕ
p2
3 (μ) = μ2 − μ2

1 + 3μ1μ2 − 2μ3
1

Binomial ϕb
3 (μ) = 2

(μ2−μ2
1)2

μ1
− (μ2 − μ2

1) + 3μ1μ2 − 2μ3
1
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fourth order cumulants can be expressed in terms of the uncentered moments as follows:

κ3 = μ3 − 3μ1μ2 + 2μ3
1, κ4 = μ4 − 4μ1μ3 − 3μ2

2 + 12μ2μ
2
1 − 6μ4

1.

For n = 3, this leads to the following normal moment closure functions for μ4

ϕ
g

4 (μ) = 4μ1μ3 + 3μ2
2 − 12μ2μ

2
1 + 6μ4

1.

The reader is referred to Singh and Hespanha (2006) for the derivations of the above mo-
ment closure functions and a detailed discussion on distribution-based moment closures.

6. Comparison of transient performance of moment closures

In this section, we compare the transient performance of different moment closure tech-
niques using the error

en+1(t) := μn+1(t) − ϕn+1
(
μ(t)

) =
∞∑

i=0

(t − t0)
i

i! εi
n+1(x0), (26)

where

εi
n+1(x0) := diμn+1(t)

dt i

∣
∣
∣
∣
t=t0

− diϕn+1(μ(t))

dt i

∣
∣
∣
∣
t=t0

. (27)

We call εi
n+1(x0) the derivative matching error. Ideally, one would like to have εi

n+1(x0) =
0, but as already pointed out in Section 4, this is generally not possible. With deterministic
initial conditions μ∞(t0) = [x0, x

2
0 , x

3
0 , . . .]T , as in Theorem 2, the derivative matching

error is typically a polynomial in x0. The lesser the order of this polynomial, the better is
ϕn+1(μ) in approximating μn+1.

6.1. Moment closures for n = 2

We recall from Table 2 that ϕl
3(μ) = ϕs

3(μ), and therefore we do not need to discuss log-
normal moment closure separately. By substituting ϕs

3(μ), ϕ
g

3 (μ), ϕ
p1
3 (μ), ϕ

p2
3 (μ) and

ϕb
3 (μ) from Table 2 in (26), (27), one obtains the corresponding derivative matching er-

rors, which will be denoted using the appropriate superscripts.
Using Table 2 and symbolic manipulation in Mathematica, we can show that

sε0
3(x0) = gε0

3(x0) = p2ε0
3(x0) = bε0

3(x0) = 0, (28a)

p1ε0
3(x0) = −x0, (28b)

∗εi
3(x0) ∈ Px0(i + 1), ∗ = {s, g,p1,p2, b}, ∀i ∈ {1,2, . . .} (28c)

where Px0(j) denotes the set of polynomials in x0 of degree j . Since p1ε0
3(x0) = −x0,

the Nåsell–Poisson moment closure function will have a large initial error, especially for
large initial conditions, when compared to all other moment closure functions. For all
i ∈ {1,2, . . .}, all of these moment closure functions match derivatives, with the derivative
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matching error being of the same order in x0. The simulation results discussed below show
that with the exception of Nåsell–Poisson moment closure function, which consistently
provides the worst estimates, all other moment closure functions perform fairly well.

Example. We consider the stochastic logistic model with

a1 = 0.30, a2 = 0.02, b1 = 0.015, b2 = 0.001, (29)

which is used by Matis et al. (1998) to model the population dynamics of the African
honey bee. Using (17) with the matrices A and B computed in (10), we have the following
truncated moment dynamics

[
ν̇1

ν̇2

]

=
[

0.28 −0.016
0.32 0.546

][
ν1

ν2

]

−
[

0
0.032

]

ϕ3(ν).

The time evolution of the moments corresponding to different moment closure techniques
is obtained by substituting the appropriate moment closure function from Table 2 in place
of ϕ3(ν). In order to evaluate the performance of these moment closure functions for all
time, we compute the exact evolution of the moments μ(t). This is only possible because
the population limit U = 25 is small and one can obtain the exact solution by numerically
solving (6). Figures 1 and 2 contains plots of the mean and variance errors, respectively,
for the different moment closure functions with x0 = 5 and x0 = 20. For x0 = 20 the
binomial moment closure function provides the best estimate both initially and at steady-
state, whereas, for x0 = 5 the new-Poisson moment closure function does best initially, but
the binomial moment closure function continues to provide the most accurate steady-state
estimate. As one would expect from (28), the Nåsell–Poisson moment closure function
performs the worst.

6.2. Moment closures for n = 3

In this section, we propose a new moment closure function given by

ϕz
4(μ) = 4μ1μ3 + 3μ2

2 − 12μ2μ
2
1 + 6μ4

1 + μ2 − μ2
1 (30)

and refer to it as the zero first-order error moment closure function. For comparison pur-
pose we recall from Table 1 and Section 5 that the SDM and normal moment closure
functions for n = 3 are given by

ϕs
4(μ) = μ4

1μ
4
3

μ6
2

, (31)

ϕ
g

4 (μ) = 4μ1μ3 + 3μ2
2 − 12μ2μ

2
1 + 6μ4

1, (32)

respectively. The above moment closure functions yield the following derivative matching
errors:

∗ε0
4(x0) = 0, ∗ = {g, s, z}, (33a)

zε1
4(x0) = 0, †ε1

4(x0) ∈ Px0(2), † = {g, s}, (33b)

∗εi
4(x0) ∈ Px0(i + 1), ∗ = {g, s, z}, ∀i ∈ {1,2, . . .}. (33c)
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Fig. 1 Evolutions of the mean error μ1 − ν1 and of the variance error (μ2 − μ2
1) − (ν2 − ν2

1 ) for the
different moment closure functions in Table 2 for n = 2, with parameters as in (29) and x0 = 5.

From (33a–33c) one can see the following:

• The normal moment closure function also performs derivative-matching yielding the
same order of derivative matching error as the SDM moment closure function, and
hence, provides reasonably good estimates for μ4.

• Unlike the other moment closure functions, the zero first-order error moment closure
function yields zero 0th and 1st order derivative matching error, and hence, provides
the best estimates for μ4, at least near t = 0.

In order to confirm our predictions above that were based on the expressions (33a–
33c), we consider the stochastic logistic model with parameters as in (29), n = 3 and
x0 = 20. Using (10), we have the following truncated moment dynamics

⎡

⎣
ν̇1

ν̇2

ν̇3

⎤

⎦ =
⎡

⎣
0.28 −0.016 0
0.32 0.546 −0.032
0.28 0.944 0.798

⎤

⎦

⎡

⎣
ν1

ν2

ν3

⎤

⎦ −
⎡

⎣
0
0

0.048

⎤

⎦ϕ3(ν).

Substituting the moment closer functions (30–32) in place of ϕ3(ν), we obtain the cor-
responding approximate time evolution of moments. Figure 3 contains plots of the mean
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Fig. 2 Evolutions of the mean error μ1 − ν1 and of the variance error (μ2 − μ2
1) − (ν2 − ν2

1 ) for the
different moment closure functions in Table 2 for n = 2, with parameters as in (29) and x0 = 20.

and variance errors. As expected, both the normal and SDM moment closure functions
provide good estimates. One can also see that the zero first-order error moment closure
function (30), which guarantees the best approximation near t = 0 actually provides in
this case the most accurate estimate for μ4 for all time.

Comparing the plots in Figs. 2 and 3, we observe that the mean and variance errors for
x0 = 20 obtained with a third order truncation (n = 3) are an order of magnitude smaller
than the ones obtained with a second order truncation (n = 2).

7. Steady-state solutions of the truncated moment dynamics

We now show that the SDM moment closure leads to a unique positive equilibrium for
the truncated dynamics (17) and provide analytical expressions for this equilibrium.
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Fig. 3 Evolutions of the mean error μ1 − ν1, variance error (μ2 − μ2
1) − (ν2 − ν2

1 ) for the different
moment closure functions (30–32) for n = 3, with parameters as in (29) and x0 = 20.

Consider the truncated moment dynamics of degree n ≥ 2 with the moment closure
functions given in Table 1. From (17), the steady-state solution ν(∞) can be computed
by solving

0 = Aν(∞) + Bϕs
n+1

(
ν(∞)

)
(34)

where the coefficient of the matrices A,B can be deduced from (10). Solving these equa-
tions, we obtain

ν2(∞) = c1ν1(∞), (35a)

...

νn(∞) = cn−1ν1(∞), (35b)

ϕs
n+1

(
ν(∞)

) = cnν1(∞), (35c)
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for appropriate positive real numbers c1, . . . , cn. In terms of the parameters a1, b1, a2 and
b2, the first three constants c1, c2, c3 are given by the following expressions

c1 = K, c2 = K2 + σ 2, c3 = K3 + 3Kσ 2 + σ̄ σ 2

K = a1 − a2

b1 + b2
, σ 2 = a1b2 + b1a2

(b1 + b2)2
, σ̄ = b2 − b1

b2 + b1
.

From (35) and Table 1 we obtain the following steady-state values for ϕs
n+1(ν(∞)), n ∈

{2,3,4, . . .}:

ϕs
3

(
ν(∞)

) = c3
1, ϕs

4

(
ν(∞)

) = c4
2

c6
1

ν1(∞)2, ϕs
5

(
ν(∞)

) = c10
1 c5

3

c10
2

. (36)

Substituting (36) in (35) yields the following unique nontrivial solutions for the steady-
state mean ν1(∞)

ν1(∞) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c3
1

c2
= K

1+ σ2

K2

, n = 2,

c6
1c3

c4
2

= K(1+ 3σ2

K2 + σ̄ σ2

K3 )

(1+ σ2

K2 )4
, n = 3,

c10
1 c5

3
c10

2 c4
, n = 4.

The corresponding high-order uncentered moments ν2(∞), . . . , νn(∞) can be calculated
from (35). We conclude that the SDM moment closure function always yields a unique
nontrivial positive, real, steady-state for every truncation order n ≥ 2. Moreover, the
separable structure of the SDM moment closure leads to analytical expressions for the
steady-state moments. In contrast, finding the steady-state moments for the normal mo-
ment closure requires solving an nth degree polynomial in ν1(∞) and then identifying the
biologically relevant steady-state among the n roots of the polynomial. For n > 2 this can
generally only be done numerically and one does not obtain analytic expressions for the
steady-state moments (Matis and Kiffe, 1996).

8. Conclusion and future work

A procedure for constructing moment closures for the stochastic logistic model was pre-
sented. This was done by first assuming a separable form for the moment closure function
ϕn+1(ν), and then, matching its time derivatives with μn+1, at some initial time t0 for
a basis of initial conditions x(t0) = x0. We showed that there exists a unique separable
derivative-matching moment closure function for which the ith order derivative matching
error is a polynomial in x0 of degree i + 1 for all i ∈ {1,2, . . .} and zero for i = 0. Explicit
formulas to construct these moment closure functions for arbitrary order of truncation
n were provided with higher values of n leading to better approximation of the actual
moment dynamics.

The separable structure of this moment closure greatly simplified the process of find-
ing the steady-state of the truncated moment dynamics which were always unique, real,
and positive. Comparisons with alternative moment closure techniques available in liter-
ature illustrated how derivative matching can be used as an effective tool for gauging the
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performance of moment closure functions. We showed that for n = 2, with the exception
of the Nåsell–Poisson, all other moment closure functions in Table 2 perform derivative
matching and provide fairly good estimates for μ3. For n = 3, a new zero first-order error
moment closure function was also proposed, guaranteeing better approximations, at least
locally in time, as compared to the other moment closure techniques discussed in this
paper.

The truncated moment dynamics presented in this paper only capture the quasi-
stationary distribution and do not provide information about the time taken to reach ex-
tinction. Finding alternative moment closure techniques that provide information about
extinction is a subject for future research. Another direction for future research is the ex-
tension of the results in this paper to multi-species birth-death Markov processes. Primary
results on this topic can be found in Hespanha and Singh (2005).
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