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Abstract For a system of biochemical reactions, it is known from the work of T.G.
Kurtz [J. Appl. Prob. 8, 344 (1971)] that the chemical master equation model based
on a stochastic formulation approaches the deterministic model based on the Law
of Mass Action in the infinite system-size limit in finite time. The two models, how-
ever, often show distinctly different steady-state behavior. To further investigate
this “paradox,” a comparative study of the deterministic and stochastic models of a
simple autocatalytic biochemical reaction, taken from a text by the late J. Keizer,
is carried out. We compute the expected time to extinction, the true stochastic
steady state, and a quasistationary probability distribution in the stochastic model.
We show that the stochastic model predicts the deterministic behavior on a rea-
sonable time scale, which can be consistently obtained from both models. The
transition time to the extinction, however, grows exponentially with the system
size. Mathematically, we identify that exchanging the limits of infinite system size
and infinite time is problematic. The appropriate system size that can be consid-
ered sufficiently large, an important parameter in numerical computation, is also
discussed.

Keywords Stochastic models · Nonlinear · Chemical kinetics · Quasistationary ·
Uniform convergence

1. Introduction

Mathematical models provide quantitative characterizations of chemical and bio-
chemical reaction kinetics (Érdi and Tóth, 1989; Epstein and Pojman, 1998). Tra-
ditional chemical kinetics in aqueous solutions, in terms of the concentrations
as function of time, are usually modeled by deterministic differential equations
based on the Law of Mass Action. Such models give satisfactory predictions for
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well mixed, macroscopic reaction systems. One of the most celebrated examples is
the Oregonator: the mathematical theory for the Belousov–Zhabotinsky reactions
(Noyes and Field, 1974; Epstein and Pojman, 1998; Murray, 2002).

Mathematical modeling of biochemical reaction systems in a living cell, how-
ever, requires a different approach. Many biochemical reactions responsible
for signal transduction and gene regulations inside living cells involve protein
molecules with only a small number of copies (Smolen et al., 2000; Turner et al.,
2004). The fluctuations in the number of molecules may be of biological signifi-
cance (Paulsson et al., 2000; Samoilov et al., 2005). Kinetics of such reactions, thus,
are more realistically described by stochastic models which emphasize the discrete
nature of molecular reactions and the randomness of their collisions (Érdi and
Tóth, 1989).

The mathematical basis for stochastic chemical kinetics is the discrete-state,
continuous-time Markov jump processes, known as birth-death processes in the
probability literature (Taylor and Karlin, 1998) and master equations in the physics
literature (Schnakenberg, 1976). This tradition began in the 1930s with the work
of M.A. Leontovich for gas phase reactions (Leontovich, 1935) and was contin-
ued, sometime independently, by A.J.F. Siegert, M. Kac, M. Delbruck, A. Renyi,
M. Lax and D.A. McQuarrie, among others. Comprehensive reviews of some of
the history of this formulation can be found in McQuarrie (1967), Érdi and Tóth
(1989), and Keizer (1987).

Stochastic simulations of complex chemical reaction systems were realized in
the early 1970s (Sipos et al., 1974a,b). Current software packages used for the sim-
ulation of biochemical reactions commonly make use of algorithms based on the
influential work of Gillespie (1976, 1977). An analytical solution to stochastic, open
unimolecular reaction networks can be found in Heuett and Qian (2006). It is not
possible, in general, to obtain analytical solutions to an open, non-unimolecular
reaction system.

The relation between the stochastic theory of chemical kinetics and its deter-
ministic counterpart has been extensively studied by Kurtz (1971, 1972) who has
shown that in the limit of large system size and number of molecules (i.e. ther-
modynamic limit), the stochastic model becomes the expected deterministic ordi-
nary differential equation (ODE). Furthermore, solutions with given initial values
to the stochastic model approach to the respective solutions to the ODE (Kurtz,
1971; Ethier and Kurtz, 1986). Approximating the stochastic jump processes by
diffusion processes with continuous fluctuations, however, is still not well under-
stood (Hänggi et al., 1984; Baras et al., 1996; Ashih, 2001). The delicate issue is
related to exchanging the limits for large number of molecules and for long time
(Luo et al., 1984).

As the mathematical foundation of chemical reaction theory therefore, the
chemical master equation approach has superceded the traditional deterministic
models. Within the stochastic formulation, however, one of the unsolved theoret-
ical problems is how to asymptotically obtain steady-state fluctuations in the limit
of large system size. A resolution to this problem will significantly extend the va-
lidity of the stochastic approach to biochemical reaction systems in cells.

Interestingly, the issue of exchanging limits is also present even between a
stochastic jump process and the ODE model. It is intimately related to the time
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scales and how they depend upon the system size. This is most tellingly illus-
trated, through an example, by the late Professor Keizer in his wonderful text on
nonequilibrium statistical thermodynamics (Keizer, 1987). The long-time behav-
ior predicted by the stochastic model, if not interpreted properly, appears in direct
disagreement with that of the ODE model. It was concluded that “A weakness of
the master equation formulation is that if used uncritically, it can lead to physically
meaningless results” (Keizer, 1987, p. 164).

In this paper, we present an extended analysis of the limiting processes of large
N and large t through the stochastic mathematical technique known as quasista-
tionarity (Allen, 2003). This technique has been used to resolve similar paradoxical
issues in models involving population biology (Reddy, 1975; Nasell, 2001). The is-
sue has not been as closely studied in terms of chemical reactions however. For
example, in a comparison of deterministic and stochastic models of intracellular
kinetics (Srivastava et al., 2002), extinction was noted as a possibility only in the
stochastic model but its significance was not throughly discussed. The model pre-
sented here is meant to give a deeper understanding of the problem.

This paper is organized as follows. In Section 2, both the deterministic and
stochastic models are analyzed; their steady states obtained. Materials in this sec-
tion are elementary; nevertheless they are included for completeness. In Section 3,
the time to extinction (i.e. the stochastic steady state), τm, is compared with the
time to quasistationarity (which corresponds to the deterministic steady state),
Tm, where m is the initial number of molecules in the system. It is shown that
with increasing volume size, V, τm increases exponentially while Tm remains con-
stant. Hence with sufficiently large V, that is, in the thermodynamic limit, the
quasistationary state becomes the de facto stationary state, and the probability
of approaching the stochastic stationarity becomes exponentially small. This is the
salient feature in the disagreement between the stochastic jump processes and its
diffusion processes approximation (Hänggi et al., 1984; Baras et al., 1996; Ashih,
2001). In Section 4, we discuss the significance of open system and irreversibility
in the “paradox.” In fact, for a closed system none of the above complex behavior
is possible. Section 5 provides conclusions and some discussions.

2. Deterministic and stochastic models: Steady-state analysis
and the Keizer’s paradox

Let us consider the autocatalytic reaction system

A+ X
k1�

k−1

2X, X
k2→ C. (1)

This is a modified version of Keizer’s original example which assumes k−1 = 0.
In this reaction, the molecule X acts as a catalyst in transforming an A molecule
into an extra X molecule. This reaction is reversed if two X molecules react and
form one X and one A molecule. The X molecule can also be transformed into a
C molecule by a unimolecular reaction, which is assumed to be irreversible. All
chemical reactions have to be reversible in reality; in our case the backward rate
constant in the second reaction is sufficiently small so it is negligible.
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The system in (1) is assumed to be in an open environment, that is, the number
of Amolecules, na , remains constant. This means the level of A is constantly being
monitored and a feedback system which controls the na exists. Therefore, while it
is unlikely, X can be continuously created from A just by chance. It follows that
there is no limit on the number of X in the stochastic system, in principle.

2.1. Deterministic model with the Law of Mass Action

The deterministic ODE model of this reaction is

dx
dt

= k1xa − k−1x2 − k2x, (2)

where a = [A], the concentration of chemical A, x = [X], the concentration of
chemical X, and k1, k−1, k2 are the reaction rate constants. This equation is derived
from the Law of Mass Action. The ODE system has two steady states:

x∗
1 = 0 and x∗

2 = k1a − k2

k−1
. (3)

We assume that a > k2
k1

.1 Thus, the first zero steady state is unstable and the second
positive one is stable (Murray, 2002).

The differential equation is separable and the explicit solution is (Murray, 2002):

x(t) = x0(k1a − k2)e(k1a−k2)t

k1a − k2 − k−1x0 + x0k−1e(k1a−k2)t
. (4)

It shows that if the concentration of X starts at either one of the values in Eq. (3), it
will never change. If the system starts from any other point, the concentration will
tend to the nonzero steady state x∗

2 = (k1a − k2)/k−1 as time tends toward infinity.
The explicit solution indicates that although x(t) tends toward x∗

2 , the concentra-
tion only reaches this value in the limit as time goes to infinity. For a more realistic
understanding of the solution, we can calculate how long it would take for x(t) to
come within a certain percentage of the steady state concentration. Substituting
the expression x∗

2 (1 − ε) for x(t) in Eq. (4) and solving for t , we have

t(ε, x0) =
ln

(
(1−ε)(k1a−k2−k−1x0)

x0k−1ε

)

k1a − k2
(5)

≈ −ε − ln(k1a − k2 − k−1x0) + ln(k−1) + ln ε

k1a − k2
, (6)

1When a < k2/k1, x∗
1 = 0 is the only physically meaningful steady state, which is stable. It is in-

teresting to note that k2/k1 has a dimension of [volume]−1. Hence, with decreasing system size,
k2/k1 increases. This observation suggests another way to compare the deterministic and stochas-
tic models while ak1/k2 are kept constant rather than ak1/k2 → 0 for small system.
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Fig. 1 Graph of concentration, x(t) versus time in the deterministic model, with initial value
x(0) = 1, according to Eq. (4). The parameter values are k1 = k−1 = k2 = 0.05, a = 100. Hence
x∗

2 = 99.

when ε is very small. The expression t(ε, x0) gives us the time that it takes an
initial condition x0 to come within 100ε% of the stable steady state concentration,
x∗

2 . Note that for a fixed initial condition, t(ε, x0) is asymptotically proportional to
− ln ε, which is expected from any exponential relaxation process.

Figure 1 illustrates the behavior of the deterministic solution for parameter
values k1 = k2 = k−1 = 0.55 and a = 100, using an initial condition of x(0) = 1.
Equation (5) shows that the concentration x(t) will reach 99.98% of the steady
state concentration before t = 0.25. The concentration here is considered in units
of (number of molecules)

(volume)
in order to match the units of the stochastic model in the

following sections.

2.2. Stochastic model with exponential reactions

In the stochastic model for the reactions in (1), one considers the reactions in
terms of their discrete, molecular events. That is, one considers the number of
molecules of X, n, as opposed to the continuous concentration, x = [X]. Because
of the Poissonian nature of the reaction, n is no longer a deterministic function of
time. Rather, it is a random variable. Instead of asking “What is the number of
molecules of X at time t?”, we should now ask “What is the probability of the
number of molecules of X being n at time t (called pn(t))?”. This corresponds to a
continuous-time, discrete-state Markov process with n = 0, 1, 2, . . . . According to
the Poissonian assumption, the number of molecules may only change by one at a
time (Taylor and Karlin, 1998).

The mathematics for the stochastic model is a set ordinary differential equa-
tions, known as the forward Kolmogorov equation, describing the change of the
probability pn(t) in time for each possible n. At each time step, there are three
contributions to the change in pn(t): the two forward reactions and the backward
reaction. Analogous to the deterministic model, each reaction is represented as
the reaction rate multiplied by the product of the amount of each reactant.
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Fig. 2 Probability change from state Pn, where na is the number of Amolecules.

The variable n in the stochastic model is related to the concentration x by

n = xV, (7)

where V is the volume of the system. This parameter appears implicitly in both
models of the system. For example, in the deterministic model, reaction rates k1

and k−1 have units of V/t , and k2 has units of 1/t . The reaction rates in the stochas-
tic model are related to these rates by

k̂1 = k1/V (8a)

k̂−1 = k−1/V (8b)

k̂2 = k2. (8c)

These reaction rates are scaled so that the units agree in the Kolmogorov forward
equation (see Eq. 9). Unless otherwise noted, we will use a value of V = 1 in cal-
culations for simplicity.

Figure 2 illustrates how the probability of each state n is affected by these reac-
tions. The change in each state, dpn

dt is the sum of the changes due to each of the
three reactions. Thus, the stochastic model is the system of equations:

dpo

dt
= k̂2 p1 (9a)

dpn

dt
= k̂1na(n − 1)pn−1 + (k̂−1n(n + 1) + k̂2(n + 1))pn+1

− (k̂−1n(n − 1) + k̂1nan + k̂2n)pn (9b)

...

where na represents the number of A molecules, which does not change in the
model.
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To find the steady state, we again set the equations dpn/dt = 0. This yields an
infinite set of homogeneous equations:

dp0

dt
= k̂2 p1 = 0 (10a)

dp1

dt
= (2k̂−1 + 2k̂2)p2 − (k̂1na + k̂2)p1 = 0 (10b)

dp2

dt
= k̂1na p1 + (6k̂−1 + 3k̂2)p3 − (2k̂−1 + 2k̂1na + 2k̂2)p2 = 0 (10c)

...

By induction, all probabilities pn for n > 0 are zero. Because the sum of all the
probabilities must add to one, this forces p0 = 1. So we have

p∗(0) = 1 and p∗(n) = 0, n > 0 (11)

as the probability distribution for the unique steady state of the stochastic model.
Note that the steady state of the deterministic model are fixed points, and the
steady state of the stochastic model has a distribution.

The stochastic model shows that eventually there will be no X left in the system.
This is in striking contrast to the previous deterministic model, which predicts that
the concentration of X will stabilize at the nonzero x∗

2 , while x∗
1 = 0 is unstable.

This is the Keizer’s paradox.
We introduce the Keizer’s paradox because the mathematical problem in the

current example, though extremely simplistic, is at the core of the more general
problem of approximating the discrete, master equation approach to biochemical
kinetic systems with continuous Langevin dynamics with Fokker–Planck equation,
that is, concentrations with fluctuations. Recent advances in system biology model-
ing of cellular biochemical reaction networks have been based on both approaches,
but their consistency has been seriously questioned (McAdams and Arkin, 1999).
Understanding the mathematical origin of the disagreement between the stochas-
tic jump processes and its diffusion processes approximation is essential in devel-
oping a sound stochastic modeling framework of cellular biochemical reaction sys-
tems. From this perspective, the Keizer’s paradox remains to be investigated for
the more general stochastic kinetic models.

3. Analysis of the stochastic model: Time to extinction and quasistationary state

Should we interpret the inconsistency between the long-time behaviors of the
stochastic and deterministic models simply as a “weakness of the stochastic ap-
proach” (Keizer, 1987), or something more insightful? We realize that the ODE in
Eq. (2) can be rewritten in the form

dx
dt

= r x
(

1 − x
K

)
, (12)
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where r = k1a − k2 and K = k1a−k2
k−1

. This equation is commonly known in the field
of population biology as the logistic growth model, with growth rate r and carrying
capacity K. As our previous analysis indicated, there are two steady states: the
unstable equilibrium x∗

1 = 0 and the stable equilibrium x∗
2 = K.

Population biologists have also been interested in the problem of population ex-
tinction. To address this problem, the stochastic version of the logistic population
growth (Nasell, 2001) in terms of a birth and death process (Taylor and Karlin,
1998) has been studied (Allen, 2003). The mathematical formulation is very sim-
ilar, but not identical to our Eq. (9). A general birth and death process has its
forward Kolmogorov differential equations in the form

dp
dt

= Qp(t), (13)

where p(t) = (p0(t), p1(t), . . . , pN(t))T and Q is called a generator matrix:

Q =

⎛
⎜⎜⎜⎝

−λ0 µ1 0 . . .

λ0 −λ1 − µ1 µ2 . . .

0 λ1 −λ2 − µ2 . . .
...

...
... . . .

⎞
⎟⎟⎟⎠ , (14)

where λi and µi are the birth and death rates at state i , respectively. For the present
problem, let the initial condition be X(0) = m so that pm(0) = 1 and pi (0) = 0 for
i �= m.

The birth and death models with Eq. (13) have a unique stationary distribution
(Taylor and Karlin, 1998):

πi = λ0λ1 · · · λi−1

µ1µ2 · · · µi
π0, i = 1, 2, . . ., (15)

where

π0 =
(

1 +
∞∑

i=1

)−1

, θi = λ0λ1 · · · λi−1

µ1µ2 · · · µi
(16)

For our chemical kinetic model, Eq. (9), the birth and death rates are

λi = k̂1nai . (17)

and

µi = k̂−1i(i − 1) + k̂2i, (18)

respectively. Hence, there is the inevitability of extinction since λ0 = 0.
In our reaction system (1), the “birth” rate λn is a linear function of popula-

tion size n because the bimolecular forward reaction A+ X → 2X involves the A
molecules with a fixed number na . The “death” rate µn is a quadratic function of
the population size because the backward reaction involves the reaction of two X
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molecules. As in the deterministic model, this quadratic term causes the stochastic
model to be similar to a logistic process. Since our λ0 = 0, this dictates πi = 0 for
all i �= 0. Thus, the unique stationary probability is

π̃ = (1, 0, . . . , 0)T. (19)

This is what we have previously concluded in Section 2.

3.1. Time to extinction and its expectation

The stochastic model predicts extinction of X molecules as the long-term behav-
ior. How long will it take when the number of molecules is very large? Would it be
possible that a nonzero quasisteady state exists in a more reasonable time? This is
the focus of this paper. The following theorem gives the expectation of the (ran-
dom) time it takes for a birth and death process to reach its extinction (Allen, 2003,
pp. 240–241):

Theorem 1. Suppose X(t), t ≥ 0, is a continuous time, discrete space birth and
death chain with X(0) = m ≥ 1 satisfying λ0 = µ0 = 0 and λi > 0 and µi > 0 for
i = 1, 2, . . . , N. The expected time until extinction, τm, satisfies

τm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
µ1

+
∞∑

i=2

λ1···λi−1
µ1···µi

m = 1

τ1 +
m−1∑
s=1

[
µ1···µs
λ1···λs

∞∑
i=s+1

λ1···λi−1
µ1···µi

]
m = 2, 3, . . . , N.

(20)

Note we are guaranteed convergence of the infinite series through the ratio test
because the λi terms are linear and the µi terms are quadratic. However, a more
compact analytic expression for time to extinction is difficult to obtain. In Nasell
(2001), it is shown that for the stochastic logistic model studied on a finite domain
(i.e. n ∈ {0, 1, 2, . . . , N}), the time to extinction grows exponentially with the size
of the domain (the parameter N). In our case, the domain size is infinite, and our
“size” parameter is the system volume, V. There is strong numerical evidence that
the time to extinction in this case grows exponentially with volume (see below).
An analytical result will hopefully be obtained in future work.

When numerically computing the time to extinction and the quasistationary
steady state in the section below, we must truncate the infinite sum at some finite
value, N. Because the value of τ1 may change drastically depending on the size of
N, it is necessary to use a sufficiently large value in order to obtain accurate results.
The choice can be made based on a knowledge of how τ1 depends upon N, as il-
lustrated here. Using parameter values of k1 = k2 = k−1 = .55, and na = 100, the
expected time to extinction was calculated on Matlab for various state space sizes,
N = 1 to N = 300. The deterministic, stable steady state for these parameters is
x∗

2 = 99.
Figure 3 is a plot of τ1 against N. For values of N below the deterministic steady

state, the expected time to extinction is relatively low. For values of N at and above
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sizes, N. Note that the expected time to extinction quickly rises to O(1039) after N = x∗

2 .

N = x∗
2 = 99, τ1 increases very quickly toward a constant value of almost 5 × 1039.

Thus, we require that N be “sufficiently larger” than the deterministic steady state,
a concept which is quantified later in this paper (see Eq. 30).

Using a state space of N = 300 (and the same reaction rates as before), we can
calculate values of τ1 numerically for different volume sizes. Figure 4 shows a semi-
logarithm plot of the system volume, V, versus the log of the time to extinction,
log(τ1). The straight line shows an exponential relationship between volume size
and time to extinction.

3.2. Quasistationary state and conditional probability

The steady-state distribution of the stochastic model does not make a good pre-
diction of the behavior of the reaction (1). This is because the expected time to
extinction is very long. Hence, it helps to consider an approximately stationary dis-
tribution in a reasonable time, if possible. Since the rate of extinction is very small,
one is naturally interested in whether there exists a “quasistationary” probability
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distribution of X(t), given that there is still some X in the system. This is defined
as

qn(t) = P{X(t) = n|X(t) > 0} = pn(t)
1 − p0(t)

, n = 1, 2, . . . . (21)

The steady-state distribution for the sequence qn(t) is called the quasistationary
steady state of pn(t). The explicit distribution cannot be determined analytically
because of the nonlinear nature of the model (Nasell, 2001). However, it can be
approximated by using the assumption µ1 = 0, thereby eliminating the possibility
of extinction.

Under the assumption µ1 = 0, the forward Kolmogorov differential equations
are reduced by one dimension, yielding the system

dq
dt

= Q̂q(t), (22)

where q(t) = (q1(t), q2(t), . . . , qN(t))T and Q̂ is the matrix Q (Eq. 14) with the first
row and column removed:

Q̂ =

⎛
⎜⎝

−λ1 µ2 0 . . .

λ1 −λ2 − µ2 µ3 . . .

0
... . . .

...

⎞
⎟⎠ . (23)

Again, the steady state satisfies an infinite array of simultaneous equations de-
scribed in Eq. (15). Stated recursively, the steady state is given by

π̂i+1 = λi

µi+1
π̂i i = 1, 2, . . . (24)

with the added restriction that the π̂i must sum to 1 (Eq. 16).
To compute the quasistationary steady state numerically, we first assume that

the state space is of a finite size, N. The steady state can then be found by solving
the linear system

Aπ̂ = b (25)

where A is the N × N matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1 1
λ1
µ2

−1 0 · · · 0

0 λ2
µ3

−1 · · · 0
... 0 λ3

µ4
−1 0

0 · · · 0 λN−1
µN

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(26)
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Fig. 5 Quasistationary distribution of the reaction using parameters k1 = k−1 = k2 = 0.55, na =
100, and N = 300.

and π̂ and b are the N × 1 vectors, π̂ = (π̂1, π̂2, . . . , π̂N)T and b = (1, 0, . . . , 0)T.
The matrix Ahas N pivots and is therefore nonsingular, which guarantees a unique
quasistationary steady state. The steady state can be expressed as

π̂ = A−1b. (27)

The calculation of A−1 can become tedious as N becomes large. However, the
limiting behavior of the distribution π̂ can be observed using a state space suffi-
ciently larger than the deterministic steady state, as illustrated by numerical exam-
ples. Figure 5 shows the quasistationary distribution of the reaction using the same
parameter values as Fig. 3, with state space N = 300.

The mean of this distribution can then be expressed as

E{X} =
N∑

i=1

i π̂i = cA−1b, (28)

where c is the 1 × N vector c = (1, 2, . . . , N).
As N becomes large, the distribution π̂ approaches a discrete normal distribu-

tion. The mean of the distribution, n∗, is very close to the predicted nonzero deter-
ministic steady state x∗. However, even for very large N, the mean is always slightly
lower than x∗. The variance can be approximated by the expression (Nasell, 2001):

σ 2 = λn∗

µ′
n∗ − λ′

n∗
, (29)

where µ′
n and λ′

n are the derivatives of µn and λn with respect to n, respectively.
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Fig. 6 Mean and variance of the quasistationary steady state for the same parameter values as
Fig. 3.

This approximately normal behavior occurs only when the state space N is suf-
ficiently larger than the deterministic mean. To quantify this, we calculate how far
the normal distribution stretches to the right, up to a certain tolerance. If we con-
sider the end of the distribution to occur when P(X = n) < δ, then the minimum
size N required is

N = n∗ +
√

−2σ 2 ln(δσ
√

2π). (30)

Using the value δ = 10−5 with the data from Fig. 5, we require that the state space
N be at least 140 to get an approximately normal distribution. From Fig. 5, we
see that N = 140 would be a sufficiently large interval to contain the bulk of the
distribution.

The cut-off value of N given in Eq. (30) also serves as a good truncation value
in calculating the infinite sum associated with the time to extinction, τ1. The com-
ponents π̂i of the quasistationary steady state defined in Eq. (24) are actually the
terms of the sum in τi (see Eq. (20)) scaled by π̂1. Thus, Fig. 5 also gives us an
idea of how quickly the infinite sum will converge, and the value N is a reasonable
number of terms to use.

Figure 6 illustrates the behavior of the mean and standard deviation for in-
creasing values of N, using the same parameters before, k1 = k−1 = k2 = 0.55 and
na = 100. Again, the deterministic steady state is x∗ = 99, and both the mean and
variance become relatively constant as the state space size surpasses the determin-
istic steady state.

3.3. First passage time to quasistationary state

We have shown that the expected time to extinction for a system starting with one
molecule is a very large number. However, given that extinction has not occurred,
we have shown the system exhibits a quasistationary steady state. For comparison,
we now consider how long it takes the system to reach this state, starting with one
molecule.
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In a birth and death process, the time it takes for the system to go from one state
to another is called the first passage time. The expectation of the first passage time
from state a to state b can be expressed as E(Tb,a). It can be calculated by adding
up the expected times for each one-state jump:

E(Tb,a) = E(Ta+1,a) + E(Ta+2,a+1) + · · · + E(Tb,b−1). (31)

To estimate the expected first passage time (from the initial condition of 1
molecule) to the quasistationary steady state, we look at E(Tx∗,1) where x∗ is the
mean of the quasistationary steady state distribution, which can be calculated by
Eq. (28). The mean of this distribution is rounded off to the nearest integer so that

E(Tx∗,1) =
x∗∑

i=2

E(Ti,i−1). (32)

The interevent time for a birth and death process is exponential with a mean of
1

λi +µi
(Allen, 2003), so that the probability of going from i to i + 1 is λi

λi +µi
and the

probability of going from i to i − 1 is µi
λi +µi

. This gives the recursive relation

E(Ti+1,i ) = 1
λi

+ µi

λi
E(Ti,i−1), (33)

which can be used in Eq. (32) to calculate the expected time for the number of
molecules to reach the quasistationary steady state.

Using the same parameter values as in the previous figures, we have that

E(T99,1) = .1309.

Comparing this to the expected time to extinction, which is O(1039), we know the
quasistationary steady state will be reached almost immediately. Using Eq. (5)
from the deterministic model, we also have

t(.073, 1) = .1309.

The amount of time it takes the stochastic model to reach its quasistationary steady
state is about the same amount of time it takes the deterministic model to reach
92.7% of its steady state, starting from the same initial condition (one molecule).

3.4. Spectral analysis of the generator matrix

At the beginning of this section, we calculated the first passage time from n = 1
to n = 0, referred to as the time to extinction. Because 0 is an absorbing (steady)
state, once it is reached, the system remains in that state. However, in general the
first passage time only tells us how long it takes to reach a state, not how long the
system remains in that state. Through a spectral analysis of the generator matrix
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Q (see Eq. 14), we will show that in addition to being reached quickly, the quasis-
tationary state is the dominant state over a long but finite time scale.

The stochastic formulation of our original problem (i.e. before the quasistation-
ary analysis) is

dp
dt

= Qp(t), (34)

where Q is the generator matrix. If we include the initial condition p(0), the exact
solution can be written as

p(t) = p(0) exp(Qt), (35)

where exp(Qt) refers to the matrix exponential,

exp(Qt) = 1 + (Qt) + (Qt)2

2!
+ (Qt)3

3!
+ · · · . (36)

This solution can also be expressed in terms of a linear combination of the eigen-
vectors:

p(t) = c1eλ1tv1 + c2eλ2tv2 + · · · , (37)

where the λi are the eigenvalues of Q with corresponding eigenvectors vi , and the
ci are determined by the initial condition.

Because all the entries of Q have the property that 0 ≤ Qi j ≤ 1 and �∞
i=1 Qi j = 0,

we know from Chung (1967) that the largest eigenvalue of Q is 0, and that it is
unique. All other eigenvalues are negative and real. For our problem, since the
birth rate λ0 = 0 (not to be confused with the eigenvalues λi ), the eigenvector
corresponding to the zero eigenvalue is v1 = (1, 0, 0, 0, . . .). Since this is the only
nonnegative eigenvalue, this eigenvector is the only one which remains in the limit
t → ∞. This is also the steady-state vector found in Eq. (19).

If we again truncate the problem so that Q has finite dimension, we can calculate
the eigenvectors and eigenvalues for Q using the same parameter values as before.
A list of the first few largest eigenvalues can be found in Table 1. Note that the

Table 1 List of the first few largest eigenvalues of Q, using the same parameters
as in Fig. 5

Rank Value Rank Value

1 0 8 −152.5511
2 −8.6413 × 10−12 9 −197.7168
3 −53.3026 10 −198.2536
5 −104.2117 11 −238.0277
7 −152.5036 12 −243.1988

Note that double eigenvalues are not listed twice, making the rank row
discontinuous.
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Fig. 7 Eigenvectors corresponding to eigenvalues: (a) −8.6413 × 10−12, (b) −53.3026,
(c) −152.5036, (d) −243.1988.

second largest eigenvalue is many orders of magnitude larger than the third. This
implies that after a long but finite time, only the first and second eigenvectors will
persist. Figure 7 displays the eigenvectors for some of the eigenvalues in Table 1.
The eigenvectors have an interesting sign-switching property which is discussed in
Courant and Hilbert (1952). Most importantly, note the striking similarity of the
second eigenvector to the quasistationary steady-state in Fig. 5.

By calculating first passage times, we were able to show that the system will
reach the mean of the quasistationary steady state almost instantly, while the time
to extinction is exponentially large. Also, through an analysis of the spectrum
(eigenvalues) and eigenvectors of the generator matrix Q, we have shown that
over a long but finite time period, the system remains in the quasistationary steady
state. However, as time continues to infinity, the influence of this state will slowly
decline, leaving only the stationary steady-state of extinction.

4. Open systems, irreversibility and the origin of complexity

We now turn our attention to the significance of the assumptions made in the sim-
ple model (1). We note that the reaction X → C is assumed to be irreversible. This
can be accomplished in an open biochemical system in which the C is constantly
removed from the system while A is constantly supplied to the system. This turns
out to be essential for the complex behavior, that is, the disagreement between the
deterministic and stochastic models.

4.1. The uniqueness and global stability of deterministic equilibrium steady state

If a biochemical reaction system is in a closed vessel, then the long-time steady
state is a chemical equilibrium with zero flux in each and every reaction (Qian and



A Quasistationary Analysis of a Stochastic Chemical Reaction: Keizer’s Paradox 1743

Reluga, 2005). It is also important to note that in such a system, no reaction can be
irreversible, since no matter how small the k−2 is in the reaction

X
k2�

k−2

C,

the concentration of C ultimately will build up such that k−2[C]eq = k2[X]eq, where
[X]eq and [C]eq are equilibrium concentrations for the species X and C, respec-
tively.

One of the important characteristics of a closed biochemical reaction system is
that it has a unique, globally stable equilibrium point (fixed point) for the ODE
system based on the Law of Mass Action. It is also interesting to note that the
equilibrium steady-state distribution from the stochastic model has a unique max-
imum which coincides with the fixed point. Using the reaction in Eq. (1) as an
example, including the k−2 reaction, the equilibrium concentrations satisfy

[X]eq

[A]eq
= k1

k−1
,

[C]eq

[X]eq
= k2

k−2
, (38)

and the total number of molecules in the system [X] + [A] + [C] is a constant in
the closed system. It is easy then to show that

L([X], [A], [C]) ≡ [X] ln
[X]

[X]eq
+ [A] ln

[A]
[A]eq

+ [C] ln
[C]

[C]eq
, (39)

is a global Lyapunov function for the ODE system.
The concepts of equilibrium and nonequilibrium steady states are chemical con-

cepts rather than mathematical ones. Briefly, an equilibrium steady state (ESS) is
one in which there is no reaction flux. All reactions are balanced between their
forward and backward reactions, also known as detailed balance. This implies that
one can not model a system with equilibrium steady state with irreversible reac-
tions. It can also be shown that any closed system necessarily tends to an ESS. In
the contrary, if a system is coupled to its environment, then it tends to a nonequi-
librium steady state (NESS) with fluxes in reactions, balanced through sources and
sinks.

For a closed system, both the deterministic model with Law of Mass Action
and the stochastic model based on Gillespie’s approach will yield the same, stable
steady state. The possibility of divergence between the steady state of the ODE
system and that of stochastic model is due to multiple nonnegative fixed points.

5. Conclusion

Through a thorough analysis of the logistic stochastic model, we find that both
deterministic and stochastic methods of modeling the autocatalytic reaction (1)
predict a nonzero stationary concentration after a short amount of time. However,
when considering the behavior as time becomes very large, the two models begin
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to disagree. The deterministic model never moves from its nonzero steady state,
whereas the stochastic model predicts eventual extinction of the X molecule.

The relationship between these two models was established by Kurtz in a gen-
eral theory (Kurtz, 1971, 1972) in which a stochastic Markov chain model for a
general chemical reaction is studied alongside its deterministic counterpart. The
solution to the master equations is denoted by XV(t), where V is the volume of the
system, and the initial condition (in the thermodynamic limit) is

lim
V→∞

V−1 XV(0) = x0.

The solution to the initial value problem of the corresponding ODE model is de-
noted as X(t, x0). Kurtz has shown that the relationship between these two solu-
tions is

lim
V→∞

P{sup s≤t V−1 XV(s) − X(s, x0) > ε} = 0

for every t and ε > 0.
The reaction studied in this paper illustrates the subtlety of this statement. Our

analysis of the two models by solving for the steady states made the implicit as-
sumption that lim t → ∞ had been taken. However, the conclusion of Kurtz’s pa-
per does not allow us to exchange this limit with lim V → ∞ (i.e. N → ∞, where
the concentration (N/V) is held constant), since the solutions were proven to con-
verge pointwise but not uniformly. Therefore, when looking at the steady state
solutions of both equations we cannot expect them to agree. This work seems to
suggest the breakdown of uniform convergence near the unstable fixed point of
the ODE model.

This leads us to the question of what the long-term behavior of such a reac-
tion actually is. In Section 4, it was shown that an open system will tend toward a
nonequilibrium steady state, such as the quasistationary steady state in our exam-
ple. Even in this balanced state, the master equations allow for a slow extinction
of the X molecule because there is still a small probability of the second reaction
occurring. Since the deterministic model does not account for random fluctuations
in the system, it ignores this possibility after a long time and therefore excludes the
long-term behavior shown in the stochastic model.

Although the master equations are a more difficult and time consuming alterna-
tive to traditional ODE models of chemical reactions, they provide a richer char-
acterization of the systems dynamics. “The stochastic model is not an alternative
to the deterministic kinetics, it is a more complete kinetic description which is ca-
pable of modeling reactions with and without fluctuations” (Qian et al., 2002).
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Érdi, P., Tóth, J., 1989. Mathematical Models of Chemical Reactions: Theory and Applications of

Deterministic and Stochastic Models. Manchester University Press.
Gillespie, D., 1976. General method for numerically simulating stochastic time evolution of cou-

pled chemical reactions. J. Comput. Phys. 22, 403–434.
Gillespie, D., 1977. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81,

2340–2361.
Grasman, J., van Herwaarden, O.A., 1999. Asymptotic Methods for the Fokker-Planck equation

and the Exit Problem in Applications. Springer-Verlag, New York.
Hänggi, H.G., Talkner, P., Thomas, H., 1984. Bistable systems: master equation versus Fokker-

Planck modeling. Phys. Rev. A. 29, 371–378.
Heuett, W.J., Qian, H., 2006. Grand canonical Markov model: a stochastic theory for open

nonequilibrium biochemical networks. J. Chem. Phys. 124, 044110.
Keizer, J., 1987. Statistical Thermodynamics of Nonequilibrium Processes. Springer-Verlag, New

York.
Kurtz, T.G., 1971. Limit theorems for sequences of jump Markov processes approximating ordi-

nary differential equations. J. Appl. Prob. 8, 344–356.
Kurtz, T.G. (1972. The relationship between stochastic and deterministic models for chemical

reactions. J. Chem. Phys. 57, 2976–2978.
Leontovich, M.A., 1935. Basic equations of the kinetic gas theory from the point of view of the

theory of random processes (in Russian). Zh. Teoret. Ehksper. Fiz. 5, 211–231.
Luo, J.-L., Van der Broeck, C., Nicolis, G., 1984. Stability criteria and fluctuations around

nonequilibrium states. Z. Phys. B. Cond. Matt. 56, 165–170.
McAdams, H.H., Arkin, A., 1999. It’s a noisy business! Genetic regulation at the nanomolar scale.

Trends Genet. 15, 65–69.
McQuarrie, D.A., 1967. Stochastic approach to chemical kinetics. J. Appl. Prob. 4, 413–478.
Murray, J.D., 2002. Mathematical Biology I: An Introduction, 3rd Ed. Springer, New York.
Nasell, I., 2001. Extinction and quasi-stationarity in the Verhulst logistic model, J. Theor. Biol.

211, 11–27.
Noyes, R.M., Field, R.J., 1974. Oscillatory chemical reactions. Ann. Rev. Phys. Chem. 25, 95–

119.
Paulsson, J., Berg, O.G., Ehrenberg, M., 2000. Stochastic focusing: Fluctuation-enhanced sensitiv-

ity of intracellular regulation. Proc. Natl. Acad. Sci. USA 97, 7148–7153.
Qian, H., Reluga, T.C., 2005. Nonequilibrium thermodynamics and nonlinear kinetics in a cellular

signaling switch. Phys. Rev. Lett. 94, 028101.
Qian, H., Saffarian, S., Elson, E. L., 2002, Concentration fluctuations in a mesoscopic oscillation

chemical reaction system. Proc. Natl. Acad. Sci. USA 99, 10376–10381.
Reddy, V.T.N., 1975. On the existence of the steady state in the stochastic Volterra-Lotka model.

J. Stat. Phys. 13, 61–64.
Samoilov, M., Plyasunov, S., Arkin, A.P., 2005, Stochastic amplification and signaling in enzymatic

futile cycles through noise-induced bistability with oscillations. Proc. Natl. Acad. Sci. USA
102, 2310–2315.

Schnakenberg, J., 1976. Network theory of microscopic and macroscopic behavior of master equa-
tion systems. Rev. Mod. Phys. 48, 571–585.



1746 Vellela and Qian
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