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Abstract A model of tumor growth, based on two-compartment cell population
dynamics, and an overall Gompertzian growth has been previously developed.
The main feature of the model is an inter-compartmental transfer function that
describes the net exchange between proliferating (P) and quiescent (Q) cells and
yields Gompertzian growth for tumor cell population N = P + Q. Model param-
eters provide for cell reproduction and cell death. This model is further devel-
oped here and modified to simulate antimitotic therapy. Therapy decreases the
reproduction-rate constant and increases the death-rate constant of proliferating
cells with no direct effect on quiescent cells. The model results in a system of two
ODE equations (in N and P/N) that has an analytical solution. Net tumor growth
depends on support from the microenvironment. Indirectly, this is manifested in
the transfer function, which depends on the proliferation ratio, P/N. Antimitotic
therapy will change P/N, and the tumor responds by slowing the transfer rate from
P to Q. While the cellular effects of therapy are modeled as dependent only on
antimitotic activity of the drug, the tumor response also depends on the tumor age
and any previous therapies—after therapy, it is not the same tumor. The strength
of therapy is simulated by the parameter λ, which is the ratio of therapy induced
net proliferation rate constant versus the original. A pharmacodynamic factor in-
versely proportional to tumor size is implemented. Various chemotherapy regi-
mens are simulated and the outcomes of therapy administered at different time
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points in the life history of the tumor are explored. Our analysis shows: (1) for a
constant total dose administered, a decreasing dose schedule is marginally supe-
rior to an increasing or constant scheme, with more pronounced benefit for faster
growing tumors, (2) the minimum dose to stop tumor growth is age dependent,
and (3) a dose-dense schedule is favored. Faster growing tumors respond better to
dose density.

Keywords Gompertz · Chemotherapy · Cell kinetics · Proliferation · Tumor

1. Introduction

Cancer therapy has been the target of mathematical modeling for many decades.
The models have evolved in complexity as our understanding of cancer biology
has expanded. The simplest models were based on Gompertzian growth (Norton
and Simon, 1986; Sullivan, 1972; Norton et al., 1976; Wheldon, 1988; de Vladar
and Gonzalez, 2004; Norton, 2005) that nonetheless allowed predictions for op-
timization of therapy. More complex models have taken into consideration some
biologically understood principles relating to cell cycle kinetics and cell–cell inter-
actions, age-structured cell populations, vasculature, spatial distribution of cells,
pharmacodynamics and pharmacokinetics (Wheldon, 1988; Cojocaru and Agur,
1992; Panetta, 1995, 1996, 1997; Jackson and Byrne, 2000; Kozusko et al., 2001;
Dyson et al., 2002; Bertuzzi et al., 2003; Panetta et al., 2003; Sidorov et al., 2003;
Ribba et al., 2005; Magni et al., 2006). Such complex models usually involve con-
siderable computational effort, and require many parameters to be estimated or
considered for optimization.

In the present paper, we propose a generic model for antimitotic cancer therapy
that can be relatively easily used for treatment optimization, and yet this model
is more sophisticated than the simple empirical models (Sullivan, 1972; Norton
and Simon, 1977, 1986). It includes cell kinetics with two basic cell subpopula-
tions (proliferating and quiescent), sigmoidal (not just exponential) growth of the
unperturbed tumor, and one-parameter characterization of the effect of therapy.
The model has a relatively simple analytical solution and consequently offers ad-
vantages for quick investigation of treatment regimens.

The unperturbed tumor growth is modeled by choosing the net exchange rate
between proliferating (P) and quiescent (Q) cells in such a way that it yields em-
pirically established Gompertzian growth for the total cell population (Kozusko
and Bajzer, 2003). The net exchange rate between P and Q is assumed to be a
characteristic of the tumor and its microenvironment, and thus, represents the cu-
mulative response of the tumor to nutrient and oxygen supply and intercellular
communication. Therapy is assumed to change the reproduction and death rate
constants of cells in the proliferating compartment. The net exchange rate is in-
fluenced by therapy through its dependence on the proliferation ratio, which is
altered by therapy. Two important implications of the model are that the tumor
response to antimitotic therapy depends on the age of the tumor and on previous
therapy. This means that after each treatment cycle, the tumor changes its growth
kinetics.
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Table 1 Gompertz parameters for a selected group of tumors

k+ (per year) k− (per year) k+ /k− ti (y)

Parathyroid (a) 2.76 0.134 20.6 22.6
Parathyroid (b) 6.47 0.314 20.6 9.6
Myeloma 126 4.41 28.6 0.8
Testicular 112 4.52 24.8 0.7

Note. Data taken from Parfitt and Fyhrie (1997).

In order to illustrate the potential of this model, we have simulated a number
of antimitotic therapy regimens and analyzed their outcomes for a general spec-
trum of Gompertzian tumors. Specific examples are provided for Gompertzian
tumors identified in the literature (Table 1). There are a few, somewhat surprising
results, but for the most part the outcomes are in agreement with clinical findings
(Bonadonna et al., 1995, 2004; Citron et al., 2003; Pfreundschuh et al., 2004a,b). In
particular, dose-dense therapy is shown to give higher tumor reductions compared
to a fixed-dose regimen and faster growing tumors are more sensitive to antimi-
totic therapy. Moreover, the results clearly show that it is not possible to cure a
tumor with cell cycle specific therapy alone.

2. The Gompertz growth model

The cell population dynamics model that produces Gompertz growth was pre-
sented in Kozusko and Bajzer (2003). It is briefly reviewed and reformulated
here (a summary of parameter definitions is provided in Table 2). The normalized
Gompertz function is

N(t) = exp
{

k+
k−

(
1 − e−k−t)} , N(0) = 1, (1)

and satisfies the equation

Ṅ = k+ N − k− N ln (N) , N (0) = 1 ⇒ Ṅ
N

= k+ − k−ln(N). (2)

The model presented in Fig. 1 produces the following cell population dynamics
equations:

Ṗ = (β − µP) P − � (N) . (3)

Q̇ = � (N) − µQQ (4)

N = P + Q, P(0) + Q(0) = P0 + Q0 = 1

where P and Q are the proliferating and quiescent (non-proliferating) cells, respec-
tively. � (N) is the net inter-compartmental transfer function and is positive if the
net transition is from the proliferating to the quiescent compartment. In Kozusko
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Table 2 Definition of Parameters

D Modeling parameter (D2 ≡ [(1 + γ )/2]2 − γ (P/N)∞)
k+ Growth rate constant in Gompertz model of tumor growth
k− Retardation of growth constant in Gompertz model of tumor growth
m Parameter for Gompertz tumor growth (m ≡ β − µP + µQ)
m̄ Parameter for antimitotic therapy (m̄ ≡ β̄ − µ̄P + µQ)
N Total number of cells (N = P + Q)
NC0 Value of total number of cells at start of each chemotherapy cycle
NG0 Value of N at start of each subsequent rest period after

cessation of chemotherapy
NtI Undisturbed tumor size at the inflection point (maximum growth rate)

of Gompertz tumor growth
N∞ Size of undisturbed Gompertz tumor growth at t → ∞ (N∞ = exp(k+/k−))
P Number of proliferating cells
P/N Proliferation ratio
(P/N)C0 Value of proliferation ratio at start of each chemotherapy cycle
(P/N)G0 Value of proliferation ratio, P/N, at start of each subsequent rest period

following the cessation of chemotherapy
(P/N)G Value of proliferation ratio, P/N, for undisturbed Gompertzian tumor growth
(P/N)∞ Limiting value for proliferating ratio for undisturbed tumor

as t → ∞ ((P/N)∞ ≡ µQ/m)
Q Number of quiescent cells
tI Tumor age at inflection point for undisturbed Gompertz tumor growth
tG Age of tumor when therapy is commenced
β Proliferation rate parameter
γ Modeling parameter (γ ≡ k−/m(1 − λ))
λ ≡ m̄/m Modeling parameter related to “relative” strength of antimitotic

therapy (λ ≡ m̄/m < 1)
µP Death rate parameter for proliferating cells P
µQ Death rate parameter for quiescent cells Q
�(N) Net inter-compartmental transfer function
�(P/N) � (N) = N�(P/N)

and Bajzer (2003), it was shown that � (N) is always positive during Gompertz
growth. µP > 0 and µQ > 0 represent the death rate parameters for the proliferat-
ing and quiescent compartments, respectively. β > 0 is the proliferation or repro-
duction rate parameter. Growth requires that β − µP > 0. Adding Eqs. (3) and (4)
and defining m ≡ β − µP + µQ yields

Ṗ = (m − µQ)P − �(N) (5)

Ṅ = mP − µQN. (6)

          Q           P 
)(NΦ

β

Qµ Pµ

Fig. 1 The tumor population has both proliferating (P) and quiescent (Q) cells conceptually in
separate compartments. During Gompertzian growth, net transfer of cells is always from P to Q
and � (N) is positive.
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As t → ∞, Ṅ, Ṗ → 0 ⇒ (P/N)∞ ≡ µQ/m. Anticipating the form of � (N) as
� (N) = N � (P/N), Eqs. (5) and (6) can be written as

Ṗ
N

= m
{

1 −
(

P
N

)
∞

}(
P
N

)
− �

(
P
N

)
(7)

Ṅ
N

= m
{(

P
N

)
−

(
P
N

)
∞

}
. (8)

Here we make the fundamental assumption that the tumor growth is Gompertzian
and described by Eq. (2). Equating Eqs. (8) and (2) one gets

k+ − k− ln (N) = m
{(

P
N

)
−

(
P
N

)
∞

}
. (9)

Differentiating Eq. (9), and using the substitutions provided by Eqs. (7) and (8)
provides

�

(
P
N

)
= −m

(
P
N

)2

+ {m + k−}
(

P
N

)
− k−

(
P
N

)
∞

. (10)

Assuming as in Kozusko and Bajzer (2003) that the initial cell population is en-
tirely proliferating, we equate Eqs. (2) and (6) at t = 0 and N(0) = P(0) = 1,
Q(0) = 0, then β − µP = k+ and Eq. (10) can be represented as

�

(
P
N

)
= −(k+ + µQ)

(
P
N

)2

+ {k+ + µQ + k−}
(

P
N

)
− k−

(
P
N

)
∞

. (11)

While k+ and µQ relate to the individual cell kinetics (which in themselves may
relate to the tumor as a whole), k− is strictly a whole tumor, microenvironment-
based parameter arising from �(P/N).

3. Model for antimitotic therapy

We now make adjustments to the system of cell population dynamics Eqs. (7)
and (8) to simulate antimitotic therapy. From here onwards, we will assume
chemotherapy, noting that the model applies to any therapy directed against ac-
tively replicating cells. Our first modeling assumption is that �(P/N) represents
the cumulative response of the tumor to nutrient and oxygen supply and intercel-
lular communication. �(P/N) is assumed to be fundamental to the given tumor
behavior in its microenvironment as represented by the values of k+, k− and µQ.
We expect �(P/N) will remain the same function Eq. (11) with changes resulting
from chemotherapy reflected in (P/N).

We assume that an antimitotic drug will reduce the reproduction factor β

and increase the death rate µP of proliferating cells, but will have no effect on
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µQ: (β − µP) → (β̄ − µ̄P) and m → m. We define λ ≡ (m̄/m) < 1 as a modeling
parameter. If the antimitotic effect is significant enough to greatly reduce the re-
production factor β and increase the proliferating cell death rate µP then, λ < 0.
Although λ cannot be related directly to the strength of the drug, it can be used in
a relative evaluation. If the drug effect is assumed to be linear with the drug con-
centration (e.g., doubling the concentration doubles m < 0) then, doubling λ < 0 is
equivalent to doubling the drug concentration modeled. The system of equations
for chemotherapy is

Ṗ = (mλ − µQ)P − N�(N) = m
(

λ −
(

P
N

)
∞

)
P − N�

(
P
N

)
(12)

Ṅ = mλP − µQN = m
(

λP −
(

P
N

)
∞

N
)

(13)

or

Ṗ
N

= m
{
λ −

(
P
N

)
∞

}(
P
N

)
− �

(
P
N

)
(14)

Ṅ
N

= m
{
λ

(
P
N

)
−

(
P
N

)
∞

}
. (15)

Using

d (P/N)
dt

= Ṗ
N

−
(

P
N

) (
Ṅ
N

)

and Eqs. (10), (13) and (14) produces

d (P/N)
dt

= m(1 − λ)

{(
P
N

)2

− [1 + γ ]
(

P
N

)
+ γ

(
P
N

)
∞

}

γ ≡ k−
m(1 − λ)

. (16)

The integration of this equation has three possible solutions but parameter analysis
eliminates two of the possibilities (see Appendix). The remaining solution is:

(
P
N

)
= 1 + γ

2
− D · tanh [Dm(1 − λ) (t + CI)] , (17)

CI =
( −1

2Dm(1 − λ)

)
ln

{
D + [(P/N)C0 − (1 + γ )/2]
D − [(P/N)C0 − (1 + γ )/2]

}
;

D2 ≡
(

1 + γ

2

)2

− γ

(
P
N

)
∞

. (18)
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Here, (P/N)C0 is the value of (P/N) at the start of each chemotherapy cycle.
Substituting Eq. (17) into Eq. (15) and integrating yields

N = NC0 exp
{

m
[

λ (1 + γ )
2

−
(

P
N

)
∞

]
t
}

·
{

cosh[Dm(1 − λ)CI ]
cosh[Dm(1 − λ)(t + CI)]

} λ
1−λ

.

(19)

Here, NC0 is the value of N at the start of each chemotherapy cycle.
To determine the tumor behavior between chemotherapy cycles, we evaluate

Eqs. (15) and (16) at λ = 1, which corresponds to the drug-free interval

d(P/N)
dt

= −k−

{(
P
N

)
−

(
P
N

)
∞

}
⇒

(
P
N

)
=

[(
P
N

)
G0

−
(

P
N

)
∞

]
e−k−t +

(
P
N

)
∞

(20)

Ṅ
N

= m
{(

P
N

)
−

(
P
N

)
∞

}
(21)

N(t) = NG0 exp

{
k̂+
k−

(1 − e−k−t )

}
, k̂+ ≡ m

{(
P
N

)
G0

−
(

P
N

)
∞

}
, (22)

where NG0 and (P/N)G0 are the values at the start of each subsequent rest pe-
riod after cessation of chemotherapy. Here, we see that the tumor resumes Gom-
pertzian growth after each chemotherapy cycle, but with a new k̂+ determined by
the reset (P/N) ratio. (For the analysis that follows, we define the chemotherapy
as successful if the tumor has a zero or negative growth rate at the end of the last
cycle.) If the final (P/N)G0 > (P/N)∞, the chemotherapy is not successful, and the
tumor will resume growth to a new but lower N∞ than would have existed without
the chemotherapy. If the regime is successful (the final (P/N)G0 < (P/N)∞), the
tumor will continue to decrease in size to a new lower equilibrium.

4. Discussion

4.1. The reduced Growth and chemotherapy systems

It is interesting to compare this model to those that are frequently used to simulate
chemotherapy events (Norton and Simon, 1986; Wheldon, 1988; Byrne, 2003). The
usual ODE representations of tumor growth and chemotherapy are given respec-
tively by

Ṅ = [k+ − k− ln (N)] N and Ṅ = [k+ − k−ln (N)] N − C(µ, t, N)N, (23)

where C(µ, t, N)N is a cell-kill term representing a change to the rate equation
as a result of antimitotic therapy and µ is the killing-rate constant. Functional
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dependence on t arises from the drug concentration profile in time. To con-
form with the standard treatment practices we have introduced the time depen-
dence in our model by assuming a piecewise constant drug concentration. Our
model emphasizes the ratio (P/N) as an important component of both growth and
chemotherapy. Our system of equations can be shown to take the following forms:

Growth:

dN
dt

= m
{(

P
N

)
−

(
P
N

)
∞

}
N;

d(P/N)
dt

= −k−

{(
P
N

)
−

(
P
N

)
∞

}
. (24)

Antimitotic therapy:

dN
dt

= m
{(

P
N

)
−

(
P
N

)
∞

}
N − m(1 − λ)

(
P
N

)
N

d(P/N)
dt

= −k−

{(
P
N

)
−

(
P
N

)
∞

}
− m(1 − λ)

{
1 −

(
P
N

)}(
P
N

)
. (25)

Our reduced form (similar to Eq. (23)) is:
Growth:

dN
dt

= G1

(
P
N

)
N;

d(P/N)
dt

= −G2

(
P
N

)
. (26)

Antimitotic therapy:

dN
dt

= G1

(
P
N

)
N − C1

(
λ,

(
P
N

))
N

d(P/N)
dt

= −G2

(
P
N

)
− C2

[
λ,

(
P
N

)] (
P
N

)
, (27)

where C1(λ, (P/N)) and C2(λ, (P/N)) represent therapy induced changes to the
rate equations. They are dependent on the applied dose λ and the sensitivity of
the tumor to chemotherapy (a function of P/N) resulting partly from the microen-
vironment. We note that

C1

(
λ,

P
N

)
= m(1 − λ)

(
P
N

)
= (m − m̄)

(
P
N

)
= �m

(
P
N

)

and

C2

(
λ,

P
N

)
= m(1 − λ)

{
1 −

(
P
N

)}
= �m

(
Q
N

)
.

Then, the growth rate of N is altered by the change in P/N as might be expected
and the growth rate of (P/N) by changes in Q/N.
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4.2. Comparison of systems

Equation (23) assumes that all Gompertzian growth tumors with the same k+ and
k− are the same. There is no accounting for the size of the proliferating cell com-
partment, ultimately represented by the (P/N) ratio. It has been shown (Kozusko
and Bajzer, 2003) that this ratio depends on µQ as

(
P
N

)
= µQ + k+e−k−t

µQ + k+
=

(
P
N

)
∞

+ k+e−k−t

µQ + k+
. (28)

Additionally, after any antimitotic chemotherapy, (P/N) has been reduced such
that it is no longer consistent with that expected for an untreated tumor of the
same size. Therefore, the tumor growth rate is slower. Clearly, after the tumor
receives therapy, it is not the same tumor and Eq. (23) cannot be reapplied. Equa-
tions (24) through (27) show the importance of the (P/N) ratio to the growth
and chemotherapy-effected systems. Equation (18) shows that each subsequent
chemotherapy response is dependent on the previous history of growth and decay
as represented in the term (P/N)C0, as well as the resulting tumor size, NC0.

4.3. Effective versus ineffective chemotherapy

Equation (22) predicts the tumor growth behavior at the end of any antimitotic
therapy. If chemotherapy is effective, the (P/N) ratio will have been reduced to
less than (P/N)∞, then, k̂+ = m{(P/N)G0 − (P/N)∞} is negative and the tumor
will decay. If the chemotherapy is ineffective the tumor will resume growth.

After the last cycle of antimitotic therapy, the tumor will grow or decay to a new
equilibrium level, which is smaller than that of the unaffected tumor, N∞(C) <

N∞ (G)

N∞(C) < N∞(G) exp
{

m{(P/N)G0 − (P/N)G}
k−

}
, (29)

where (P/N)G0 is the proliferation ratio at the completion of the last antimitotic
therapy, which will be less than that of the unaffected tumor of (P/N)G of the same
size. Depending on the value of (P/N)G0, N∞(C) may be larger than NG0 and the
tumor will continue to grow, however, if N∞(C) is smaller than NG0 the tumor
will decay after cessation of therapy. For ineffective therapy, (P/N) will decay to
(P/N)∞ while N increases; for effective therapy (P/N) will grow to (P/N)∞ while
N decreases.

4.4. The significance of the transfer function and (P/N)∞

The tumor responds to therapy by reducing the P → Q transfer. During the ther-
apy interval, (P/N) is reduced. Simple analysis of the parabolic transfer function
shows (see Eq. (10)) that �(P/N) decreases with decreasing (P/N) and is still pos-
itive when (P/N) = (P/N)∞. For therapy to be effective, the (P/N) ratio must fall
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below (P/N)∞ by the end of the last therapy cycle (see Eq. (22)). While �(P/N)
may still be positive, the P → Q transfer is decreased and the Q compartment
continues to lose cells by factor µQ. The Q compartment will decrease allowing a
fractional decrease of N greater than the (P/N) ratio at the start of chemotherapy:
i.e. �N/N > (P/NC0). If therapy is strong enough, (P/N) may decrease enough
to cause �(P/N) to become negative and a Q → P transfer will take place. This
increases the target cell population while simultaneously decreasing the Q com-
partment with further reduction in the size of the tumor.

5. Simulations

We will use Eqs. (17)–(22) to model the changes in N and (P/N) during the
modeled chemotherapy regime, which is (unless otherwise stated) 8 hours of
chemotherapy every 3 weeks for six cycles. We use µQ = 1 and indicated values of
k+ and k−. λ, which is modeled as constant during each 8-hours cycle, will be the
parameter that represents the strength or concentration of the antimitotic drug, tG

is the age of the tumor at the commencement of chemotherapy, tI = ln(k+/k−)/k−
(see Kozusko and Bajzer, 2003) is the age of the tumor at the inflection point (max-
imum growth rate). Table 1 provides rate parameters and is taken from Table 4 in
Parfitt and Fyhrie (1997).

In order to model the efficacy of the drug versus the size of the tumor, we apply
a pharmacodynamic factor to λ. At the beginning of each chemotherapy cycle,
λ is multiplied by the ratio NtI /N, where NtI is the undisturbed tumor size at the
inflection point and N is the current tumor size. This produces an effective λ: λeff =
λ(NtI /N), which is inversely proportional to N and normalized to the inflection
point.

As a preliminary to therapy simulations, we briefly recall the system trends of
the unperturbed-Gompertz growth tumor (Kozusko and Bajzer, 2003): N and Q
increase to N∞ and Q∞; � = N�(P/N) goes through a maximum after tG = tI and
then decreases to �∞; P may peak before approaching P∞ and (P/N) continually
decays to (P/N)∞.

Figure 2 is presented as an example to show the overall system response when
the modeled therapy regimen is effective. The example is for a parathyroid tumor
(a), λ = −8. Time zero corresponds to the start of the first cycle of therapy. Fig-
ure 2c and d show the expected decreases in P and (P/N) during therapy. This
leads to a reduction in the P → Q transfer observed in Fig. 2b. The Q compart-
ment continues to grow but at a slower rate because of the decreased cell transfer
with continued µQ losses (Fig. 2a). The size of N decreases during therapy but in-
creases again during the rest periods (Fig. 2a). Finally we note that (P/N) decreases
below (P/N)∞ during the last therapy cycle. This produces the continual decay of
N, Q and P, while (P/N) restores to (P/N)∞.

In contrast, an ineffective chemotherapy regimen is presented in Fig. 3 to be
compared with Fig. 2. The example is for parathyroid carcinoma (a), λ = −5. In
Figs. 3c and d, we see that P/N and P do not decrease as much during therapy and
P recovers more during the rest periods. This leads to faster tumor (N) recovery
during the rest periods seen in Fig. 3a. The smaller decreases in P/N lead to smaller
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Fig. 2 Effective antimitotic chemotherapy for a parathyroid tumor. Model parameters are k+ =
2.76 year−1, k− = 0.134 year−1, and λ = −8. Therapy is simulated at the inflection point.
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Fig. 3 Ineffective antimitotic chemotherapy on a parathyroid tumor. Model parameters are k+ =
2.76 year−1, k− = 0.134 year−1 and λ = −5. Therapy is simulated at the inflection point.
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Fig. 4 Minimum λ to stop growth with the model therapy for tG = tI .

reductions in � displayed in Fig. 3b, and therefore, compartment Q continues to
grow (Fig 3a). Of course the increase in Q is responsible for the continued expan-
sion of N. Finally, we note (Fig. 3d) that P/N never decreases below (P/N)∞ which
is the ultimate reason why chemotherapy is ineffective.

5.1. Efficacy depends on tumor age

Figures 4 and 5 provide a general overview of the impact of tumor age on the
efficacy of antimitotic therapy. The family of curves k+/k− relate to the size of
the tumor at the inflection point (maximum growth rate) or at t → ∞, since
NtI = exp(k+/k−)/e = N∞/e (Kozusko and Bajzer, 2003). The horizontal axis,
tI = ln(k+/k−)/k−, is the tumor age at the inflection point and indirectly indicates
k− and the growth rate of the tumor. In Fig. 4, the vertical axis indicates the min-
imum value of λ required to stop tumor growth at the completion of the modeled
chemotherapy regimen when therapy is commenced at tG = tI . This graph shows
that slower growing tumors require more effective therapy or are less sensitive
to antimitotic chemotherapy. As an example: parathyroid (a) and (b) both have
k+/k− = 20.6. The faster growing (b) with tI = 9.6 years requires λ = −6.6, while
(a) with tI = 22.6 years needs λ = −7.3.

Figure 5 assumes that therapy is commenced one year prior to the age at the
inflection point of the tumor and indicates the λ relative to that from Fig. 4, again
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Fig. 5 Fast growing tumors reach the inflection point at a young age. In this figure, therapy is
started 1 year before the tumor reaches its maximum growth rate. Rapidly growing tumors are
more sensitive to therapy and require a lower λ to stop growth independent of the final carrying
capacity.

to stop the growth at completion of the therapy regimen. We can interpret these
graphs to mean that faster growing tumors (smallest tI) are more sensitive to the
age of the tumor at commencement of chemotherapy than are slower growing tu-
mors. As an example: parathyroid (a) requires virtually no change in λ(λR

∼= 1.00)
while the faster growing parathyroid (b) (λR = 0.95 allows a 5% decrease if ther-
apy is commenced one year earlier than the inflection point age. We can also see
that the required change in λ is much more sensitive to tI than it is to the size of
the tumor at tI , that is exp(k+/k− − 1) as represented by the k+/k− ratio curves.
Figure 6 displays the relative λ for stopping growth in the period tG = tI ± 3 years
for parathyroid (a) and (b).

5.2. Efficacy depends on therapy distribution

We consider dosing schemes where the total amount of drug delivered for the
regimen is constant, but the concentration may vary from one cycle to the next.
We compared three different schemes:

(1) Constant dose scheme: Each dose is the same (λC);
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Fig. 6 In this figure, the minimum λ required to stop tumor growth relative to that at the inflec-
tion point is studied as a function of time when therapy is started relative to the inflection point.

(2) Increasing dose scheme: First dose 0.5λC followed by even steps to 1.5λC;
(3) Decreasing dose scheme: First dose 1.5λC with even steps to 0.5λC.

Our results show that an increasing dose scheme is the least favorable, followed
next by the constant dose scheme, with the decreasing dose scheme giving the best
results. However, the differences between constant and decreasing dose regimens
are small in most cases. The differences are greatest for fast growing tumors when
there is a long rest period between therapy cycles. Figure 7 shows the compari-
son for myeloma (λC = −2.5). In the short term all three schemes allow the tumor
to grow past its initial value before decreasing tumor growth. As a general obser-
vation, we look at how the efficacy of treatment of the tumor in Fig. 6 might be
evaluated. If we look at the constant dose curve and just judge by the size of the
tumor, the treatment looks ineffective after three cycles since the tumor has grown.
If therapy was terminated, the graph shows that the tumor would continue to grow.
Yet just one more cycle would prove to be effective (since the tumor growth shows
a negative growth rate after the fourth cycle).

5.3. Efficacy depends on cycle spacing (dose density)

We investigated the outcomes of therapy relative to the time interval between
treatment cycles: therapy once per week, once every 2 weeks and once every
3 weeks for the same values of λ, all for six cycles. In general, increasing the dose
density (shorter dosing interval) was beneficial but more so for the faster (small tI)
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Fig. 7 The rate of tumor growth slowing with therapy depends on how the chemotherapy is
dosed. In these simulations, the total dose given over the course of six cycles of therapy is the
same. The best response is achieved when the first dose is the highest followed by sequentially
decreasing doses. A regimen that starts with a low dose that gradually increases is inferior and the
tumor continues to grow despite therapy. The vertical arrows coincide with the timing of therapy.

than for slower growing tumors. Figure 8 displays the expected results for testic-
ular cancer treated at the inflection point (maximum growth rate) for λ = −2.5.
The shorter time intervals between therapy cycles limit the regrowth of the tumor
during the rest periods.

6. Conclusion

We have presented a model of Gompertzian tumor growth based on both cell
population dynamics parameters (β, µP and µQ) and the microenvironmental re-
sponse which is determined by �(P/N) and manifested in the Gompertz parame-
ters k+ and k−. We simulated antimitotic chemotherapy by adjusting the cell ki-
netics parameters that would be affected by this type of therapy. The uniqueness
of our system is that tumor growth and therapy response depend on both N and
(P/N), not just on the size of the tumor. In fact, we have shown that therapy is only
effective if the (P/N) ratio is reduced below (P/N)∞, otherwise the tumor will re-
grow between therapy cycles or at the conclusion of therapy. The consideration
of both N and (P/N) is most relevant when considering multiple dose therapies.
After therapy, it is not the same tumor, since we expect that therapy will have
disturbed the Gompertzian growth. Modeling of subsequent therapies must recog-
nize this difference. We propose a system of equations that models the response
to cell-cycle-specific therapy of any Gompertzian growth tumor. Although we are
not able to translate our modeling parameter λ to drug concentration, we have
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Fig. 8 The frequency of the administration of antimitotic therapy also has an impact on the final
tumor volume. Therapy that is given weekly is superior to less time intensive therapy since the
tumor can regrow in between cycles of treatment. As in Fig. 7, there is no cure with antimitotic
therapy alone.

provided relative comparisons as a function of tumor age, therapy distribution and
dosing intervals. We conclude that: (1) the efficacy of antimitotic therapy depends
on tumor age but more so for fast growing tumors; (2) for rapidly growing tumors,
a therapeutic regimen that starts with a high-dose then decreases with each sub-
sequent cycle is superior to a constant dose regimen which is in turn better than a
dose escalation regimen; and (3) dose-dense regimes are beneficial, especially for
fast growing tumors.

Appendix: Solution to Equation (16)

Equation (16)

d(P/N)
dt

= m(1 − λ)

{(
P
N

)2

− [1 + γ ]
(

P
N

)
+ γ

(
P
N

)
∞

}
,

γ ≡ k−
m(1 − λ)

> 0

is of the form

dx
dt

= cx2 + bx + a.
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This equation admits three solutions, depending on the sign of � = 4ac − b2.

Solutions are in “tanh()” (� < 0), “tan()” (�> 0), and “exp()” (� = 0). We show
below that for our equation

� = [m(1 − λ)]2
{

4γ

(
P
N

)
∞

− [1 + γ ]2
}

is always less than zero. Using m = β − µP + µQ = k+ + µQ (see Eq. (11)) and
(P/N)∞ = µQ/m, we can expand the above expression and write

� = [m(1 − λ)]2
{

4γ

(
m − k+

m

)
− [1 + γ ]2

}

= [m(1 − λ)]2
{
−4γ k+

m
− [1 − γ ]2

}
< 0,

and the tanh() is assured.
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