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Abstract The main purpose of this paper is to give an approximate formula in-
volving two terms for the basic reproduction number R0 of a vector-borne dis-
ease when the vector population has small seasonal fluctuations of the form
p(t) = p0(1 + ε cos(ωt − φ)) with ε � 1. The first term is similar to the case of a
constant vector population p but with p replaced by the average vector population
p0. The maximum correction due to the second term is (ε2/8)% and always tends
to decrease R0. The basic reproduction number R0 is defined through the spectral
radius of a linear integral operator. Four numerical methods for the computation
of R0 are compared using as example a model for the 2005/2006 chikungunya epi-
demic in La Réunion. The approximate formula and the numerical methods can
be used for many other epidemic models with seasonality.

Keywords Epidemics · Basic reproduction number · Seasonality
MSC 92D30 · 45C05 · 47A55

1. Introduction

Since March 2005, an epidemic of chikungunya has hit for the first time the island
of La Réunion, a French overseas territory located in the Indian Ocean. After
a first peak of above 400 new human cases per week in May 2005, the epidemic
slowed down (Fig. 1, top) because of the winter season, which is cooler and less
rainy (Fig. 1, bottom) and therefore less favorable to the proliferation of Aedes
albopictus, the mosquito transmitting the virus causing chikungunya to humans.
Notice that La Réunion is in the southern hemisphere. Aedes albopictus was also
responsible for a small epidemic of dengue that started in April 2004 and stopped
in July of the same year, that is at the beginning of winter (Pierre et al., 2005).
This probably led local epidemiologists to believe that the scenario of the dengue
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Fig. 1 (Top) Estimated number of new cases per week plotted with two different scales. Us-
ing the left axis, we can see clearly the epidemic curve for the year 2005. Using the right
axis, we can see how it continued during the year 2006. Data from Institut de Veille Sanitaire
(www.invs.sante.fr/surveillance/chikungunya). (Bottom) Maximum/minimum temperature in de-
gree Celsius (upper and middle curves, left axis) and rainfall in millimeters per month (lower
curve, right axis) in the city of Sainte-Marie, La Réunion. Data from Météo France (www.ac-
reunion.fr/pedagogie/cotamarp/temps/temperatures.html).

epidemic would repeat for chikungunya, and that the small-scale vector control
associated with the active search for human cases would be sufficient to stop the
epidemic before the end of the winter. This was not the case. After reaching a min-
imum under 100 new cases per week in September 2005, the chikungunya epidemic
started to grow again and reached an astonishing peak in February 2006 of over
40,000 new cases per week. By that time, the epidemic had become a subject of sci-
entific and political controversy: why weren’t epidemiologists able to predict what
would happen, and why didn’t the Ministry of Health in Paris launch a large-scale
vector control campaign early enough? By now (July 2006), more than 260,000
people have suffered from the disease since the beginning of the epidemic, that is
about one-third of the island’s population. About 200 death certificates have men-
tioned chikungunya as one of the causes of death. Besides, the epidemic has had
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an important impact on the economy of the island, and particularly on tourism,
which is one of the main industries. Because of the combined effect of winter and
vector control, the number of new cases per week has now fallen below 1000.

An important but difficult question is: will the epidemic cross the winter season
one more time and cause a new important peak next summer? A popular scien-
tific but simplified way of thinking at this kind of question is the following. There
is a key parameter associated with the epidemic which is the basic reproduction
number R0, loosely defined as the average number of secondary cases caused by a
primary case at the beginning of the epidemic. If R0 > 1, the epidemic can develop.
If R0 < 1, it will stop. Following the work of Ronald Ross on malaria (Ross, 1911),
the following formula for R0 has been derived for vector-borne diseases:

R0 = β2 q q′ p
α µ P

, (1)

where β is the biting rate of the vector, q and q′ are the transmission probabil-
ities per bite from vector to human and from human to vector, p is the vector
population, P is the human population, 1/α is the average infectious period in hu-
mans, and 1/µ is the life expectation of adult vectors (see Bailey, 1982, Anderson
and May, 1991, and Heesterbeek, 2002 for a historical perspective). This formula
shows, in particular, that R0 is proportional to the vector population p. So if a
surveillance system could follow the evolution of the vector density before and
during the epidemic, and if the numerical value of R0 were known from a previous
epidemic or could be estimated using Eq. (1), then one would expect the epidemic
to stop once large-scale vector control has divided the vector density by R0. But
since no surveillance system presently follows the density of Aedes albopictus in
La Réunion, the approach just described cannot work. Therefore, it seems just im-
possible to answer reasonably the question of whether the chikungunya epidemic
will cross the winter season once again.

In this paper, we focus our attention on the more theoretical part of the prob-
lem, namely the estimation of the basic reproduction number R0. A striking fea-
ture of the chikungunya epidemic is the role played by seasonality. Equation (1) is
based on the inappropriate assumption that the vector population p is constant all
through the year. Several questions arise: what is the definition of R0 when season-
ality is taken into account, for example, if we assume that the vector population
is a periodic function of time p(t)? How to compute R0? Are there some special
cases where simple formulas similar to (1) can be obtained? These questions are
of course not specific to chikungunya. They arise, for example, in connection with
the emergence of other vector-borne diseases, and more generally with problems
of population dynamics (epidemiology (Altizer et al., 2006), ecology, demography,
immunology, population genetics, etc.) influenced by seasonality.

The recent work (Bacaër and Guernaoui, 2006) has been able to answer some
of these questions. It contains a definition of R0 in a periodic environment as the
spectral radius of a linear integral operator on a space of periodic functions. The
definition was inspired by earlier work on age-structured population dynamics with
periodic coefficients (Coale, 1972; Thieme, 1984; Jagers and Nerman, 1985; Anita
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et al., 1998) and by the book of Diekmann and Heesterbeek (2000) which em-
phasizes the “next-generation matrix” and “next-generation operator” approach
to the definition of R0. Bacaër and Guernaoui (2006) also contains an algorithm
to compute R0 based on the discretization of the integral operator. This algorithm
was used to estimate R0 for an epidemic of cutaneaous leishmaniasis in Morocco,
for which the fluctuations of the vector population were known precisely thanks to
field work.

The present paper is organized as follows. In Section 2, we introduce a slight
modification to the definition of R0 given in Bacaër and Guernaoui (2006, Sec-
tion 5). The spectral radius of the “next-generation operator” is now called r0, and
R0 is defined by R0 = rn

0 , where n is the number of “infected” compartments in the
model. This point has already been briefly discussed in Heesterbeek and Roberts
(1995b, Section 2.1) for the case of the “next-generation matrix”. We also show for
a certain class of models, which may be called “cyclic”, that the n-dimensional in-
tegral eigenvalue problem can be reduced to a one-dimensional problem. In most
of the paper, we focus on the special case where the kernel of the reduced problem
takes the form K(x, t) = f (t) G(x), where f (t) is a periodic function. This case in-
cludes already many models for vector-borne diseases and for directly transmitted
diseases.

In Section 3, we present four numerical methods for the computation of R0 asso-
ciated with such one-dimensional integral eigenvalue problems. The first one has
already been presented in Bacaër and Guernaoui (2006, Section 4): it is a simple
discretization of the integral operator. The second one uses Fourier series and was
inspired by Williams and Dye (1997), which focuses on the Malthusian parameter
instead of the basic reproduction number. These two methods work for a general
function G(x) and a general periodic function f (t). The third method is designed
for the special case where f (t) = 1 + ε cos(ωt − φ), and combines Fourier series
with a perturbation method for small ε. It is similar to the one used in Coale (1972,
Chap. 6), which also focuses on the Malthusian parameter instead of the basic re-
production number. The fourth method works for “cyclic” next-generation oper-
ators associated to systems of linear ordinary differential equations with periodic
coefficients. It uses Floquet theory as in Heesterbeek and Roberts (1995a,b) but in
a different way.

In Section 4, we consider vector-borne diseases and assume that the vector pop-
ulation is given by

p(t) = p0[1 + ε cos(ωt − φ)]. (2)

Using first a simple model for malaria and the results of Section 3.3, we show that
with the same notations as in Eq. (1), the basic reproduction number is given by

R0 � β2 q q′ p0

α µ P

(
1 − αµ

ω2 + (α + µ)2

ε2

2

)
(3)

when ε is small. This apparently new formula generalizes the formula represented
by Eq. (1). The first term is similar to the case of a constant vector population p
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but with p replaced by the average vector population p0. The maximum correction
due to the second term is (ε2/8)% and always tends to decrease R0. We then turn
to the chikungunya epidemic using a slightly more complicated model. The simple
form, represented by Eq. (2), for the vector population seems not too unreason-
able when we look back at the temperature and rainfall curves in La Réunion
(Fig. 1, bottom), both having only one maximum each year around February. Af-
ter having estimated the parameters of the model, we compare the four numerical
methods of Section 3 for the computation of R0. However, the numerical value of
R0 obtained for the chikungunya epidemic should not be taken too seriously since
the parameter values are imprecisely known and because of the simplicity of the
assumption, represented by Eq. (2). It can be seen as an exercise to test the differ-
ent numerical methods, as a source of inspiration for developing the theory, or as
a first modeling attempt waiting for field work concerning the fluctuations of the
population of Aedes albopictus.

The last section discusses the applicability of the method of Section 3.3 to get
approximate formulas for R0 for other mathematical models of infectious diseases
with periodic coefficients, especially the much studied SIR model with periodic
contact rate and fixed infectious period, and also the SEIR model with periodic
contact rate and exponentially distributed latent and infectious periods. We also
present some preliminary indications on the meaning of R0 in stochastic epidemic
models with seasonality.

2. Definition of R0

For all t ∈ R and x ≥ 0, let K(t, x) be a nonnegative n × n matrix. Assume that
K(t, x) is a periodic function of t of period θ for all x ≥ 0.

The idea behind the function K(t, x) is an epidemic model with n “infected”
compartments (I1, I2, . . . , In), which may be infectious or latent. The coefficient
Ki, j (t, x) in row i and column j represents the expected number of individuals in
compartment Ii that one individual in compartment Ij “generates” at the begin-
ning of an epidemic per unit time at time t if it has been in compartment Ij for x
units of time. The verb “generates” covers the case where individuals in compart-
ment Ij infect individuals in compartment Ii , but also the case where individuals
in compartment Ij just move to compartment Ii . The periodicity assumption on
K(t, x) is designed to represent a periodic environment.

Consider the linear integral operator K defined by

(Kv)(t) =
∫ ∞

0
K(t, x) v(t − x) dx (4)

and acting on a space of θ -periodic functions with values in R
n. To be more specific,

we notice that because of the periodicity assumptions on K(t, x) and v(t), Eq. (4)
can be rewritten as

(Kv)(t) =
∫ θ

0
K̂(t, s) v(s) ds
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where

K̂(t, s) =
{∑+∞

k=0 K(t, t − s + kθ) if s < t,∑+∞
k=1 K(t, t − s + kθ) if s > t.

We assume that K̂ belongs to the space L2((0, θ) × (0, θ), R
n×n). A simple exten-

sion of Theorem 7 in Hochstadt (1973, p. 51) shows that K is a compact operator
on L2((0, θ), R

n). As in Diekmann and Heesterbeek (2000, p. 77), K can be called
the “next-generation operator,” and K(t, x) the associated kernel. Let r0 be the
spectral radius of K. We define the basic reproduction number R0 by the formula
R0 = rn

0 . We refer to Heesterbeek and Roberts (1995b, Section 2.1) for a discus-
sion of why it is sometimes more convenient to take R0 = rn

0 instead of R0 = r0.
We also refer to Bacaër and Guernaoui (2006, Section 5) for a discussion of why
this definition of R0 generalizes the usual one without seasonality based on the
“next-generation matrix” (Diekmann and Heesterbeek, 2000, p. 74).

The operator K is positive. If r0 > 0, it follows from the theorem of Krein and
Rutman (see, for instance, Theorem 9.2 in Krasnosel’skij et al. (1980, p. 87))
that r0 is an eigenvalue of K and that there is a nonnegative eigenfunction v(t) ∈
L2((0, θ), R

n) associated with r0. Extending v(t) by periodicity to R, we can write
that

∫ ∞

0
K(t, x) v(t − x) dx = r0 v(t) . (5)

Conditions ensuring that r0 > 0 can be found in Krasnosel’skij et al. (1980) or
Schaefer (1974, p. 377).

In the rest of this paper, we will consider “cyclic” models that have the following
special form (Fig. 2): all elements Ki, j (t, x) of the kernel are zero except K1,n(t, x)
and Kj+1, j (t, x) for all 1 ≤ j ≤ n − 1.

This includes, in particular, the general “one-dimensional” case n = 1 with arbi-
trary kernel K(t, x). Set v(t) = (v1(t), . . . , vn(t)). The integral eigenvalue problem,
represented by Eq. (5), can be rewritten as

∫ ∞

0
K1,n(t, x) vn(t − x) dx = r0 v1(t),

∫ ∞

0
Kj+1, j (t, x) v j (t − x) dx = r0 v j+1(t), 1 ≤ j ≤ n − 1.

I 1 I 2 I n

Fig. 2 Infected compartments in a “cyclic” model.
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Replacing successively the equation with j = n − 1, j = n − 2, . . . j = 1 in the first
equation, and recalling that R0 = rn

0 , it follows that

∫ ∞

0
· · ·

∫ ∞

0
K1,n(t, x1) Kn,n−1(t − x1, x2) . . . K2,1(t − x1 − · · · − xn−1, xn)

v1(t − x1 − · · · − xn) dx1 . . . dxn = R0 v1(t).

Notice the important property: if any of the nonzero element Ki, j (t, x) is multi-
plied by a certain constant, then R0 is also multiplied by the same constant. The
change of variable (x1 = x1, . . . , xn−1 = xn−1, x = x1 + · · · + xn) leads to

∫ ∞

0
K̃(t, x) v1(t − x) dx = R0 v1(t), (6)

where K̃(t, x) is the hypersurface integral

K̃(t, x) =
∫

σ n
x

K1,n(t, x1) Kn,n−1(t − x1, x2) . . . K2,1(t − x1 − · · · − xn−1, xn) dσ n
x

and σ n
x = {(x1, . . . , xn) ∈ R

n; x1 + · · · + xn = x, x1 ≥ 0, . . . , xn ≥ 0}. Hence,
the n-dimensional integral eigenvalue problem, represented by Eq. (5) has been
reduced to the one-dimensional problem, represented by Eq. (6).

In the rest of the paper except in Section 3.4, we consider the more special case
where

K1,n(t, x) = f (t) gn(x), Kj+1, j (t, x) = g j (x), 1 ≤ j ≤ n − 1. (7)

Equation (6) takes the form

f (t)
∫ ∞

0
G(x) v1(t − x) dx = R0 v1(t), (8)

with

G(x) =
∫

σ n
x

g1(x1) . . . gn(xn) dσx. (9)

Notice that if n = 1, the kernel reduces to K(t, x) = f (t) g1(x) so that G(x) =
g1(x). Notice also that if

g j (x) = a j e−bj x, 1 ≤ j ≤ n, (10)

it can be shown (see Appendix), starting from Eq. (9), that

G(x) = a1 . . . an

n∑
j=1

e−bj x∏
k	= j (bk − bj )

. (11)
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This formula also holds for n = 1 with the usual convention that a product over an
empty set is equal to 1.

3. Numerical methods to compute R0

3.1. Discretization of the integral eigenvalue problem

This method consists in discretizing the integral eigenvalue problem, represented
by Eq. (8). It was presented in Bacaër and Guernaoui (2006, Section 4), so we
just recall it briefly. Let N be a large integer and set tk = (k − 1) θ/N, where k =
1, 2, . . . , N. Set

Ĝ(x) =
+∞∑
k=0

G(x + kθ). (12)

Let R0 be the spectral radius of the ordinary matrix eigenvalue problem

f (tk)
θ

N

⎡
⎣k−1∑

j=1

Ĝ(tk − t j )V j +
N∑

j=k

Ĝ(tk − t j + θ)V j

⎤
⎦ = R0 Vk , (13)

where Vi is an eigenvector, then R0 → R0 as N → +∞. The numerical computa-
tion of R0 can be done using, e.g., Scilab (www.scilab.org), a free mathemat-
ical software similar to Matlab. Notice that if g j (x) = a j e−bj x for all 1 ≤ j ≤ n, it
follows from Eq. (11) that

Ĝ(x) = a1 . . . an

n∑
j=1

e−bj x

(1 − e−bj θ )
∏

i 	= j (bi − bj )
. (14)

3.2. Fourier series: general periodic case

Set ω = 2π/θ . Consider the Fourier decomposition of the periodic function f (t):

f (t) =
∑
j∈Z

f j e j iωt , f j = 1
θ

∫ θ

0
f (t) e− j iωt dt , (15)

where Z is the set of integers (positive or negative) and i2 = −1. The f j ’s are com-
plex numbers such that f− j = f ∗

j (the superscript ∗ stands for the complex conju-
gate). We look for a real (and even positive) solution of Eq. (8) of the form

v1(t) =
∑
j∈Z

c j e j iωt . (16)
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The c j ’s are also complex numbers such that c− j = c∗
j . Replacing Eqs. (15) and

(16) in Eq. (8) yields

(∑
j∈Z

f j e j iωt

)(∑
j∈Z

Gj c j e j iωt

)
= R0

∑
j∈Z

c j e j iωt , (17)

where we set

Gj =
∫ ∞

0
G(x) e− j iωx dx . (18)

It follows from Eq. (9) that

Gj =
(∫ ∞

0
g1(x) e− j iωx dx

)
· · ·

(∫ ∞

0
gn(x) e− j iωx dx

)
. (19)

If g j (x) = a j e−bj x for all 1 ≤ j ≤ n, then

Gj = a1 . . . an

(b1 + j iω) · · · (bn + j iω)
(20)

for all j ∈ Z. Equation (17) can be rewritten as

∑
j∈Z

(∑
k∈Z

f j−k Gk ck

)
e j iωt = R0

∑
j∈Z

c j e j iωt .

Such an equality is true if and only if

∑
k∈Z

f j−k Gk ck = R0 c j (21)

for all j ∈ Z. This is an “infinite matrix” eigenvalue problem. Notice that fk → 0
and Gk → 0 as k → ±∞. So if we let N be a large integer and R0 be the spectral
radius of the “truncated” square matrix ( f j−k Gk)−N≤ j,k≤N, then R0 → R0 as N →
+∞.

3.3. Fourier series: sinusoidal case

Assume that

f (t) = 1 + ε cos
(
ωt − φ

)
, (22)

where 0 ≤ ε ≤ 1 and 0 ≤ φ < 2π . This is what we call a “sinusoidal” function.
Looking at the eigenvalue problem, represented by Eq. (8), we see that a shift in
time of f (t) does not change R0. Indeed, if R0 is the spectral radius associated with
f (t) with eigenfunction v1(t), then R0 is still the spectral radius associated with
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f̂ (t) = f (t − h) with the eigenfunction v̂1(t) = v1(t − h). For the computation of
R0, we may therefore assume that φ = 0, so that

f (t) = 1 + ε

2
eiωt + ε

2
e−iωt .

Obviously, f0 = 1, f1 = f−1 = ε
2 , and fk = 0 for |k| > 1. The system, represented

by Eq. (21), becomes

ε

2
Gj−1 c j−1 + Gj c j + ε

2
Gj+1 c j+1 = R0 c j (23)

for all j ∈ Z. Since G(x) is real-valued, Gj given by Eq. (18) satisfies G− j = G∗
j .

From this fact, it follows that Eq. (23) with c− j on the right-hand side is just the
complex conjugate of Eq. (23) with c j on the right-hand side. We can therefore
forget about Eq. (23) for j < 0. Recalling that c−1 = c∗

1, and G−1 = G∗
1, the eigen-

value problem, represented by Eq. (23), with j ∈ Z reduces to

{
ε
2 G∗

1 c∗
1 + G0 c0 + ε

2 G1 c1 = R0 c0 ,

ε
2 Gj−1 c j−1 + Gj c j + ε

2 Gj+1 c j+1 = R0 c j , ( j ≥ 1).
(24)

The eigenfunction v1(t) can be normalized so that c0 = 1. This is possible because
v1(t) is positive so that c0 = 1

θ

∫ θ

0 v1(t) dt > 0. Let us look for a solution of the sys-
tem represented by Eq. (24), of the form

R0 =
∑
k≥0

ρk εk, c j =
∑
k≥0

c j,k εk, (25)

which we expect to hold at least for ε small. Because c0 = 1, notice that c0,0 = 1
and that c0,k = 0 for all k ≥ 1. Inserting Eq. (25) in the first equation of Eq. (24)
and separating the powers of εk, one arrives at G0 = ρ0 and

G∗
1

2
c∗

1,k−1 + G1

2
c1,k−1 = ρk (26)

for all k ≥ 1. Similarly, inserting Eq. (25) in the second equation of Eq. (24), one
arrives at Gj c j,0 = ρ0 c j,0 for all j ≥ 1 and

Gj−1

2
c j−1,k−1 + Gj c j,k + Gj+1

2
c j+1,k−1 =

k∑
l=0

ρl c j,k−l (27)

for all j ≥ 1 and k ≥ 1. For all j ≥ 1, it follows that (G0 − Gj ) c j,0 = 0, so
c j,0 = 0 because G(x) is nonnegative and nonzero and hence G0 − Gj = ∫∞

0 (1 −
e− j iωx) G(x) dx 	= 0. Knowing that

ρ0 = G0, c j,0 = 0 ( j ≥ 1), c0,0 = 1, c0,k = 0 (k ≥ 1),
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it follows from Eqs. (26) and (27) that the coefficients ρk and c j,k for all j ≥ 1 and
k ≥ 1 can be computed recursively:

ρk = �(G1 c1,k−1) , (28)

c j,k = 1
G0 − Gj

[
Gj−1

2
c j−1,k−1 + Gj+1

2
c j+1,k−1 −

k−1∑
l=1

ρl c j,k−l

]
, (29)

where �(z) stands for the real part of the complex number z. More precisely, if
the coefficients ρl and c j,l have been computed for all l ≤ k − 1 and all j ≥ 1, then
the formulas provide an expression for ρk and c j,k for all j ≥ 1. The algorithm can
start because ρ0 and the coefficients c j,0 are known. Using Eqs. (28) and (29), it
is easily seen that c j,k = 0 for all j > k, that ρk = 0 for all odd integer k, and that
c j,k = 0 when j ≥ 1 is odd while k ≥ 1 is even.

In practice, fix an integer κ > 1 and consider the vector (ρk)0≤k≤κ and the rectan-
gular matrix (c j,k)0≤ j≤κ+1, 0≤k≤κ . Set ρ0 = G0, c0,0 = 1, c j,k = 0 for all j > k in the
matrix, and c0,k = 0 for 1 ≤ k ≤ κ . The algorithm runs as follows:

for k=1 to κ ,

compute ρk using Eq. (28)

for j=1 to k,

compute c j,k using Eq. (29)

end;
end.

This way, one easily gets

ρ1 = 0, c1,1 = G0

2(G0 − G1)
, ρ2 = 1

2
�
( G0 G1

G0 − G1

)
, (30)

Finally, we get

R0 � G0 + ε2

2
�
(

G0 G1

G0 − G1

)
(31)

for ε small, i.e., the lowest order correction to the basic reproduction number when
small amplitude seasonal variations are taken into account. Let us make now some
additional remarks:

� We notice that

1 − ε cos
(
ωt − φ

) = 1 + ε cos
(
ω(t + θ/2) − φ

)
.

Hence, changing ε in −ε corresponds to a time shift in f (t). So, according to the
remark made at the beginning of Section 3.3, R0 should stay unchanged. This
explains why the odd terms ρ2k+1 (k ≥ 0) in the series expansion of R0 vanish.
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� The sinusoidal function, represented by Eq. (22), is not as special as it might
seem at first look. Indeed, for any given nonnegative θ -periodic function f (t)
with, e.g., a mean equal to 1, the first terms of the Fourier expansion are 1 +
f1 cos(ωt) + f ′

1 sin(ωt), which can be put in the form 1 + ε cos(ωt − φ) with ε =√
( f1)2 + ( f ′

1)2 and φ = arctan( f ′
1/ f1).

� It seems difficult to determine the convergence radii of the power series, repre-
sented by Eq. (25). It follows from general theorems on analytic perturbations of
linear operators (Kato, 1984) that these radii are positive because r0 is a simple
isolated eigenvalue of the “next-generation operator.” Some nontrivial methods
have also been developed to give lower bounds for these radii (Kato, 1984): fur-
ther work is needed to try to apply them to the present case. In practice, the
algorithm of this section can easily provide ρk for say k ≤ 20 or k ≤ 50. If inspec-
tion of the result suggests that ρk tends to 0 as k → +∞, there is a good chance
that the convergence radius of the series giving R0 is greater than or equal to 1.

� The formal perturbation method used in this section can be considered from
the point of view of the general mathematical theory developed in Kato (1984).
Consider, for example, the left-hand side of Eq. (8) with f (t) given by Eq. (22) as
a linear operator Lε acting on the Hilbert space of square-integrable θ -periodic
real valued functions with the usual scalar product 〈ψ1, ψ2〉 = ∫ θ

0 ψ1(t) ψ2(t) dt .
Consider the unperturbed eigenvalue problem L0 ψ = λψ , i.e.,

∫ ∞

0
G(x) ψ(t − x) dx = λψ(t) .

Looking for a solution of the form ψ(t) = ∑
k∈Z

ak ekiωt , we find that (λ −
Gk) ak = 0 for all k. So the eigenvalues are given by λk = Gk for k ∈ Z, and the
eigenspace associated with λk is spanned by ψk(t) = ekiωt . The ψk’s form a basis.
Consider the “dual basis” ψ̂k(t) = e−kiωt/θ (n ∈ Z), which is such that 〈ψ j , ψ̂k〉 = 1
for j = k and 0 for j 	= k. The operator Lε is of the form L0 + εL′, where

(L′ψ)(t) = cos(ωt − φ)
∫ ∞

0
G(x) ψ(t − x) dx .

We are interested in the perturbation R0 = ρ0 + ε ρ1 + ε2 ρ2 + · · · of the eigen-
value λ0 = ρ0 = G0, whose associated eigenfunction ψ0 = 1 is positive. Using the
formulas given in Kato (1984, p. 81) in the finite-dimensional case (these formulas
also hold in the infinite-dimensional case and are well known in quantum mechan-
ics (Cohen-Tannoudji et al., 1986, Chapter XI) but for selfadjoint operators), one
gets

ρ1 = 〈L′ψ0, ψ̂0〉 = G0

θ

∫ θ

0
cos(ωt − φ) dt = 0 ,
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and

ρ2 =
∑
k	=0

〈L′ψ0, ψ̂k〉〈L′ψk, ψ̂0〉
λ0 − λk

= 1
θ2

∑
k	=0

G0 Gk

G0 − Gk

∣∣∣∣
∫ θ

0
cos(ωt − φ)ekiωt dt

∣∣∣∣
2

= 1
2

�
(

G0 G1

G0 − G1

)
,

which is the same as Eq. (30). The expressions for higher order corrections are
more complicated: the ad hoc method we used and the algorithm we propose for
computing the ρk’s seem more practical.

3.4. Application of Floquet theory

In this section, we consider the system of linear ordinary differential equations

dI1

dt
= −α1(t) I1(t) + βn(t) In(t), (32)

dIj+1

dt
= −α j+1(t) Ij+1(t) + β j Ij (t), 1 ≤ j ≤ n − 1, (33)

where all the functions α j (t) and β j (t) are θ -periodic. Such a system can
arise as the linearization near the diseasefree steady state of a nonlinear
epidemic model. The kernel of the associated next-generation operator is
given by

K1,n(t, x) = βn(t) e− ∫ x
x−t αn(s) ds,

Kj+1, j (x, t) = β j (t) e− ∫ x
x−t α j+1(s) dx, 1 ≤ j ≤ n − 1,

and Ki, j (t, x) = 0 for all other indices. It is therefore a “cyclic” model of the gen-
eral kind introduced in Section 2. It follows from a remark in that section that if,
for example, βn(t) is multiplied by a certain constant, then R0 is multiplied by the
same constant.

The Floquet theory applied to the system, represented by Eqs. (32) and (33)
says that the zero-steady state is unstable if and only if the spectral radius of the
“next-year matrix” (also called the monodromy matrix) is greater than 1. So the
basic reproduction number R0 is also the unique positive real number such that the
spectral radius of the n × n matrix X(θ) is equal to 1, where X(θ) is the solution at
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time t = θ of the system of differential equations

dX
dt

(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−α1(t) 0 · · · 0 βn(t)
R0

β1(t)
. . .

. . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 βn−1(t) −αn(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

X(t)

with the initial condition X(0) = 1n (the n × n identity matrix). Hence, R0 can be
found by combining a dichotomy method with a numerical solver of ordinary dif-
ferential equations such as the one included in Scilab.

4. Vector-borne diseases

4.1. Malaria

In this section, we consider a very simple model for malaria, namely a variation
on one of the first models proposed by Ronald Ross (1911) but with a periodic
vector population. Let us introduce the following notations: S(t) is the susceptible
human population; I(t) is the infectious human population; P = S(t) + I(t) is the
total human population. Similarly, s(t) is the susceptible vector population, i(t)
the infectious vector population, and p(t) = s(t) + i(t) the total vector population.
Besides, we consider the following parameters: α is the rate of recovery of humans;
β is the biting rate of the vectors; q (resp. q′) is the transmission probability per
bite from vector to human (resp. from human to vector); λ(t) is the number of new
adult vectors that emerge per unit time, assumed to be a θ -periodic function; µ is
the death rate of vectors. The model is the following:

ds
dt

= λ(t) − β q′ s(t)
I(t)
P

− µ s(t), (34)

di
dt

= β q′ s(t)
I(t)
P

− µ i(t), (35)

dS
dt

= −β q i(t)
S(t)

P
+ α I(t) , (36)

dI
dt

= β q i(t)
S(t)

P
− α I(t) . (37)

Adding Eqs. (34) and (35), we see that dp
dt = λ(t) − µ p(t). We assume that p(t) is

given by

p(t) = p0[1 + ε cos(ωt − φ)].
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Given µ, this determines λ(t). Linearizing the system, represented by Eqs. (34)–
(37), near the disease-free steady state, we get

di∗
dt

= β q′ p(t)
I∗(t)

P
− µ i∗(t) ,

dI∗
dt

= β q i∗(t) − α I∗(t) . (38)

The kernel of the associated next-generation operator is

K(t, x) =
(

0 β q′ p(t)
P e−α x

β q e−µ x 0

)
, (39)

which is “cyclic” of the special form, represented by Eq. (7), with the functions
g j (x) (1 ≤ j ≤ 2) of the form of Eq. (10) and f (t) = 1 + ε cos(ωt − φ). Equation
(20) yields

Gj = β2 q q′ p0

(α + j iω)(µ + j iω)P
(40)

for all j ∈ Z. Finally, Eq. (31) takes the form

R0 � β2 q q′ p0

α µ P

(
1 − αµ

ω2 + (α + µ)2

ε2

2

)
. (41)

This is the lowest order correction to Eq. (1). Notice that the inequality

0 ≤ αµ

ω2 + (α + µ)2

ε2

2
≤ ε2

8

holds. The upper bound is reached when α � µ � ω. Hence, we arrive at the fol-
lowing conclusion:

The first term in the formula for R0 is the same as for the case of a con-
stant vector population p but with p replaced by the average vector pop-
ulation p0. The maximum correction due to the second term is (ε2/8)%
and always tends to decrease R0. So, it is slightly more difficult for a
vector-borne pathogen to invade a population with such fluctuations.

We also recall two fundamental properties of R0 in the context of vector-borne dis-
eases: an epidemic can develop if and only if R0 > 1; an epidemic can be prevented
if the vector population p(t) is uniformly divided by R0 all through the year.

4.2. The chikungunya epidemic in La Réunion

Chikungunya is a viral disease that seems to lead to lasting immunity. Moreover, if
we want to take into account the incubation period in humans and in vectors, the
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following model seems appropriate:

ds
dt

= λ(t) − β s(t)
I(t)
P

− µ s(t), (42)

de
dt

= β s(t)
I(t)
P

− (γ + µ) e(t),
di
dt

= γ e(t) − µ i(t), (43)

dS
dt

= −β i(t)
S(t)

P
, (44)

dE
dt

= β i(t)
S(t)

P
− δ E(t) ,

dI
dt

= δ E(t) − α I(t) , (45)

dR
dt

= α I(t) , (46)

where e(t) (resp. E(t)) is the population of infected but noninfectious vectors
(resp. humans), 1/γ (resp. 1/δ) is the average incubation period in vectors (resp.
humans), and R(t) is the immune human population. Notice that the transmission
probabilities from compartments e and E have been set to 0 and those from com-
partments i and I to 1. The total human population P = S(t) + E(t) + I(t) + R(t)
is constant, while the total vector population p(t) = s(t) + e(t) + i(t) still satisfies
dp
dt = λ(t) − µ p(t).

We use this model to try to estimate R0 for the 2005/2006 chikungunya epi-
demic in La Réunion. Since the fluctuations of the vector population are un-
known, we assume for p(t) the simple form p(t) = p0(1 + ε cos(ωt − φ)), which
seems not too unreasonable when we look back at the temperature and rainfall
curves in La Réunion (Fig. 1, bottom), both having only one maximum each year
around February and a minimum around July. Hence, the periodicity θ = 2π

ω
is 1

year and we can take φ = 2π
12 . The function s(t) can be eliminated from the sys-

tem, represented by Eqs. (42)–(46), since s(t) = p(t) − e(t) − i(t). The other pa-
rameter values used for simulation are summarized in Table 1. Notice that, e.g.,
www.chikungunya.net/faq/faq.htm, see #83 refers to question 83 in the list of fre-
quently asked questions on the web site (www.chikungunya.net/faq/faq.htm), a
web site set up by epidemiologists and dedicated to the chikungunya epidemic
in La Réunion.

The incubation period in humans is estimated between 3 and 7 days (Duhamel
et al., 2006, p. 6), or between 4 and 7 days (www.chikungunya.net/faq/faq.htm;

Table 1 Parameter values used for the simulation

Parameter Symbol Value

Incubation period in vectors 1/γ 7 days
Life expectation of vectors 1/µ 1 month
Incubation period in humans 1/δ 4 days
Infectious period in humans 1/α 7 days
Period between two bites 1/β 4 days
Population of La Réunion P 785,000
Shift in time φ 2π

12
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see #101). But according to (www.chikungunya.net/faq/faq.htm; see #156), hu-
mans can start being infectious 2 to 3 days before symptoms. So, we took 4 days
for the incubation period. The infectious period in humans after symptoms is
estimated around 5 days (Duhamel et al., 2006, p. 7) or between 5 and 7 days
(www.chikungunya.net/faq/faq.htm; see #49,52). Given the previous remark, we
took the value 7 days for the entire infectious period. The incubation period in
vectors is estimated between 9 and 14 days (www.chikungunya.net/faq/faq.htm;
see #83), between 4 and 5 days (www.chikungunya.net/faq/faq.htm; see #253),
or between 1 and 2 weeks (www.chikungunya.net/faq/faq.htm; see #395). We
chose 7 days. Once infected, the vectors are believed to stay so until they die
(www.chikungunya.net/faq/faq.htm; see #83). The life expectation of adult vec-
tors is estimated between 4 and 10 weeks (www.chikungunya.net/faq/faq.htm;
see #83) or “several” weeks (www.chikungunya.net/faq/faq.htm; see #404).
We chose 1 month. The vector can bite five or six times during its life
(www.chikungunya.net/faq/faq.htm; see #404): we chose an average of one bite
every 4 days. It is not clear whether the infected vector can transmit the virus to
its eggs (www.chikungunya.net/faq/faq.htm; see #83/385/442): the present model
does not take this possibility into account. Infection in humans leads to a state of
immunity (www.chikungunya.net/faq/faq.htm; see #10/385) that can probably last
at least several years since nobody seems to have suffered twice from chikungunya
during the epidemic in La Réunion. Asymptomatic cases (between 10 and 15%
according to www.chikungunya.net/faq/faq.htm, see #385), which do not seem to
be included in the estimation of the number of cases in Fig. 1, are not taken into
account in the model.

The first case of chikungunya in La Réunion was detected on February 22, 2005.
It seems to have been imported from Comoros where already several thousand
people had been infected. Taking the incubation and infectious periods into ac-
count, we assume for the simulation that one human in compartment E is intro-
duced in the population of La Réunion at the beginning of the 5th week of 2005.
The simulation of the model is performed until the beginning of February 2006,
when large-scale vector control started as a response to the high peak; such a con-
trol is not included in the model. Small-scale vector control before this date is
considered as negligible in the model.

The parameters p0 and ε for the vector population are essentially unknown
and have to be fitted using the epidemic curve (Fig. 1). Let us introduce pmax =
p0(1 + ε) and pmin = p0(1 − ε). Using a rudimentary method of trial and error,
we found that a not too bad fit to the epidemic curve—given the simplicity of the
model—was obtained with a maximum number of bites received per human per
week equal to β pmax/P = 1.2 and a minimum number of bites per human per
week equal to 6% of the maximum, i.e., pmin/pmax = 6% (Fig. 3). From this we
get pmax, pmin, p0 = (pmax + pmin)/2 and ε = (pmax − pmin)/(pmax + pmin). Numer-
ically, ε � 0.887. It can be easily checked that λ(t) = dp/dt + µ p(t) stays positive
because ε ≤ 1/

√
1 + (ω/µ)2.

Now that all the parameters of the model have been fixed, we turn to the esti-
mation of R0. Linearizing Eqs. (43) and (45) near the disease-free steady state, we
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Fig. 3 Estimation of the parameters p0 and ε by fitting the smooth solid curve produced by the
model to the epidemic curve before large-scale vector control (February 2006). The dotted curve
shows the assumed variation of the vector population (scale not shown).

get

de∗
dt

= β p(t)
I∗(t)

P
− (γ + µ) e∗(t),

di∗
dt

= γ e∗(t) − µ i∗(t),

dE∗
dt

= β i∗(t) − δ E∗(t) ,
dI∗
dt

= δ E∗(t) − α I∗(t) .

The kernel of the associated next-generation operator is

K(t, x) =

⎛
⎜⎜⎜⎜⎝

0 0 0 βp(t)
P e−αx

γ e−(γ+µ)x 0 0 0

0 β e−µx 0 0

0 0 δ e−δx 0

⎞
⎟⎟⎟⎟⎠ , (47)

which is “cyclic” and of the special form, represented by Eq. (7), with f (t) = 1 +
ε cos(ωt − φ) while the functions g j (x) (1 ≤ j ≤ 4) are of the form represented by
Eq. (10). Hence G(x) is given by Eq. (11), Ĝ(x) by Eq. (14), and Gk by Eq. (20).

With the numerical values of the parameters as above, we obtain R0 � 3.4 us-
ing any one of the four methods of Section 3. The program can de downloaded
from www.bondy.ird.fr/˜bacaer/chikungunya.sci. The convergence of
the first three methods is shown in Table 2. The first method (Section 3.1) seems
to converge more slowly than the other methods. But this is probably because it
replaces the function f (t) by a step function ( f (tk))1≤k≤N, which is not a good
approximation for the special case where f (t) is sinusoidal. The second method
(Section 3.2) uses the Fourier coefficients fk of f (t), which are in the present case
simply f0 = 1, f1 = f−1 = ε

2 , and fk = 0 for |k| > 1. Because of this, the conver-
gence of the method is very fast. These two methods require the computation of
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Table 2 Convergence of the first three numerical
methods

1st method
N 12 25 50 100 200
R0 3.100 3.399 3.392 3.389 3.389

2nd method
N 0 1 2 3 4
R0 3.868 3.496 3.418 3.389 3.389

3rd method
κ 0 2 4 10 12
R0 3.868 3.461 3.409 3.390 3.389

the spectral radius of a certain matrix. On the contrary, the third method (Section
3.3) requires only elementary operations and could almost be performed with a
simple calculator. Recall that κ is the number of terms kept in the expression of
R0 as a series of powers of ε. It should be noticed that the approximation given by
Eq. (1) with p replaced by the average vector population p0 corresponds to κ = 0
in the table. The difference with the “exact” value of R0 is 14%. If we include
the term of order ε2 as in Eq. (31), the difference reduces to 2% even though ε is
not very small. The convergence of the fourth method (Section 3.4) is determined
by the discretization of the differential equation. This is usually controlled by the
ODE solver. With Scilab’s standard ODE solver, one easily gets the correct value
R0 � 3.389 after a certain number of iterations of the dichotomy.

Let us repeat. The numerical value of R0 obtained for the chikungunya epi-
demic should not be taken too seriously since the parameter values are imprecisely
known and because of the simplicity of assumption, represented by Eq. (2). It can
be seen as a numerical exercise to test the different numerical methods, as a source
of inspiration for developing the theory, or as a first modeling attempt waiting for
field work concerning the fluctuations of the population of Aedes albopictus.

5. Concluding remarks

5.1. Other applications

5.1.1. Epidemic models with n = 1
Consider an epidemic model with one infected compartment and a kernel of the
form

K(t, x) = [1 + ε cos(ωt − φ)] g(x). (48)

Then G(x) = g(x) as already noticed in Section 2, and R0 can be approximated by
Eq. (31). The kernel, represented by Eq. (48), arises for example in SIS/SIR/SIRS
epidemic models with a sinusoidal contact rate.

If the infectious period is exponentially distributed as in Dietz (1976); Grossman
et al. (1977); Kuznetsov and Piccardi (1994), then G(x) = a e−bx and it is easily
checked that G0 = a/b, that the term of order ε2 in Eq. (31) vanishes, so that R0 �
a/b. Using the same definition of R0 as in the present paper, it was shown in Bacaër
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and Guernaoui (2006, Section 5) that the exact formula R0 = a/b holds in this
case. Of course, this “result” had been noticed for a long time, since the kernel,
represented by Eq. (48), arises in connection with the equation

dI
dt

= a(1 + ε cos(ωt − φ)) I(t) − b I(t),

which can be solved explicitly, and which is easily seen to have an unstable zero
steady state if and only if a/b > 1. By analogy with the trivial case ε = 0, several
people were thus led to set R0 = a/b as a definition, to notice that this R0 is the time
average of the function R0(t) = a(1 + ε cos(ωt − φ))/b, and to believe that such
an averaging property holds for more complicated models (this is not the case).

If the infectious period is a fixed constant τ as in Cooke and Kaplan (1976);
Smith (1977); Nussbaum (1977, 1978); Grossman (1980), then G(x) = a for x < τ

and G(x) = 0 for x > τ . Then G0 = a τ , G1 = a 1−e−iωτ

iω , and (31) yields

R0 � a τ + ε2 2 a τ sin2(ωτ/2)
[ωτ − sin(ωτ )]2 + [1 − cos(ωτ )]2

[
ωτ/2

tan(ωτ/2)
− 1

]
. (49)

This formula shows that, contrary to the case of the model for malaria considered
in Section 4.1, seasonality can either increase or decrease R0, depending on the
numerical value of ωτ . Notice that for the rather exceptional case ω = 2π and
a = 1 considered in Cooke and Kaplan (1976); Smith (1977); Nussbaum (1977,
1978), Eq. (49) tells that R0 = 1 + o(ε2) when τ = 1. We expect the exact formula
R0 = 1 to hold for all ε when τ = 1, since periodic solutions of the full nonlinear
epidemic model were shown to exist if and only if τ > 1 (Nussbaum, 1977; Smith,
1977).

5.1.2. Epidemic models with n = 2
Consider an epidemic model with two infected compartments which, once lin-
earized near the disease-free steady state, takes the form

dI1

dt
� −b1 I1(t) + a2 [1 + ε cos(ωt − φ)] I2(t),

dI2

dt
� a1 I1(t) − b2 I2(t).

Notice that the system, represented by Eq. (38), was of this form. The kernel of
the associated next-generation operator is

K(t, x) =
(

0 [1 + ε cos(ωt − φ)] a2 e−b2 x

a1 e−b1x 0

)
. (50)

Equation (31) yields

R0 � a1 a2

b1 b2

(
1 − b1 b2

ω2 + (b1 + b2)2

ε2

2

)
. (51)
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One such example is the model for malaria considered in Anderson and May
(1991, p. 404). The numerical values used in this reference are: ω = 2π , ε = 15/25,
a1 = 20 per year, a2 = 20 × 25 per year, b1 = 50 per year and b2 = 4 per year. All
four numerical methods of Section 3, as well as the simple approximate formula,
represented by Eq. (51), yield R0 � 49.4. Notice that the lowest order term is ρ0 =
50.

Another example is the SEIR/SEIRS epidemic model with a sinusoidal contact
rate considered for example in Schwartz and Smith (1983); Aron and Schwartz
(1984); Kuznetsov and Piccardi (1994), Altizer et al. (2006, Box 1), and Ma and
Ma (2006, Section 4). The numerical values used in Ma and Ma (2006, Section 4)
are: ω = 1, ε = 0.8, a1 = 0.3 a2 = 1, b1 = 0.3, and b2 = 0.99 (units not specified).
A numerical simulation showed that no epidemic can develop in this case. But
for ε = 0, it was noticed that R0 = ρ0 = (a1 a2)/(b1 b2) = 1/0.99 > 1. The conclu-
sion was that averaging the contact rate is not a correct way of determining the
epidemic threshold. Indeed, any one of the four numerical methods of Section 3
of the present paper yields R0 � 0.973 < 1 for ε = 0.8. The simple approximate
formula, represented by Eq. (51), yields R0 � 0.974.

Still another example is the model for cholera with a sinusoidal contact rate with
the water or a sinusoidal contamination rate of the water considered in Codeço
(2001). This reference also considers the case where the coefficient b2 representing
the decay rate of Vibrio cholerae in water might also be a sinusoidal function of
time. The present paper does not provide an approximate formula for the basic
reproduction number in this last case, but R0 can still be computed numerically
using, for example, the method of Section 3.4.

We also mention the “conjecture” of Moneim and Greenhalgh (2005), suggest-
ing that a basic reproduction number R0 (with threshold at 1) in an SEIRS model
with periodic vaccination and periodic contact rate can be computed by a simple
formula after having taken the average of the coefficients of the linearized system
over one period. No numerical example is given in this reference. But if we assume
that the contact rate is constant and that the vaccination rate is such that the sus-
ceptible population in the diseasefree situation is sinusoidal, then K(t, x) is exactly
of the form of Eq. (50) and R0 is given by Eq. (51). If averaging were correct, the
result should not depend on ε. So the “conjecture” seems to be wrong.

5.2. The stochastic case

For the chikungunya epidemic in La Réunion, it would be useful to have some
estimate of the probability for the epidemic to go extinct because of the winter
season knowing the size of the infected human population at the beginning of the
winter. To answer such a question, a stochastic model is obviously needed. But
stochastic models for vector-borne diseases with seasonality are difficult to handle.
In this section, we try to emphasize the link between the extinction probability at
time t and the basic reproduction number R0 using a very simple epidemic model
with seasonality.
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Consider the simple “birth and death process” with θ -periodic coefficients a(t)
and b(t):

dWk

dt
= a(t) (k − 1) Wk−1(t) − [a(t) + b(t)] k Wk(t) + b(t) (k + 1) Wk+1(t), k ≥ 1

and dW0/dt = b(t) W1(t). Here, Wk(t) is the probability of having k infected people
at time t . If Z infected people (Z ≥ 1) are introduced or present at time t = T,
then WZ(T) = 1 and Wk(T) = 0 for k 	= Z. The probability W0(t) of extinction at
time t ≥ T can be computed by solving the first-order partial differential equation
satisfied by the generating function g(t, x) = ∑

k≥0 Wk(t)xk. The result, given in
Bartlett (1960), holds even if a(t) and b(t) are not periodic:

W0(t) =
[

1 − e− ∫ t
T(b(τ )−a(τ )) dτ

1 + ∫ t
T a(τ ) e− ∫ t

τ
(b(σ )−a(σ )) dσ dτ

]Z

.

Notice that the expected number I(t) of infected people at time t is given by

I(t) =
∑
k≥1

k Wk(t),
dI
dt

= a(t) I(t) − b(t) I(t).

As can be guessed from this differential equation, and as shown in Bacaër and
Guernaoui (2006, Section 5) for periodic functions a(t) and b(t), the basic repro-
duction number R0, if defined as in Section 2, is then given by

R0 =
(∫ θ

0
a(τ ) dτ

)
/

(∫ θ

0
b(τ ) dτ

)
.

Now notice that if R0 < 1, then W0(t) → 1 as t → +∞: the epidemic will go extinct.
If R0 > 1, then

W0(t) −→
t→+∞

[
1 − 1/

∫ ∞

T
a(τ ) e

∫ τ

T (b(σ )−a(σ )) dσ dτ

]

and there is a certain probability that the epidemic will persist.
Hence, the basic reproduction number R0 is also a threshold between the situa-

tion where the epidemic will go extinct with probability 1 whatever the initial time
of introduction of the first infected cases, and the situation where the epidemic
will go extinct with a probability between 0 and 1 depending on the initial time.
One may expect a similar threshold result for stochastic models of vector-borne
diseases with seasonality, but further work is needed to check this point.

Notice that this section “avoids” the introduction of a time-dependent basic re-
production number ”R0(t),” defined, e.g., for the case of vector-borne diseases by
Eq. (1) with p replaced by p(t). This expression seems a good candidate to dis-
cuss invasion as a function of the time of introduction of the pathogen. But the
example in Hale (1980, p. 121), mentioned in Diekmann and Heesterbeek (2000,
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p. 149), already suggests that the following case may well happen: R0(t) < 1 for all
t , but the diseasefree steady state is unstable (i.e., R0 > 1, with R0 defined as in the
present paper). Besides, R0 is generally not the average over time of “R0(t)” (with
the notable exception of the case K(t, x) = a(t) e−bx already discussed in Section
5.1.1). From a biological point of view, the possibility of invasion of a pathogen in a
seasonally varying environment obviously depends on the time of introduction of
the pathogen during the year. Because invasion is completely determined by R0 in
deterministic models (unlike in stochastic models), this gives the impression that
deterministic models are just not suitable to discuss invasion as a function of the
time of introduction of the pathogen.

Appendix

Starting from the definition given by Eq. (9) of G(x) and assuming Eq. (10), we
prove Eq. (11) by induction. Obviously, no generality is lost by assuming that a j =
1 for all j . For n = 2, a simple computation shows that

G(x) =
∫ x

0
e−λ1 x1−λ2 (x−x1) dx1 = e−λ1 x

λ2 − λ1
+ e−λ2 x

λ1 − λ2
.

Now assume that Eq. (11) is true for a certain integer n. Then

G(x) =
∫

σ n+1
x

e−λ1 x1−···−λn xn−λn+1 xn+1 dσ n+1
x

=
∫ x

0

(∫
σ n

x−xn+1

e−λ1 x1−···−λn xn dσ n
x−xn+1

)
e−λn+1 xn+1 dxn+1

=
∫ x

0

(
n∑

j=1

e−λ j (x−xn+1)∏
k	= j
k≤n (λk−λ j )

)
e−λn+1 xn+1 dxn+1

=
n∑

j=1

e−λ j x∏
k	= j
k≤n

(λk − λ j )
∫ x

0
e(λ j −λn+1)xn+1 dxn+1

=
n∑

j=1

e−λ j x∏
k	= j

k≤n+1
(λk − λ j )

+ e−λn+1x
n∑

j=1

1
(λ j − λn+1)

∏
k	= j
k≤n

(λk − λ j )
.

Notice that the second sum in the last line is the partial fraction expansion of the
rational function of λn+1

1∏
1≤ j≤n(λ j − λn+1)

.
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So

G(x) =
n+1∑
j=1

e−λ j x∏
k	= j

k≤n+1
(λk − λ j )

,

and Eq. (11) is true for n + 1. QED.
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Cooke, K.L., Kaplan, J.L., 1976. A periodicity threshold theorem for epidemics and population

growth. Math. Biosci. 31, 87–104.
Diekmann, O., Heesterbeek, J.A.P., 2000. Mathematical Epidemiology of Infectious Diseases—

Model Building, Analysis and Interpretation. Wiley, Chichester, UK.
Dietz, K., 1976. The incidence of infectious diseases under the influence of seasonal fluctuations.

In: Berger, J., Bühler, W., Repges, R., Tautu, P. (Eds), Mathematical Modelling in Medicine.
Springer, Berlin, pp. 1–15.

Duhamel, G., Gombert, D., Paupy, C., Quatresous, I., 2006. Mission d’appui à la lutte contre
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