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Abstract Here we extend the classic Hawk–Dove model of animal conflict to al-
low for continuous variation in fighting strengths. Whereas the winner of a fight
is chosen at random in the discrete game, in our continuous game, the winner of
any fight is the stronger individual, and costs are higher for more evenly matched
opponents. We identify the evolutionary stable strength threshold beyond which
an animal should be prepared to engage in aggressive behaviour and show that
this threshold increases with variance in fighting strength when the costs of ag-
gression are insensitive to the level of strength asymmetry, but decreases with
variance when the costs are sensitive to the level of asymmetry. In contrast to
the classic discrete game, population-wide aggressive behaviour occurs only when
the costs of fighting are zero. It is now known that animals can eavesdrop on the
outcome of contests between neighbours and modify their behaviour towards ob-
served winners and losers. We therefore further extend our model to allow for so-
cial eavesdropping within networks comprising three individuals. Whereas earlier
work showed that eavesdropping increases the frequency of mutually aggressive
contests in the discrete game by enhancing the value of victory, here we show that
aggression thresholds in the continuous game are always higher with eavesdrop-
ping than without it: for sufficiently weak animals, avoiding the costs of challenging
an observed winner over-rides the potential benefit of winning, so that eavesdrop-
ping reduces the frequency of aggressive encounters. Thus, even though strength
is not directly observable, information is extracted from the variation in fighting
ability that the classic Hawk–Dove game ignores.
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1. Introduction

Gathering information from interactions between other animals has been de-
scribed as eavesdropping (McGregor, 1993, p. 241). The study of this phenomenon
is still in its infancy: in particular, there has been very little theoretical analysis of
its effect within species (Peake, 2005, p. 33). The principal contribution to this lit-
erature so far is that of Johnstone (2001), who extended the classic Hawk–Dove
game (Maynard Smith, 1982) to allow bystanders to eavesdrop on contests be-
tween others, and to modify their behavior toward the contestants in response to
the observed interaction. A surprising prediction from his analysis was that esca-
lated contests should occur more frequently when eavesdropping is possible. But
this prediction emerged from a model that ignores variation in strength or fighting
ability, so that contestants are equally likely to win or lose a fight. Here we make
some very different assumptions, namely, that the stronger of two animals always
wins a fight if there is one, and that more evenly matched contests are more ex-
pensive (because it takes longer to discover who is really stronger). We also make
some very different predictions, in particular, that escalated contests should occur
less frequently when eavesdropping reveals information about relative strength.

The study of games on networks or populations of networks, in which interac-
tions are fundamentally polyadic, is also in it infancy. This work relies heavily on
computer simulation because analysis is difficult, the degree of difficulty increasing
sharply with the size of the network. For that very reason, virtually the entire an-
alytical literature on evolutionary game theory has assumed either dyadic interac-
tion or a high degree of symmetry, or both, although there are some exceptions—
e.g., a game-theoretic analysis of winner and loser effects by Mesterton-Gibbons
(1999) that allows for asymmetric interaction within triads. Yet we cannot rely
exclusively on computer simulation in the study of any behavioral phenomenon.
Insights from analytical work, however idealized the underlying assumptions, are
crucial in allowing us to explore the logic of verbal arguments rigorously. What
this means in practice is that the study of triadic interactions has an important role
to play because triads are both the simplest groups in which network phenomena
can be studied and the groups beyond dyads in which analysis is most likely to be
tractable, especially when allowing for intrinsic variation. In this paper, we present
such an analysis of the phenomenon of social eavesdropping.

2. Hawk–Dove game with partial information

We begin by analyzing a Hawk–Dove game in which each contestant knows its
own strength but not that of its opponent. Both strengths are drawn from the same
distribution on [0, 1]. Stronger animals tend to escalate, weaker animals tend to
defer. Let u be the aggression threshold for Player 1, the potential mutant (if its
strength exceeds this value, then it escalates); let v be the corresponding thresh-
old for Player 2, who represents the population. For each individual let fitness
increase (beyond the basic level) by α for dominance (winning the contest) and
by bα for non-subordination (neither opponent escalates in the contest), where
b < 1, so that b is the value of shared resource access relative to the value of
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exclusive access; in other words, b is an inverse measure of the advantage of dom-
inance. It will be convenient to scale costs with respect to α. Accordingly, let
c(s1, s2) α be the cost of a fight between a pair of animals whose strengths are s1

and s2. Let X be the strength of the u strategist, and let Y be that of the v strategist:
thresholds are assumed heritable, whereas strengths are not. Then the associated
(relative) payoff to the u strategist is

F(u, v, X, Y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if 0 < X < u, v < Y < 1
bα if 0 < X < u, 0 < Y < v

α if u < X < 1, 0 < Y < v

{1 − c(X, Y)}α if u < X, v < Y < X < 1
−c(X, Y)α if u < X < Y < 1, Y > v

(1)

and the reward to a u strategist in a population of v strategists is

f (u, v) = E[F(u, v, X, Y)] =
∫ 1

0

∫ 1

0
F(u, v, x, y)g(x)g(y) dx dy (2)

where E expected value and g the probability density function of the distribu-
tion from which X and Y are independently drawn. We calculate f (u, v) in Ap-
pendix A.

A strategy v is an evolutionarily stable strategy or ESS in the sense of
Maynard Smith (1982) if it is uniquely the best reply to itself, i.e., if f (v, v) >

f (u, v) for all u �= v. In Appendix A, we show that the game defined by (2) has a
unique ESS, which is the solution of the equation

∫ 1

v

c(v, y)g(y) dy = (1 − b)G(v). (3)

Suppose, e.g., that strength is uniformly distributed between 0 and 1 and

c(s1, s2) = c0{1 − |s1 − s2|k} (4)

for k > 0, as illustrated in Fig. 1. Thus cost increases from a minimum of 0 when
difference in strength is most extreme (either s1 = 1, s2 = 0 or s1 = 0, s2 = 1) to a
maximum of c0 when the difference is zero; k is a measure of the insensitivity of
cost with respect to strength difference, in the sense that a small difference implies
a large cost reduction when k is very low but virtually no cost reduction when k is
very high. Given (4), then (3) reduces to

1 − (1 − v)k

k + 1
= (1 − b)v

c0(1 − v)
. (5)

Let the solution of this equation, i.e., the ESS, be denoted by v∗. We obtain by
inspection that limk→0 v∗ = 0: if fighting is expensive only when contestants are
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Fig. 1 Variation of cost c with strength difference |s1 − s2| for various values of the insensitivity
parameter k, according to (4). A small difference of strength implies a large cost reduction when
k is very low but virtually no cost reduction when k is very high.

identical in strength, then they should always fight. Also by inspection,
limk→∞ v∗ = c0/(1 − b + c0) as illustrated by the dashed curve in Fig. 2.

Although (5) can be solved analytically only for low integer values of k, e.g.,
k = 1 (see Appendix B), it is easily solved numerically. In the context of the classic
Hawk–Dove game, it is usual to take b = 1/2. The corresponding ESS is shown in
Figure 2 as a function of c0 for various values of k. Unsurprisingly, the higher the
cost, the higher the threshold for aggression; moreover, the greater the range of
strength differences over which costs are significant, the higher the threshold for
aggression.

A remark is in order before proceeding. Intuitively, individuals should have a
lower aggression threshold (be more prepared to fight), the greater the value of a
resource—relative to the cost of fighting. Because resource value (α) scales out of
our analysis, a higher value to cost ratio corresponds to a lower value of c0. Thus,
intuition suggests that aggression thresholds should be lower when c0 is lower—
exactly what we see in Fig. 2.

Nevertheless, the uniform distribution is merely one of many possible
distributions for fighting strength. We would like to know the effect of variance.
In nature, distributions of fighting ability are typically fairly symmetric (see, e.g.,
McDonald, 1981, p. 135 et seq.), so an appropriate choice of distribution for theo-
retical purposes is one that is perfectly symmetric on [0, 1] with mean 1/2. Accord-
ingly, we choose the symmetric Beta distribution defined by

g(ξ) = �(2a)
{�(a)}2

ξ a−1 (1 − ξ)a−1 (6)
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Fig. 2 The evolutionarily stable aggression threshold v∗ as a function of maximum cost c0 for
b = 1/2 and various values of the insensitivity parameter k when strength is uniformly distributed
between 0 and 1.

where � denotes the Euler gamma function, i.e., �(η) = ∫ ∞
0 e−ξ ξ η−1 dξ (see, e.g.,

Kempthorne and Folks, 1971, p. 107). For a = 1 this distribution is uniform; for
a > 1 it is unimodal, and its variance decreases with a according to

σ 2 = 1
4(1 + 2a)

. (7)

We assume that a ≥ 1, or σ 2 ≤ (1/12). The effect of variance on the ESS is il-
lustrated by Fig. 3: for large k, the threshold increases with variance, for small k,
it decreases. For sufficiently small k, the costs are appreciable only when contes-
tants are equally matched, which is most likely when variance is least. Note that
v∗ → 1/2 as σ 2 → 0 for any k and that v∗ → G−1(c0/{1 − b + c0}) as k → ∞ for
any σ 2, where −1 denotes inverse; see Appendix C.

3. Eavesdropping model

For the sake of tractability, we consider only a population of animals above the
basic ESS threshold for aggression, and we assume that this sub-population is sub-
divided into triads, the smallest groups in which investigation of the phenomenon
of eavesdropping is possible. We assume that a sufficiently weak animal may defer
to a prior winner it has observed, but that no individual defers to a loser or to an
individual that it hasn’t observed (consistent with our assumption that all animals
are above the basic ESS threshold), and that sooner or later a fight breaks out
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Fig. 3 The evolutionarily stable aggression threshold v∗ as a function of variance σ 2 for c0 = 1,
b = 1/2 and various values of the insensitivity parameter k when strength has a symmetric Beta
distribution on [0, 1].

between two of the three animals; this fight is observed by the third animal, who
subsequently picks a fight with the loser (its strength lies above the basic threshold,
and the loser is not as strong as the winner). We assume that the direct benefit of
beating a loser is the same as the direct benefit of beating a winner. Because the
loser has not observed the first eavesdropper, there results a second actual fight
(which is observed by the winner of the first). If the first loser wins its second fight,
then the first winner picks a fight with the eavesdropper, but if the first loser loses
again, then the first winner escalates only if it is sufficiently strong, and likewise for
the eavesdropper. A strategy is now a two-dimensional vector, u = (u1, u2) for the
focal individual and v = (v1, v2) for the population representative; the first com-
ponent yields the aggression threshold against an observed winner for an animal
that has won its first fight, and the second component is the aggression threshold
against an observed winner for an animal that has lost its first fight. By assumption,
all thresholds lie between v∗ and 1, where v∗ denotes the ESS for Section 2. Thus,
an ESS under eavesdropping must have the form (V∗

1 , V∗
2 ), where v∗ ≤ V∗

1 ≤ 1 and
v∗ ≤ V∗

2 ≤ 1, and the question of interest is whether V∗
1 = v∗ = V∗

2 or whether at
least one threshold exceeds the minimum. In the first case, eavesdropping does
not reduce aggression; in the second case, it does. We are especially interested in
whether V∗

1 > v∗ because V∗
1 is the less likely threshold to exceed its minimum.

Let the focal u strategist have strength X, and let the other two animals—both
v strategists—have strengths Y and Z, all drawn from the same distribution on
[v∗, 1]. If the density is h then

h(s) = λg(s) (8)

where λ = 1/
∫ 1
v∗ g(s) ds to ensure that

∫ 1
v∗ h(s) ds = 1.
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Table 1 Payoff to a focal individual F whose first opponent is A, conditional on participation
in the first of the three contests; B denotes the eavesdropper

Winners
Case, Event Payoff,
i 1st 2nd 3rd �i (u, v) Pi (X, Y, Z)

1 A F (A) Y > X > Z, Z < v2 {1 − c(X, Y)}α
2 A F (A) Y > X > Z, Z > v2 {1 − c(X, Y) − c(X, Z)}α
3 A B (A) Y > X, Z > X, Y > v1, Z < v1 −{c(X, Y) + c(X, Z)}α
4 A B (A) Y > Z > X, Y > v1, Z > v1 −{c(X, Y) + c(X, Z)}α
5 A B (B) Y > X, Z > X, Y < v1, Z > v1 −{c(X, Y) + c(X, Z)}α
6 A B (B) Z > Y > X, Y > v1, Z > v1 −{c(X, Y) + c(X, Z)}α
7 A B (A/B) Y > X, Z > X, Y < v1, Z < v1 −{c(X, Y) + c(X, Z)}α
8 F (A) F X > Y > Z, Z < v2 {2 − c(X, Y)}α
9 F (A) F X > Y > Z, Z > v2 {2 − c(X, Y) − c(X, Z)}α

10 F (B) F X > Y, Z > Y, X > u1, Z < v1 {2 − c(X, Y)}α
11 F (B) F X > Z > Y, X > u1, Z > v1 {2 − c(X, Y) − c(X, Z)}α
12 F (B) B X > Y, Z > Y, X < u1, Z > v1 {1 − c(X, Y)}α
13 F (B) B Z > X > Y, X > u1, Z > v1 {1 − c(X, Y) − c(X, Z)}α
14 F (B) F/B X > Y, Z > Y, X < u1, Z < v1 {1 + b − c(X, Y)}α

Note. Parentheses indicate a contest in which the focal individual is not involved. A bold letter
indicates that the individual’s opponent deferred.

We consider each order of interaction in turn. Let us first consider the payoff
to a u strategist when it participates in the first of the triad’s three dyadic inter-
actions; this event occurs with probability 2/3 because the role of eavesdropper is
randomly assigned, with probability 1/3 for each animal. Let the focal individual
with strength X be denoted by F, let its opponent have strength Y and be denoted
by A, and let the eavesdropper have strength Z and be denoted by B. We decom-
pose the (conditional) sample space into constituent events as shown in Table 1.
Thus, conditional on participation in the opening contest (= fight), the reward to
a u strategist in a population of v strategists is

fO(u, v) =
14∑

i=1

∫∫∫

(x,y,z)
∈ �i (u,v)

Pi (x, y, z)h(x)h(y)h(z) dx dy dz. (9)

Let us next consider the payoff to a u strategist when it eavesdrops on the first
of the triad’s three dyadic interactions; this event occurs with probability 1

3 . We
decompose the (conditional) sample space into constituent events as shown in
Table 2. Thus, conditional on non-participation in the opening contest, the reward
to a u strategist in a population of v strategists is

fE(u, v) =
28∑

i=15

∫ ∫ ∫

(x,y,z)∈ �i (u,v)

Pi (x, y, z)h(x)h(y)h(z) dx dy dz

= 2
21∑

i=15

∫∫∫

(x,y,z)
∈ �i (u,v)

Pi (x, y, z)h(x)h(y)h(z) dx dy dz (10)
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Table 2 Payoff to a focal individual F, conditional on being the eavesdropper during the first
of the three contests

Winners
Case, Event Payoff,
i 1st 2nd 3rd �i (u, v) Pi (X, Y, Z)

15 (A) B A Y > Z > X, X < u2 −c(X, Z)α
16 (A) B A Y > Z > X, X > u2 −{c(X, Z) + c(X, Y)}α
17 (A) F A Y > Z, X > Z, X < u1, Y > v1 {1 − c(X, Z)}α
18 (A) F A Y > X > Z, X > u1, Y > v1 {1 − c(X, Z) − c(X, Y)}α
19 (A) F F Y > Z, X > Z, X > u1, Y < v1 {2 − c(X, Z)}α
20 (A) F F X > Y > Z, X > u1, Y > v1 {2 − c(X, Z) − c(X, Y)}α
21 (A) F A/F Y > Z, X > Z, X < u1, Y < v1 {1 + b − c(X, Z)}α
22 (B) A B Z > Y > X, X < u2 −c(X, Y)α
23 (B) A B Z > Y > X, X > u2 −{c(X, Y) + c(X, Z)}α
24 (B) F B Z > Y, X > Y, X < u1, Z > v1 {1 − c(X, Y)}α
25 (B) F B Z > X > Y, X > u1, Z > v1 {1 − c(X, Y) − c(X, Z)}α
26 (B) F F Z > Y, X > Y, X > u1, Z < v1 {2 − c(X, Y)}α
27 (B) F F X > Z > Y, X > u1, Z > v1 {2 − c(X, Y) − c(X, Z)}α
28 (B) F A/F Z > Y, X > Y, X < u1, Z < v1 {1 + b − c(X, Y)}α

Note. Parentheses indicate a contest in which the focal individual is not involved. A bold letter
indicates that the individual’s opponent deferred.

by symmetry. It now follows that the (unconditional) reward to a u strategist in a
population of v strategists is

f (u, v) = 2
3

fO(u, v) + 1
3

fE(u, v) = f1(u1, v1) + f2(u2) + f3(v) (11)

where f1 is defined in Appendix D by (D.1), f2 is defined in Appendix D by (D.2)
and f3(v) has no strategic effect because it is independent of u. Thus the reward
function is separable (Mesterton-Gibbons, 2001, p. 229).

Because, from (11) and (D.2),

∂ f
∂u2

= ∂ f2

∂u2
= αh(u2)

∫ 1

u2

h(y)
{

c(u2, y)
∫ y

u2

h(z) dz
}

dy (12)

is always positive, u2 = 1 is always the best response after losing: an eavesdropper
should never escalate after losing to the loser of the first contest because it cannot
possibly win. Thus the ESS must have the form v = (V∗, 1), where

v∗ ≤ V∗ ≤ 1. (13)

If V∗ = v∗ then eavesdropping does not reduce aggression among prior winners;
however, if v∗ < V∗ ≤ 1, then eavesdropping raises their threshold. But

∂ f
∂u1

∣
∣
∣
∣
u1=v1=v∗

= 0,
∂2 f

∂u 2
1

∣
∣
∣
∣
u1=v1=v∗

= 4
3
αh(v∗)2

∫ 1

v∗
c(v∗, y)h(y) dy > 0 (14)
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Fig. 4 The evolutionarily stable aggression threshold under eavesdropping (V∗, solid curve) as
a function of variance σ 2 for c0 = 1, b = 1/2 and various values of the insensitivity parameter k
when strength has a symmetric Beta distribution on [0, 1]. In each case, the corresponding basic
threshold (v∗, dashed curve) is also shown.

from Appendix D. We conclude that V∗ > v∗, and hence that eavesdropping re-
duces aggression among prior winners as well as among prior losers. At the ESS

∂ f
∂u1

∣
∣
∣
∣
u1=v1=V∗

= 0. (15)

Assuming that g(V∗) �= 0 (which holds in particular for the Beta distribution
defined by (6)), it now follows from (8) and (D.8) that V∗ is the solution of

∫ 1

V∗
g(y)c(V∗, y) dy

∫ V∗

v∗
g(z) dz = (1 − b)

∫ V∗

v∗
g(y)

∫ y

v∗
g(z) dzdy (16)

(where g is the unconditional probability density function—in (8), λ scales out).
For cost function (4), the ESS threshold is plotted against variance as a solid curve
in Fig. 4 for c0 = 1, b = 1/2 and various values of k, with the corresponding basic
ESS from Section 2 shown as a dashed line. Note that V∗ → (1/2) as σ 2 → 0 for
any k and that v∗ → G−1(c0{3(1 − b) + 2c0}/{(1 − b + c0)(1 − b + 2c0)}) as k → ∞
for any σ 2; see Appendix C. Because observing an individual win is valuable only
when there is information about its strength, if variance in strength is zero, then it
does not serve to increase aggression thresholds.

One thing to bear in mind, however, is that whereas b = 1/2 is a fairly natural
assumption when the population is not subdivided (as in Section 2), once groups
have formed, it is possible that b may take a very different value. Accordingly, in
Figure 5 the ESS threshold is plotted against variance as a solid curve for c0 = 1,
k = 0.2 and various values of b.
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Fig. 5 The evolutionarily stable aggression threshold under eavesdropping (V∗, solid curve) as
a function of variance σ 2 for c0 = 1, k = 0.2 and various values of the (inverse) dominance ad-
vantage parameter b when strength has a symmetric Beta distribution on [0, 1]. In each case, the
corresponding basic threshold (v∗, dashed curve) is also shown.

4. Discussion

Several recent analyses of the Hawk–Dove game with continuous variation in
fighting ability predict that an individual should play Hawk (H, behave aggres-
sively and prepare to escalate) if its fighting ability is above a certain critical thresh-
old (Crowley, 2000; McNamara and Houston, 2005) and otherwise play Dove (D,
display and prepare to retreat). In these studies, only four discrete payoff com-
binations were considered (HH, HD, DH, DD). Here, by contrast, we have al-
lowed similarity of fighting strength to affect the cost of any mutually aggressive
behaviour, rendering payoffs continuous rather than discrete. Our particular cost
function can be justified on the basis of some form of sequential assessment of
fighting skill (e.g., see Enquist and Leimar, 1983). In effect, one contestant should
back down when it becomes evident that the other has greater fighting ability,
which will take longer to realize when the individuals are more closely matched.
Several empirical studies have lent support to the idea that differences between
contestants are important in determining contest duration (e.g., see Moya-Laraño
and Wise, 2000), although it is now recognized that alternative hypotheses, includ-
ing one-sided assessment of fighting strengths, have not been ruled out (Taylor
and Elwood, 2003). Indeed, contest duration may be affected by other factors such
as cost thresholds (Morrell et al., 2005), and in some cases there may be no sim-
ple correlates (Kemp et al., 2006). Overall, however, we consider our cost function
a pragmatic way of generating a continuous Hawk–Dove model, which is more
biologically meaningful than simply interpolating between values in the discrete
game (e.g., see Ahmed and Elgazzar, 2000) and more realistic than assuming fixed
contest costs.
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Our analysis of the basic continuous game without eavesdropping suggests that
if fighting strength is variable among individuals, then the evolutionarily stable
strength threshold beyond which an individual is prepared to fight should increase
with the costs of fighting. In effect, individuals are less likely to adopt aggressive
behaviour as the cost of fighting increases. Likewise we have found (Fig. 5, dashed
curves) that the greater the value of the resource to individuals that mutually defer
(the higher b), the higher the thresholds for fighting. These two results reflect an
analogous property in the classic discrete game (although here the effect is medi-
ated by different parameters): when the value V of the resource to the winner is
less than the cost C to the loser (V < C) then a proportion V/C of the population
should play Hawk (Maynard Smith, 1982).

For a more detailed comparison of these two models, we first note that only
losers pay costs in the classic game. To modify it so that winners also pay costs,
we must replace (V − C)/2 by V/2 − C in the top-left hand corner of the matrix
on page 12 of Maynard Smith (1982), the effect of which is to reduce the propor-
tion of Hawks at the ESS when costs are high from V/C to V/(2C). The classic
game assumes that costs are constant, i.e., independent of strength, which is the in-
finitely insensitive limit of the model developed in Section 2. In this limit Maynard
Smith’s proportion V/(2C) corresponds to 1/(2c0) in our model, and on setting
b = 1/2 and taking the limit as k → ∞ in Section 2, we find that the proportion of
Hawks is 1/(1 + 2c0), which is always lower, as also predicted by McNamara and
Houston (2005). Note that this result holds (in the infinitely insensitive limit) for
arbitrary variance: intuitively, aggression is lower because information is extracted
from the variation in fighting ability, which the classic Hawk–Dove game ignores.
Effectively, in the discrete Hawk–Dove game, a weaker individual always has an
even chance of winning a fight, whereas in our continuous game a weaker individ-
ual is bound to lose; therefore, an animal should not escalate unless its strength is
high enough for it to have a sufficient chance of being the stronger, and the overall
effect at the population level is to raise the aggression threshold at the ESS. We
also note that unconditional Hawk is the classic ESS when costs are low. In our
model, by contrast, the equivalent of pure Hawk (zero aggression threshold) is the
ESS only if costs are zero (k = 0, see Appendix C): for low cost, the threshold is
merely low. Again, information is extracted from the variation in fighting ability,
which the classic Hawk–Dove game ignores.

An important parameter in our analysis is k, which measures the insensitivity of
the relationship between cost and strength difference at low asymmetry in fight-
ing strengths. We have shown that at high sensitivity in this relationship (low k),
aggression thresholds decrease with variance in strengths among individuals; but
at low sensitivity (high k), thresholds increase with variance. With low k, the costs
of fighting are only appreciable in size if the difference in fighting ability between
contesting individuals is low, so that individuals adopt higher thresholds when the
variance is low. By contrast, at high k, maximal costs would apply to fighters under
a far wider range of differences in strengths. As the variance in fighting strength
increases, costly mutually aggressive interactions are reduced through the adop-
tion of more conservative fighting thresholds. Little empirical work has been con-
ducted to evaluate the role of among-individual variation in fighting strengths in
mediating the frequency of fighting behaviour, but our analysis suggests that the
relationship is not, in general, a simple one.
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Our key result centres on what happens to the evolutionary stable thresholds
when one allows for eavesdropping. The possibility that bystanders are capable of
altering their behaviour in a strategic way when interacting with observed winners
or losers has been increasingly recognized (see McGregor and Peake, 2000; Peake,
2005). One might expect that there would be a greater reluctance to fight with a
previously observed victor, especially if there were significant costs of fighting, and
this is precisely what our model predicts. At an extreme, we have shown (rather
than assumed) that an individual should never escalate against an individual who
was victorious over the individual that in turn defeated it. Thus, in a population
at the ESS, animals behave as though they are using transitive inference, even
though we have not assumed that they have this capability—we have merely as-
sumed a propensity to attack losers in prefence to winners and an ability to react
differently in the roles of winner and loser. It has recently been demonstrated un-
der controlled conditions that pinyon jays use transitive reasoning (Paz-y Miño C
et al., 2004), and it has been shown theoretically that transitive-inference strate-
gies are superior to several alternatives (Nakamaru and Sasaki, 2003); however,
these authors did not propose a mechanism through which a transitive-inference
strategy could emerge ab initio. Our analysis suggests that social eavesdropping is
a possible candidate.

More generally, we have shown that the evolutionary stable aggression thresh-
old against an animal that has been observed to win its first fight (V∗ in Section 3)
is always higher at positive variance than the aggression threshold against an indi-
vidual that has lost its first fight (v∗ by assumption). This prediction already has
a degree of empirical support. For instance, Oliveira et al. (1998) showed that
male Siamese fighting fish (Betta splendens) monitor the outcomes of contests be-
tween neighbours and found that males are more willing to fight individuals that
they have seen losing compared to individuals they have seen winning, relative to
an intermediate response to previously unseen individuals. Similarly, Earley and
Dugatkin (2002) investigated the dynamics of aggressive interactions in the green
swordtail fish (Xiphophorus helleri) and found that eavesdropping reduced the
bystander’s propensity to initiate aggression, escalate, and win against an earlier
observed winner.

In an insightful paper, Johnstone (2001) incorporated an eavesdropping strat-
egy into the classic Hawk–Dove model. His eavesdroppers by definition played
Dove against an observed winner in the previous round but Hawk against an ob-
served loser. Somewhat surprisingly, Johnstone predicted escalated conflicts to oc-
cur more frequently in his eavesdropping model than in the classic Hawk–Dove
game because the benefits of winning in any given round could cascade through
rounds, with eavesdroppers always deferring to observed winners. As Johnstone
(2001, p. 9180) noted, his formulation could usefully be extended to allow for
individual variation in fighting ability. Here we have done just that, yet we have
arrived at a rather different conclusion: when strength varies, eavesdropping re-
duces aggression. In particular, in the limit of infinite insensitivity corresponding
to the classic discrete Hawk–Dove game, eavesdropping further reduces the pro-
portion of Hawks from 1/(1 + 2c0) to 1/(1 + 2c0)(1 + 4c0); see Appendix C. In
our continuous game, avoiding the costs of challenging an observed winner over-
rides the potential benefit of winning for animals that are sufficiently weak, so
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that eavesdropping decreases the frequency of aggressive encounters. Only at zero
variance in strength among individuals will eavesdropping have no effect on ag-
gression thresholds. Clearly, observing an individual win is valuable only when it
provides information about its strength, which happens only when individuals dif-
fer and cues about this difference are available to the bystander.

Note that our model differs in several important respects from that of
Johnstone (2001). For example, as a consequence of continuous variation in
strength, we have been able to allow the winner of a contest to be the stronger of
two contestants, rather than being decided at random. Moreover, in Johnstone’s
model, the response to eavesdropping at the ESS is a fixed behaviour exhibited by
a certain proportion of the population, whereas in our model, it is a conditional
strategy that all individuals adopt. McElreath (2003) similarly explored the effects
of reputation-based strategies and concluded that reputation would tend to gen-
erate less fighting at equilibrium in his model than if the reputation effect were
absent. All of these mathematical models have one thing in common, however;
they serve to demonstrate that the wider social environment in which interactions
take place can strongly influence the nature of the contest behaviours that are
exhibited.

All models are idealizations, and ours are no exception. In particular, our payoff
structure is not the most general in several respects. We assume throughout that
fights are more costly for more evenly matched opponents and that costs are the
same for both winner and loser, but there are many other plausible assumptions
about cost structure that we could have made instead. We justify our special as-
sumptions by our need for simplicity: the most important thing is to use the same
cost structure in Section 3 as in Section 2. Similarly, we have assumed throughout
that the stronger of two contestants always wins a fight. But judicious approxi-
mation is the essence of modelling: with an analytical model, it is almost always
necessary—not only for tractability, but also for clarity of insight—to exclude ef-
fects that are small in a real population. Thus, at the very least, we expect our
model to capture the essence of social eavesdropping in populations where the
stronger animal has a high probability of winning. In Appendix A, we make win-
ning probabilistic for the basic Hawk–Dove game by introducing a parameter r
that measures the reliability of strength difference as a predictor of fight outcome.
The analysis there shows that decreasing r reduces aggression thresholds, to the
extent that a threshold of 0 (unconditional aggression) must be an ESS for suffi-
ciently small r for sufficiently small costs. Unfortunately, it is only in the limit as
r → ∞ that we are able to extend our basic Hawk–Dove game to a tractable ana-
lytical model for social eavesdropping. Nevertheless, it is reasonable to conjecture
that reducing r would have the effect of weakening the extent to which eavesdrop-
ping raises aggression thresholds.

Finally, for analytical tractability, our social network structure in the case of
eavesdropping (Section 3) comprises only collections of three individuals. Al-
though many social networks will be limited in size and three individuals suffice
to capture the effect of eavesdropping, it is possible that larger networks could
produce qualitatively different results. Ongoing simulation work is seeking to ex-
tend our insights to larger networks.
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Fig. A.1 The sample space of pairs of strengths.

Appendix A: Calculation of the Hawk–Dove reward function and ESS

We assume that g(s) �= 0 for all s ∈ (0, 1), which holds in particular for (6). Then
the distribution function G, defined by G(η) = ∫ η

0 g(ξ) dξ , is strictly increasing.
From (1) to (2), to calculate the reward, we must add together the integrals of
bαg(x)g(y), αg(x)g(y), α{1 − c(x, y)}g(x)g(y), and −αc(x, y)g(x)g(y) over re-
gions II, III, IV and V, respectively, of Fig. A.1. The integrals over regions II and
III always yield bαG(u)G(v) and αG(v){1 − G(u)}, respectively. The shapes of re-
gions IV and V depend on which of u or v is larger, as indicated in Fig. A.1. In
either case, however, −αc(x, y)g(x)g(y) must be integrated over the whole of the
shaded rectangle, yielding

fSR(u, v) = −α

∫ 1

u
g(x)

∫ 1

v

c(x, y)g(y) dy dx. (A.1)

For u > v, we must add the integral of αg(x)g(y) over trapezoidal region IV,
which yields α

{∫ 1
u g(x)G(x) dx − G(v){1 − G(u)}}, so that the last part of the ex-

pression cancels out the integral over region III. For u < v, we must add the inte-
gral of αg(x)g(y) over triangular region IV, which yields the expression for u > v

with u replaced by v. Hence, after simplification, we obtain

f (u, v) = α

{

bG(u)G(v) +
∫ 1

u
g(x)G(x) dx

}

+ fSR(u, v) (A.2a)

for u ≥ v and

f (u, v) = α

{

G(v){(b − 1)G(u) + G(v)} +
∫ 1

v

g(x)G(x) dx

}

+ fSR(u, v)

(A.2b)
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for u ≤ v, with fSR defined by (A.1). It is readily verified that the function f de-
fined by (A.2) is continuously differentiable where u = v (in other words, that ei-
ther (A.2a) or (A.2b) yields the correct expression for ∂ f /∂u

∣
∣
u=v

= 0); and because
G is an increasing function, the two expressions for ∂ f /∂u that (A.2) implies can
be conveniently combined as

∂ f
∂u

= αg(u)

{

bG(v) − max{G(u), G(v)} +
∫ 1

v

c(u, y)g(y) dy

}

. (A.3)

Because (A.3) is both positive in the neighborhood of u = 0 for v = 0 and nega-
tive in the neighborhood of u = 1 for v = 1 (with b < 1), neither 0 nor 1 is ever
an ESS (for positive c); however, there must be an interior ESS at u = v where
∂ f /∂u

∣
∣
u=v

= 0, i.e., where v is defined by (3).
It is possible to relax the assumption that fights are always won by the stronger

contestant in the Hawk–Dove game of Section 2. For example, we could instead
assume that the probability that a focal individual wins a fight is

p(	s) = �(2r)
�(r)2 B

(
1
2

+ 1
2
	s, r, r

)

(A.4)

where 	s is the strength difference between it and its opponent; here 	s ∈ [−1, 1]
and B denotes the incomplete beta function, i.e., B(η, p1, p2) = ∫ η

0 ξ p1−1 (1 −
ξ)p2−1 dξ . The function p defined by (A.4) is sigmoidal (Fig. A.2a); p → 1/2 as
r → 0, and p approaches a step function as r → ∞. Thus, the parameter r is a
measure of the reliability of strength difference to predict fight outcome, and our
analysis corresponds to the limit as r → ∞. With the above assumption, the fourth
and fifth lines of (1) would combine as F(u, v, X, Y) = {p(X − Y) − c(X, Y)}α if

Fig. A.2 (a) p defined by (A.4) for r = 0.1 (thin solid curve), r = 1 (dotted), r = 10 (dashed)
and r = 100 (thick solid curve). (b) The evolutionarily stable aggression threshold v∗ as a function
of maximum cost c0 for b = 1/2, k = 0.2 and various values of the reliability parameter r when
strength is uniformly distributed between 0 and 1. The top-most curve is identical to the second
curve from the bottom in Fig. 2.
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u < X < 1, v < Y < 1 and integrating over regions II, III, and the shaded triangle
in Fig. A.1 would yield

f (u, v) = α

{

{1 − (1 − b)G(u)}G(v)+
∫ 1

u
g(x)

∫ 1

v

{p(x − y)

−c(x, y)}g(y) dy dx

}

(A.5)

and

∂ f
∂u

= αg(u)

{

(b − 1)G(v) −
∫ 1

v

{p(u − y) − c(u, y)}g(y) dy

}

(A.6)

in place of (A.2) respectively. This expression is always negative in the neighbor-
hood of u = 1 for v = 1 (because b < 1), so that 1 is never an ESS; however, (A.3)
is positive in the neighborhood of u = 0 for v = 0, making 0 an ESS, if

∫ 1

0
p(−y)g(y) dy >

∫ 1

0
c(y)g(y) dy. (A.7)

Otherwise, there is an interior ESS at u = v where ∂ f /∂u
∣
∣
u=v

= 0 or

(b − 1)G(v) +
∫ 1

v

c(v − y)g(y) dy =
∫ 1

v

p(v − y)g(y) dy (A.8)

which reduces to (3) in the limit as r → ∞. The lower the value of r , the lower
the threshold given by (A.8); moreover, it is clear that (A.7) must eventually be
satisfied for sufficiently low r for sufficiently low c0, as illustrated by Fig. A.2b.

Unfortunately, extending our Hawk–Dove game in Section 2 as above would
not lead to a tractable analytical model for social eavesdropping in Section 3, and
so we have analyzed this phenomenon only in the limit as r → ∞.

Appendix B: Uniform distribution with linear costs

When a = 1 in (6) and k = 1 in (4), the ESS can be found analytically. In this case,
(5) reduces to c0(1 − v2) = 2(1 − b)v with solution

v = v∗ = c0

1 − b +
√

(1 − b)2 + c 2
0

(B.1)
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and (16) reduces to c0(1 − V∗2) = (1 − b)(V∗ − v∗) with solution

V∗ = 2{c0 + (1 − b)v∗}
1 − b +

√

(1 − b)2 + 4(1 − b)c0v∗ + 4c 2
0

. (B.2)

Appendix C: On the limit of the ESS as k → ∞, k → 0 or σ 2 → 0

Substituting from (4) into (3) and taking the limit as k → ∞ yields

(1 − b)G(v) =
∫ 1

v

c0g(y) dy = c0

∫ 1

v

g(y) dy = c0{1 − G(v)} (C.1)

or

G(v) = c0

1 − b + c0
(C.2)

for arbitrary G. So the ESS becomes v∗ = G−1(c0/{1 − b + c0}), as illustrated by
the dashed curves in Figs. 2–3. In this limit of infinite insensitivity, the proba-
bility of aggression at the ESS is Prob(Y > v) = 1 − G(v) = {1 − b}/{1 − b + c0}
(= 1/{1 + 2c0} when b = 1/2, as in the classic Hawk–Dove game).

From (A.3) and (4) in the limit as k → 0 we obtain ∂ f /∂u
∣
∣
u=v

= α(b −
1)g(v)G(v), which is negative for 0 < v ≤ 1; hence 0 is the only possible ESS, and
we confirm directly from (2) that f (0, 0) − f (u, 0) = ∫ u

0 g(x)G(x) dx is positive for
all u �= 0, so that 0 is a best reply to itself.

As σ 2 → 0, s1 → s2 in (4). Hence substituting from (4) into (3) and taking the
limit as σ 2 → 0 again yields (C.1)–(C.2); but now, in addition, we have G(v) →
Gmin(v) where Gmin is the multifunction defined by Gmin(s) = 0 if 0 ≤ s < 1/2,
Gmin(s) ∈ [0, 1] if s = 1/2 and Gmin(s) = 1 if 1/2 < s ≤ 1. Thus, v∗ → G−1

min(c0/{1 −
b + c0}) = 1/2 as σ 2 → 0.

Similarly, substituting from (4) into (16), taking the limit as k → ∞ and simpli-
fying greatly, we obtain c0{1 − G(V∗)} = (1/2)b{G(V∗) − G(v∗)} or

G(V∗) = c0{3(1 − b) + 2c0}
(1 − b + c0)(1 − b + 2c0)

(C.3)

for arbitrary G. So the ESS becomes v∗ = G−1(c0{3(1 − b) + 2c0}/{(1 − b + c0)
(1 − b + 2c0)}), as illustrated by the uppermost solid curve in Fig. 4. In this limit
of infinite insensitivity, the probability of aggression at the ESS is Prob(Y >

V∗) = 1 − G(V∗) = (1 − b)2/{(1 − b + c0)(1 − b + 2c0)} (= 1/{(1 + 2c0)(1 + 4c0)}
when b = 1/2, as in the classic Hawk–Dove game—although there is no longer
any special reason why b should equal 1/2).

As σ 2 → 0, s1 → s2 in (4). Hence substituting from (4) into (16) and taking
the limit as σ 2 → 0 again yields (C.3); but now, in addition, we have G(V∗) →
Gmin(V∗) where Gmin is defined above. Hence V∗ → G−1

min(c0{3(1 − b) + 2c0}/{(1 −
b + c0)(1 − b + 2c0)}) = 1/2 as σ 2 → 0.
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Appendix D: Calculation of the eavesdropping reward function and ESS

f1(u1, v1) = 2
3

14∑

i=10

∫∫∫

(x,y,z)
∈ �i (u,v)

Pi (x, y, z)h(x)h(y)h(z) dx dy dz

+ 2
3

21∑

i=17

∫∫∫

(x,y,z)
∈ �i (u,v)

Pi (x, y, z)h(x)h(y)h(z) dx dy dz

= 2
3α

{ ∫ 1

u1

h(x)
∫ v1

v∗
h(z)

∫ min(x,z)

v∗
{2 − c(x, y)}h(y) dy dzdx

+
∫ 1

max(u1,v1)
h(x)

∫ x

v1

h(z)
∫ z

v∗
{2−c(x, y)−c(x, z)}h(y) dy dzdx

+
∫ u1

v∗
h(x)

∫ 1

v1

h(z)
∫ min(x,z)

v∗
{1−c(x, y)}h(y) dy dzdx (D.1)

+
∫ 1

max(u1,v1)
h(z)

∫ z

u1

h(x)
∫ x

v∗
{1−c(x, y) − c(x, z)}h(y) dy dx dz

+
∫ u1

v∗
h(x)

∫ v1

v∗
h(z)

∫ min(x,z)

v∗
{1+b−c(x, y)}h(y) dy dzdx

+
∫ u1

v∗
h(x)

∫ 1

v1

h(y)
∫ min(x,y)

v∗
{1 − c(x, z)}h(z) dzdy dx

+
∫ 1

max(u1,v1)
h(y)

∫ y

u1

h(x)
∫ x

v∗
{1 − c(x, z) − c(x, y)}h(z) dzdx dy

+
∫ 1

u1

h(x)
∫ v1

v∗
h(y)

∫ min(x,y)

v∗
{2 − c(x, z)}h(z) dzdy dx

+
∫ 1

max(u1,v1)
h(x)

∫ x

v1

h(y)
∫ y

v∗
{2 − c(x, z) − c(x, y)}h(z) dzdy dx

+
∫ u1

v∗
h(x)

∫ v1

v∗
h(y)

∫ min(x,y)

v∗
{1 + b − c(x, z)}h(z) dzdy dx

}

and

f2(u2) = − 2
3α

∫ 1

v∗

∫ 1

x

∫ y

x
c(x, z)h(x)h(y)h(z) dzdy dx

− 2
3α

∫ 1

u2

∫ 1

x

∫ y

x
c(x, y)h(x)h(y)h(z) dzdy dx (D.2)
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from Tables 1 and 2. The first five terms of (D.1) are merely a rearrangement of
the last five, and doubling the sum of the last five terms yields

f1(u1, v1) = 4
3α

{ ∫ u1

v∗
h(x)

∫ 1

v1

h(y)
∫ min(x,y)

v∗
{1 − c(x, z)}h(z) dzdy dx

+
∫ 1

max(u1,v1)
h(y)

∫ y

u1

h(x)
∫ x

v∗
{1−c(x, z)−c(x, y)}h(z) dzdx dy

+
∫ 1

u1

h(x)
∫ v1

v∗
h(y)

∫ min(x,y)

v∗
{2−c(x, z)}h(z) dzdy dx (D.3)

+
∫ 1

max(u1,v1)
h(x)

∫ x

v1

h(y)
∫ y

v∗
{2−c(x, z)−c(x, y)}h(z) dzdy dx

+
∫ u1

v∗
h(x)

∫ v1

v∗
h(y)

∫ min(x,y)

v∗
{1 + b − c(x, z)}h(z) dzdy dx

}

.

So for u1 > v1 ≥ v∗ we have

f1(u1, v1) = 4
3α

{ ∫ v1

v∗
h(x)

∫ 1

v1

h(y)
∫ x

v∗
{1 − c(x, z)}h(z) dzdy dx

+
∫ u1

v1

h(x)
∫ x

v1

h(y)
∫ y

v∗
{1 − c(x, z)}h(z) dzdy dx

+
∫ u1

v1

h(x)
∫ 1

x
h(y)

∫ x

v∗
{1 − c(x, z)}h(z) dzdy dx

+
∫ 1

u1

h(y)
∫ y

u1

h(x)
∫ x

v∗
{1 − c(x, z) − c(x, y)}h(z) dzdx dy

+
∫ 1

u1

h(x)
∫ v1

v∗
h(y)

∫ y

v∗
{2 − c(x, z)}h(z) dzdy dx

+
∫ 1

u1

h(x)
∫ x

v1

h(y)
∫ y

v∗
{2 − c(x, z) − c(x, y)}h(z) dzdy dx

+
∫ v1

v∗
h(x)

∫ x

v∗
h(y)

∫ y

v∗
{1 + b − c(x, z)}h(z) dzdy dx (D.4)

+
∫ v1

v∗
h(x)

∫ v1

x
h(y)

∫ x

v∗
{1 + b − c(x, z)}h(z) dzdy dx

+
∫ u1

v1

h(x)
∫ v1

v∗
h(y)

∫ y

v∗
{1 + b − c(x, z)}h(z) dzdy dx

}
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implying that

∂ f
∂u1

= ∂ f1

∂u1
= 4

3αh(u1)

{ ∫ u1

v1

h(y)
∫ y

v∗
{1 − c(u1, z)}h(z) dzdy

+
∫ 1

u1

h(y)
∫ u1

v∗
{1 − c(u1, z)}h(z) dzdy

−
∫ 1

u1

h(y)
∫ u1

v∗
{1 − c(u1, z) − c(u1, y)}h(z) dzdy (D.5)

−
∫ v1

v∗
h(y)

∫ y

v∗
{2 − c(u1, z)}h(z) dzdy

−
∫ u1

v1

h(y)
∫ y

v∗
{2 − c(u1, z) − c(u1, y)}h(z) dzdy

+
∫ v1

v∗
h(y)

∫ y

v∗
{1 + b − c(u1, z)}h(z) dzdy

}

and for u1 < v1 we have

f1(u1, v1) = 4
3α

{ ∫ u1

v∗
h(x)

∫ 1

v1

h(y)
∫ x

v∗
{1 − c(x, z)}h(z) dzdy dx

+
∫ 1

v1

h(y)
∫ y

u1

h(x)
∫ x

v∗
{1 − c(x, z) − c(x, y)}h(z) dzdx dy

+
∫ v1

u1

h(x)
∫ x

v∗
h(y)

∫ y

v∗
{2 − c(x, z)}h(z) dzdy dx

+
∫ v1

u1

h(x)
∫ v1

x
h(y)

∫ x

v∗
{2 − c(x, z)}h(z) dzdy dx (D.6)

+
∫ 1

v1

h(x)
∫ v1

v∗
h(y)

∫ y

v∗
{2 − c(x, z)}h(z) dzdy dx

+
∫ 1

v1

h(x)
∫ x

v1

h(y)
∫ y

v∗
{2 − c(x, z) − c(x, y)}h(z) dzdy dx

+
∫ u1

v∗
h(x)

∫ x

v∗
h(y)

∫ y

v∗
{1 + b − c(x, z)}h(z) dzdy dx

+
∫ u1

v∗
h(x)

∫ v1

x
h(y)

∫ x

v∗
{1 + b − c(x, z)}h(z) dzdy dx

}
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implying that

∂ f
∂u1

= ∂ f1

∂u1
= 4

3αh(u1)

{ ∫ 1

v1

h(y)
∫ u1

v∗
{1 − c(u1, z)}h(z) dzdy

−
∫ 1

u1

h(y)
∫ u1

v∗
{1 − c(u1, z) − c(u1, y)}h(z) dzdy

−
∫ u1

v∗
h(y)

∫ y

v∗
{2 − c(u1, z)}h(z) dzdy (D.7)

−
∫ v1

u1

h(y)
∫ u1

v∗
{2 − c(u1, z)}h(z) dzdy

+
∫ u1

v∗
h(y)

∫ y

v∗
{1 + b − c(u1, z)}h(z) dzdy

+
∫ v1

u1

h(y)
∫ u1

v∗
{1 + b − c(u1, z)}h(z) dzdy

}

.

So taking the limit as u1 → v1 (in (D.6) for v1 = v∗, in (D.7) for v1 = 1, and in
either expression for v∗ < v1 < 1), we have

∂ f
∂u1

∣
∣
∣
∣
u1=v1

= 4
3αh(u1)

{ ∫ 1

v1

h(y)
∫ v1

v∗
c(v1, y)h(z) dzdy

− (1 − b)
∫ v1

v∗
h(y)

∫ y

v∗
h(z) dzdy

}

. (D.8)

Setting v1 = v∗ in (D.8) now immediately yields the first result of (14). To obtain
the second result of (14), we differentiate (D.5) with respect to u1 and then take
the limit as u1 → v1 = v∗.
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