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Abstract Rate constants that characterize the kinetics of binding and dissociation
between biomolecules carry fundamental information about the biological pro-
cesses these molecules are involved in. An instrument that is widely used to de-
termine these rate constants is the Biacore. In a Biacore experiment, one of the
reactants, which we will call the receptor, is immobilized on a sensor chip. During
the binding phase of the experiment the other reactant flows past the chip. After
binding, buffer alone is introduced into the flow cell and dissociation is monitored.
Often surface-based binding assays are influenced by the transport of the reactant
in solution, complicating the determination of the chemical rate constants from the
observed binding kinetics. We propose a new way to determine the dissociation
rate constant by adding soluble receptor during dissociation. The method is tested
first on simulated data and then on Biacore experiments where the lac repressor
protein binds and dissociates from a stretch of double stranded DNA containing
the lac repressor binding site. With this method we find a dissociation rate constant
kd = 0.075 ± 0.005 s−1, a value that is faster than previously obtained from Biacore
experiments. In developing our method to analyze these experiments we obtain an
expression for the transport limited rate constant for a Biacore experiment when
soluble receptor is present during dissociation.
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1. Prologue

The work I (BG) and my colleagues present involves approximating the solution
on a boundary of a time-dependent partial differential equation (PDE) with a
time-dependent boundary condition by the solution to an ordinary differential
equation (ODE). Imbedded in the ODE is a quantity, the transport-limited for-
ward rate constant, obtained by solving the steady state PDE. Lee Segel was inter-
ested in this type of approximation and discussed it with me several times. This is
not surprising because at the heart of this approximation is the quasi-steady state
assumption (QSSA), which is an approximation that Lee championed and put on
a rigorous foundation (e.g., Segel and Slemrod, 1989). On more than one occasion
a colleague or a visitor to my group would show me some equation and ask me,
“Under what conditions can I make a quasi-steady state approximation and how
do I justify it?” I would answer,“The way I justify these approximations is simple.
Lee Segel visits Los Alamos every summer. I just wait until he shows up and then
I ask him.” With Lee gone many things that were simple once aren’t simple any
more.

2. Introduction

In many settings, soluble receptors compete for ligand with receptors confined
to surfaces. Soluble receptors can be produced in vivo by two different mecha-
nisms: differential splicing and limited proteolysis (shedding) (review in Rose-John
and Heinrich, 1994). The physiological roles soluble receptors play run the gamut
from carrier proteins that protect ligand from degradation (Fernandex-Botran and
Vitetta, 1991), to antagonists that inhibit ligand interaction with their cellular re-
ceptors (Maliszewksi, 1990; Layton, 1992), to agonists that bind ligand and asso-
ciate with common signaling molecules on the surface of cells (Jones and Ross-
John, 2002).

An important in vitro example of soluble receptor-surface receptor competition
arises in kinetic studies of ligand–receptor dissociation when soluble receptors are
used to block rebinding. A ligand is said to rebind when it dissociates from a recep-
tor on a surface and then returns to the surface and binds another receptor rather
then escaping into the bulk solution. Rebinding slows dissociation and often makes
it difficult to determine the true ligand–receptor dissociation rate constant. If one
uses a labeled ligand to study dissociation one can get around this problem by
blocking rebinding with an excess concentration of unlabeled ligand, but in many
binding studies labeled ligands are not used.

In the flow cell of the Biacore (Biacore, AB, Uppsala, Sweden), a popular op-
tical biosensor, receptors are coupled to a flat sensor surface. Neither the ligand
nor the receptor is labeled. In this instrument, through the phenomenon of sur-
face plasmon resonance (SPR) (Garland, 1996), changes in the index of refraction
caused by mass changes at the sensor surface are detected as a function of time.
(For recent reviews see Rich and Myszka, 2000; Pattnaik, 2005). By continuously
monitoring the SPR signal the time course of ligand–receptor binding can be fol-
lowed in real time (Karlsson and Fält, 1997). Kinetic studies are carried out by
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flowing ligand past the surface during the binding phase and buffer past the sur-
face during the dissociation phase. In some cases it is observed that the dissociation
kinetics speed up when the experiment is repeated at a higher buffer flow velocity
indicating that transport is influencing the binding kinetics and that rebinding is
occurring during dissociation.

When rebinding occurs the rate of ligand transport away from the surface is slow
compared to the chemical reaction rate at the surface. To work in a regime where
the opposite is the case, i.e., where transport does not influence the binding kinet-
ics, one can, for example, lower the rate of binding by working at lower surface
receptor concentrations or one can increase the rate of transport by increasing the
flow rate. However, for the Biacore these approaches may not be practical since
there is an upper limit to the flow rate and a lower limit to the surface receptor
concentration at which a reproducible signal can be obtained. Another approach
is to try to block rebinding by using a soluble receptor in the dissociation phase.
When soluble receptor binds ligand it reduces the free ligand concentration. This
sharpens the gradient of free ligand near the surface, thus increasing the diffusive
transport away from the surface. The convective transport is also increased since,
when the ligand is bound to a soluble receptor, it is transported along the flow
cell and prevented from reacting with surface receptors. Of course, this method
of blocking rebinding is also limited since it may not be feasible to obtain high
enough concentrations of soluble receptor to block rebinding.

In this paper we derive a condition which predicts the soluble receptor concen-
tration that is sufficient to block rebinding in a Biacore flow cell and show that it is
the same condition that has been previously obtained when dissociation is from
receptors on a spherical surface and transport is by diffusion alone (Goldstein
et al., 1989). We also present a method for analyzing Biacore dissociation data
when soluble receptor is present in the dissociation phase. The method is designed
to determine the dissociation rate constant in the absence of rebinding even if
the complete blocking of rebinding is not achieved at the highest soluble receptor
concentration used. We first test the method on simulated data obtained from a
mathematical model of a Biacore flow cell (Myszka et al., 1998) and then apply the
method to Biacore dissociation studies to determine the dissociation rate constant
for the lac repressor bound to a 32 base pair (bp) stretch of DNA containing the
lac repressor binding site.

For those who wish to skip the mathematical details, the recipe we propose for
analyzing Biacore dissociation data in the presence of soluble receptor is given in
Appendix B.

3. Materials and methods

3.1. Biacore assay

The Biacore 2000 biosensor, flat carboxy-methylated sensor chip C1, NHS/EDC
coupling reagents, and ethanolamine were from Biacore AB (Uppsala, Sweden).
Streptavidin (Pierce) was immobilized onto a research grade C1 biosensor chip
using amine-coupling chemistry (Johnson et al., 1991). The immobilization steps
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were carried out at a flow rate of 20 µl/min in HEPES buffer (20 mM HEPES,
150 mM NaCl, 3.4 mM EDTA, and 0.005% P20 surfactant). All four biosensor sur-
faces were simultaneously activated for 7 min with a mixture of NHS (0.05 M) and
EDC (0.2 M). Streptavidin was injected at a concentration of 40 mg/ml in 10 mM
sodium acetate, pH 4.4, for 7 min. Ethanolamine (1 M, pH 8.5) was injected for
7 min to block any remaining activated groups. An average of 3400 response units
(RU) of streptavidin was immobilized on each flow cell. A 32 bp double stranded
oligo nucleotide (containing the Lac repressor binding site “LacDNA” ) with one
strand biotinylated was captured by the streptavidin surface. Flow cells 2, 3, and 4
each contain 100, 225, and 500 RU of the lac-oligo nucleotide, respectively. Flow
cell 1 was left with streptavidin only, to be used as a reference surface. (Response
units are proportional to the mass at the sensor surface so the Lac repressor bind-
ing site surface concentrations for flow cells 2, 3, and 4 are in the ratio of 1:2.25:5.)

Kinetic binding experiments were performed with the instrument equilibrated
at 25 ◦C and running at a flow rate of 100 µl/min. Lac repressor was injected over
all four biosensor surfaces at a concentration of 20 nM. Immediately, following the
end of the association phase, the buffer was switched to contain different concen-
trations of LacDNA during the dissociation phase. The LacDNA concentration
varied from 50 nM to 0.85 pM with each concentration equal to 1/3 the previous
concentration, i.e., 50, 16.7, 5.56 nM, and so on. All surfaces were washed with
buffer containing 0.05% SDS to remove the bound protein and regenerate a fully
active oligo nucleotide surface. To correct for refractive index changes and instru-
ment noise the response data from the reference surface were subtracted from the
responses obtained from the reaction surface.

3.2. Numerical methods

In simulating the flow of bound and unbound ligand in the reaction cell, we have
three reaction–advection–diffusion equations, one for each species (solitary ligand,
soluble receptor, and bound complex). Making the assumption that the reaction
takes place approximately uniformly across the width of the flow cell we reduce
the system to three coupled equations each in two dimensions. The geometry of
the flow cell is such that flow will be very close to perfectly parabolic in the vertical
direction. The sensor boundary is modeled by coupling three ODEs (one for each
species) to the flow equations.

We solve the equations in the flow chamber using the fourth order explicit finite
difference scheme outlined in Ekebjaerg and Justesen (1991) on a fixed rectan-
gular grid. The ODE boundary condition is coupled to the flow and advanced in
time using a Runge–Kutta method. Accuracy and convergence of the scheme were
checked using previously existing codes (Myszka et al., 1998) and by comparing the
results obtained using increasingly fine grids.

The principal numerical difficulties encountered in this work occur during the
first few seconds of ligand flow and during the changeover from ligand flow to sol-
uble receptor flow. Accurate numerical simulation of fronts is difficult to achieve
using low-order methods (upwinding) and so we adopted the method used above.
After the front has passed a lower order method would suffice.
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3.3. Data analysis

The parameter estimates where obtained by doing nonlinear least-squares fitting
of the data using software based on a finite difference, Levenberg–Marquardt al-
gorithm. Estimates of the standard error of the parameter values were obtained
using a bootstrap method (Efron and Tibshirani, 1986) where 200 simulations were
performed for each estimate.

4. The full model

In this section we present a model which we solve numerically and use to test ap-
proximate results obtained in later sections. In Fig. 1 a schematic representation of
a Biacore flow channel is shown during the binding phase and during a dissociation
phase when soluble receptor is used to try to block rebinding. The channel has a
rectangular cross section which is much wider than high. (For the standard chip,
CM5, the width is 10 times the height.) For this geometry the velocity profile is
constant over almost the entire width of the channel (Brody et al., 1996). Further,
data is only collected in the central portion of the flow cell. We therefore need only
consider concentration changes in the x and y directions.

In the flow cell one of the reactants is immobilized on a sensor chip. We call
it the receptor, in analogy to a receptor on a cell surface, although it is commonly
referred to as the immobilized ligand. The other reactant, called the analyte, enters
at one end at a concentration CT, flows past the sensor surface, possibly binding
one or more times, and exits at the other end (Fig. 1). Along the flow cell the flow
is laminar with a parabolic velocity profile such that the velocity v(y) at a height y
above the sensor surface is

v(y) = 4vc(y/h)(1 − (y/h)) (1)

where h is the height of the flow channel and vc, is the flow velocity at the center of
the channel (y = h/2). Because the velocity is zero at the sensor surface, diffusion
as well as flow is important in transporting the analyte to the sensor surface.

The quantity we are interested in is the concentration of bound analyte at the
sensor surface. To predict the time course of binding of analyte to receptor one

Fig. 1 Schematic diagram of a Biacore flow cell. Receptors are shown immobilized on a sensor
chip on the bottom of the flow cell. (In the instrument the sensor chip is actually on the top
surface.) a. In the binding phase ligand flows into the cell at concentration CT in the absence of
soluble receptor. b. In the dissociation phase the injection concentration of ligand is zero and
soluble receptor is continuously injected at concentration ST.
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must be able to predict the time course of the free analyte concentration at the
sensor surface. During the binding phase when soluble receptor is absent, the free
analyte concentration, C(x, y, t), in the flow channel obeys the following partial
differential equation (Myszka et al., 1998; Mason et al., 1999):

∂C
∂t

= D
(

∂2C
∂x2

+ ∂2C
∂y2

)
− 4vc

( y
h

) (
1 −

( y
h

)) ∂C
∂x

(2)

with boundary conditions:

∂C(t, x, y)
∂y

= 0, at y = h (3)

D
∂C(t, x, y)

∂y
= ∂ B(t, x)

∂t
= kaC(t, x, 0)R(t, x) − kd B(t, x),

at y = 0 (4)

C(t, x, y) = CT, at x = 0 (5)

∂C(t, x, y)
∂x

= 0, at x = l (6)

C(t, x, 0) is the free analyte concentration at time t and position x, at the sensor
surface. B(t, x) is the concentration of bound analyte-receptor complex on the cell
surface and R(t, x) = RT − B(t, x) is the free surface receptor concentration. RT

is the total receptor concentration, which is constant with respect to both posi-
tion and time. The rate constants for the reaction are ka and kd and the diffusion
coefficient of the analyte is D.

At the top boundary, y = h, the flux vanishes because the surface is impenetra-
ble and unreactive. At the bottom boundary, y = 0, the flux into the sensor surface
equals the time rate of change in the amount of bound analyte at the surface. In
our flow experiments we used a C1 chip with the receptors coupled directly to the
sensor surface. (Usually a CM5 chip is used and receptors are attached in a 100 nm
high dextran layer which is about 0.2% of the height of the flow cell. When the
mean free path a ligand travels in the layer before it binds is long compared to the
height of the layer, the thickness of the layer can be ignored (Goldstein et al., 1999;
Mason et al., 1999). Detailed models of the effect of the dextran layer suggest that
even for a C5 chip treating the surface as flat is valid under almost all experimental
conditions (Edwards, 2001; Wofsy and Goldstein, 2002).

At the flow cell inlet (x = 0) during the binding phase the analyte concentra-
tion is constant and equal to the injection concentration, CT. At the outlet (x = l),
we treat the exit of analyte as if it were due entirely to flow. Although this is an
approximation, since the flow is fast compared to diffusion, errors introduced by
using Eq. (5) propagate in the direction of flow and so have a negligible effect on
the processes occurring in the flow cell (Mason et al., 1999). At the start of the
experiment we assume B(0, x) = 0 and C(0, x, y) = 0 except at the inlet.

In the dissociation phase CT = 0. We assume soluble receptor is injected and
that it binds analyte in solution with rate constants ksa and ksd. In the dissociation
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phase when soluble receptor is present, Eq. (2) becomes:

∂C
∂t

= D
(

∂2C
∂x2

+ ∂2C
∂y2

)
− 4vc

( y
h

) (
1 −

( y
h

)) ∂C
∂x

− ksaCS + ksdSc (7)

where S(t, x, y) and Sc(t, x, y) are the concentrations of the free soluble receptor
and the analyte-soluble receptor complex in the flow channel. The boundary con-
ditions for C, Eqs. (3)–(6), are unchanged. The free soluble and bound receptor
concentrations obey the following PDEs where Ds and Dc are the diffusion coeffi-
cients of the soluble receptor and the analyte-soluble receptor complex:

∂S
∂t

= Ds

(
∂2S
∂x2

+ ∂2S
∂y2

)
− 4vc

( y
h

) (
1 −

( y
h

)) ∂S
∂x

− ksaCS + ksdSc (8)

∂Sc

∂t
= Dc

(
∂2Sc

∂x2
+ ∂2Sc

∂y2

)
− 4vc

( y
h

) (
1 −

( y
h

)) ∂Sc

∂x
+ ksaCS − ksdSc. (9)

The boundary conditions for S and Sc are:

∂S(t, x, y)
∂y

= 0,
∂Sc(t, x, y)

∂y
= 0, at y = h (10)

∂S(t, x, y)
∂y

= 0,
∂Sc(t, x, y)

∂y
= 0, at y = 0 (11)

S(t, x, y) = ST, Sc(t, x, y) = 0, at x = 0 (12)

∂S(t, x, y)
∂x

= 0,
∂Sc(t, x, y)

∂x
= 0, at x = l. (13)

The top of the flow channel is impenetrable so the flux of soluble receptor and
of analyte-soluble receptor complex vanish. At the bottom boundary we assume
that soluble receptor cannot react, i.e., it cannot bind to analyte that is bound to a
surface receptor, so again the surface is impenetrable and the fluxes vanish.

At the flow cell inlet during the dissociation phase the analyte and the analyte-
soluble receptor complex concentrations are zero and the soluble receptor con-
centration is constant and equal to ST. At the outlet, as was done for the analyte
flux, we take the fluxes of the soluble receptor and the analyte-soluble receptor
complex equal to zero. As discussed in the Materials and Methods section, for the
binding phase we solve Eq. (2) with appropriate boundary conditions, numerically.
This determines the initial distribution of bound and free analyte, C(t∗, x, y) and
B(t∗, x), at t = t∗, the start of the dissociation phase. Equations (7)–(9) with ap-
propriate boundary conditions are then solved. When we simulate Biacore exper-
iments our output is the concentration of bound receptors averaged over a central
portion of the sensor surface, from x = 0.1l to x = 0.9l.

Although we have made certain approximations, we believe the equations in this
section give an excellent description of the binding kinetics in a Biacore. It should
be kept in mind that even at the highest flow rates used in a Biacore (100 µl/min)
one is in the low Reynolds number regime. Further, studies comparing rate
constants determine from Biacore experiments at this flow rate and stopped-flow
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fluorescence, a purely solution-based assay, are in excellent agreement (Day et al.,
2002).

5. The transport-limited rate constant during dissociation

5.1. Obtaining an analytic expression

Rebinding to receptors on a surface will be negligible in the dissociation phase if
the rate of transport away from the cell is fast compared to the chemical reaction at
the surface. The maximal rate of binding to the surface will occur when all recep-
tors are free. If RT is the surface concentration of receptors, A is the surface area,
and ka is the forward rate constant for forming a ligand-receptor complex, then
the maximal rate of binding is ka RT A. The condition that rebinding is negligible is
that k+ � ka RT A, where k+ is the transport limited rate constant for dissociation.
Defining the mass transport limited rate constant kM = k+/A, the nonrebinding
condition becomes kM � ka RT.

To obtain the transport limited rate constant for a dissociation experiment re-
quires calculating the steady state flux away from the surface where binding occurs.
The transport limited rate constant kM is determined by the flux per unit area at
the bottom surface, i.e.,

kM = − D
C0

∂C
∂y

, at y = 0. (14)

(The minus sign is required since kM is a positive quantity.)
Thus, we consider the steady state problem where C = C0 on the sensor sur-

face (y = 0). As discussed previously, for the cases of interest diffusion in the
x-direction can be ignored since the flow is fast compared to diffusion in this di-
rection (Mason et al., 1999). Although the flow velocity is zero at the sensor sur-
face, diffusion in the y direction will move ligand into the flow (y > 0) where it
can be swept along in the x direction. Since we are only interested in the analyte
concentration near the sensor surface where 1 � (y/h), we ignore the quadratic
term, (y/h)2, in Eq. (1). Finally, we assume that during the dissociation phase only
a small fraction of soluble receptors become bound so that S ≈ ST and that the
binding of analyte to soluble receptor can be treated as if it were irreversible.
Flow velocities in Biacore experiments range from vc = 1–10 cm/s but are typically
5–10 cm/s. Averaging Eq. (1) over y, the average flow velocity 〈v〉 = 2vc/3. The av-
erage time to transverse the flow cell of length l = 0.24 cm if vc = 5 cm/s is 0.07 s. If
ksd � 14 s−1 an analyte that binds a soluble receptor will be swept out of the flow
cell before it can dissociate so the binding will appear to be irreversible. Even if
this condition is not met, if the soluble receptor concentration is sufficiently high
the binding will be effectively irreversible: a bound analyte molecule that dissoci-
ates from a soluble receptor quickly rebinds to another soluble receptor. Thus, we
consider the following PDE where

0 = D
∂2C
∂y2

− 4vc

( y
h

) ∂C
∂x

− ksaCST (15)
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at y = 0, C = C0. We ignore the top boundary and simply require the solution to
be finite at y = ∞. The top boundary can be ignored when the time for an analyte
to diffuse from the top of the flow channel to the bottom is long compared to the
time for it to traverse the length of the channel, i.e., when l/〈v〉 � h2/(4D). At
x = 0, C = 0. At x = l we no longer need a boundary condition because we have
dropped the diffusion term in the x direction and the PDE is now first order in x.

Letting c = C/C0 we write Eq. (15) in the following nondimensional form:

0 = ∂2c
∂y2

− 4pεy
∂c
∂x

−
(

h
λ

)2

c (16)

where the x and y coordinates are now scaled using the channel length, l, and
channel height, h, respectively, and

λ =
√

D
ksaST

, p = vch
D

, ε = h
l
. (17)

We let

y1 = (4pε)1/3 y, α = h
λ(4pε)1/3

(18)

so that Eq. (18) becomes

0 = ∂2c

∂y2
1

− y1
∂c
∂x

− α2c. (19)

Taking the Laplace transform of Eq. (19) in x with Laplace variable s

0 = ∂2c̄

∂y2
1

− y1sc̄ − α2c̄ (20)

where c̄ is the Laplace transform of c. Letting y2 = s1/3 y1,

0 = ∂2c̄

∂y2
2

− y2c̄ − α2

s2/3
c̄. (21)

Finally, letting y3 = y2 + ᾱ2 = (4pεs)1/3 y + ᾱ2, where ᾱ = α/s1/3, Eq. (21) be-
comes

0 = ∂2c̄

∂y2
3

− y3c̄. (22)

Equation (22) is Airy’s equation which has the general solution:

c̄(y3) = a Ai(y3) + bBi(y3) (23)
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where Ai and Bi are Airy functions, and the constants a and b are determined
using the boundary conditions that c = 1 at y = 0 and c = 0 at y = ∞:

a = 1
s Ai(ᾱ2)

, b = 0. (24)

Thus the solution becomes

c̄ = Ai(y3)
s Ai(ᾱ2)

. (25)

In terms of the nondimensional variables the equation for the the transport limited
rate constant, Eq. (14), becomes

kM = − D
h

∂c
∂y

, at y = 0. (26)

Letting k̄M be the Laplace transform of kM we have from Eqs. (25) and (26) that

k̄M = − D
h

(4pεs)1/3 1
s

Ai ′(ᾱ2)
Ai(ᾱ2)

(27)

where the prime indicates a derivative with respect to the argument. The Airy
function and its derivative are related to modified spherical Bessel functions of the
third kind Kv (Abramowitz and Stegun, 1964). In terms of these functions Eq. (27)
becomes:

k̄M = D
h

(4pε)1/3 α

s
K2/3(ζ )
K1/3(ζ )

(28)

where ζ = 2α3/3s.
To obtain an expression for kM as a function of x we need to take the inverse

Laplace transform of Eq. (28). Since Eq. (28) is a complicated function of s, obtain-
ing an analytic form for its inverse Laplace transform is a formidable task. Instead,
we use the following semianalytic approach. First, we express K2/3(ζ )/K1/3(ζ ) as a
power series:

K2/3(ζ )
K1/3(ζ )

=
∞∑

m=1

amζ (2m−3)/3. (29)

Using a symbolic algebra package such as Mathematica one can easily calculate
the values of the coefficients in Eq. (29). In Table 1 we list the first 20 coefficients
of am. Substituting the expanded form of Eq. (29) into the Laplace transform of
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Table 1 First 20 expansion coefficients.

m am bm

1 0.63685e00 0.63685e00
2 0.60837e00 −0.46640e00
3 −0.16884e00 0.30446e00
4 0.77528e-1 −0.18679e00
5 −0.40009e-1 0.11053e00
6 0.21564e-1 −0.64000e-1
7 −0.11849e-1 0.36576e-1
8 0.65715e-2 −0.20738e-1
9 −0.36622e-2 0.11702e-1

10 0.20461e-2 −0.65849e-2
11 −0.11447e-2 0.36992e-2
12 0.64093e-3 −0.20760e-2
13 −0.35901e-3 0.11644e-2
14 0.20114e-3 −0.65287e-3
15 −0.11271e-3 0.36599e-3
16 0.63160e-4 −0.20515e-3
17 −0.35395e-4 0.11498e-3
18 0.19836e-4 −0.64445e-4
19 −0.11117e-4 0.36119e-4
20 0.62303e-5 −0.20243e-4

am = bm = 21/3 �(2/3)
�(1/3) .

am is defined by Eq. (29) in the text and bm is defined by Eq. (A.10) in Appendix A.

k̄M, Eq. (28), we have

k̄M = D
h

(4pε)1/3α

∞∑
m=1

am

(
2α3

3

)(2m−3)/3

s−2m/3. (30)

We now obtain kM(x) by taking the inverse Laplace transform of Eq. (30):

kM = D
h

(4pε)1/3α

∞∑
m=1

am

� (2m/3)

(
2α3

3

)(2m−3)/3

x(2m−3)/3. (31)

From Eq. (31) we obtain kM, the transport limited rate constant averaged over the
sensor surface:

〈kM〉 =
∫ 1

0
kM dx = D

h
(4pε)1/3α

∞∑
m=1

am

� ((2m + 3)/3)

(
2α3

3

)(2m−3)/3

. (32)

In Appendix A, for completeness, we derive an expression for 〈kM〉 for the forward
kinetics when both ligand and soluble receptor are continuously injected. During
the binding phase the presence of soluble receptor will slow transport of the ligand
to the sensor surface and 〈kM〉 will be a decreasing function of the soluble receptor
concentration. This is just the opposite of what we have seen for the dissociation
phase.
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5.2. Limiting behavior of the transport-limited rate constant

We consider two limits, when the soluble receptor concentration ST = 0 (α = 0)
and when ST = ∞ (α = ∞). When α = 0 the only nonzero term in Eq. (31) is the
m = 1 term. From Eq. (29) and pp. 446–447 of Abramowitz and Stegun (1964) we
have that

a1 = lim
ζ→0

ζ 1/3 K2/3(ζ )
K1/3(ζ )

= −(2/3)1/3 Ai ′(0)
Ai(0)

= 21/3�(2/3)
�(1/3)

.

Returning to dimensional units where x in the equation below is now a length
along the sensor surface, we have that when ST = 0

km(x) = D
h

(4pε)1/3 a1

�(2/3)

(
2
3

)−1/3

= 31/3

�(1/3)

(
4vc D2

xh

)1/3

(33)

and we recover the result of Lok et al. (1983). Averaging over x we have that

〈kM〉 = 3
�(1/3)

(
3vc D2

2lh

)1/3

≈ 1.282
(

vc D2

lh

)1/3

. (34)

To obtain the limit as ST → ∞ (α → ∞) it is simplest to return to Eq. (27). In this
limit Ai ′(ᾱ2)/Ai(ᾱ2) = −ᾱ = −α/s1/3. Substituting this expression into Eq. (27)
and taking the inverse transform we find that in the limit that ST → ∞

kM = 〈kM〉 =
√

ksaST D. (35)

As discussed in the beginning of this section, soluble receptor will effectively block
rebinding when kM � ka RT. From Eq. (35) this condition becomes

ST � (ka RT)2/Dksa. (36)

If ka = ksa, an instructive way to write this inequality is ST � RT/λ where λ is given
by Eq. (17). In this form we see that for competing with soluble receptors, the sur-
face receptor concentration RT has an effective three-dimensional concentration
equal to the surface concentration divided by the mean free path a ligand travels
in solution before binding to a soluble receptor. Except for a constant, Eq. (36)
is the same as for the case when soluble receptors compete for dissociating ligand
with cell surface receptors in the absence of flow (Goldstein et al., 1989, 1999).

5.3. Approximate expression for the transport-limited rate constant

In analyzing dissociation data we will find it useful to have a simple accurate ex-
pression for 〈kM〉. We accomplish this by writing 〈kM〉 as a Padé approximant that
has the appropriate limits at ST = 0, Eq. (34), and ST = ∞, Eq. (35). We use the
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following expression which has these limits:

〈kM(ST)〉 = 〈kM(0)〉 g(α)
0.807594

(37)

where α is given by Eq. (18) and

g(α) = 0.807594 + p1α + p2α
2 + p3α

3 + α4

1 + p4α + p5α2 + α3
. (38)

From Eq. (32) we have that

g(α) = α

∞∑
m=1

am

� ((2m + 3)/3)

(
2α3

3

)(2m−3)/3

. (39)

The constant 3(3/8)1/3/�(1/3) ≈ 0.807594 in g(α) is chosen to give the correct
limit as ST → ∞ and therefore α → ∞.

We obtain the values of p1 through p5 in Eq. (39) by carrying out a nonlinear-
least squares fit of the above expression to numerical values obtained from
Eq. (39). The fit is shown in Fig. 2a. In Fig. 2b we show that the absolute value
of the deviation is never greater than 0.06%. Note that α ∝ √

ST and in the limit
that ST = ∞, g(α) = α, i.e., for large values of the soluble receptor concentration,
〈kM〉 goes as

√
ST. One sees in Fig. 2 that g(α) ≈ α for α ≥ 2. For example, when

α = 2, g(α) = 2.0622.

Fig. 2 The Padé approximant to the function g(α). a. The function g(α) is calculated from
Eq. (39) (open circles) and the fit to these calculated values of the Padé approximant give by
Eq. (38) (solid line) where p1 = 1.24240, p2 = 1.41371, p3 = 1.045663, p4 = 1.55924, and p5 =
1.00918. b. The percent deviation of the Padé approximant from Eq. (39). The absolute value of
the deviation is always less than 0.06% of the value calculated from Eq. (38).
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6. The halflife for dissociation

6.1. A simple expression for the halflife for dissociation

Our aim is to present a method to obtain the dissociation rate constant, ka, from
Biacore dissociation experiments when soluble receptor is present to inhibit re-
binding during dissociation. We start by obtaining an analytic expression for t1/2,
the half-life of dissociation, that accurately predicts the values of the half-life of
dissociation when the ratio of the rate of reaction to the rate of transport, δ, is
small.

A simple way to describe the kinetics of dissociation when transport effects bind-
ing is by an ODE of the same form as the chemical rate equation for a well mixed
system, but with the rate constants replaced by effective rate coefficients, Eq. (40)
below. (This is sometimes referred to as the effective rate constant (ERC) model
(Edwards, 2004)). These rate coefficients are functions of the free receptor concen-
tration and thus, vary in time (reviewed in Goldstein and Dembo, 1995; Goldstein
et al., 1999; Mason et al., 1999). For example, the dissociation rate coefficient at-
tempts to capture the following process: as ligands dissociate receptors become
free and the probability increases that a ligand that dissociates from one receptor
will rebind to another receptor on the sensor surface and slow the observed disso-
ciation. The quality of the ERC approach has been analyzed by Edwards (2004)
who formally showed that it gives good estimates of the rate constants, ka and kd

when the ratio of the rate of reaction to the rate of transport is small, i.e., when
δ < 1.

dB
dt

= ka

1 + ka(RT − B)/〈kM〉CT(RT − B) − kd

1 + ka(RT − B)/〈kM〉 B. (40)

One can solve Eq. (40) to obtain a transcendental equation for the fraction of
bound receptors remaining at time t after the dissociation phase has begun. At the
start of dissociation, t = 0 and the concentration of bound receptors is B(0). Since
during dissociation CT = 0, we have that

(1 + δ) ln b − δb̄(b − 1) = −kdt (41)

where

b(t) = B(t)/B(0), δ = ka RT/〈kM〉, b0 = B(0)/RT. (42)

(In the absence of soluble ligand δ ≈ 0.78Da, where Da is the Damköhler num-
ber.) To express δ as a function of the soluble ligand concentration we use Eqs. (37)
and (38). From Eq. (41) the halflife for dissociation is

t1/2 = ln 2
kd

(1 + δ(1 − b0/(2 ln 2))). (43)
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6.2. Adding a correction term to the halflife for dissociation

In Fig. 3 we show a series of simulated Biacore experiments obtained by nu-
merically solving the set of PDEs that comprise the full model (Eqs. (7)–(10)).
The four sets of simulations are for four different concentrations of receptors
on the Biacore sensor surface. The ligand concentration is the same in all sim-
ulations during the binding phase. For each receptor concentration seven simu-
lations are shown corresponding to seven different concentrations of soluble re-
ceptor in the dissociation phase. To properly test whether we can obtain accurate
estimates of kd when rebinding is high we have chosen a forward rate constant,

Fig. 3 Simulation of biacore binding and dissociation experiments for four different receptor
concentrations (RT) on the sensor surface. The ligand concentration in the binding phase is the
same in all simulations (CT = 5 × 10−8 M). In the dissociation phase the soluble receptor con-
centrations were S = 0 nM, 1 nM, 10 nM, 100 nM, 1 µM, 10 µM and 100 µM. The S = 0 and 1 nM
are indistinguishable in these plots. The simulations were done using a 175 × 175 grid with the
following parameters: ka = kas = 1 × 108 M−1 s−1, kd = ksd = 0.10 s−1, l = 0.24 cm, h = 0.005 cm,
vc = 10 cm/s, and D = Ds = Dc = 1 × 10−6 cm2/s. In all cases the binding went to equilibrium
(b0 = 0.9804) before the start of the dissociation phase at t = 25 s. The t1/2 values for dissociation
(b = 0.4902) were obtained from the numerical results used to plot these curves and are given in
Table 1.
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ka = 1 × 108 M−1 s−1, and receptor concentrations that give substantial rebinding.
For the four receptor concentrations, in the absence of soluble ligand during dis-
sociation δ = ka RT/〈kM〉=65.0 (RT = 1.69 nM cm), 32.5 (RT = 0.845 nM cm), 16.3
(RT = 0.4225 nM cm) and 8.2 (RT = 0.21125 nM cm). In the simulations kd =
0.1 s−1 which, in the absence of rebinding, corresponds to a halflife of 6.9 s. From
our simulations we see that when S = 0 and RT = 1.69 nM cm, t1/2 = 189.1 s, and
rebinding slows dissociation more than 20-fold.

In Table 2 we present the t1/2 values from Fig. 3 and their predicted values from
Eq. (43). We see that the percent error in the predicted values are always less
than 30%. Since the theory is expected to be accurate only for δ < 1 (Edwards,
2004) this is not surprising. However, the question we are interested in is: can
we use Eq. (43) to obtain an accurate estimate of kd, the intrinsic dissociation
constant?

Before answering this question we note that Eq. (43) predicts that t1/2 is only
a function of δ and b0. In all the simulations in Fig. 3 equilibrium is reached
before the onset of dissociation so b0 is the same for all simulated dissociation

Table 2 Halflife for dissociation in the presence of soluble receptor (S) from simulated
experiments in Fig. 3, t1/2(sim), and as predicted by Eq. (43), t1/2(Eq. (43)).

RT (nM cm) S δ t1/2 (Eq. (43)) t1/2 (sim) % difference

1.69 0 65.022 138.89 189.13 0.26560
1 nM 64.716 138.27 188.37 0.26597
10 nM 61.747 132.25 181.06 0.26960
100 nM 43.995 96.221 131.75 0.26967
1 µM 16.752 40.930 47.000 0.12916
10 µM 5.3320 17.753 15.125 −0.17375
100 µM 1.6883 10.358 8.0900 −0.28033

0.845 0 32.511 72.913 98.200 0.25751
1 nM 32.358 72.600 97.800 0.25767
10 nM 30.874 69.590 94.000 0.25968
100 nM 21.576 51.570 69.500 0.25799
1 µM 8.3759 23.931 26.940 0.11171
10 µM 2.6660 12.342 11.060 −0.11593
100 µM 0.84414 8.6447 7.5300 −0.14803

0.4225 0 16.256 39.922 52.625 0.24138
1 nM 16.179 39.767 52.500 0.24254
10 nM 15.437 38.261 50.750 0.24610
100 nM 10.999 29.254 38.375 0.23769
1 µM 4.1880 15.431 17.000 0.092294
10 µM 1.3330 9.6368 9.0190 −0.068502
100 µM 0.42207 7.7881 7.2500 −0.074217

0.21125 0 8.1662 23.505 29.940 0.21493
1 nM 8.1278 23.427 29.830 0.21465
10 nM 7.7549 22.670 28.910 0.21584
100 nM 5.5255 18.146 22.670 0.19958
1 µM 2.1039 11.201 12.000 0.066558
10 µM 0.66966 8.2906 8.0000 −0.036319
100 µM 0.21203 7.3618 7.1100 −0.035415

Note. RT is the concentration of receptors on the sensor surface, δ = ka RT/〈kM〉 is a mea-
sure of the competition between binding and transport, and the % difference =(t1/2(sim)-t1/2
(Eq. (43))/t1/2(sim).
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Fig. 4 The halflife for dissociation versus δ = ka RT/〈kM〉. In both panels the symbols indicate
the halflives for dissociation as calculated from the simulated experiments in Fig. 3, given in Table
2. a. The solid line is a nonlinear least squares fit of Eq. (43) to the half-lives. b. The solid line is
a nonlinear least squares fit of Eq. (44) to the half-lives. The free parameters were determined to
be: c1 = 9.55924 × 10−3, c2 = −2.41944 × 10−4 and c3 = 1.87714 × 10−6. The correction term in
Eq. (44) is negligible for δ ≤ 1. At δ = 1 it equals 0.0093 while, 1 + δ(1 − b0/2 ln 2), it is bounded
between 1.28 and 2.0.

experiments. In Fig. 4a we plot the t1/2 values of the simulated experiments
(Table 2) and see that t1/2 appears to be only a function of δ for the full model,
although it may depend weakly on RT as well. (We have not determined as yet if
the “scatter” in the plot of t1/2 versus δ is because t1/2 is a function of both δ and
RT, or because of numerical error.) Also shown in Fig. 4a is t1/2 calculated from
Eq. (43).

That t1/2 can be approximated as a function of δ suggests that Eq. (43) can be
improved by adding a correction term that is only a function of δ. We do this by
taking as our expression for t1/2

t1/2 = ln 2
kd

(1 + δ(1 − b0/(2 ln 2)) + c1δ
2 + c2δ

3 + c3δ
4) (44)

where c1, c2 and c3 are determined by fitting Eq. (44) to the simulated results as
shown in Fig. 4b. These parameters are then held fixed at their determined values
when we fit our experimental data. Note that if t1/2 can be taken to be only a
function of δ, then the parameters c1, c2 and c3 will be the same for all Biacore
experiments. Indeed, in Fig. 4b their values were determined by fitting simulations
corresponding to four different receptor concentrations.

6.3. Comparison with simulated data

We have now assembled the elements necessary to fit dissociation data, t1/2 val-
ues as a function of soluble receptor concentration, and obtain an estimate of the
intrinsic dissociation rate constant, kd (summarized in Appendix B). As our fit-
ting function we use Eq. (44) with the parameters c1 through c3 given in the figure
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caption of Fig. 4 and δ given below.

δ = ka RT

〈kM〉 = δ̄

g(ᾱ(S1/2
T )

and α = ᾱ(ST/S0)1/2. (45)

The quantity g(α) is given by Eq. (38) with the parameters p1 through p5 given
in the figure caption of Fig. 2. We take the lumped parameters δ̄ and ᾱ as free
parameters in our fits. In terms of the parameters of the model

δ̄ = 0.80759ka RT

〈kM(0)〉 , ᾱ = h
(4pε)1/3

(ksaS0

D

)1/2
(46)

where we will take S0 = 1 nM. Both parameters are dimensionless with ᾱ being the
value of α when ST = 1 nM. 5

In fitting data we take as free parameters kd, b0, ᾱ and δ̄ corresponding to the
experiment with the largest surface receptor concentration. In addition there are
eight fixed parameters, p1 through p5 and c1 through c3. Shown in Fig. 5 are

Fig. 5 Nonlinear-least-squares fits using Eq. (44) to fit the halflives for dissociation as a function
of ST from the simulations in Fig. 3. ST is the soluble receptor concentration injected in the disso-
ciation phase. The four curves, corresponding to the four surface receptor concentrations at which
the simulations were done, were fit simultaneously. The ST and t1/2 values are given in Table 2. The
best fit values of the parameters are: kd = 0.104 ± 0.011 s−1, ᾱ = 0.101 ± 0.002, δ̄ = 41.7 ± 5.5, and
b0 = 0.802 ± 1.00. The exact values from the parameters used in the simulations are: kd = 0.100
s−1, ᾱ = 0.098259, δ̄ = 52.51 and b0 = 0.98039.
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simultaneous fits of the t1/2 values from the four sets of simulated experiment in
Fig. 3. We are able to recover accurate values for kd and ᾱ (fit values: 0.103 s−1

and 0.101; exact values: 0.100 s−1 and 0.098), a somewhat less accurate value for
δ (fit value: 41.7; exact value: 52.5) and a totally unreliable value for b0. To make
an accurate estimate of ᾱ requires data that varies over a large range of S values.
In the simulations S varies over five orders of magnitude. To make an accurate
estimate of δ requires a large variation in RT. In the simulations RT varies eight
fold. The predicted value of t1/2 is relatively insensitive to the parameter b0 which
enters Eq. (44) in the factor (1 − b0/(2 ln 2)) and can vary only between 0.28 and
1.0. The most important point however, is that Eq. (44) can be used to get a good
estimate of the intrinsic dissociation rate constant.

7. Dissociation of the lac repressor

To determine the rate constant for dissociation of the lac repressor from dou-
ble stranded DNA containing the lac repressor binding site, lac repressor was in-
jected over four biosensor surfaces, one devoid of DNA (the control) and three
with different concentrations of DNA coupled to their surfaces (Fig. 6). In the
dissociation phase DNA was injected to block rebinding. The experiments show
that in the absence of soluble receptor and even at the lowest surface recep-
tor concentration, rebinding does occur and transport does influence the bind-
ing kinetics. If transport were fast compared to binding the dissociation kinetics
would be independent of the presence of soluble receptor, i.e., there would be
no competition between surface and solution DNA for dissociated lac repressor
protein.

Figure 7 shows the values of t1/2 as a function of soluble DNA from the
experiments in Fig. 6 and the fits to these data using Eq. (44). For the highest
density surface, 500 RU, we find δ̄ = 14.2 ± 4.72 which from Eq. (46) corresponds

Fig. 6 Biacore experiments where double stranded DNA containing the lac repressor binding
site was immobilized at three different densities, 100, 225 and 500 RU. Lac repressor protein was
injected at 44 nM for 60 s, followed by an injection of double stranded DNA containing the lac
repressor binding site at a flow rate of 100 µl/min. The concentrations of DNA during dissocia-
tion were 0 nM (3 experiments), 0.00254, 0.00762, 0.0229, 0.0686, 0.206, 0.617, 1.85, 5.56, 16.7, and
50 nM.
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Fig. 7 Determining the dissociation rate constant for the lac repressor, kd, from dissociation ex-
periments in the presence of soluble receptor, S. the halflives for dissociation, t1/2, were deter-
mined from the data shown in Fig. 6 by fitting Eq. (43) to each dissociation curve separately.
Eq. (44) was then used to simultaneously fit these data. The best fit values of these parameters
are: kd = 0.075 ± 0.005 s−1, ᾱ = 4.10 ± 0.09, δ̄ = 14.2 ± 4.7. In addition the three values of b0 for
the three surface concentrations were taken as free parameters but the fits were insensitive to the
values of these parameters providing b0 was kept between zero and one.

to δ = 17.6. Therefore δ = 3.5 at the lowest density surface, 100 RU. Since δ > 1,
this indicates that for all three sensor surfaces substantial rebinding occurred
during dissociation.

We find that kd = 0.075 ± 0.005 s−1. Bondeson et al. (1993) used a Biacore ex-
periment to analyze the kinetics of binding and dissociation of lac repressor-DNA
and found ka = 1.8 × 106 M−1 s−1 and kd = 3.4 × 10−4 s−1, a value that is more than
200 times slower than the value we obtain. In analyzing their dissociation data to
obtain kd they noted that dissociation appears to be biphasic with the faster first
phase having a kd > 2 × 10−3 s−1. They suggest that the biphasic behavior may be
due to heterogeneity in the DNA coupled to the sensor surface. An alternate pos-
sibility is that rebinding is slowing dissociation. At short times dissociation is faster
since most receptors on the sensor surface are bound. With time, receptors be-
come free, rebinding increases and dissociation slows. If this is the explanation
than in addition to underestimating kd, they will have underestimated ka as well.
Goeddel et al. (1977) used a membrane filter assay (Yansura et al., 1977) and found
kd = 0.01–0.08 s−1 for dissociation of the lac repressor from 21 and 26 bp lac oper-
ators over a wide range of salt concentrations. In this assay rebinding was blocked.
The forward rate constant was found to be more sensitive to salt concentration
than the dissociation rate possibly because long-range electrostatic forces may ac-
celerate association. Goeddel et al. (1977) also determined ka values in the range
of 108–109 M−1 s−1, again much faster than those determined by Bondeson et al.
(1993).
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8. Discussion

One of the major uses of the Biacore is to obtain accurate estimates of rate con-
stants. The binding kinetics in the flow cell of a Biacore are influenced by the trans-
port of the ligand about the sensor surface by flow and diffusion, and by the chem-
ical reaction at the surface which is described by the binding and dissociation rate
constants, ka and kd. Under certain conditions transport can influence the binding
kinetics and make it difficult to obtain accurate estimates of these rate constants.
The influence of transport can be detected by carrying out experiments at differ-
ent flow velocities or different densities of receptors on the sensor surface. For
example, if the rate of dissociation increases when the flow velocity is increased
or when the receptor density is decreased, it is a strong indication that transport
is influencing the binding kinetics. Another tool to detect transport effects during
dissociation is to inject soluble receptor in the dissociation phase. If the presence
of soluble receptor speeds dissociation than rebinding is occurring and slowing dis-
sociation. Further, if rebinding is occurring, i.e., if transport is too slow to sweep
ligand that has dissociated out of the flow cell before it returns to the surface and
binds again, than transport is also slowing the forward kinetics.

We have proposed a way to obtain improved estimates of dissociation rate con-
stants from Biacore experiments when rebinding occurs during dissociation. We
tested the method both on simulated data and by analyzing the dissociation of the
lac repressor protein from its binding site on double stranded DNA. Our method
proposes a series of experiments using a range of soluble receptor concentrations
during the dissociation phase (see Fig. 6). Of course, if high enough soluble recep-
tor concentrations can be achieved then dissociation becomes independent of the
soluble receptor concentration and no new theory is necessary for simple reactions:
the intrinsic off rate constant kd = ln(2)/t1/2, and the dissociation is described by a
single exponential. In kinetic experiments it is often difficult to obtain high enough
soluble receptor concentrations to effectively compete with surface receptors (see
Eq. (36)). The method we have proposed allows one to determine kd using lower
soluble receptor concentrations.

We started by obtaining an expression for the transport limited rate constant,
〈kM〉, for a dissociation experiment in which soluble ligand was present. The ex-
pression we obtained, Eq. (32), involved an infinite sum and was unwieldy to use
in analyzing experimental data. We therefore obtained an approximate expression
for 〈kM〉 given by Eqs. (37) and (38), that had the correct limiting behavior and that
was highly accurate for all soluble receptor concentrations. We then considered a
model which describes the kinetics of dissociation in terms of an ODE rather than
a PDE, where to account for transport effects, kd is replaced by a time dependent
rate coefficient involving 〈kM〉 (Eq. (40) with CT = 0). This led to a simple analytic
expression for t1/2, Eq. (43). Unfortunately, when rebinding was high, i.e., when
δ > 1, the expression was inaccurate and predicted halflives that were in error by
as much as 30% when compared with simulated data obtained by solving the full
PDE model. (Recall that δ = ka RT/〈kM〉 is a measure of the rate of rebinding to the
rate of transport.) However, we observed from our simulated data that t1/2 was to a
good approximation a function only of δ (see Fig. 4), at least for δ ≤ 65. (The upper
limit comes about because we did not simulate experiments with higher δ values



1146 Bulletin of Mathematical Biology (2006) 68: 1125–1150

than 65 but there is no reason to think that the result won’t hold for higher val-
ues of δ as well.) This suggested we could improve the accuracy of our expression
for t1/2 by adding a correction term which was only a function of δ. Using the new
expression for t1/2, Eq. (44), to fit values of t1/2 from our simulations for different
values of S (Fig. 5), we were able to recover the kd value used in the simulations.
We then used Eq. (44) to fit Biacore data to determine kd for the dissociation of
the lac repressor from a 32 bp string of double stranded DNA that contained the
lac repressor binding site and obtained a value for kd = 0.075 ± 0.005 s−1 which
was considerably faster than the value previously obtaining by Bondeson et al.
(1993) from Biacore experiments. The addition in the dissociation phase of solu-
ble DNA containing the lac repressor binding site increased the rate of dissociation
(Fig. 6) and demonstrated that transport was strongly influencing the binding ki-
netics. One possible explanation for the difference between our value for kd and
that determined by Bondeson et al. is that in their experiments as in ours, rebind-
ing substantially slowed dissociation.
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Appendix A: 〈kM〉 during the association phase

We calculate the transport limited forward rate constant during the binding phase
of a Biacore experiment when ligand and soluble receptor are continuously in-
jected into the flow cell. For the association phase we wish to calculate the flux
into the sensor surface so we set up a steady state problem where at y = 0, C = 0
and at y = ∞, C = C0. In Eq. (19), c = C/C0 so at y = ∞, c = 1. The Laplace
transform of Eq. (19) in x with Laplace variable s is

0 = ∂2c̄

∂y2
1

− y1(sc̄ − 1) − α2c̄ (A.1)

where c̄ is the Laplace transform of c. This eqnarray differs from that for the dis-
sociation case because of the additional c0 in the second term of Eq. (A.1). This
term arises because c = c0 at x = 0. Introducing the following quantities:

Z = s
πᾱ2

(
c̄ − 1

s

)
, (A.2)

and

y3 = s1/3 y1 + ᾱ2, (A.3)
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Eq. (A.1) becomes:

1
π

= ∂2 Z

∂y2
3

− y3 Z. (A.4)

Equation (A.4) has the specific solution (Abramowitz and Stegun, 1964) Z =
Hi(y3), so that the complete solution can be written in the form

c̄ = a Ai(y3) + bBi(y3) + Hi(y3), (A.5)

For the association problem, we have c = 0 at y = 0 and c = c0 at y = ∞. These
boundary conditions lead to:

a = − 1
Ai(ᾱ2)

[
1

πᾱ2
+ Hi(ᾱ2) − Bi(ᾱ2)

]
, b = −1 (A.6)

and the solution becomes:

c̄ = 1
s

− πᾱ2

s

[
Ai(y3)
Ai(ᾱ2)

[
1

πᾱ2
+ Hi(ᾱ2) − Bi(ᾱ2)

]

−Hi(y3) + Bi(y3)
]
. (A.7)

We can now use Eq. (A.7) to calculate kM from Eq. (24). Letting k̄M be the Laplace
transform of kM it follows that

k̄M = − D
h

(4pεs)1/3 πᾱ2

s

[
Ai ′(ᾱ2)
Ai(ᾱ2)

[
1

πᾱ2
+ Hi(ᾱ2) − Bi(ᾱ2)

]

−Hi ′(ᾱ2) + Bi ′(ᾱ2)
]
, (A.8)

or in terms of the modified Bessel functions of the third kind, Kν(ζ ), where ζ =
2α3/3s.:

k̄M = D
h

(4pε)1/3 α

s


 K2

3
(ζ ) + ∫ ζ

0 K1
3
(t) dt − π√

3

K1
3
(ζ )


. (A.9)

As we did when we calculated kM for the dissociation case, we use an expansion of
the form:

K2
3
(ζ ) + ∫ ζ

0 K1
3
(t) dt − π√

3

K1
3
(ζ )

=
∞∑

m=1

bmζ (2m−3)/3. (A.10)
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The first 20 coefficients of bm are listed in Table 1. Substituting the expansion into
Eq. (A.9) we have:

k̄M = D
h

(4pε)1/3α

∞∑
m=1

bm

(
2α3

3

)(2m−3)/3

s−2m/3. (A.11)

Finally, we obtain kM(x) by taking the inverse Laplace transform of Eq. (A.11):

kM(x) = D
h

(4pε)1/3α

∞∑
m=1

bm

�
( 2m

3

) (
2α3

3

)(2m−3)/3

x(2m−3)/3. (A.12)

When α → 0 Eq. (A.12) reduces to Eq. (33) and we recover the result when no
soluble receptor is present.
From Eq. (A.12) we obtain 〈kM〉 by averaging over the length of the sensor surface.

〈kM〉 = D
h

(4pε)1/3α

∞∑
m=1

bm

�
( 2m+3

3

) (
2α3

3

)(2m−3)/3

. (A.13)

Appendix B: Summary of data fitting procedure

The procedure outlined below is used to determine the dissociation constant,
kd, from Biacore experiments where soluble receptor (the soluble form of the
molecule that is coupled to the sensor surface) is present during the dissociation
phase (see Fig. 6). First, for each dissociation curve, corresponding to different
soluble receptor concentrations, ST, the halflife for dissociation, t1/2 is determined.
Then a nonlinear least squares fit of the data is done using the following expression
for t1/2 (see Fig. 7):

t1/2 = ln 2
kd

(
1 + δ(1 − b0/(2 ln 2)) + c1δ

2 + c2δ
3 + c3δ

4) (B.1)

where

δ = δ̄
RT

R0

(
1 + p4α + p5α

2 + α3

0.807594 + p1α + p2α2 + p3α3 + α4

)
(B.2)

and

α = ᾱ(ST/S0)1/2. (B.3)

There are four parameters, kd, δ̄, b0 and ᾱ, that are taken to be free. If equilib-
rium is achieved in the forward kinetics in all experiments, there is only a single b0

parameter. If with different surface receptor concentrations different amounts of
binding are achieved when dissociation is initiated, there is a different b0 for each
surface concentration as in Fig. 7. In fitting the data b0 should be held between
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zero and one. For example, one can set b0 = γ 2/(1 + γ 2) and take γ as the free
parameter instead of b0. The quantity S0 = 1, where the units of S0 are the same
as those of ST. If data is being analyzed for a series of experiments using different
surface receptor concentrations then R0 is set equal to the lowest RU value. (ᾱ
and δ̄ and lumped parameters given by Eq. (46).) The additional parameters are
held constant during the fitting at the following values: c1 = 9.55924 × 10−3, c2 =
−2.41944 × 10−4, c3 = 1.87714 × 10−6, p1 = 1.24240, p2 = 1.41371, p3 = 1.045663,
p4 = 1.55924, and p5 = 1.00918.
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