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Abstract The formation of vascular networks in vitro develops along two rather
distinct stages: during the early migration-dominated stage the main features of the
pattern emerge, later the mechanical interaction of the cells with the substratum
stretches the network. Mathematical models in the relevant literature have been
focusing just on either of the aspects of this complex system. In this paper, a unified
view of the morphogenetic process is provided in terms of physical mechanisms
and mathematical modeling.
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1. Introduction

When cultured in vitro in a suitable environment, endothelial cells (ECs) are
able to organize themselves to form capillary-like networks. This characteristic
is shared by several cell lines (Vailhe et al., 2001); particularly interesting is the
observation that also melanoma cells seem to have the capability to form capillary-
like structures by themselves, which favor their growth (Hendrix et al., 2001;
Mariotis et al., 1999). The details of the morphogenetic process may differ de-
pending on the specific experimental setting at hand (see Ambrosi et al., 2005 for
an extended review on this issue).

Mathematical literature on the subject is quite partitioned into two mainstreams,
that in essence correspond to two different explanations for the basic mechanism
of intercellular communication leading to pattern formation. The earlier thread
is due to Murray, Oster, and coworkers (see Murray and Oster, 1984 and other
papers referenced therein; Manoussaki et al., 1996). They focus on the mechanical
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interactions between cells and extracellular matrix (ECM) that occur when ECs
adhere to the underlying layer and stretch it. These authors observe that the
tensional field caused by the cell pulling on the substratum creates a local indi-
rect information about the concentration of the cells themselves on the surround-
ing surface. They therefore assume that ECs detect the stress field of the layer
and move on the surface along the tensional lines (mesenchymal motion). Cell
organization in soft media due to active mechanosensing has been confirmed by
a number of experiments reported in the recent literature too (see Bischofs and
Schwartz, 2003 and the references therein). As the tension depends on the num-
ber of pulling cells, the migrating ones move toward regions of larger cellular den-
sity. Qualitative analysis and numerical integration of the set of partial differential
equations corresponding to the mathematical formalization of this idea demon-
strate that network-like structures actually form on the basis of this assumption.

However, recent experimental works (Serini et al., 2003) have pointed out that
before mesenchymal motion activates cells undergo a faster amoeboid-type mi-
gration driven by chemical factors such as Vascular Endothelial Growth Factor
(VEGF). During this stage, a draft of the final network emerges, although it ex-
hibits itself in the final form only after the stretching process. Even more impor-
tant, laboratory investigations demonstrate that a characteristic mesh size inde-
pendent of the number of cells exists, provided the latter are neither too many
nor too few in order for the morphogenetic process to start up. Conversely, the
conjecture that the network forms just during the mesenchymal migration does
not predict the existence of any characteristic length, so that the final mesh size
would be dictated essentially by the initial conditions. The key role of the VEGF
in network formation is also demonstrated by the experiment of Helmlinger et al.
(2000). They study the network-like structures formed by human umbilical cells
in a sandwich, where the stretching of the substratum is inhibited. The morphol-
ogy of the pictures in their paper exhibits a characteristic length, but the cords are
quite thicker and less rectilinear than in usual ECM assays (see e.g., Tranqui and
Tracqui, 2000; Vailhe et al., 2001; Namy et al., 2004), thus suggesting again the
fundamental role of chemical intercellular communication in this process.

To obviate these difficulties of theory, some authors have recently proposed
mathematical models in which the chemotactic interaction is the real driver of
network formation (Ambrosi et al., 2004; Gamba et al., 2003). This assumption
is supported by the observation that exogenous saturation of the signaling of some
VEGF inhibits the networking. The mathematical model identifying the chemical
signaling as the key mechanism of vasculogenesis predicts a characteristic length
of the mesh size, which is in good agreement with the experiments.

Aim of this paper is to provide a unified view of the whole morphogenetic pro-
cess of vascular networks, including both amoeboid and mesenchymal migration.
ECs and ECM are described as a two-layers system in which the vertical dimen-
sion can be neglected. The two layers are shallow continuous bodies that obey
standard force balance equations including an interaction term, which couples the
motion of the cells and the substratum. This simple setting allows to include in the
description both the (independent) reorganization of the cells according to chemo-
tactic signaling and the (coupled) stretching of the gel. This approach provides a
satisfactory unified framework for the vasculogenic process at all stages, and the



Bulletin of Mathematical Biology (2006) 68: 1819–1836 1821

numerical simulations suggest that a stable steady solution should exist in a physi-
cally significant range of parameters.

This paper is divided into six sections. After this Introduction, Section 2 is de-
voted to summarize the experimental facts of a particular biological assay, while in
Section 3 a new mathematical model is illustrated accounting for both chemotactic
and mechanical aspects of the vasculogenic process. This model is discussed and
compared with the existing ones in Section 4, and in Section 5 the results of the re-
lated numerical simulations are shown and commented. Finally, Section 6 briefly
sketches some research perspectives.

2. Experimental facts

In this section, we specifically refer to the experiments by Serini et al. (2003). Gen-
eralization of the dynamics illustrated here to other vasculogenesis assays (involv-
ing different cells or different substrata) should be done with great care.

Serini and his coworkers use a Petri dish coated with an amount of Matrigel,
a surface that favors cell motility thanks to biochemical characteristics similar to
those of living tissues. Human ECs from large veins (e.g., HUVEC, Human Um-
bilical Vein ECs) or from adrenal cortex capillaries are dispersed in a physiological
solution, which is poured on the top of the Matrigel. After sedimentation due to
gravity, cells move on the horizontal surface of the substratum giving rise to a pro-
cess of aggregation and pattern formation.

If the proper number of cells is used (cell density ranging from 100 to
400 cell/mm2), a vascular-like network develops. The entire process lasts 12–15 h
and evolves according to the following steps:

(i) in the first few hours (2–3 h) ECs migrate independently, keeping a round
shape (Fig. 1a–b). In this phase, cell motion is of amoeboid type (see e.g.,
Friedl and Wolf, 2003; Webb and Horwitz, 2003; Wolf et al., 2003); it is faster
than later motion and shows a high persistence (Serini et al., 2003; Sambeth
and Bamgaertner, 2001). Intriguingly, an indirect confirmation of the exis-
tence of this amoeboid stage can be deduced also from the experiment of
Ferrenq et al. (1997): they measure the traction exerted by the cells on the
gel, and almost no action is registered in the first 2 h, a stage that they call
“latency time” and that can probably be interpreted in terms of amoeboid
motion;

(ii) the cells, attracted toward regions with higher cellular density, attach to the
neighboring ones and, if possible, form a continuous multicellular network
(Fig. 1c);

(iii) the cells take a more elongated shape. Their motion becomes mesenchymal,
they anchor themselves to the ECM, and, acting on the adhesion sites, start
pulling the substratum and the other cells. The network slowly moves as a
whole, undergoing a slow thinning process (Fig. 1d), probably driven by the
stress field generated by mutual tractions;

(iv) in the final phase, individual cells differentiate and fold up to form the lu-
men of the capillaries, so that the formation of a capillary-like network takes
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place along the lines of the previously formed two-dimensional structure as
described in Grant et al. (1989) and Kubota et al. (1988).

A movie of an experiment can be viewed at the EMBO web site1 as a supplemen-
tary material to the paper by Serini et al. (2003).

Two transitions are observed at low and high cell densities. The former is a per-
colative transition that occurs below the critical threshold of 100 cells/mm2 and
gives rise to groups of disconnected structures. This transition is analyzed in detail
in Gamba et al. (2003). The latter gives rise to thicker cords, and for very high cell
density (say above 400 cells/mm2) to the formation of a continuous carpet of cells
with holes or lacunae.

Note that the experimental evidences reported in the Introduction demonstrate
the role of the chemotactic interaction in pattern generation, but there is no rea-
son to restrict this effect to the amoeboid stage; it seems instead reasonable that
also the apparent mesh remodeling occurring at later times be driven by a joint
chemomechanical interaction.

3. The two-layers model

In our mathematical model deduction, we regard ECs and ECM as two continuous
shallow layers. In the experiments, the substratum has a horizontal length of the
order of 1 mm, and a thickness of the order of 10 µm: this suggests that a two-
dimensional mathematical modeling of the system could be sufficient to capture
the main characteristics of the phenomenon.

Remark. In order to roughly estimate the depth into the ECM thickness at which
the superficial action of the cells is influential, we observe that the main balance
is between the cell traction τ and the shear stresses τxz, τyz of the substratum.
Denoting by U the order of magnitude of the horizontal displacement of the cells,
and by Z the typical length scale of the vertical displacement of the ECM, we have
the relation µU/Z ∼ τ , that yields in turn

Z ∼ µU
τ

,

where µ is the Lamé elastic constant of the substratum. From experimental mea-
surements (Galbraith and Sheetz, 1997; Namy et al., 2004), it is known that

µ ∼ 103 Pa, U ∼ 10 µm, τmax ∼ 102 Pa,

hence Zmax ∼ 102 µm is obtained. Since this value is much higher than the ac-
tual thickness of the substratum used in the experiments mentioned above, we
conclude that the action of the cells is not confined in a thin layer under the top
surface of the ECM, but it influences the whole thickness of the latter. This obser-
vation supports the possibility to adopt a two-dimensional mathematical modeling

1http://embojournal.npgjournals.com
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of the substratum via an averaging process of the corresponding three-dimensional
equations (see below).

We model the biomechanical system illustrated in the previous section as a set
of 2 two-dimensional layers that move and stretch over each other, experiencing
mutual interaction forces in the horizontal plane. The unknowns of the problem
are therefore the horizontal displacement of the substratum u(x, t) and the hori-
zontal velocity field of the cells v(x, t), associated to a density field ρ(x, t), where
x = (x, y). In the experimental papers, the cellular density is usually referred to
in terms of number of cells per unit area; here, instead, ρ denotes the mass of the
cellular matter per unit surface.

The momentum balance for the ECM reads

− ∇ · Ts = σ , (1)

where Ts is the (two-dimensional) Cauchy stress tensor of the substratum and σ is
the force per unit surface occurring between the ECM and the cells.

The mass conservation and the momentum balance equations for the cell density
field are given by

∂ρ

∂t
+ ∇ · (ρv) = 0, (2)

∂

∂t
(ρv) + ∇ · (v ⊗ ρv) − ∇ · Tc = −σ + ρfc. (3)

No source is considered at the right-hand side of Eq. (2), the typical time of an
experiment being much smaller than the duplication time of the cells. In some
experiments possible detachments of the cells from the substratum are reported
(Tranqui and Tracqui, 2000), but we disregard them as higher order effects.

The forces appearing in Eq. (3) have a different physical nature: the stress tensor
Tc accounts for internal forces in the cell layer; σ is an external force for the cellular
layer, that reads as internal for the whole system; the bulk force per unit mass fc

accounts for cell–cell interaction via the chemotactic signaling.
The first and second terms in the left-hand side of Eq. (3) are formally identical

to the usual material acceleration of a continuum. However, this does not mean
that cells behave like particles, the Galilean inertia being definitely negligible in
this context. Rather, the nonlinear term at the left-hand side of Eq. (3) accounts
for persistence in cell motion, i.e., for their “inertia” in changing their direction
(Friedl and Wolf, 2003; Sambeth and Bamgaertner, 2001). Far from claiming that
this is the unique way to model persistence in a continuous modeling of the cel-
lular matter, we just remark that persistence is an essential ingredient to design a
mathematical model of cell networking, and this is a possible choice that works.

The chemotactic interaction is introduced in the present context as a surface
force that tends to aggregate the cells, driving them along the direction of the
chemical gradient:

fc = β∇c.

Furthermore, the balance of the chemotactic factor, characterized by the concen-
tration field per unit volume c(x, t), is governed by a standard reaction-diffusion
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equation

∂c
∂t

− D�c = α(ρ)ρ − c
τ

,

where D is the diffusion coefficient. The quantities τ and α(ρ) are the half-life and
the production rate of the chemoattractant factor and are due to the degradation
process and the production by cells, respectively. In this paper, we assume that
long-range chemotactic communication is switched off when cells reach an aggre-
gate state; therefore, the function α(ρ) should be characterized by the following
properties:

(i) a finite maximum for ρ = 0 and a monotone decreasing behavior for ρ > 0,
in order to mimic the diminishing in the chemoattractant production as the
cellular matter becomes more aggregate;

(ii) α(ρ) → 0 when ρ → +∞ rapidly enough in order for the chemoattractant
production to vanish when cells come in a sufficiently packed configuration.

3.1. Mechanical constitutive equations

The extracellular matrix is known to exhibit a viscoelastic mechanical behavior,
characterized by relaxation times of the order of 100 s at most. Therefore, in the
present context, dealing with a process that lasts hours, we can straightforwardly
neglect the viscoelastic effects and suppose that the Cauchy stress tensor depends
on the strain tensor:

Ts = Ts(∇u). (4)

In particular, in the following we assume that the displacement of the ECM is
sufficiently small that linear elasticity applies. Note that because of the previously
mentioned two-layers hypothesis, Eqs. (1) and (4) have to be understood within
the framework of a plane problem of elastostatics, assuming in particular a state of
plane stress. Regarding the analytical derivation of the proper equations for such a
problem in terms of the displacement u of the substratum2, we specifically refer to
Gurtin (1972).

The cellular layer has been effectively modeled in other papers as an elastic fluid
(Ambrosi et al., 2004; Gamba et al., 2003; Serini et al., 2003):

Tc = −p(ρ)I,

where I is the identity 2 × 2 matrix, and p(ρ) is a function such that its gradient is
negligible for small density and strongly increases when a density near to the close
packing of the cells is approached.

2As a matter of fact, the analytical derivation of the equilibrium equations for a linear elastic plane
stress problem involves an averaging process of the corresponding three-dimensional equations
along the thickness of the substratum. Therefore, u should be more correctly interpreted as the
average horizontal displacement of the ECM.
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The interaction force σ between the cell layer and the ECM drives the defor-
mation of the latter. It is not yet clear which mechanism activates the strong cell
adhesion on the ECM that causes the motion to switch from amoeboid to mes-
enchymal. At the present stage, we can just conjecture that amoeboid motion stops
when cells come in “sufficient” contact, i.e., when the network stretch starts up. If
at a given time a cell anchors at a point x0 of the substratum and then moves to x1,
while the substratum is simultaneously stretched so as the point x0 moves to x2, a
force between the cell and the substratum arises, that we can assume elastic and
in particular proportional to x2 − x1 = u − uc, where u = x2 − x0 and uc = x1 − x0.
This ideally means that the cell and the ECM are connected by a spring that obeys
the linear Hooke’s law, x2 − x1 being its elongation (Fig. 1d). Then, we set

σ = −κ(ρ) (u − uc) , (5)

where κ(ρ) vanishes for low density. According to Eq. (5), the cells stick to the
substratum at the initial time, quite a rough modeling of the real transition from
amoeboid to mesenchymal motion observed in the experiments. We just remark
that this unsatisfactory modeling point is not a mathematical flaw, rather it is due
to a still incomplete biological knowledge.

The reader is referred to the Appendix for the specific form of the functions
p(ρ), κ(ρ) used in the numerical simulations, as well as of the function α(ρ) intro-
duced above.

4. Discussion of the mathematical model

The balance equations and the constitutive equations stated in Section 3 yield the
following differential system:

∂ρ

∂t
+ ∇ · (ρv) = 0, (6)

∂

∂t
(ρv) + ∇ · (v ⊗ ρv) + ∇ p(ρ) = κ(ρ) (u − uc) + βρ∇c, (7)

− E
2(1 + ν)

�u − E
2(1 − ν)

∇(∇ · u) = −κ(ρ) (u − uc) , (8)

∂c
∂t

− D�c = α(ρ)ρ − c
τ

, (9)

where E and ν denote the Young modulus and the Poisson ratio of the substratum,
respectively, supplemented by the compatibility condition:

duc

dt
= v. (10)

When κ ≡ 0 no interaction exists between the layers, the dynamics of ECs
and ECM are decoupled, and one partially recovers the chemotactic model by
Ambrosi et al. (2004).
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(a) (b)

(c) (d)

Fig. 1 Random seeding of the cells (a), amoeboid cell migration along the gradient of the
chemoattractant concentration (b), traction between the cellular layer and the gel (c). In (d), the
spring ideally connecting the two layers is pictorially shown.

The evolution of the system predicted by the set of Eqs. (6)–(10) is depicted in
Fig. 1. After the random seeding of the cells (Fig. 1a), the chemotactic field is
set up. Cells start moving along the chemical gradient, driven by the chemotactic
force (Fig. 1b). The persistence term in the equations makes the cellular matter
preserve its initial direction of motion, which is not in general strictly directed to-
ward larger density points. This delay in the cellular response causes cells not to
cluster; they instead empty the lower density regions, forming a density pattern
with spatial characteristics dictated by the typical length 	 ≈ √

Dτ (see Ambrosi
et al., 2004). The traction between the cellular layer and the gel starts acting when
a sufficiently large density is locally obtained, so that κ(ρ) is not negligible. At
this stage (Fig. 1c), cells hang on and stretch the substratum. In Fig. 1d is pictori-
ally shown the spring ideally connecting the two layers. Cell–ECM adhesiveness
and mechanical characterization of the substratum are two distinct physical effects
that are duly incorporated into the model by different terms. The function κ(ρ) ac-
counts for adhesiveness, a mutual characterization of cells and ECM; on the other
hand, E and ν measure the stiffness of the material composing the substratum.

The final scenario can be understood by summing up Eqs. (7) and (8) at the
steady state, after obtaining c formally from Eq. (9):

− E
2(1 + ν)

�u − E
2(1 − ν)

∇ (∇ · u) + ∇ p(ρ) =

= β Dρ∇
[(

1
Dτ

− �

)−1

α(ρ)ρ

]
. (11)

If the system is far from the percolative transition threshold (low ρ), the in-
tercellular pressure is negligible and Eq. (11) accounts for the balance between
the aggregative tendency of the anchored cells (right-hand side) and the elastic
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response of the ECM (left-hand side). The non-local operator at the right-hand
side of Eq. (11) acts as a filter, damping the wavelengths larger than

√
Dτ (see

Ambrosi et al., 2004).
Equation (11) is very similar to the force balance equation written by

Manoussaki and coworkers (Manoussaki et al., 1996) for the gel–cell system. Their
seminal work has pioneered a class of mathematical models (see also Manoussaki,
2003; Namy et al., 2004) describing the in vitro vasculogenesis in terms of mechan-
ical interactions between ECs and ECM. In the following, we shall briefly sketch
the main analogies and differences between these models and the general formu-
lation illustrated in the present paper.

(i) Manoussaki and coworkers do not write a differential equation for the veloc-
ity v of the cells, and therefore they do not account for persistence. In their
model, the movement of the cells is due to the superposition of a diffusive
“matrix guided” motion (a movement biased toward the directions of the
principal strains of the ECM), and the drift velocity ∂u

∂t . Namy and cowork-
ers (Namy et al., 2004) add to this framework some other more sophisti-
cated effects, such as cell sensitivity to ECM density gradient (haptotaxis)
and long-range interactions in ECM stretching due to the fibrous nature of
the substratum.

(ii) The models presented in Manoussaki (2003), Manoussaki et al. (1996), and
Namy et al. (2004) consider the spatial reorganization of the ECM mass in-
duced by cellular tractions as one of the main factors for the formation of
the networks; consequently, they all include a balance equation for the ECM
density, a quantity that plays no specific role here.

(iii) Manoussaki and coworkers write a force balance equation for the gel–cell
system very similar to Eq. (11), including the shear stress of the Petri dish on
the ECM. We do not explicitly take into account this contribution, but we
recover otherwise its main effect, which essentially consists in filtering out
the rigid motion of the gel (see Section 5).

(iv) In general, chemotaxis and all the related effects are completely neglected.
Actually, Manoussaki (2003) acknowledges a theoretical role to chemotactic
factors, and indeed she includes them in her model by a diffusion equation
analogous to Eq. (9); however, they are disregarded in the numerical simula-
tions. Note that if no diffusion of chemoattractant occurs, then the non-local
operator at the right-hand side of Eq. (11) disappears and the density field ρ

directly drives the stretch of the ECM, without the filtering operated by the
chemical field. No characteristic length independent of the initial conditions
should then be observed in such a case.

5. Quantitative results

The model illustrated in the previous sections has been converted in a dimen-
sionless form (see Appendix), and then numerically integrated in the refer-
ence square with a spatial resolution of 128 × 128 nodes. Numerical simula-
tions have been performed using this set of non-dimensional parameters and



1828 Bulletin of Mathematical Biology (2006) 68: 1819–1836

functions:

ν = 0.2, β∗ = 0.02, η∗ = 50

κ∗(ρ∗) = 0.2ρ∗, α∗(ρ∗) = 30
1 + 0.2ρ∗2 .

Periodic boundary conditions have been prescribed for all the state variables; fur-
thermore, the following non-dimensional initial conditions have been imposed:

ρ∗(x∗, 0) = 1
2πr∗2

M∑
j=1

exp

(
−|x∗ − x∗

j |2
2r∗2

)
,

v∗(x∗, 0) = u∗(x∗, 0) = c∗(x∗, 0) = 0.

The initial condition on the cellular density corresponds to a set of M Gaussian
bumps whose amplitude is assumed to be of the order of the non-dimensional
average cell radius r∗ (the physical cell radius being about r = 20 µm), centered
randomly in x∗

j , j = 1, . . . , M, with a uniform distribution over the square.
After an implicit discretization in time by a backward Euler scheme, the

parabolic Eq. (9) has been discretized in space by a spectral method and solved
by the Fast Fourier Transform algorithm. The elliptic non-evolutive Eq. (8) has
been discretized by a spectral method nested in an iterative procedure to take into
account the spatially non-constant coefficient term −κ(ρ)u at the right-hand side.
Note that the presence of periodic boundary conditions on u causes the substra-
tum not to be constrained in any way. Rigid motions are removed from the set of
possible motions by imposing that the amplitude of the Fourier mode correspond-
ing to the null wavenumber vanishes. Equations (6) and (7) constitute a nonlinear
hyperbolic system with source term; the right-hand side has been discretized by
a Godunov method, while a simple centered discretization has been applied to
the left-hand side. The displacement field of the cells uc (Eq. (10)) is numerically
obtained integrating in time the velocity field v by a first-order finite difference
scheme.

Figure 2 shows a comparison between the experimental pictures of the vascular
network formation as obtained by videomicroscopy (a) and as predicted by the
model (b). The non-dimensional time is listed in the left column. The geometrical
properties of the network shown in Fig. 2b are very similar to the experimentally
observed ones.

Figure 3 shows the influence of cellular adhesiveness to the substratum on the
formation of vascular networks as predicted by the model. If the adhesiveness is
too strong, no network forms (Fig. 3c). As the adhesiveness is the macroscopic re-
sult of microscopic chemical bonds that occur between each cell and the ECM, the
stronger the bonds are, the more inhibited the movement of the cells is. On the
other hand, for too weak adhesiveness the chemotactic action becomes prevalent,
and one can observe a rapid formation of cords that do not reach a steady state
(Fig. 3b), like in the mathematical model proposed by Ambrosi et al. (2004): cells
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Fig. 2 Formation of capillary networks: Comparison between the experimentally observed (a)
and the numerically predicted (b) morphology. The experimental pictures refer to a density of
125 cells/mm2 of human microvascular ECs on a 4 mm2 wide portion of Matrigel. Accordingly,
the numerical simulation has been carried out starting from an initial condition of the form given
in § 5 with M = 800, which closely mimics the real cell density. Numerical integration of the initial
condition over the reference square allows to easily verify this claim, considering that the aver-
age cell mass is about 3 × 10−11 kg. The non-dimensional time listed in the left column can be
straightforwardly converted in dimensional form using the characteristic time τ = 1 h.
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Fig. 3 Influence of cellular adhesiveness to the substratum on network formation. When chemo-
tactic attraction and mechanical interactions balance, a stable network structure arises (a). In-
stead, if adhesiveness is too low (b) or too strong (c) cords either rapidly form without giving rise
to a stable structure or they do not form at all.

continue to pack and they finally cluster in big mounds. Only when chemotactic
attraction and mechanical interactions balance does a stable network structure
form (Fig. 3a). In particular, numerical simulations show that the networking
is essentially allowed or inhibited by the relative magnitude of the parameters
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Fig. 4 Plot of the norm of the ECM stress tensor (a) and the corresponding ECs density (b) at the
final stage of network formation. A magnification of a portion of the domain is also shown (c and
d). Stress values are here reported in dimensional form (obtained using ν = 0.2 and E = 103 Pa as
in Namy et al., 2004), corresponding to a maximum value of about 30 Pa.

β∗ and κ∗, that, up to non-dimensionalization, account for the intensity of the
intercellular chemotactic signaling and for the stiffness of the ECs–ECM adhe-
sion, respectively. Conversely, the morphogenetic process is virtually independent
of the Young modulus E of the substratum, which instead affects mainly the mag-
nitude of the ECM deformation and displacement from the unstressed configura-
tion (see Appendix).

As mentioned in Section 2, at later times cells differentiate in tubular struc-
tures and, consequently, the present two-dimensional model no longer applies.
Figure 4a shows the contour plot of the ECM stress tensor norm ‖Ts‖ at the final
stage of the network formation, the corresponding cellular density being repre-
sented in Fig. 4b. We use the definition

‖Ts‖2 := trace
(
T

T
s Ts

)
,
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Fig. 5 Plot in semi-logarithmic scale of the magnitude of the spatially averaged chemotactic
(solid line) and elastic (dotted line) forces vs. time.

so that ‖Ts‖ gives a measure of the magnitude of the stress affecting the substra-
tum due to the traction exerted by the cells. Figure 4c and d are magnifications of
the previous pictures referred to a particular area of the domain. Numerical sim-
ulations suggest that most stress is concentrated in thin strips edging the cords or
surrounding the cell density holes. In Fig. 5, the magnitude of the spatially aver-
aged chemotactic and elastic forces are compared. The plot shows that in the early
times of the simulation the chemotactic force grows more rapidly than the elastic
one, so that in the first period (say about 0 ≤ t ≤ 3) chemotaxis dominates. Later
the elastic force grows, until a substantial equilibrium is reached.

6. Final remarks

This paper is based on the observation that, in vascular network formation, migra-
tion and traction are different programs that an individual cell is able to execute.
We conjecture that the beginning of either program is dictated by the local cell
density, which leads the system to an amoeboid or mesenchymal regime.

In our opinion, persistence, chemotaxis, and mechanics provide complementary
description of in vitro vasculogenesis experiments. Persistence and endogenous
chemotaxis are essential ingredients in the early, migration-dominated stages of
network formation. They govern the size of the capillary structure via the diffu-
sion coefficient D and the chemoattractant half-life τ . The predicted average size
of the fully formed network structures is 	 ≈ √

Dτ , in good agreement with phe-
nomenological observations in vivo and measurements in vitro. Intriguingly, this
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is in agreement with the observation that mice lacking heparin-binding isoforms
of VEGF-A, characterized by smaller diffusivity, form vascular networks with a
larger mesh (Ruhrberg et al., 2002).

The main role of the mechanical interactions between ECs and ECM is to sta-
bilize the structures. In the purely chemotactic model by Ambrosi et al. (2004),
the cell–cell interaction is confined to normal stresses only, given by the inter-
cellular pressure p(ρ). Although this is a sufficient condition in order for the so-
lution ρ(x, t) not to blow-up in time, as proved by Kowalczyk (2005), it does
not guarantee the preservation of the network morphology under shear per-
turbations. Instead, the anchorage of the cells to the substratum, which is able
to sustain not only normal stress but also shear stress, provides stability to the
structures.

Of course, some issues remain to be investigated in the future. For instance,
some experimental movies show that the ECM can be locally stretched at a high
ratio, including not negligible vertical displacements. This behavior would prevent
from using a linear elastic model, and also the “thin layer” approximation could
not apply.

A natural generalization of the present work would be to extend the mathe-
matical model to three-dimensional cell migration. Unfortunately, recent exper-
imental investigations suggest that a pure transposition of the theory would be
just an academic exercise. In fact, three-dimensional migration of the cells oc-
curs in a very different way (Friedl and Wolf, 2003; Wolf et al., 2003): Cells
essentially thread themselves and climb fibers of the ECM. The motion is al-
ways mesenchymal, and fibers orientation plays a fundamental role. It remains an
open question to what extent the achievements in the understanding of the two-
dimensional vasculogenesis will be helpful to address the real three-dimensional
setting.
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Appendix: Non-dimensional form of the equations

Let us introduce the following non-dimensional variables:

x∗ := x
	
, t∗ := t

T
, ρ∗ := ρ

ρ0
, c∗ := c

C

where 	, T, ρ0, C are typical values of length, time, cell density, and chemoattrac-
tant concentration, respectively.
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Choosing 	 = √
Dτ (as suggested by Eq. (9) at the steady state) and T = τ yields

the non-dimensional system

∂ρ∗

∂t∗ + ∇∗ · (ρ∗v∗) = 0

∂

∂t∗ (ρ∗v∗) + ∇∗ · (v∗ ⊗ ρ∗v∗) + ∇∗ p∗(ρ∗) = κ∗(ρ∗)(u∗ − u∗
c ) + β∗ρ∗∇∗c∗

−�∗u∗ − 1 + ν

1 − ν
∇∗(∇∗ · u∗) = −η∗κ∗(ρ∗)(u∗ − u∗

c )

∂c∗

∂t∗ − �∗c∗ = α∗(ρ∗)ρ∗ − c∗,

where we have defined the following non-dimensional groups of parameters:

β∗ := βCτ

D
, η∗ := 2(1 + ν)ρ0

Eτ 2

and the following non-dimensional functions:

p∗(ρ∗) := τ

Dρ0
p(ρ0ρ

∗), κ∗(ρ∗) := τ 2

ρ0
κ(ρ0ρ

∗), α∗(ρ∗) := ρ0τ

C
α(ρ0ρ

∗).

If ρ0 is thought of as the close-packing cell density, a possible intercellular pres-
sure that behaves as described in Section 3 is

p∗(ρ∗) =
{

ερ∗ for 0 ≤ ρ∗ ≤ 1
ερ∗ + b(ρ∗ − 1)3 for ρ∗ > 1

0 < ε  1, 0 ≤ b  1

or, with weaker requirements on the regularity of the function p∗,

p∗(ρ∗) =
{

ερ∗ for 0 ≤ ρ∗ ≤ 1
ε + b(ρ∗ − 1) for ρ∗ > 1

and in this case 0 < ε < b  1.
Moreover, we choose for κ∗(ρ∗) a simple linear dependence on ρ∗:

κ∗(ρ∗) = κ∗ρ∗, κ∗ > 0,

which actually implies a constant adhesiveness κ∗ between ECs and ECM, and an
elastic force proportional to the cell density.

Finally, according to the dynamics described in Section 3 (hypotheses (i) and
(ii)), we use for α∗(ρ∗) the following expression:

α∗(ρ∗) = α1

1 + α2ρ∗2
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with α1 > 0 and α2 ≥ 0. Consequently, the production rate of chemoattractant
is nearly independent of the cell density for low ρ∗ and essentially vanishes for
ρ∗2 � 1

α2
.

Remark. Experimental measurements (see e.g., Serini et al., 2003) indicate that
the order of magnitude of the diffusion coefficient of the chemical factor is D ∼
10−7 cm2/s, while its half-life is τ ∼ 1 h; consequently, the characteristic length
	 turns out to be about 200 µm, in good agreement with the characteristic cord
length experimentally observed.

Moreover, in order to estimate the parameter ρ0 we assume that the close-
packing cell density corresponds to the idealized situation in which each EC gets in
touch with four other neighboring cells without overlapping. Here, we specifically
refer to the experimental assay by Serini et al. (2003). Geometrically, regarding
ECs as circles of constant radius, this configuration leads to a portion of plane sur-
face covered by cells amounting to about 78% of the total surface of the ECM,
which in turn implies for ρ0 an order of magnitude of 2 × 10−2 kg/m2.

Finally, direct measurements of the parameter β, that in the model drives the
networking via the chemotactic signaling, are not available. However, an indirect
tuning of its non-dimensional counterpart β∗ is possible on the basis of the total
time (12–15 h) needed for a complete formation of the structures.
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