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Abstract The incorporation of time delays can greatly affect the behaviour of par-
tial differential equations and dynamical systems. In addition, there is evidence
that time delays in gene expression due to transcription and translation play an
important role in the dynamics of cellular systems. In this paper, we investigate
the effects of incorporating gene expression time delays into a one-dimensional
putative reaction diffusion pattern formation mechanism on both stationary do-
mains and domains with spatially uniform exponential growth. While oscillatory
behaviour is rare, we find that the time taken to initiate and stabilise patterns in-
creases dramatically as the time delay is increased. In addition, we observe that
on rapidly growing domains the time delay can induce a failure of the Turing in-
stability which cannot be predicted by a naive linear analysis of the underlying
equations about the homogeneous steady state. The dramatic lag in the induction
of patterning, or even its complete absence on occasions, highlights the importance
of considering explicit gene expression time delays in models for cellular reaction
diffusion patterning.

Keywords Time delays · Reaction diffusion equations

1. Introduction

The development of multicellular organisms from a single fertilised egg cell is a
complex spatio-temporal process. Central to the process is the ability of each cell
formed during multiple rounds of cell division to adopt a state that is appropriate
to its spatial and temporal position within the developmental process. The princi-
pal mechanism that allows cells with identical genetic material to adopt and main-
tain distinct states is differential gene expression. The degree to which each gene
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is expressed in a cell is controlled by a specific class of proteins (transcription fac-
tors). Successful development depends critically on the tight co-ordination in both
space and time of gene expression in cells. This co-ordination is achieved by con-
stant communication between cells over both short and long ranges. The signals
exchanged, which can take many forms, have the capacity to influence gene ex-
pression in a way that is dependent on the states of both the sending and receiving
cells. In this way, gene expression is co-ordinated in space and time so as to finally
generate the stable pattern of differentiated cell types that is characteristic of each
organism.

Recent experimental advances have provided detailed information on the
molecular mechanisms that are involved in the establishment of patterns of gene
expression in a number of model organisms. A key issue that remains difficult to
address with current experimental techniques, however, is how local molecular in-
teractions are coordinated in space and time. It is important to note that successful
development depends not only on the generation of appropriate spatial patterns,
but also on the timing of each pattern-forming event. Development proceeds at a
well-defined (though temperature-dependent) rate for each organism, and this rate
can be strikingly rapid. For example, the basic body plan of the zebrafish is estab-
lished in under 24 h (Kimmel et al., 1995). When considering the overall tempo of
a patterning event, it is essential to understand the timescales involved in the basic
molecular processes that contribute to patterning. As stated above, patterning dur-
ing development depends to a large extent on the regulation of gene expression.

Gene expression proceeds through a number of stages. First, a faithful tran-
script of the gene sequence is produced in the cell nucleus in the form of a lin-
ear polymeric ribonucleic acid (RNA) molecule. This primary transcript is then
chemically processed in the nucleus. Specific sections of the transcript (introns)
may be excised and the remaining sections (exons) spliced to produce a modified
transcript known as messenger RNA (mRNA) that is then exported from the nu-
cleus to the cytoplasm through pores in the nuclear membrane. In the cytoplasm,
each mRNA can act as a template for protein synthesis. Complex molecular ma-
chinery translates the sequence of the mRNA molecule into the corresponding
sequence of amino acids that constitutes a protein molecule. After further pro-
cessing, the resulting protein molecules can then participate in cellular functions
such as metabolism, regulation of transcription and intercellular signalling.

Given the complexity of these mechanisms, it is not surprising that a consid-
erable delay can exist between a change in the primary events that regulate the
level of expression of a gene (i.e. the rate at which primary transcripts of the
gene are made) and the corresponding change in the rate of appearance of com-
pleted protein products. Furthermore, it is important to note that the processes
of gene transcription and mRNA translation involve the production of long poly-
meric molecules by the sequential addition of monomers (typically in the range
of thousands to millions per gene). Transcription and translation are thus genuine
delay (rather than slow accumulation) processes: the output of the processes is a
delayed function of the input. The magnitudes of transcriptional and translational
delays clearly depend on the size of the genomic sequence of the gene in question;
typical cumulative delays are of the order of a few tens of minutes, but can be as
great as several hours (Tennyson et al., 1995).
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Since the timescale of individual patterning events in development is of the same
order of magnitude as these delays (particularly in fast-developing embryos such
as zebrafish), it is important to explore the effects that time delays have on the
form and tempo of pattern formation. However, the origin of these delays in the
basic molecular events that underlie all cellular function make it very difficult
to manipulate specific delays experimentally. Mathematical modelling provides
a complementary approach to experimental manipulation, and provides an ideal
setting in which to explore the effects of time delays in different mechanisms of
pattern formation. In order to focus clearly on the effect of time delays, it is im-
portant to first consider simple models of pattern formation rather than detailed
models that provide a more accurate description of real cellular events. The ef-
fects of delays on intracellular feedback circuits has been studied both generally
(Mahaffy and Pao, 1984; Mahaffy, 1988) and, more recently, in relation to spe-
cific gene expression data (Monk, 2003). In the context of cellular pattern forma-
tion, delays have been proposed to play a central role in the generation of the
spatially co-ordinated oscillations of gene expression underlying the formation of
vertebrate somites (Lewis, 2003). Veflingstad et al. have used a model of Notch-
mediated lateral inhibition to show that delays can have profound effects on the
mode and tempo of cellular pattern formation (Veflingstad et al., 2005). In this
study, we explore the effects of delays in a reaction diffusion model of pattern
formation.

1.1. The reaction diffusion mechanism

The reaction diffusion mechanism is a particularly elegant means by which spa-
tially heterogeneous patterns can form. Initially proposed by Turing (1952), this
mechanism has since been explored in a large number of biological and chemical
contexts, and has been experimentally verified for specific reacting chemical sys-
tems (Ouyang and Swinney, 1991). As a putative mechanism for biological pattern
formation, it is commonly assumed that reacting and diffusing chemicals, referred
to as morphogens, provide the source of spatial organisation, whereby concentra-
tion thresholds cue cell fate decisions, ultimately leading to global spatially hetero-
geneous patterns of cell state. This has been considered in numerous possible ap-
plications; early examples include animal coat markings (Murray, 1981, 1993), hair
patterns in Acetabularia (Goodwin et al., 1985; Murray, 1993), dorso-ventral or-
ganisation of the embryonic sea urchin (Meinhardt, 1982), and stolon formation in
marine hydroids (Meinhardt, 1982). These diverse models have many differences
with regard to the assumptions concerning the interaction, production and decay of
the morphogens. Nonetheless, it is assumed that the morphogens are transported
by diffusion (and occasionally convection, as with marine hydroid stolon formation
(Meinhardt, 1982)), and in particular that pattern is formed by short-range activa-
tion and long-range inhibition, as is characteristic of the eponymous Turing bifur-
cation. This bifurcation is typically shared among the many biologically motivated
generalisations of the reaction diffusion mechanism such as the mechano-chemical
models (Murray et al., 1983; Oster et al., 1983) which, in complete generality, can
include effects due to, for example, cell convection, chemotaxis, haptotaxis and
galvanotaxis (Murray, 1993).
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These early models of pattern formation preceded the large amounts of recent
molecular and genetic information currently being elucidated for many develop-
mental and cellular pattern formation phenomena. As such, they were often con-
sidered to be simple representations of more complex underlying processes. For
example, it was speculated that the short-range activation could be due to the au-
tocatalysis of a slowly diffusing molecule, the self-induced release of a bound ver-
sion of a poorly transported protein, or via a co-inhibitory mechanism (Meinhardt,
1982).

Since Turing’s original proposal was made, it has become clear that a wide range
of biological ‘morphogens’ direct differential cellular responses in development by
inducing distinct levels of gene expression in responding cells (Tabata and Takei,
2004) at significant distances from their source (Vincent and Briscoe, 2001). How-
ever, while morphogens play significant roles in many pattern forming events dur-
ing development, there is no definitive evidence for a set of Turing morphogens
that generate pattern by undergoing a Turing bifurcation in a biological system.
Nonetheless, there has been speculation that a Turing type mechanism may be
involved in vertebrate limb development (Miura and Shiota, 2000; Glimm et al.,
2004; Miura and Maini, 2004) and avian feather bud formation (Jung et al., 1998).
In addition, a number of experiments have indicated that the secreted TGF-β pro-
teins Nodal and Lefty behave as an activator-inhibitor reaction diffusion system in
zebrafish mesendodermal induction (Chen and Schier, 2001, 2002; Branford and
Yost, 2002, 2004; Solnica-Krezel, 2003; Chen and Shen, 2004).

Levels of gene expression are often assayed by in situ hybridisation, which allows
the local concentration of specific mRNA transcripts to be visualised throughout a
tissue, and thus provides an indication of the rates of transcription of target genes.
It is this technique that has allowed the spatial distribution of putative morphogens
to be visualised, for example during the formation of avian feather buds and ze-
brafish mesendoderm patterning. Thus, one can typically preclude the possibility
raised in the modelling studies pre-dating such molecular data that short-range ac-
tivation might be due to, for example, the self-induced release of a bound version
of a protein.

Such observations are also important as they reveal an aspect to Turing’s mech-
anism that has not been considered in biological pattern formation, at least out-
side the context of ecological systems. This aspect is the time delay associated with
gene expression (see above). Since many of the putative morphogens that func-
tion during development are secreted proteins, they cannot regulate gene expres-
sion in target cells directly. Rather, they will typically bind to a cell-surface recep-
tor and consequently modulate the activities of cytoplasmic proteins that transmit
receptor-mediated signals to the nucleus (signal transduction). Signal transduc-
tion, and cytoplasmic processes required for the secretion from cells of further
morphogens, can only increase the effective delay separating the receipt of a sig-
nal by a cell from any resulting changes in morphogen secretion by the cell. In the
context of a reaction diffusion model, these delays will appear in the kinetic terms
which represent the morphogen-regulated rates of morphogen production.

There have been a number of studies of reaction diffusion systems in the pres-
ence of time delays (Ruan, 1998; Boushaba and Ruan, 2001; Gourley and Ruan,
2002) in the context of nutrient recycling for plankton populations, with an overall
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emphasis on the Turing instability. These studies show that a Turing instability is
possible in such systems (Ruan, 1998; Boushaba and Ruan, 2001), but taking into
account the diffusive transport of individuals during the time delay results in no
Turing instability on a bounded domain (Gourley and Ruan, 2002). The Turing
bifurcation has also been observed to fail for the modified Lengyel–Epstein two-
variable model with time delays, used to simulate a delayed illumination feedback
for the photosensitive chlorine dioxide–iodine–malonic acid (CDIMA) reaction
(Li and Ji, 2004).

On surveying the possible effects of time delays on reaction diffusion models
for pattern formation, one can immediately deduce that time delays do not af-
fect the existence of steady states of the underlying equations. However, it is un-
clear whether they destabilise any steady state, to yield oscillatory solutions or
whether they prevent a Turing instability from occurring. Equally importantly,
in the context of development, it is also unclear whether time delays alter the
rate at which the system may approach its large time asymptote. Changes in
the time course of patterning, and in the nature of intermediate transients, can
be of critical importance in a biological setting. Furthermore, it is important to
note that in many developing systems domain growth occurs on roughly the same
timescale as biological pattern formation (for example, Glimm et al., 2004). Thus,
growth often constitutes an integral part of a pattern forming process and is
known to exert a significant influence on the dynamics of the system in ques-
tion (Arcuri and Murray, 1986; Kondo and Asai, 1995; Crampin et al., 1999, 2002;
Glimm et al., 2004). Thus, the effects of domain growth are also considered in
this paper.

In the following, we investigate the effects of gene expression time delays in an
exemplar one dimensional, two component, reaction diffusion pattern formation
model on both stationary domains and domains with spatially uniform exponen-
tial growth. Our ultimate aim is to determine whether or not the effects of gene
expression time delays can substantially alter the behaviour of a putative cellular
reaction diffusion patterning system.

2. Reaction diffusion model and linear theory

In this section, we introduce the exemplar reaction diffusion model that we will
investigate, which has Schnakenberg kinetics, and we will briefly investigate the
linear behaviour of perturbations from the homogeneous steady state. We take
this opportunity to inform the reader that a summary table of all variables and pa-
rameters, excluding those introduced in the appendices, can be found in Appendix
B.2.

2.1. Schnakenberg kinetics

There is not, as yet, a cellular pattern formation system fully characterised in
terms of reacting and diffusing molecular components. Thus any cellular pattern
formation reaction diffusion model ultimately speculates on the details of the
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interactions for its various constituents. However, a common feature of all such
models is the short-range activation and the long-range inhibition (Murray, 1993;
Meinhardt, 1982). Thus, we here consider a model with Schnakenberg kinetics,
which is the simplest reaction diffusion pattern formation system that has such an
interpretation (p. 376–379, Murray, 1993).

For a suitable non-dimensionalisation, the Schnakenberg reaction diffusion
equations, in the absence of domain growth and time delays, can be written in
the form

∂a
∂t

= D

λL2
0

∂2a
∂x2

+ p − ab2,
∂b
∂t

= ε2 D

λL2
0

∂2b
∂x2

+ q − b + ab2. (1)

Here b is the concentration of the activator, a is the concentration of the inhibitor,
D > 0 is the dimensional diffusivity of the inhibitor, λ > 0 is the dimensional de-
cay rate of the activator and L0 > 0 is the size of the physical domain. The decay
rate λ is positive definite as we require activator decay to prevent an unphysi-
cal positive feedback in activator production. We have x ∈ [0, 1], by the spatial
rescaling, and p, q, ε are constant, with p, q > 0, ε ∈ (0, 1) and typically ε � 1,
which we will assume below at all times. Note that ε2 is the ratio of the activa-
tor diffusion coefficient and the inhibitor diffusion coefficient. Neumann bound-
ary conditions are the most appropriate for a biological domain in that one as-
sumes the morphogens cannot escape at the domain edges; thus we have ∂a/∂x =
∂b/∂x = 0 at x = 0, 1.

With spatially uniform exponential growth of the one dimensional domain,
the reaction diffusion equations can be written in the non-dimensionalised form
(Crampin et al., 1999)

∂a
∂t

= 1
γ (t)

∂2a
∂x2

+ p − ab2 − δ

2
a,

∂b
∂t

= ε2

γ (t)
∂2b
∂x2

+ q − b + ab2 − δ

2
b. (2)

In the above γ (t) = λL2(t)/D > 0, where λ > 0 is the dimensional decay rate of
the activator in the absence of domain growth, D > 0 is the dimensional diffusiv-
ity of the inhibitor and L(t) > 0 is the length of the biological domain, and thus
positive definite. We have additionally defined δ = γ̇ /γ and, again, ε2 is the ra-
tio of diffusion coefficients. Note that the physical domain has been rescaled us-
ing a time-dependent transformation so that x ∈ [0, 1]; see Crampin et al. (1999)
for more details. The Neumann boundary conditions are ∂a/∂x = ∂b/∂x = 0 at
x = 0, 1.

2.1.1. The Turing instability
Let (a∗, b∗) denote the spatially homogeneous solution. For example, in the ab-
sence of growth, with δ = γ̇ = 0, we have (a∗, b∗) = (p/(p + q)2, p + q).

Substitute the Fourier expansion

(
a
b

)
=

(
a∗
b∗

)
+ η

∑
n=1,2,3,...

An(t) cos(nπx) (3)
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into Eq. (2) with η � 1. Neglecting O(η2), we have

dAn

dt
= −n2π2

γ (t)

(
1 0
0 ε2

)
An +

(−b2
∗ − δ/2 −2a∗b∗

b2
∗ 2a∗b∗ − 1 − δ/2

)
An . (4)

Consider solutions of the form

An(t) = exp
(∫ t

0
dsλn(s)

)
Bn, (5)

where Bn is a constant vector. The function λn(s) is readily solved for by substi-
tuting (5) into (4). For all other parameters fixed, the Turing bifurcation occurs on
increasing γ from a sufficiently small value once Re(λn) becomes positive for at
least one value of n. In Appendix A.3 we show for ε2 � 1 that this occurs first for
n = 1, with λ1 real, once γ > γcrit, where γcrit is given by

γcrit = 2π2ε2

2a∗b∗ − 1 − δ
2

[
1 − ε2

(
b2

∗ + δ
2

)
2a∗b∗ − 1 − δ

2

]−1

×

1 +

√
1 − 4ε2

b2∗
(
1 + δ

2

) + δ
2

(
1 + δ

2

) − δa∗b∗
[2a∗b∗ − 1 − δ/2 − ε2(b2∗ + δ/2)]2




−1

. (6)

For typical parameter values considered in this paper we have

γcrit = π2ε2

2a∗b∗ − 1 − δ/2
[1 + O(ε2)] = π2ε2

2a∗b∗ − 1
[1 + O(δ, ε2)].

We note that when there is no real, positive and bounded solution for γcrit, as oc-
curs with 2a∗b∗ − 1 − δ/2 ≤ 0 for example, we are in a region of parameter space
where the Turing bifurcation does not occur. In the next sections we will focus on
how a Turing bifurcation in a system lacking time delays is affected by the inclu-
sion of time delays and thus restrict parameter values appropriately. Finally, note
that one can immediately deduce that the non-autonomy does not significantly in-
fluence the location of the bifurcation, at least while δ � 1.

2.2. Gene expression time delays

The autocatalytic production of the activator occurs via the non-linear terms ±ab2

in the above equations. This can be interpreted as a law of mass action balance for
the reaction

A+ 2B → 3B,

where A, B denote the protein molecules whose concentrations are represented by
a, b respectively. As illustrated previously, it is reasonable to assume that activator
autocatalysis in the reaction diffusion mechanism occurs via gene expression. Such



106 Bulletin of Mathematical Biology (2006) 68: 99–130

a production mechanism would have to be subject to gene expression time delays,
which are very roughly estimated to be in the range of 10 min to a few hours (Lewis,
2003).

In what follows, the timescale is taken to be the reciprocal of the decay rate of
the activator. With a suitable scaling of the activator and inhibitor concentrations,
the Schnakenberg reaction diffusion equations on a domain with spatially uniform
exponential growth and a simple, non-distributed, gene expression time delay, can
be written in the form

∂a
∂t

+ ∂

∂y
(ua) = D

λ

∂2a
∂y2

+ p − a(y, t)b2(y, t),

∂b
∂t

+ ∂

∂y
(ub) = ε2 D

λ

∂2b
∂y2

+ q − b − 2a(y, t)b2(y, t)

+ 3a(yτ , t − τ )b2(yτ , t − τ ). (7)

As with Eq. (1), D is the dimensional diffusivity of the inhibitor, λ is the dimen-
sional decay rate of the activator in the absence of domain growth and ε2 is the
ratio of diffusion coefficients. In addition, u is the velocity field of the domain
growth and y ∈ [0, L(t)], where L(t) > 0 is the domain length. In what follows, we
will restrict ourselves to considering uniform exponential growth

L(t) = L0 eδt/2, L0 > 0.

We also have t > τ , with τ denoting the gene expression time delay, and yτ
def=

Yy(s = t − τ ), where Yy(s) is the solution of the characteristic equation

dYy

ds
(s) = u(Y, s), Yy(s = t) = y.

Thus, Eq. (7) represents

A+ 2B

binding at a cell surface receptor at location (y, t), followed by signal transduction,
regulated gene expression, and the subsequent release of 3B protein molecules af-
ter a gene expression time delay of τ . However, in this period, the cells are moved
by the underlying domain growth velocity field u and hence at the location (y, t)
the amount of B released is governed by events at location (yτ , t − τ ). Note that in-
tracellular events are not considered to be subject to diffusion, as the intracellular
medium is not free to diffuse into the extracellular medium.

Hence, we must only consider the effects of convection by the underlying do-
main growth velocity field in considering the delayed term, rather than consid-
ering both convection and diffusion. One might consider different kinetics with,
for example, the three B molecules each being released at different times during
the interval [t − τ, t]. We will briefly address the issue of different kinetics in the
discussion at the end of this paper.
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With uniform exponential growth, L(t) = L0 eδt/2, we have (Crampin et al.,
1999)

u(y, t) = y
L̇(t)
L(t)

= δy/2.

Substituting this in the above equations yields yτ = y e−τδ/2, and rescaling the spa-
tial coordinate via (x, t) = (y/L(t), t), yields the following non-dimensionalised
equations

∂a
∂t

= 1
γ (t)

∂2a
∂2x

+ p − δ

2
a − a(x, t)b2(x, t)

∂b
∂t

= ε2

γ (t)
∂2b
∂x2

+ q − b − δ

2
b − 2a(x, t)b2(x, t)

+ 3a(x, t − τ )b2(x, t − τ ). (8)

In the above equations x ∈ [0, 1] and γ (t) = λL2
0 eδt/D. Note that the spatial non-

locality in Eq. (7) is no longer present. In addition, setting τ = 0 in the above equa-
tions, one recovers Eq. (2).

2.2.1. The Turing instability revisited
With (a∗, b∗) again denoting the spatial homogeneous solution, substitute (3) into
(8). Neglecting O(η2) we have

dAn

dt
= −n2π2

γ (t)

(
1 0
0 ε2

)
An(t) +

(−b2
∗ − δ/2 −2a∗b∗
−2b2

∗ −4a∗b∗ − 1 − δ/2

)
An(t)

+
(

0 0
3b2

∗ 6a∗b∗

)
An(t − τ ) def= −n2π2

γ (t)

(
1 0
0 ε2

)
An(t)

+ PAn(t) + QAn(t − τ ) . (9)

For no domain growth, one can consider γ as a bifurcation parameter. One can
show, for ε � 1, that there are no oscillations at the critical value of γ , i.e. γcrit. This
value corresponds to the bifurcation where Eq. (9) first exhibits a non-negative
growth rate for An, on increasing γ from a sufficiently small value, for any posi-
tive integer n. See Appendix A.3 for further details, where we additionally show
that Eq. (6) also gives γcrit for non-zero time delays in the absence of domain
growth.

For time dependent γ , a linear analysis is not possible with standard techniques
and hence we proceed numerically. The modulus of the first component of An=1 is
plotted for Eq. (9) in Fig. 1 with a selection of growth rates and time delays for a
typical set of parameter values. These plots are representative. Many parameters
and initial conditions have been considered and the comments made below apply
generally; further results can also be found in Appendix A.1.
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Fig. 1 Sample solutions for the modulus of the first component of An=1 as governed by Eq. (9).
Solid lines correspond to the values of the time delay and growth rate specified above each graph.
Dashed lines correspond to the growth rates specified, but with zero time delay. The solid line in
the third plot from the left peaks at an amplitude of ∼3500. The solid line in the two left-hand
plots and the dashed lines grow indefinitely as time increases. In the above plots time is non-
dimensionalised with respect to the inverse of the decay rate of the activator, λ−1, while n = 1,
p = 0.9, q = 0.1, ε2 = 0.001, γ (t = 0) = 0.05 and the initial conditions are An=1 = (0.95, 1.05) for
t ∈ [0, τ ].

Note, firstly, the gene expression time delays do not induce oscillations in the
linearised equations but they do drastically increase the time it takes for the sys-
tem to move away from the homogeneous steady state. Furthermore, we see in the
right-hand plots of Fig. 1 that the modulus of the first component of An=1 increases
at early time, followed by a peak, prior to an eventual decay back to O(1) values
or less. In Appendix A.1 we observe that the large time asymptotes of the com-
ponents of An=1 always decay to O(1) values or less for sufficiently large τδ. One
cannot rely on naive instability arguments, where the dynamics are only consid-
ered near the homogeneous steady state, under such circumstances. For example,
determining if the components of An=1 initially move away from the homogeneous
steady state is insufficient as it is not clear if this instigates an instability given that
the large time asymptotes for the components of An=1 could decay to O(1) values
or smaller. The question of whether pattern actually forms depends on whether
the size of the components of An=1, and the value of η, are sufficient to allow the
non-linear dynamics of the full Eqs. (8) to take hold and instigate a pattern. Ulti-
mately, this depends on the full non-linear dynamics of the system and is not easily
answered analytically. Thus, noting these limitations of a linear analysis, we will
proceed to investigate the full non-linear equations, rather than investigate the
linear equations further for τδ > 0.

3. The non-linear, non-autonomous model

In the following section we present some representative parameter values and ini-
tial conditions required for detailed numerical simulations of the time delayed
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Table 1 A reference set of parameter estimates for Eq. (8), used for Figs. 4 and 5. The timescale,
as previously, is taken to be 1/λ. Thus, the exponential domain growth rate, governed by δ/2,
corresponds to a dimensional domain doubling time of 2.0 days (2SF). The final time, T, corre-
sponds to a dimensional value of 15.5 days (3SF). The gene expression time delay, τ , is given in
terms of the parameter τ0. This is typically the smallest time delay considered and is equivalent
to a dimensional time delay of 12.0 min (3SF) for the choice of timescale. For these parameters
γcrit > γ (t = 0) so that the homogeneous steady state is initially stable, though domain growth
will eventually destabilise the system.

Parameter Value

Diffusivity of the inhibitor (D, cm2 s−1) 10−6

Decay rate of the activator (λ, min−1) 1/3.1
Rate of exponential domain growth (δ = γ̇ /γ ) 0.0015
Non-dimensionalised base rate production
Inhibitor (p) 0.90
Activator (q) 0.10
Ratio of diffusion coefficient (ε2) 0.0010
Ratio of gene expression time delay to τ/τ0 ∈ {0.0, 1.0, 2.0, 4.0, 8.0, 16.0}

representative small time delay (τ/τ0)
Time (t) t ∈ [0, T = 7190]
Representative small time delay (τ0, min) 3.875
Initial value of γ (γ (t = 0)) 5.0 × 10−3

reaction diffusion system given by Eq. (8) for both stationary domains and spa-
tially uniform exponential domain growth.

3.1. Reference parameter values

In Table 1, we specify reference parameter values for a number of the simula-
tions. The domain growth is uniform and exponential while the dimensional gene
expression time delay is between 12 min and 3.2 h, which encompasses estimates
for this parameter (Lewis, 2003). In Table 2, we have parameters associated with

Table 2 A reference set of parameter estimates for Eq. (8) in the absence of domain growth,
used for Fig. 3. For these parameters, γcrit = 0.0124 < γ (t = 0), so that we are in the regime where
the Turing instability will occur. As previously, the timescale is taken to be 1/λ.

Parameter Value

Diffusivity of the inhibitor (D, cm2 s−1) 10−6

Decay rate of the activator (λ, min−1) 1/3.1
Rate of exponential domain growth (δ = γ̇ /γ ) 0.00
Non-dimensionalised base rate production
Inhibitor (p) 0.90
Activator (q) 0.10
Ratio of diffusion coefficient (ε2) 0.0010
Ratio of gene expression time delay to τ/τ0 ∈ {0.0, 1.0, 2.0, 4.0, 8.0, 16.0}

representative small time delay (τ/τ0)
Representative small time 3.875

delay (τ0, min)
Initial value of γ (γ (t = 0)) 5.0 × 10−2
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no domain growth. Further, tables of representative parameter values used for the
simulations below, which have differing growth rates (δ) and activator diffusivities
(ε2 D), are listed in Tables B.1 and B.2 in Appendix B.2.

Given that no putative cellular reaction system has been completely determined
in terms of its molecular constituents, there are no definitive parameter estimates
for the diffusivities, parameters governing the kinetics or the length of time over
which the pattern formation mechanism is active. (There may nonetheless be
bounds on these quantities.) We are therefore forced to consider plausible param-
eter estimates while recognising that the numerical simulations can only sample a
subregion of parameter space. As we will indicate, the qualitative behaviour we
find in this paper is typical, at least for regions of parameter space that we have
sampled.

3.2. Initial conditions

As with standard Turing models of biological pattern formation, we consider ini-
tial conditions that are perturbations of the homogeneous steady state. Our initial
conditions below are based on the functions aIC=1(x), bIC=1(x) which are plotted
in Fig. 2; algebraic expressions for these plots can be found in Appendix B.1. We
will also consider initial conditions constructed from the following

aIC=2(x) = aIC=1(1 − x), bIC=2(x) = bIC=1(1 − x). (10)

There are a number of points to note about these functions. Firstly, they are a
perturbation of the homogeneous steady-state solution of Eq. (8) (providing δ �
1, as is the case here). Secondly, they are consistent with the zero flux boundary
conditions. Thirdly, reference to Appendix B.1 will reveal that the perturbations
have been constructed from polynomials, so that they would excite a large number
of Fourier modes once such modes become unstable as γ increases.

Typical choices of initial conditions we will use below are of the form

a(x, t) = aIC=1(x), b(x, t) = bIC=1(x) t ∈ [0, τ ], (11)

0 0.2 0.4 0.6 0.8 1
0.9998

1

1.0002

1.0004

1.0006

0 0.2 0.4 0.6 0.8 1
0.8994

0.8996

0.8998

0.9

0.9002

x x 

a    b 

Fig. 2 The functions aIC=1(x) and bIC=1(x) are given by the solid lines in the above plot, while
the functions aIC=2(x) and bIC=2(x) are given by the dashed lines. Note the vertical scales of these
graphs; all of these functions are perturbations about (a, b) = (0.9, 1.0).
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or

a(x, t) = aIC=2(x), b(x, t) = bIC=2(x) t ∈ [0, τ ], (12)

where τ is the gene expression time delay. Another choice of initial conditions we
will commonly use is

a(x, t) = aIC=1(x)(1 + 0.0025 cos(πx) cos(π t/(2τ ))) t ∈ [0, τ ],

b(x, t) = bIC=1(x)(1 + 0.0025 cos(πx) cos(π t/(2τ ))) t ∈ [0, τ ], (13)

and similarly for IC = 2. One should note that we have investigated the model
for numerous other initial conditions in addition to those stipulated above, though
perturbing the homogeneous steady state to a similar degree (not shown). The
results presented below are representative of the behaviour observed in all our
simulations.

4. Simulation results

In this section, we present results of numerical simulations of the time delayed re-
action diffusion system given by Eq. (8) for both stationary domains and domains
exhibiting uniform exponential growth. A standard, implicit, numerical method is
used, though with time delays incorporated.

4.1. Gene expression time delays, with no domain growth

For the initial conditions given by Eqs. (11) and (12) and no domain growth, the
main effect of the gene expression time delay is a large increase in the time re-
quired for the system to reach its long time asymptote. This is clearly illustrated
in Fig. 3 where a gene expression time delay of τ0, which corresponds to 12 min,
induces an additional patterning lag of roughly 60τ0. Similar observations have
been consistently observed for other parameter values and other initial conditions
discussed in Section (3.2).

One should also note that the time delays do not induce oscillations in this sys-
tem, as observed generally. Furthermore, the location of the activator maximum
in the large time asymptote in general can depend on the details of the initial con-
ditions. By ‘maximum’ note that we always mean the maximum on varying the
spatial coordinate, for fixed time, rather than global maximum across all space and
time. Analogous results for all of the above are also observed when ε2 = 0.016.

4.2. Gene expression time delays and spatially uniform exponential domain growth

In Figs. 4–6, we have a domain doubling time of 2 days while in Fig. 7 the domain
doubling time is 8 days and it is 12 h in Fig. 8. In all these plots γ (t = 0) < γcrit and
the initial conditions consist of perturbations about the homogeneous steady state,
as detailed in the figure captions.
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Fig. 3 In this figure, there are 12 greyscale plots for the activator, b, with the parameter values
specified in Table 2. The horizontal axis represents the interval x ∈ [0, 1], while the vertical axis
represents t/τ0, where τ0 is the smallest gene expression time delay considered and is equivalent to
a dimensional value of 12 min. The value of b(x, t/τ0) is proportional to the greyscale at (x, t/τ0)
and can be determined using the greyscale bar to the right of each plot. The gene expression time
delay for each plot is given by τ = Tdelτ0 where Tdel is listed above each plot. The label IC = 1
corresponds to the initial conditions given by Eq. (11), while the label IC = 2 corresponds to the
initial conditions specified in equation (12) on the time interval [0, τ ]. As mentioned in Section 1,
it is typically assumed in pattern formation models that concentration thresholds in reacting and
diffusing morphogens cue cell fate decisions. This is consistent with the prediction of a differential
response in the above plots according to whether or not a cell is within a region of relatively high
activator concentration. Similarly for the remaining figures in this paper.

4.2.1. Loss of robustness
By robustness, we mean a lack of sensitivity to small changes in the initial con-
ditions. We can observe in Figs. 4–8 that in the absence of time delays, the
activator pattern is independent of the initial conditions, at least once the central
peak has formed. For τδ sufficiently large, a sensitivity to the initial conditions can
be observed for ε2 = 0.001, as in Fig. 4 where the location of the activator peaks
in general depends on the details of the initial conditions. For ε2 = 0.016 a loss of
robustness can still occur (not shown) though it requires a fine tuning of the gene
expression time delay to observe this.

4.2.2. The onset of patterning
One can readily make the important observation that the introduction of gene ex-
pression time delays leads to a substantial delay in the onset of patterning. This can
be seen in more detail in Fig. 9 for a selection of parameter values. For example,
in the third row of this figure, we have a magnification of runs which are governed
by the parameters of Fig. 8. The initial conditions are those of Fig. 8 multiplied
by a factor (1 + 0.0025 cos(πx) cos(t/2τ )). Note that Tdel = 0.5 corresponds to a
time delay of 6 min and for this time delay, the pattern initiates when γ /γ0 ∼ 25
while for no time delay the pattern initiates for γ /γ0 ∼ 5. Recall that γ scales
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Fig. 4 With γ (t = 0) def= γ0, note that γ /γ0 is a monotonic function of time, t , and thus one can
consider the activator concentration, b, as a function of (x, γ /γ0) rather than (x, t). In this fig-
ure, there are 12 greyscale plots of the activator, b(x, γ /γ0), for the parameter values specified in
Table 1. Thus, the value of b(x, γ /γ0) is proportional to the greyscale at (x, γ /γ0) and can be deter-
mined using the greyscale bar to the right of each plot. The horizontal axis represents the interval
x ∈ [0, 1], while the vertical axis is γ /γ (t = 0), which is in the range [1, 48000], corresponding to an
increase in the domain length by a factor of approximately 220. We have Tdel ∈ {0, 1, 2, 4, 8, 16},
which correspond to the values of τ specified in Table 1, i.e. τ = Tdelτ0, where τ0 is the smallest
gene expression time delay considered and is equivalent to a dimensional value of 12 min. We
additionally have that IC = 1 corresponds to the initial conditions given by Eq. (11), while IC = 2
corresponds to the initial conditions specified by Eq. (12) on the time interval [0, τ ]. Analogous
comments apply for the remaining figures.

with the square of the domain length. Thus, the effect of a 6 min time delay is to
change the domain length at pattern initiation by a factor of

√
25/5 = 2.2. Thus, the

delay in the onset of patterning is roughly a domain doubling time, i.e. about 12 h.
Analogous results are observed for other parameter values and initial conditions
considered in both Fig. 9 and generally.

4.2.3. Highly irregular patterning and the failure of the Turing instability
The Turing bifurcation can be observed to fail. By this we specifically mean that
an instability observed in the non-delayed system is absent due to the effects of
a sufficiently large time delay. The Turing instability does not materialise in such
cases even though the linear theory predicts that there is growth away from the
homogeneous steady state, as illustrated in the right-hand plots of Fig. 1 for repre-
sentative parameter values. Note that the reasons for why linear theory predictions
of growth away from the homogeneous steady state do not necessarily predict an
instability were discussed in Section 2.2.1.

The Turing instability fails in Fig. 4 for a gene expression time delay of τ = 16τ0

and in an analogous manner, in Figs. 6 and 8. A highly irregular patterning is
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Fig. 5 Let γ0
def= γ (t = 0). In the above there are 12 grayscale plots of b(x, γ /γ0) for the pa-

rameter values specified in Table 1. As previously, the horizontal axis represents the interval x ∈
[0, 1], while the vertical axis is γ /γ (t = 0). We have Tdel ∈ {0, 1, 2, 4, 8, 16}, which correspond to
the gene expression time delays specified in Table 1, namely τ = Tdelτ0, where τ0 is the smallest
gene expression time delay considered and is equivalent to a dimensional value of 12 min. We
also have that IC = 1 and IC = 2 correspond to the initial conditions specified in Fig. 4, except
that they are multiplied by the factor (1 + 0.0025 cos(πx) cos(t/(2τ ))), as specified in Eq. (13).
Further details concerning the interpretation of these plots is provided in the caption for Fig. 4.

Fig. 6 Let γ0
def= γ (t = 0). In the above there are 12 grayscale plots of the activator, b(x, γ/γ0),

with the parameter values and initial conditions specified for Fig. 4, except that ε2 = 0.016, γ0 =
0.08 and the run duration is such that the domain increases in length by a factor of 70. Further
details concerning the interpretation of these plots is provided in the caption for Fig. 4.
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Fig. 7 As previously γ (t = 0) def= γ0. In this figure there are 12 greyscale plots of the activator
profile b(x, γ /γ0). The parameter values differ from Fig. 6 only in that the domain growth rate has
been reduced by a factor of 4; the parameter values are listed in Table B.1 of Appendix B.2. The
initial conditions are those used for Fig. 6 and are given by Eqs. (11) and (12) for IC = 1, IC = 2,
respectively. Further details concerning the interpretation of these plots is provided in the caption
for Fig. 4.

Fig. 8 Above there are 10 greyscale plots of the activator profile b(x, γ /γ0), where γ (t = 0) def=
γ0. The parameter values differ from Fig. 6 only in that the domain growth rate has been increased
by a factor of 4 and a different selection of time delays in considered. These delays for each plot
are given by Tdel × τ0, where Tdel is specified above each plot and τ0 corresponds to a dimensional
gene expression time delay of 12 min for the non-dimensionalisation presented in Table 1. The
parameter values are explicitly listed in Table B.2 of Appendix B.2. The initial conditions are
those used for Fig. 6 and are given by Eqs. (11) and (12) for IC = 1, IC = 2 respectively. Further
details concerning the interpretation of these plots is provided in the caption for Fig. 4.
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Fig. 9 In the first row, we have magnified the plots in Fig. 4 for IC = 1 and Tdel ∈
{0, 1, 2, 4, 8, 16}. In particular, we have taken the vertical axis of each plot to be in a range
of γ /γ (t = 0) which allows us to see when pattern formation first initiates. For example, in the
left-hand plot of the first row, we have pattern first forming when γ /γ (t = 0) ∼ 4. In the plots
on the first row, the gene expression time delay is τ = Tdel τ0, where τ0 is the smallest time de-
lay typically considered and corresponds to 12 min given the non-dimensionalisation presented
in Table 1. Similar comments apply for the second and third rows. In the second row, the plots
correspond to the early stages of the plots presented in Fig. 6 for IC = 1. In the third row, we
have magnified the early stages of plots which have the same parameter values and IC = 1 initial
conditions used in Fig. 8, except the initial conditions have been perturbed by the multiplicative
factor (1 + 0.0025 cos(πx) cos(t/(2τ ))). See the text of Section 4.2.2 for further details.

observed in Fig. 5 for the largest time delay considered there. In Fig. 10, similar
irregular behaviour can be observed when ε2 = 0.016 for the same initial condi-
tions. One can observe that the precise onset of the failure of the Turing instability
depends on the details of the initial conditions, by comparing Figs. 4 and 5. How-
ever, once highly irregular patterning is observed, small increases in the time delay
subsequently result in a failure of the Turing instability. An illustration of this is
given in Fig. 10 and is observed generally.

4.2.4. Oscillations
In general, oscillations of significant amplitude have not been commonly observed
on the spatially growing domains for this model. The linear bifurcation analysis of
Appendix A.3 also indicates that any growth away from the homogeneous steady
state is, initially, non-oscillatory. Note though that oscillations can be present,
as in Fig. 10, when the time delay is sufficiently large to induce the highly ir-
regular behaviour discussed above, though some fine tuning of the time delay is
required.
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Fig. 10 In this figure there are 20 plots of the activator, b. The parameter values and initial
conditions are the same as those used in Fig. 5 with the exception of the values for the gene
expression time delay, ε2 = 0.016, γ (t = 0) = 0.08 and the run duration. The latter is such that
the domain length increases by a factor of 70. We have Tdel ∈ {4.5, 5, 5.5, 6, 6.5, 7, 7.5, 9, 10, 11},
which gives the gene expression time delay τ = Tdel τ0. Here, we can see how the dynamics initially
exhibits irregular behaviour as the gene expression time delay is raised, with the ensuing failure
of the Turing instability as the time delay is increased further.

5. Discussion

In the following we are interested in assessing whether gene expression time delays
can be neglected for the putative cellular pattern formation mechanism consid-
ered in this paper. We will consider both stationary domains and domains with
uniform exponential growth. For the discussion below it will be useful to note
that

τδ = 2(ln 2) × Gene expression time delay
Domain doubling time

.

This follows immediately on noting that δ/2 is the exponential growth rate of
the domain length L(t) and hence the domain doubling time, td, is given by
td = (2 ln 2)/δ; dividing by the time delay, τ , gives the above after rearranging.

5.1. No domain growth

We firstly consider stationary domains and note that although time delays often in-
duce oscillations in dynamical systems (see, for example, Veflingstad et al. (2005)),
none are observed here. Thus, time delays need not invalidate reaction diffusion
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models of pattern formation on stationary domains by inducing oscillatory (rather
than stationary) patterns of activator and inhibitor concentrations.

We do, however, observe sensitivity of the final stationary pattern to the initial
conditions, as illustrated by Fig. 3. Such sensitivity is a common and old criticism
of reaction diffusion models (Bard and Lauder, 1974; Bunow et al., 1980) and is
not specific to the presence of gene expression time delays. It can usually be elim-
inated in models that lack time delays by incorporating domain growth (Crampin
et al., 1999) or by including the effects of an underlying asymmetry (Meinhardt,
1982; Page et al., 2005). In the absence of domain growth, which is considered be-
low, we anticipate that the incorporation of an underlying asymmetry can enforce
robustness in delay models as it does in non-delay models.

The most striking and important result of incorporating a gene expression time
delay into our reaction diffusion model is that the times to the onset of patterning
and to approach the large time asymptotic behaviour increase dramatically as the
delay is increased. Thus, even for quite modest delays of 10 or 20 min, the time
taken for the system to achieve pattern is increased by several hours. Such delays
in the onset and/or stabilisation of pattern impose potentially severe constraints
on the domain of applicability of reaction diffusion models that rely on regulated
gene expression. In particular, in the context of embryonic development, where
the timescale of pattern establishment is typically only a few hours and cells have
limited time windows in which they are competent to respond to patterning cues
(Kimmel et al., 1995), our results illustrate clearly the importance of considering
gene expression time delays in proposed models of pattern formation. Since tim-
ing is of importance in all biological systems, it is also clear that any time delays
existing in putative patterning mechanisms should not be neglected in general, as
will be discussed in detail in the following sections.

5.2. Spatially uniform exponential domain growth

We proceed to consider spatially uniform exponential growth. It is interesting to
observe the close similarity between the plots in Fig. 6 with Tdel = 2, 4 and the
plots in Fig. 7 with Tdel = 8, 16. Similarly, for the plots in Fig. 8 with Tdel = 0.5,
1. The respective plots share the same value of τδ and initial conditions. This
strongly indicates that the effect of the gene expression time delays and domain
growth with regard to the failure of the Turing instability, the onset of irregular
patterning or the eventual pattern formed, is governed by the parameter grouping
τδ. Further evidence of this is presented in Appendix A.2 and has been observed
generally.

5.2.1. Loss of robustness
For sufficiently rapid domain doubling times, the presence of gene expression time
delays can entail that the incorporation of domain growth is not sufficient to elim-
inate a sensitivity to the initial conditions, as seen in Fig. 4. This is in contrast
to general conclusions arising in Crampin et al. (1999) when no time delays are
present. However, we do not envisage this to be a severe problem for the reac-
tion diffusion mechanism in virtually all of its applications, as we anticipate, but do
not explicitly show here, that the effects of an underlying asymmetry can enforce
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robustness (as in Meinhardt (1982)). In addition, the loss of robustness is no longer
manifest, apart from with parameter fine tuning, when ε2 = 0.016. This addition-
ally indicates that for larger values of ε2, the loss of robustness is no longer an
important issue.

5.2.2. The onset of patterning
As with no domain growth, we have the very important observation that small gene
expression time delays induce a much larger time delay in the patterning onset
and the time taken for the system to approach its large time asymptotic behaviour.
Thus, in the presence of uniform exponential domain growth, we can also conclude
that the patterning lag can be highly sensitive to the inclusion of time delays.

5.2.3. Highly irregular patterning and the failure of the Turing instability
All our simulations are consistent with the observation that once τδ is sufficiently
large, the Turing instability fails, though the details of how large the time delay
must be to prevent the Turing instability from occurring can depend on the initial
conditions.

To place the above observation in context, we note that detailed simulations
show that highly irregular behaviour or a Turing instability failure will occur once
τδ > 1/30 for ε2 = 0.016. Consider a gene expression time delay at the minimum
estimate of 10 min (Lewis, 2003), which is probably the most appropriate esti-
mate for a fast developmental process. For this time delay, and ε2 = 0.016, the
domain doubling time has to be greater than 5 h, to ensure the Turing insta-
bility and regular patterning. We note that some developmental processes with
Zebrafish for example occur with domain growth on significantly faster timescales
(Kimmel et al., 1995).

From such observations, the failure of the Turing instability is typically outside
the range of possible parameter values for the current model. However, irregular
patterning or a Turing instability failure can occur if the domain is growing at a rate
commensurate with the very fastest developmental processes. Thus, we have the
observation that when modelling such processes, one should again explicitly justify
the neglect of gene expression time delays if a Turing bifurcation is a possibility as,
for the putative model here, it can make a substantial difference.

5.2.4. Oscillations
From our observations, oscillations can occur in parallel with highly irregular pat-
terning with a careful choice of the time delay. However, the set of parameter val-
ues for which oscillations occur is observed to be a subset of the parameter space
where regular patterning fails due to the occurrence of highly irregular behaviour
or the failure of the Turing instability. Thus it is more important to investigate and
delimit where the latter occur, as performed above.

5.2.5. Sensitivity to the details of the kinetics and other modelling assumptions
We note briefly that the non-dimensionalisation timescale, taken to be
λ−1 = 3.1 min, can be changed without changing the key observations of this
paper. For example, the failure of the Turing instability is governed by τδ which
is independent of alternative timescales. Similarly, the size of the ratio of the gene
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expression time delay to the additional lag in the patterning onset is independent
of a temporal rescaling. Thus the key observations presented here are in fact
valid for a family of dimensionalised parameter values, generated by altering
the non-dimensionalisation timescale. We have also observed that the overall
behaviour of the system with regard to the final pattern, the onset of irregular
patterning and the failure of the Turing instability, is most strongly determined by
the parameter grouping τδ. Taking into account the results of Appendix A.2 this
observation has held for an order of magnitude variation in each of ε2, τ and δ.
Similarly, the additional lag in the patterning onset has always been observed to
be much greater than the gene expression time delay.

Nonetheless, we have still only sampled a fraction of parameter space. However,
the fact we have not conducted an exhaustive search of parameter space should not
be seen as a fundamental weakness of the paper. Here, our aim is to illustrate the
effects of gene expression time delays, and to show that in general they cannot
simply be dismissed for a representative selection of parameter values and initial
conditions for a representative model.

Furthermore, most models incorporate pattern formation kinetics that are car-
icatures of more realistic kinetics, assuming these are even known. It is typi-
cally considered that such systems are effectively equivalent (e.g. p. 438, Murray
(1993)). However, if this proves to be no longer true on incorporating gene ex-
pression time delays, then one has also to carefully justify the details of the choice
of kinetics. This would typically require more information than is available for a
given cellular pattern formation system. Under such circumstances, the presence
of gene expression time delays would present a considerable obstacle for the deter-
mination of whether reaction diffusion pattern formation mechanisms are present
in cellular contexts. This clearly merits further investigation.

6. Summary, conclusions and future work

We have motivated why, biologically, one needs to consider including gene ex-
pression time delays in the formulation of putative reaction diffusion models of
cellular pattern formation processes. In turn, we have derived an exemplar model
exhibiting this phenomenon utilising Schnakenberg kinetics on a fixed domain and
on a domain which is uniformly growing at an exponential rate.

Our most important observation is that small gene expression time delays induce
a large increase in the time required for the onset of pattern formation on both a
fixed domain and for spatially uniform exponential domain growth.

Our study also demonstrates that, in the presence of such domain growth and
gene expression time delays, a naive linear analysis that relies on determining
whether there is an initial growth of perturbations about a steady state, is con-
ceptually unreliable in predicting when a Turing instability occurs. In addition, on
the growing domains considered, the behaviours observed in numerical simula-
tions are governed by the ratio of the gene expression time delay to the domain
doubling time. We observe the onset of highly irregular behaviour and/or a failure
of the Turing instability once this ratio is sufficiently high. However, failure occurs
only for the very fastest domain doubling times, at least for the exemplar model
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considered here. Finally, we have seen that in the presence of gene expression time
delays, pattern sensitivity to the initial conditions can occur, especially for very low
ratios of activator to inhibitor diffusivities. However, we anticipate that this pat-
tern sensitivity could be overcome by incorporating spatial asymmetry, as has been
demonstrated for non-delayed systems.

The above observations do not rule out reaction diffusion as a putative pattern
formation mechanism, whether on a stationary or uniformly growing spatial do-
main. However, when considering patterning events for which rapid establishment
of pattern is critical, such as in the tissues of developing embryos, our results show
that any putative time delays cannot be neglected in general without careful justi-
fication. In particular, our finding that time delays dramatically increase the time
taken for the reaction diffusion system to initiate patterns imposes potentially se-
vere constraints on the potential molecular details of any Turing system that might
operate during developmental patterning.

In this paper, we have studied the effect of a single delay in a specific kinetic
scheme. It would be interesting to extend this work to the case of multiple gene
expression time delays, for non-exponential, non-uniform and reactant-controlled
growth, and in higher spatial dimensions. Similarly, it would be interesting to con-
sider the effects of gene expression time delays on alternative pattern formation
models, such as those based on mechano-chemical mechanisms. In particular, we
note that in the specific kinetics that we have studied, the time delay appears only
in a positive feedback term of the activator equation. Previous work on diverse
delay systems has shown that delays are most likely to induce oscillatory dynam-
ics when they occur in negative feedback loops. Given that we have not found
evidence for prominent oscillatory dynamics in our model, it would be of particu-
lar interest to explore alternative patterning mechanisms that incorporate delayed
negative feedback terms. Finally, we note that we have only explored the effects
of a discrete delay in this paper. Distributed delays provide a more realistic rep-
resentation of gene expression mechanisms, and an exploration of the effects of
distributed delays in a range of kinetic schemes would certainly be worthwhile.
Such work is in progress.

A Appendices: supplementary information

A.1 Further results for the non-autonomous, time delayed, linear equations

Our starting point is Eq. (9) which governs the behaviour of An in Section 2.2.1,
where we remarked that once τδ is sufficiently large, the components of An=1 will
peak before decaying to O(1) values or less for sufficiently large time. This can be
observed in the two right-hand plots of Fig. 1. Here we illustrate, numerically, that
this behaviour is commonplace. We solve the retarded Eq. (9) with n = 1, p = 0.9,
q = 0.1, ε2 = 0.001, γ (t = 0) = 0.05, for a wide range of values for the exponential
growth rate, δ, and the gene expression time delay, τ , with initial conditions An=1 =
(1.05, 0.95) for t ∈ [0, τ ]. Time is non-dimensionalised with respect to the inverse
of the decay rate of the activator, denoted λ−1, consistent with the scalings used in
Section 2.2.1.
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Fig. 11 The plots show min{50, |[An=1(∞)]1|} and min{50, |[An=1(∞)]2|}. Note that
|[An=1(∞)]i | denotes the modulus of the large time asymptote for the i th component of
An=1. See Appendix A.1 for further details and parameter values.

Let |[An=1(∞)]i |, i ∈ {1, 2}, denote the large time asymptote of the modulus of
the i th component of An=1. We wish to observe when |[An=1(∞)]i | takes O(1)
values or less and how this depends on the domain growth rate, δ, and the time
delay τ . Given |[An=1(∞)]i | will be unbounded for certain choices of δ and τ we
plot min(50, |[An=1(∞)]1|), min(50, |[An=1(∞)]2|). Hence, for example, if a plot
has a value of 50, the large time asymptote is clearly not O(1) or less and we thus
have sufficient information for our needs. In all our plots min(50, |[An=1(∞)]1|)
and min(50, |[An=1(∞)]2|) are estimated numerically from the values of An=1

at t = 104λ−1 which, for the parameters of this paper, is a very long
timescale.

We first plot min(50, |[An=1(∞)]1|) and min(50, |[An=1(∞)]2|) against δ in the
upper row of Fig. 11. Each mark in these plots will typically correspond to more
than one data point; for example, the marks for a given δ will generally correspond
to numerous values of τ . From the third row of Fig. 11, we can clearly see that
once τδ gets sufficiently large (> 0.057 approx.), the large time values of compo-
nents of An=1 are always O(1) or less. We have considered numerous other initial
conditions which yield identical plots, while results with other parameter values,
including changing ε2 to 0.016, are analogous.

A.2 Further results: non-linear simulations

In Figs. 12 and 13 there are further additional results for ε2 = 0.001 with the same
initial conditions as presented in Fig. 5. The plots are different from those in Fig. 5
only in that the domain growth rate is increased by a factor of four in Fig. 12 and
decreased by a factor of four in Fig. 13. It is interesting to observe the similarity
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Fig. 12 As previously γ (t = 0) def= γ0. There are 12 greyscale plots of the activator profile
b(x, γ /γ0). The parameter values correspond to an increase in the exponential growth rate by
a factor of 4 compared to the parameters in Table 1 and Fig. 5. All other parameters, the axes and
the initial conditions are as specified in Fig. 5. The time delays for each plot are given by Tdel × τ0,
where Tdel is specified above each plot and τ0 corresponds to a dimensional gene expression time
delay of 12 min for the non-dimensionalisation presented in Table 1. Further details concerning
the interpretation of these plots is provided in the caption for Fig. 4.

between the plots in Fig. 12 with Tdel = 1, 2, 4 and the plots in Fig. 5 with Tdel =
4, 8, 16. Also observe that plots in Fig. 5 with Tdel = 1, 2, 4 are similar to plots with
Tdel = 4, 8, 16 in Fig. 13. This adds further evidence to the observation that the
effect of the gene expression time delays with regard to the final pattern, and the
onset of irregular patterning and the failure of the Turing instability, is governed
by the parameter grouping τδ.

A.3 A linear analysis of the time delayed equations

In this appendix we will perform a linear analysis of the time delayed equations
close to the steady state. We assume ε2 � 1 and we will:

• prove that in the absence of domain growth, there are no oscillations for the
linearised time delayed equations at the Turing bifurcation. This corresponds
to the point where, treating γ as a bifurcation parameter, an instability is first
induced by increasing γ from a sufficiently small value.

• derive Eq. (6) for (i) τ = 0, δ ≥ 0 and (ii) δ = 0, τ ≥ 0.

To proceed, let p11, p12, . . . , q21, q22 denote the components of P and Q in
Eq. (9). We have q11 = q12 = 0 and we will additionally assume the remaining of
these parameters are of unit magnitude with p22 + q22 > 0, q22 > 0, as is the case
for the kinetics used throughout this paper.
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Fig. 13 There are 12 greyscale plots of the activator profile b(x, γ /γ0), where γ (t = 0) def= γ0.
The parameter values correspond to a decrease in the exponential growth rate by a factor of 4
compared to the parameters in Table 1 and Fig. 5. All other parameters, the axes and the initial
conditions are as specified in Fig. 5. The time delays for each plot are given by Tdel × τ0, where
Tdel is specified above each plot and τ0 corresponds to a dimensional gene expression time delay
of 12 min for the non-dimensionalisation presented in Table 1. Further details concerning the
interpretation of these plots is provided in the caption for Fig. 4.

A.3.1 No oscillations for the linearised time delayed equations
at the Turing bifurcation
Substitute An(t) = exp[λnt]Bn into Eq. (9) for γ constant, δ = 0 and τ > 0. As with
a standard linear instability analysis in the absence of delays, the λn are complex
growth rates governing the behaviour of the linearised perturbations about the
homogeneous steady state. The critical value of γ , denoted γcrit, will correspond to
where Re(λn) first becomes zero on increasing γ , for any positive integer value of
n. With Re(λn) = 0, Im(λn) = β one can show that Re(λn) first becomes zero on
increasing γ for the smallest γn(β, τ ), n ∈ Z

+, β ∈ R satisfying both

γn(β, τ ) = 2n2π2ε2

A(βτ ) +
√

A2(βτ ) − ε2 B(β, τ )
(A.1)

[β(1 + ε2) + q22 sin(βτ )]
n2π2

γn(β, τ )
= C(β, τ ) (A.2)

where

A(βτ ) def= q22 cos(βτ ) + p22 + ε2 p11

B(β, τ ) def= 4 [(p11 p22 − p12 p21) + (p11q22 − p12q21) cos(βτ ) − βq22 sin(βτ ) − β2]

C(β, τ ) def= p11[β + q22 sin(βτ )] + β(p22 + q22 cos(βτ )) − p12q21 sin(βτ ). (A.3)
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Clearly, the smallest value of γ corresponds to n = 1, and we take n = 1 be-
low. Further note that β = 0 is consistent with Eq. (A.2) and, from Eq. (A.1),
yields

γ1(0, τ ) = 2π2ε2

A(0) +
√

A2(0) − ε2 B(0, τ )

= π2ε2

A(0)
(1 + O(ε2)) = π2ε2

p22 + q22
(1 + O(ε2)),

using the fact that A(0), B(0, τ ) are of unit magnitude.
We now seek other values of β which give consistent solutions of Eqs. (A.1) and

(A.2) and which yield a smaller value of γ1. For |β| > 0, we have by combining
Eqs. (A.1) and (A.2) that

[β(1 + ε2) + q22 sin(βτ )]
[
A(βτ ) +

√
A2(βτ ) − ε2 B(β, τ )

] 1
2ε2

= C(β, τ ).
(A.4)

Firstly, suppose that 1 
 β > 0. Expanding the above, in terms of β yields

β

ε2
(1 + q22τ + o(1))(p22 + q22 + o(1))

= β[p11 + q22 p11τ + p22 + q22 − p12q22τ + o(1)].

Noting that q22 > 0, p22 + q22 > 0 and of unit magnitude, it is impossible to balance
the left and right hand sides for sufficiently small ε2; thus we can note that there is
no solution for 1 
 |β| > 0. Note that Eq. (A.4) can only be satisfied if C(β, τ ) 
 1
or one of the bracketed terms on the left of this expression is much smaller than
unity (or some combination of these possibilities). Further suppose that

|A(βτ ) +
√

A2(βτ ) − ε2 B(β, τ )| � 1.

This, combined with Eq. (A.1), entails that the resulting value of γ must be much
larger than γ1(0, τ ). This therefore cannot yield the bifurcation point.

Suppose instead that C(β, τ ) ∼ O(1/ε2). For a fixed gene expression time delay
τ , and ε � 1 sufficiently small, we ultimately require β ∼ O(1/ε2). However, for
|β| 
 1, we have, from equation (A.2) that

|γ1(β, τ )| =
∣∣∣∣π2(1 + O(|β|−1) + O(ε2))

p22 + p11 + q22 cos(βτ )

∣∣∣∣ 
 γ1(0, τ ) ∼ O(ε2).

Thus, again, the resulting value of γ cannot correspond to the critical value of γ

for sufficiently small ε.
Finally, suppose that

[
β(1 + ε2) + q22 sin(βτ )

] ∼ O(ε2). For τ ∼ O(ε) or less we
have β ∼ O(ε2) � 1, which contradicts the above, and our task is complete. For
general τ > 0, note that the above reasoning means that we do need not to consider
1 
 β > 0, so without loss of generality, we can just consider β ∼ O(ε) or greater.
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Therefore

sin(βτ )
βτ

= −1 + ε2

q22τ
+ O

(
ε2

βq22τ

)
= − 1

q22τ
(1 + O(ε)) (A.5)

and thus, π < |βτ | < q22τ (1 + O(ε)) with

cos(βτ ) = ±[
1 − (β/q22)2 (1 + O(ε))

]1/2
< 1, (A.6)

for an appropriate choice of sign. The final inequality arises as β is bound away
from zero. For any value of β which solves Eq. (A.5), we have that β, and hence
B(β, τ ), is bounded as ε → 0, and hence

γ1(β, τ )= 2π2ε2

A(βτ ) +
√

A2(βτ ) − ε2 B(β, τ )
= π2ε2

A(βτ )
(1 + O(ε2))

= π2ε2

p22 ± q22

√
1 − (β/q22)2 (1 + O(ε))

(1 + O(ε2))

>
π2ε2

p22 + q22
(1 + O(ε2)) = γ1(0, τ ).

The above inequality arises from (A.6), on noting that q22 > 0 and entails that the
above value of γ1(β, τ ) cannot correspond to the bifurcation. All the above gen-
eralises if Eq. (A.4) is achieved via a combination of any of the above mentioned
possibilities; for example C(β, τ ) ∼ O(1/ε) and

[
β(1 + ε2) + q22 sin(βτ )

] ∼ O(ε).
Thus, we must have that β = 0 at the bifurcation point, and hence there is no os-
cillation.

A. 3.2 Derivation of Eq. (6)
Once more, let p11, p12, . . . , q21, q22 denote the components of P and Q in Eq. (9).
For no time delay, i.e. τ = 0, with δ ≥ 0, substitute Eq. (5) into Eq. (4). This again
yields Eqs. (A.1) to (A.3), though now for τ = 0, δ ≥ 0. The results derived in the
previous section generalise immediately, and thus we have β = 0 and n = 1 at the
bifurcation point in the absence of a time delay. Hence, substituting τ = 0, β =
0, n = 1 into Eq. (A.1), with δ ≥ 0, yields Eq. (6).

Instead suppose τ ≥ 0, δ = 0. From the previous section we have β = 0 at the
bifurcation point. Furthermore we have γcrit is given by Eq. (A.1) and, by inspec-
tion of Eq. (A.3), we have that A(0) and B(β = 0, τ ) are independent of τ . Thus,
Eq. (6), which is valid for δ = τ = 0, from above, is also valid for δ = 0, τ > 0.

A. 4 Comparison of linear theory large time asymptotes and non-linear theory

For ε2 = 0.001, it is interesting to note that the large time asymptotes of the lin-
ear system given by Eq. (9) are O(1) or not according to whether τδ is greater or
less than 0.057; see Appendix A.1. However, detailed non-linear numerical simu-
lations (not shown) demonstrate that the Turing instability will always occur once
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τδ < 0.084 when ε2 = 0.001. Thus, in the region τδ ∈ [0.057, 0.084] there is distinct
disagreement between the behaviour of the linear theory’s large time asymptotes
and the non-linear simulations. This is presumably because although within this
region the linear theory predicts initial perturbations should eventually decay at
large time, the intermediate growth is sufficient to trigger non-linearities in the
equations and effect a Turing instability. We may conclude that even the large
time asymptotes of the linear theory are not particularly accurate predictors for
the behaviour of the full non-linear equations, though they indicate the correct
order of magnitude for the critical value of τδ concerning the onset of a Turing
instability.

B Additional details

B.1 Algebraic expressions for the initial conditions

The algebraic expressions for aIC=1(x), bIC=1(x), as plotted in Fig. 2, are

aIC=1(x) = 0.9 + Ea x5(1 − x2)[Aa x3 + Ba x2 + Ca x + Da],

bIC=1(x) = 1.0 − Ebx7(1 − x2)[Abx3 + Bbx2 + Cbx + Db], (B.1)

with x ∈ [0, 1], where Ea = 0.00125, Eb = 0.00600 and

Aa = −170.6666682, Ba = 412.4444479, Ca = −312.8888910, Da = 71.1111113,

Ab = −130.8444445, Bb = 337.0666669, Cb = −281.6000002, Db = 75.3777778.

The substantial accuracy for the quoted values of Aa, Ba, . . . , Db are so that the
perturbations remain small in the interval x ∈ [0, 1] and, especially, that they sat-
isfy the zero flux boundary conditions. They are not indicative of the conclusions

Table B.1 A reference set of parameter estimates for Eq. (8), used for Fig. (7). The final time T
is such that the domain length increases by a factor of 70 (2SF) during the run. As previously, the
timescale is taken to be 1/λ.

Parameter Value

Diffusivity of the inhibitor (D, cm2 s−1) 10−6

Decay rate of the activator (λ, min−1) 1/3.1
Rate of exponential domain growth (δ = γ̇ /γ ) 0.000375
Non-dimensionalised base rate production

Inhibitor (p) 0.90
Activator (q) 0.10

Ratio of diffusion coefficient (ε2) 0.016
Ratio of gene expression time delay to τ/τ0 ∈ {0.0, 1.0, 2.0, 4.0, 8.0, 16.0}

representative small time delay (τ/τ0)
Time (t) t ∈ [0, T = 2266]
Representative small time delay (τ0, min) 3.875
Initial value of γ (γ (t = 0)) 5.0 × 10−3
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Table B.2 A reference set of parameter estimates for Eq. (8), used for Fig. (8). The final time is
T is such that the domain length increases by a factor of 70 (2SF) during the run. As previously,
the timescale is taken to be 1/λ.

Parameter Value

Diffusivity of the inhibitor (D, cm2 s−1) 10−6

Decay rate of the activator (λ, min−1) 1/3.1
Rate of exponential domain growth (δ = γ̇ /γ ) 0.0060
Non-dimensionalised base rate production

Inhibitor (p) 0.90
Activator (q) 0.10

Ratio of diffusion coefficient (ε2) 0.016
Ratio of gene expression time delay to τ/τ0 ∈ {0.0, 1.0, 2.0, 4.0, 8.0, 16.0}

representative small time delay (τ/τ0)
Time (t) t ∈ [0, T = 1416]
Representative small time delay (τ0, min) 3.875
Initial value of γ (γ (t = 0)) 5.0 × 10−3

of this paper requiring an extreme fine tuning of the initial conditions. We further
discuss issues associated with robustness in Sections 5.1 and 5.2.1.

B.2 Table of the variables and parameters used in the main text

Variable/ Definition/interpretation
parameter First defined

aIC=1(x) Functions used to construct representative initial Section 3.2
conditions. Similarly for aIC=2(x), bIC=2(x), bIC=1(x).

a, b Inhibitor and activator concentrations, respectively. Section 2.1
a∗, b∗ Levels of inhibitor, activator at the homogeneous Section 2.1.1

steady state.
An(t) Time dependence of the nth mode in a linear analysis. Section 2.1.1
D Diffusion coefficient of the inhibitor (dimensional). Section 2.1
IC Initial condition label; see figure captions and Section 3.2

Section (3.2).
L, L0 Dimensional domain length. Section 2.1
p, q Non-dimensionalised base rate production of inhibitor Section 2.1

and activator, respectively.
P, Q Matrices in time delayed linearised equations. Section 2.2.1
t Time. Section 2.1
Tdel Tdel = τ/τ0; see figure captions for details. Figure 3
T T is the final time of the simulations in Tables 1-B.2. Table 1
u Domain growth velocity field. Section 2.2
x x ∈ [0, 1] is the normalised spatial coordinate Section 2.1
y Spatial coordinate on the physical domain. Section 2.2
yτ yτ = Yy(s = t − τ ). Section 2.2
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Variable/ Definition/interpretation First defined
parameter

Yy(s) Solution of dYy/ds = u(Y, s) with Yy(s = t) = y. Section 2.2
It traces a material point in the moving domain.

γ, γ (t) γ = λL2/D, γ (t) = λL2(t)/D = λL2
0 exp(δt)/D. Section 2.1

γ0 γ0 is defined to be γ (t = 0) Figure 4
γcrit Value of γ for which Re(λn), n ∈ Z

+, first becomes Section 2.1.1
non-negative on increasing γ from a sufficiently
small value.

δ δ = γ̇ /γ ; δ governs the rate of exponential Section 2.1
domain growth.

ε2 The ratio of the activator diffusion coefficient Section 2.1
to the inhibitor diffusion coefficient.

η Size of perturbations in the linear analyses. Section 2.1.1
λ Decay rate of activator given no domain growth Section 2.1

(dimensional).
λn Exponential growth rate of the nth mode in a Section 2.1.1

linear analysis.
τ Gene expression time delay. Section 2.2
τ0 A representative small time delay, as defined Table 1

in Table 1.
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