
Bulletin of Mathematical Biology (2006) 68: 1975–2003
DOI 10.1007/s11538-006-9060-5

ORIGINAL ARTICLE

Interactions Between Pattern Formation
and Domain Growth

A.A. Neville, P.C. Matthews, H.M. Byrne∗

Centre for Mathematical Medicine, School of Mathematical Sciences,University of
Nottingham, Nottingham NG7 2RD, UK

Received: 3 June 2005 / Accepted: 28 November 2005 / Published online: 20 May 2006
C© Society for Mathematical Biology 2006

Abstract In this paper we develop a theoretical framework for investigating pat-
tern formation in biological systems for which the tissue on which the spatial pat-
tern resides is growing at a rate which is itself regulated by the diffusible chemicals
that establish the spatial pattern. We present numerical simulations for two cases
of interest, namely exponential domain growth and chemically controlled growth.
Our analysis reveals that for domains undergoing rapid exponential growth dilu-
tion effects associated with domain growth influence both the spatial patterns that
emerge and the concentration of chemicals present in the domain. In the latter
case, there is complex interplay between the effects of the chemicals on the do-
main size and the influence of the domain size on the formation of patterns. The
nature of these interactions is revealed by a weakly nonlinear analysis of the full
system. This yields a pair of nonlinear equations for the amplitude of the spatial
pattern and the domain size. The domain is found to grow (or shrink) at a rate that
depends quadratically on the pattern amplitude, the particular functional forms
used to model the local tissue growth rate and the kinetics of the two diffusible
species dictating the resulting behaviour.

Keywords Pattern formation · Reaction-diffusion · Domain growth · Weakly
nonlinear analysis

1. Introduction

Since Alan Turing (1952) first proposed reaction-diffusion (RD) theory to de-
scribe the range of spatial patterns observed in the developing embryo, RD mod-
els have been studied extensively (Maini et al., 1997; Murray, 1993; Neubert et al.,
2002; Ouyang and Swinney, 1991; Painter et al., 1999). For example, Lengyel and
Epstein (1991) proposed a mathematical model for the first chemical reaction, the
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chlorite-iodide-malonic acid starch (CIMA) reaction, known to exhibit Turing
patterns and Painter et al. (2000) developed a RD model that reproduced some
of the complex patterns observed on the skin of certain animals. Other authors,
also motivated by pattern formation during animal coat development, have pro-
posed RD models that incorporate domain growth (Varea et al., 1997). For exam-
ple, Kondo and Asai (1995) investigated the formation of stripes on the marine
angelfish Pomacanthus by simulating a RD wave on a one-dimensional array of
cells, increasing the domain size during computation to account for growth. They
observed good agreement between the real and simulated pattern arrangements.
However, most existing models of pattern formation on growing domains do not
couple tissue growth with the chemical concentrations within the domain. As such
they provide only limited insight into the following question that was posed by
Harrison and Kolár̆ (1988); ‘How are the actions of morphogens coordinated with
the process of growth?’ Certainly, there are biological systems for which domain
growth is independent of the chemicals present. These include the development of
coat patterns on mammals and the patterning of butterfly wings (Murray, 1993).
However, in certain situations the coupling of domain growth to the chemicals
present is likely to be important (Alberts et al., 1994). For example, a major factor
in the failure of a significant number of vascular reconstructions is the unscheduled
proliferation of vascular smooth muscle cells. Such tissue growth may be stimu-
lated by a variety of growth factors, including platelet-derived growth factor, but
inhibited by others, such as transforming growth factor-β (Majack, 1987). Also
a large number of chemicals may influence tumour development (Alberts et al.,
1994), such as transforming growth factor-α which is thought to contribute to the
growth of glioblastomas but drugs, such as Tamoxifen, can suppress such tissue
growth (Campbell and Pollack, 1997).

There have been numerous mathematical models proposed which are concerned
with tumour biology (Byrne and Chaplain, 1995; Casciari et al., 1992; Chaplain,
1996; Sherratt and Chaplain, 2001; Ward and King, 1997). Chaplain et al. (2001)
used reaction-diffusion theory to examine spatio-temporal pattern formation on
the surface of a tumour spheroid. The position of the tumour boundary was as-
sumed to grow linearly in time. Their numerical results were in good agreement
with in vitro experiments, with proliferative heterogeneity of cancer cells being ob-
served in solid tumours at all stages of development. Other authors to investigate
spatio-temporal patterning during tumour growth are Owen and Sherratt (1999),
who pay particular attention to the influx of macrophages (types of white blood cell
that form part of the body’s immune response system) into a small avascular tu-
mour. They discovered the existence of travelling wave solutions, where the wave
front is taken as a moving boundary, and showed that, in the context of tumour–
macrophage interactions, spatial variations may arise as a consequence of differen-
tial cell movement and chemical diffusion. When macrophage chemotaxis was also
included in the model, a qualitatively new type of behaviour could be observed,
namely irregular spatio-temporal oscillations behind the wave front. Earlier, more
general models of tumour growth, which do not consider pattern formation explic-
itly, include the work of Greenspan (1976), wherein cellular material moves as a
result of internal pressure differentials, which arise from cell birth and death.
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In this paper we combine ideas developed in the papers mentioned above
(Byrne and Chaplain, 1995; Casciari et al., 1992; Chaplain, 1996; Chaplain et al.,
2001; Greenspan, 1976; Owen and Sherratt, 1999; Sherratt and Chaplain, 2001;
Ward and King, 1997) to develop a general theoretical framework for studying pat-
tern formation within a growing domain, where the domain represents a generic
tissue. (We note that this generality lies in allowing a large class of growth depen-
dencies to obtain the same amplitude equations for the mentioned pattern types.)
Cell birth and death within the tissue generate a velocity field that controls the rate
of domain growth. We assume that there are two interacting diffusible chemicals
within the domain and investigate the ability of the system to generate spatial pat-
terns for different choices of the net rate of cell proliferation (and hence domain
growth). We show that if the local growth rate is constant and, hence, indepen-
dent of the chemicals present, then domain growth is exponential and, in doing
so, recover the model developed by Crampin et al. (1999). They considered a RD
model on a slowly and isotropically growing domain and showed, via numerical
simulation and a self-similarity argument, that a frequency-doubling sequence of
patterns could be generated.

Most models of chemically controlled growth focus on a single, growth-rate lim-
iting diffusible species (Breward et al., 2002; Byrne and Chaplain, 1998; Ward and
King, 1997). As far as we are aware, Crampin et al. (2002) are unique in studying
domain growth that is influenced by two chemical species. First, they considered
nonuniform growth by splitting a one-dimensional domain into two sub-regions,
each undergoing slow, uniform growth, with a different strain rate (specifying the
local growth characteristics) and reactant concentrations and their fluxes being
continuous at the moving interface permitting communication between the two
regions. They then considered briefly a case for which domain growth was depen-
dent on the activating chemical in the domain. Although their model is similar to
the one that we develop, unlike us the authors did not perform a mathematical
analysis of their system, focussing instead on numerical solutions.

While numerical simulations of Turing systems are useful for correctly predict-
ing pattern formation, it is often difficult to explain the resulting patterns. In this
paper, we use weakly nonlinear analysis to construct approximate model solutions
and, in so doing, explain how interactions between the chemicals and the chang-
ing domain lead to the range of behaviour revealed by our numerical simulations.
Weakly nonlinear analysis has been used by other authors (Benson et al., 1998,
1993; Grindrod, 1996) to study Turing systems and has shown that RD mecha-
nisms have a greater potential for generating spatial patterns than linear analysis
of standard Turing systems might suggest.

The remainder of this paper is organised as follows. In Section 2 we formulate
our model for pattern formation in a RD system in which domain growth may be
influenced by the local concentration of the reacting chemicals. Numerical results
are given in Section 3 for the cases of exponential and chemically controlled do-
main growth. In Section 4 we use weakly nonlinear analysis to derive and analyse
nonlinear equations that describe the interactions between the amplitude of the
spatial patterns and the growth of the domain. The paper concludes in Section 5
with a summary and discussion of the key results.
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2. Model formulation

In this section, we develop our model of pattern formation within a growing tissue.
We assume that the domain represents a generic tissue which receives nutrients
and eliminates waste products via reaction and diffusion only. The tissue consists
of live cells and volume changes associated with cell birth and death generate a
velocity field that drives domain growth (Alison and Sarraf, 1997; Jackson, 2002).
We suppose further that the rates of cell birth and death (and, hence, domain
growth) are regulated by two diffusible chemical species (these may represent, for
example, naturally occurring and cell-derived growth factors, externally supplied
species such as oxygen or, perhaps, a cytotoxic drug). For simplicity we assume
that tissue growth is one-dimensional and restrict attention to one-dimensional
cartesian geometry.

We denote time by t and position in our one-dimensional growing domain
by x ∈ (−R(t), R(t)), R(t) representing the domain size at time t . We introduce
ω(x, t) and V(x, t) to represent the local cell density and velocity, respectively. We
also use u(x, t) and v(x, t) to represent the concentrations of the two chemicals of
interest.

When considering the evolution of the cells we assume that they move by a
combination of random motion and advection and we denote by F̃(u, v, ω) their
net rate of cell proliferation. Using the principle of mass balance, we combine these
mechanisms and, in this way, deduce that the evolution of the cell density satisfies

∂ω

∂t
+ ∂

∂x
(ωV) = µ

∂2ω

∂x2
+ F̃(u, v, ω). (1)

In Eq. (1) µ represents the cells’ random motility coefficient which we assume to
be constant and the net rate of cell proliferation F̃ is defined below.

As for the cell density, we suppose that the evolution of the chemical species is
governed by reaction-diffusion-advection so that

∂u
∂t

+ ∂

∂x
(uV) = Du

∂2u
∂x2

+ f̃ (u, v, ω), (2)

∂v

∂t
+ ∂

∂x
(vV) = Dv

∂2v

∂x2
+ g̃(u, v, ω). (3)

In Eqs. (2) and (3), the positive constants Du and Dv represent the chemicals’
diffusion coefficients while f̃ and g̃ represent their net reaction rates. In practice,
our choice of f̃ and g̃ should be motivated by particular cells or biological tissues
and specific chemicals. As a specific example, we suppose that u and v undergo
Schnakenberg kinetics (1979) so that, in terms of positive rate constants k1, k2, k3

and k4 we have

∂u
∂t

+ ∂

∂x
(uV) = Du

∂2u
∂x2

+ k1 − k2uv, (4)

∂v

∂t
+ ∂

∂x
(vV) = Dv

∂2v

∂x2
+ k3 − k4v + k2uv. (5)
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We note that other kinetic terms such as the well-studied Gierer and Meinhardt
(1972) or Gray and Scott (1983) kinetics could also be used: we choose Schnaken-
berg kinetics to facilitate comparison with related work by Crampin et al. (1999).

We account for domain growth by assuming that the tissue boundary x = R(t)
moves with the local cell velocity there. Referring to Eq. (1) we have that the
domain size changes in the following manner

dR
dt

= V − µ

ω

∂ω

∂x

∣
∣
∣
∣
x=R(t)

. (6)

In practice constitutive laws that depend on the mechanical properties of the
tissue in question (such as whether it is visco-elastic or elastic) should be used to
determine the velocity field V(x, t). Here we exploit the one-dimensional geom-
etry and, following Ward and King (1997) make the constitutive assumption that
the tissue maintains a constant cell density, ω = ω∗ say, as it develops. We note
that the cells which undergo cell death have been implicitly, and immediately, re-
moved in the model. This is for simplicity and to keep the link with the work of
Crampin et al. (1999) as clear as possible. In practice, it is straightforward to in-
troduce a population of dead cells (for example, see Ward and King, 1999). With
ω = ω∗, Eqs. (1) and (4)–(6) become

∂u
∂t

+ ∂

∂x
(uV) = Du

∂2u
∂x2

+ k1 − k2uv, (7)

∂v

∂t
+ ∂

∂x
(vV) = Dv

∂2v

∂x2
+ k3 − k4v + k2uv, (8)

∂V
∂x

= 1
ω∗ F̃(u, v, ω∗) ≡ F∗(u, v) (9)

with

dR
dt

= V(R, t). (10)

We note that for more general (e.g. two-dimensional) geometries specifying ω =
ω∗ would be insufficient to close the model and other, more complex constitutive
assumptions are needed. Details of possible closures are discussed in Franks and
King (2003).

We now consider the boundary and initial conditions. By assuming symmetry
about x = 0 we restrict attention to 0 ≤ x ≤ R(t) and impose

V = ∂u
∂x

= ∂v

∂x
= 0 at x = 0. (11)

We suppose further that the domain is isolated, with no flux of either chemical
across x = R(t), so that

∂u
∂x

= ∂v

∂x
= 0 at x = R(t). (12)
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Finally we prescribe initial profiles for u and v and the initial domain size:

u(x, 0) = uin(x), v(x, 0) = vin(x), R(0) = Rin. (13)

For completeness and to reduce the number of model parameters, we nondi-
mensionalise Eqs. (7)–(13), taking the half-life of v as a typical timescale and the
distance over which u diffuses during this period as a typical lengthscale. Accord-
ingly, we rescale the independent and dependent variables by setting

x = Lx̃, t = Tt̃, u =
√

k4

k2
ũ, v =

√

k4

k2
ṽ,

V = Du

L
Ṽ and R = LR̃. (14)

where

T = 1
k4

and L =
√

Du

k4

and tildes denote dimensionless variables. Using (14) to rewrite Eqs. (7)–(13) in
terms of the dimensionless variables gives (upon dropping the tildes)

∂u
∂t

+ ∂

∂x
(Vu) = ∂2u

∂x2
+ p − uv2, (15)

∂v

∂t
+ ∂

∂x
(Vv) = d

∂2v

∂x2
+ q − v + uv2, (16)

∂V
∂x

= F(u, v), (17)

dR
dt

= V(R, t), (18)

with

∂u
∂x

= 0 = ∂v

∂x
at x = 0, R(t) and V = 0 at x = 0, (19)

u = uin(x), v = vin(x), and R = Rin at t = 0, (20)

where

p = k1

k4

√

k2

k4
, q = k3

k4

√

k2

k4
, F(u, v) = 1

k4
F∗(u, v) and d = Dv

Du
.

Equations (15)–(20) constitute our one-dimensional model for tissue growth when
this growth is intimately related to the behaviour of chemicals that react and dif-
fuse within the domain.
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3. Numerical simulations

In this section we use numerical methods to investigate the impact that domain
growth has on the spatial patterns that emerge (and vice versa) for two simple
choices of the local cell proliferation rate, F(u, v). In Section 3.2 we prescribe
F(u, v) = ρ, constant and explain how this case corresponds to exponential do-
main growth as studied by Crampin et al. (1999). When F(u, v) = ρ, domain
growth is independent of the diffusible chemicals and we concentrate on show-
ing how domain growth influences the structure of the emerging patterns. In Sec-
tion 3.3 we fix F(u, v) = αu − βv for constants α and β so that the evolution of
the domain size is coupled to that of the chemicals. Before presenting our findings
for the two choices of F(u, v), we outline the numerical method used to solve the
model equations.

3.1. Numerical method

In order to construct numerical solutions to our model equations it is convenient
first to map the problem onto a fixed domain 0 ≤ ξ ≤ 1 (Crank, 1984) such that

(x, t) −→ (ξ, τ ) =
(

x
R(t)

, t
)

. (21)

Under this mapping Eqs. (15)–(20) transform to give (substituting t = τ )

∂u
∂t

+ 1
R

(

V − ξ
dR
dt

)
∂u
∂ξ

= 1
R2(t)

∂2u
∂ξ 2

+ p − uv2 − uF(u, v), (22)

∂v

∂t
+ 1

R

(

V − ξ
dR
dt

)
∂v

∂ξ
= d

R2(t)
∂2v

∂ξ 2
+ q − v + uv2 − vF(u, v), (23)

1
R

∂V
∂ξ

= F(u, v), (24)

dR
dt

= V(1, t), (25)

with

∂u
∂ξ

= 0 = ∂v

∂ξ
at ξ = 0, 1, (26)

V = 0 at ξ = 0, (27)

u = uin(ξ), v = vin(ξ) and R = Rin at t = 0. (28)

We use the NAG routine D03PCF to solve Eqs. (22)–(28) and we note that a uni-
form grid is used throughout (rather than adapting the grid to the increasing do-
main size). The trapezium rule is used to integrate (24) to solve for the velocity, V.
A second numerical code was developed to test the accuracy of the NAG routine
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method. The alternative approach involved assuming a Fourier decomposition for
u and v in terms of cosine series so that boundary conditions (26) and (27) were
automatically satisfied and Eq. (24) could be integrated analytically. The two nu-
merical methods agreed closely (results not shown); the results shown here were
obtained with the former method.

3.2. Exponential domain growth

Fixing F(u, v) = ρ = constant, we integrate Eq. (17) subject to (19) to find

V(x, t) = ρx (29)

so that the local cell velocity increases (decreases) linearly with position x if ρ > 0
(ρ < 0). Using (29) and assuming R(0) = 1 in (18) gives

R(t) = eρt . (30)

Hence when F(u, v) = ρ there is exponential domain growth and our model is
identical to that presented in Crampin et al. (1999), even though Crampin et al.
did not introduce cell velocity explicitly into their model. As a result of our more
detailed derivation we are able to predict the type of cellular behaviour that would
yield such exponential domain growth. In particular, if the net cell proliferation
rate is constant at all points within the domain and, hence, not affected by the local
concentration of u or v, then we predict that the tissue will grow exponentially.

We note further that with V(x, t) = ρx (or, equivalently, V(ξ, t) = ρR(t)ξ) and
R(t) = exp(ρt) Eqs. (22) and (23), the governing equations for u and v on the fixed
domain, simplify to give

∂u
∂t

= 1
R2(t)

∂2u
∂ξ 2

+ p − uv2 − ρu, (31)

∂v

∂t
= d

R2(t)
∂2v

∂ξ 2
+ q − v + uv2 − ρv. (32)

The sink terms −ρu and −ρv that appear in (31) and (32) represent chemical
dilution due to domain expansion (assuming ρ > 0). These terms were neglected
in Crampin et al. (1999) and, so, a main focus of the numerical results presented
below is to identify conditions under which this approximation is valid.

In order to facilitate comparison with Crampin et al. (1999) results, where pos-
sible we make the same choice of parameter values. Thus, unless otherwise stated,
in Eqs. (31) and (32) we fix

d = 0.01, p = 0.9, q = 0.1,

leaving the local cell proliferation rate, ρ, as a free parameter. In this case,
when ρ = 0, the spatially uniform, steady state solution of Eqs. (22) and (23) has
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coordinates (u, v) = (u0, v0) where

(u0, v0) =
(

p
(p + q)2

, p + q
)

≡ (0.9, 1.0)

and the initial conditions are periodic perturbations about this steady state of the
form

uin(ξ) = u0 + 0.01 cos (πξ) and vin(ξ) = v0.

We note that for ρ nonzero the uniform steady state and its stability may be
changed. Indeed, under certain conditions, the likelihood of spatial pattern is in-
creased when dilution effects are included (see Neville, 2003 for details).

In Fig. 1 we present results of the case of weak dilution or slow domain growth
(ρ = 0.01) that are in good agreement with the simulations presented in Crampin
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Fig. 1 Simulation results depicting evolution of u (upper panel) and v (lower panel) concentration
profiles for Schnakenberg kinetics on an exponentially growing domain when dilution effects are
retained. These profiles are indistinguishable from those without dilution (results not shown).
Parameter values: d = 0.01, p = 0.9, q = 0.1 and ρ = 0.01.
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et al. (1999). In both cases, the activator u and inhibitor v are in spatial antiphase,
as would be anticipated for a system such as Schnakenberg that exhibits cross
kinetics. Pattern transitions are by peak splitting (generated from initial data close
to a uniform steady state) and the spatial frequency of the system regularly dou-
bles. No other pattern modes enter the sequence.

Our simulations show that for ρ � 1 inclusion of the dilution terms −uρ and
−vρ in (31) and (32) does not noticeably affect the pattern solutions (see Fig. 1).
However, we will now see that for larger values of ρ these terms must be retained
if accurate predictions regarding pattern selection are to be made.

Comparing Figs. 2 and 3, we see that when ρ is increased from ρ = 0.01 to
ρ = 0.1 dilution greatly influences the generated pattern. While in both cases
frequency-doubling is absent, the distribution of u and v throughout the domain
varies greatly according to whether or not dilution is included. When it is included
(Fig. 2) peak-splitting arises for certain modes but is absent for others. There seems
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Fig. 2 Simulation results depicting profiles of u (upper panel) and v (lower panel), when the
domain grows exponentially, the chemicals interact via Schnackenberg kinetics and dilution terms
are retained. Comparison with Fig. 3 shows that, in this case, retention of dilution effects leads
to more marked spatial variation in u and v. Parameter values: d = 0.01, p = 0.9, q = 0.1 and
ρ = 0.1.
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Fig. 3 Simulation results depicting profiles of u (upper panel) and v (lower panel) when the do-
main grows exponentially, the chemicals interact via Schnackenberg kinetics and dilution terms
are neglected. Parameter values: as per Fig. 2.

to be no regular splitting and the system is spatially and temporally unstable. In
Fig. 3 dilution effects are neglected and patterning is suppressed: u and v remain
near u0 and v0 for all x and t .

Figure 4 shows that the total amount of u present is much higher when dilution is
included than when it is neglected. The converse is true for v (results not included).
This situation is a direct consequence of the cross kinetics of the Schnakenberg
system: u activates the production of v while v inhibits the production of u. When
dilution is included the rate at which v stimulates its own production is reduced,
so it is less effective at inhibiting the production of u. Also, although u becomes
slightly better at self-inhibition its activation of v is lowered. As a result, when
dilution is included the total concentration of v within the domain is lowered and
the total concentration of u is raised.

We remark that the above results are not peculiar to the Schnakenberg kinet-
ics: similar results were obtained for other choices of the kinetic terms, including
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Fig. 4 Diagram showing how utotal(t) = ∫ R(t)
0 u(x, t) dx evolves over time. Key: solid (dashed)

lines represent model solutions with (without) dilution effects included. Parameter values: as per
Fig. 2.

Gierer-Meinhardt kinetics (Gierer and Meinhardt, 1972) (for details see Neville,
2003).

3.3. Non-uniform domain growth

In the previous section, we focused on exponential domain growth, a situation that
arises when the net cell proliferation rate is independent of u and v. In practice cell
division and death may be strongly influenced by chemicals present within their
environment (Jones et al., 2000; Murray and Hunt, 1993; Santini et al., 2000). For
these reasons it may be more appropriate to suppose that the net cell birth rate
(and hence the net rate of domain growth) depends on the chemicals u and v.
While in general, the proliferation rate F(u, v) may be a nonlinear function, for
simplicity we choose a simple linear form. Accordingly we introduce non-negative
constants α and β such that in Eq. (17)

F(u, v) = αu − βv. (33)

In using (33), we are assuming that u promotes cell growth (like oxygen or glucose)
and that v inhibits growth (like a cytotoxic drug). Provided that u and v are not
spatially uniform, this will give rise to nonuniform cell growth. We present below
numerical solutions of Eqs. (15)–(20) with F(u, v) specified by Eq. (33).

Repeated simulations indicate that the behaviour of the system is strongly influ-
enced by the choice of parameter values. In particular the domain does not always
grow: its size may remain unchanged or shrink (see Figs. 5 and 6). Figure 5 shows
spatially uniform chemical distributions which increase in magnitude over time,
whereas in Fig. 6 the spatial perturbations decay rapidly, leaving profiles that are
spatially uniform steady states. This occurs because, for the parameter values used
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Fig. 5 Simulation results depicting u (upper panel) and v (lower panel) when F(u, v) = αu − βv

and the chemicals interact via Schnakenberg kinetics. Domain growth is approximately exponen-
tial and, although there is no spatial patterning, the levels of u (and v) increase (and decrease)
over time. Parameter values: d = 0.01, p = 0.9, q = 0.1, α = 0.25 and β = 0.20. Initial conditions:
u = u0 + 0.01 cos (πx), v = v0 and R = 1 at t = 0.

to construct Fig. 6, the uniform steady state of Eqs. (15)–(18) is stable (the analysis
presented in Section 4.1 can be used to confirm this).

If the system is initially perturbed from a stable steady state we might expect
the sign of αu0 − βv0 to influence the domain growth rate, with expansion occur-
ring if αu0 − βv0 > 0 and regression if αu0 − βv0 < 0. While the simulations are
consistent with this claim, when α0u0 = βv0 the domain size does not necessarily
remain fixed, due to the perturbations in u and v which force αu − βv �= 0. This
may lead to expansion or shrinkage of the domain (see Fig. 7). We note also that
if the domain size is too small then no patterns are discernible (see Fig. 8).

In general, the numerical results show a complicated interaction between the
chemical patterns and the domain size. As the patterns grow, αu − βv changes
so the rate of domain growth changes. Conversely, as the domain size changes, the
growth rate of the spatial patterns is altered, partly by the dilution terms and partly
because the allowable wavenumbers of patterns are changing. It is not clear from
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Fig. 6 Simulation results (as filled contour plots) depicting u (upper panel) and v (lower panel)
when F(u, v) = αu − βv and the chemicals interact via Schnakenberg kinetics. In this case αu0 =
βv0 and the system settles rapidly to an equilibrium with no domain growth and minimal spatial
variation in u and v. Parameter values: d = 0.01, p = 0.2, q = 0.1, α = 0.30 and β = 2.2. Initial
conditions: u = u0 + 0.1 cos (5πx), v = v0 and R = 1 at t = 0.

the simulations whether the predominant effect is the domain size regulating the
chemical patterns or vice versa. As the analysis of Section 4 demonstrates, the two
effects are linked in a complex nonlinear manner.

4. Weakly nonlinear analysis

In this section, we construct approximate solutions for a generalised version of
our model of pattern formation on a growing domain, assuming that the patterns
are small perturbations from the spatially uniform state. This analysis provides
insight into some aspects of the interactions between the diffusible chemicals and
the evolving domain reported in Section 3. We note that the timescale of interest
here is distinct from other weakly nonlinear analyses such as Benson et al. (1998),
Byrne and Matthews (2002) and Matthews (1998).
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Fig. 7 Simulation results depicting u (upper panel) and v (lower panel) when F(u, v) = αu − βv

and the chemicals interact via Schnakenberg kinetics. As in Fig. 6, αu0 = βv0. However, in
this case, following a long period (0 < t < 2.5) during which the spatial pattern remains sta-
ble and the domain boundary remains constant (R ≡ 1), the domain starts to decrease in size.
This behaviour persists until the domain size falls below a threshold size at which time (t ∼ 3)
the u component ceases to vary and the v component has only small spatial variations. There-
after the domain rapidly shrinks and spatial patterns in both u and v emerge. Parameter val-
ues: d = 0.01, p = 0.9, q = 0.1, α = 1.00 and β = 0.90. Initial conditions: u = u0 + 0.01 cos (2πx),
v = v0 and R = 1 at t = 0.

Replacing the Schnakenberg kinetics of Sections 2 and 3 by general kinetic terms
f (u, v) and g(u, v) and denoting by F(u, v) the local cell proliferation rate, we now
study the following, generalised version of Eqs. (15)–(20):

ε
∂u
∂τ

+ ∂

∂x
(Vu) = ∂2u

∂x2
+ f (u, v), (34)

ε
∂v

∂τ
+ ∂

∂x
(Vv) = d

∂2v

∂x2
+ g(u, v), (35)

∂V
∂x

= F(u, v), (36)

ε
dR
dτ

= V(R, τ ), (37)
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Fig. 8 Simulation results depicting u (upper panel) and v (lower panel) when F(u, v) = αu − βv

and the chemicals interact via Schnakenberg kinetics. In this case the equilibrium values are
(u0, v0) = (0.3122, 3.1) so that αu0 − βv0 = 0.0022. Following a long period (0 < t < 9) of slow
domain growth during which the concentrations of u and v remain approximately constant the
domain size increases through the threshold value for which spatial patterning may occur. There-
after (for t ≥ 12) domain growth increases rapidly and the chemicals develop spatial patterns.
Parameter values: d = 0.01, p = 3.0, q = 0.1, α = 1.00 and β = 0.10. Initial conditions: u = 0.73,
v = 2.83 and R(t) = 1 at t = 0.

with

∂u
∂x

= 0 = ∂v

∂x
at x = 0, R(τ ) and V = 0 at x = 0, (38)

u = uin(x), v = vin(x), R = Rin at τ = 0. (39)

In (39) the functions uin(x), vin(x) and the initial tumour radius Rin are assumed to
be compatible with the trial solutions sought below.

In Eqs. (34)–(39), we have introduced a small parameter 0 < ε � 1 to charac-
terise the amplitude of the pattern forming perturbations in u and v and assumed
that the timescale of interest is long so that τ = εt . We remark that this renders
our analysis distinct from similar weakly nonlinear analyses of pattern formation
on fixed domains where the relevant timescale ε2t is longer (see, for example,
Grindrod, 1996 page 82).
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We construct trial solutions, which are perturbations about the spatially uniform
steady state so that

u(x, τ ) = u0 + εu1(x, τ ) + ε2u2(x, τ ) + O(ε3), (40)

v(x, τ ) = v0 + εv1(x, τ ) + ε2v2(x, τ ) + O(ε3), (41)

V(x, τ ) = εV1(x, τ ) + ε2V2(x, τ ) + O(ε3), (42)

R(τ ) = R0 + εR1(τ ) + ε2 R2(τ ) + O(ε3), (43)

where the constants u0 and v0 satisfy

0 = f (u0, v0) = g(u0, v0) = F(u0, v0) (44)

in order that the governing equations hold at leading order. Thus in the spatially
uniform state there is no domain growth. In general, Eq. (44) overspecifies u0 and
v0: for given choices of f, g and F , the third equation yields a relationship between
the system parameters that must be satisfied to realise solutions of this type. For
example, with Schnakenberg kinetics and F(u, v) = αu − βv, we have

u0 = p
(p + q)2

and v0 = p + q

and we require

α

β
= v0

u0
≡ (p + q)3

p
.

In the case of α or β equal to zero, our analysis breaks down and so (33) would
need modifying. We note also that the leading order tumour radius R0 remains
unspecified: we show below how it is determined at O(ε).

4.1. O(ε) analysis

Continuing to O(ε), we deduce that u1 and v1 solve

0 = ∂2u1

∂x2
+ ( fu − u0 Fu)u1 + ( fv − u0 Fv)v1, (45)

0 = d
∂2v1

∂x2
+ (gu − v0 Fu)u1 + (gv − v0 Fv)v1, (46)

where subscripts u and v denote partial derivatives with respect to u and v evalu-
ated at (u, v) = (u0, v0). We may write (45) and (46) more succinctly as

Lu1 = 0 (47)
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where u1 = (u1, v1) and L is a second order differential operator. When deriving
Eqs. (45) and (46) we have eliminated V1 which satisfies

∂V1

∂x
= Fuu1 + Fvv1, with V1 = 0 at x = 0. (48)

Equations (45) and (46) are closed by applying the following boundary conditions:

0 = ∂u1

∂x
= ∂v1

∂x
at x = 0, R0. (49)

We assume that separable solutions exist in the form

(u1, v1) = A(τ )(µ1, ν1) cos kx (50)

where the amplitude A(τ ) is determined at higher order and the constants µ1, ν1

and the spatial wavenumber k are determined at O(ε). For example, Eqs. (45) and
(46) yield

ν1 = − (−k2 + fu − Fuu0)
fv − Fvu0

µ1,

together with the following condition for k:

0 = dk4 − {

(gv − Fvv0) + d( fu − Fuu0)
}

k2 + �, (51)

where

� = ( fu − u0 Fu)(gv − v0 Fv) − ( fv − u0 Fv)(gu − v0 Fu).

Additionally, imposing the no-flux boundary conditions at x = R0 we deduce that
R0 satisfies

R0 = nπ

k
, n = 0, 1, 2, 3, . . . . (52)

We note also that, with u1 specified by (50), the velocity profile is given by

V1 = A(τ )
k

(Fuµ1 + Fvν1) sin kx. (53)

The above expressions indicate how the coupling between the domain growth rate
and the kinetics of the chemicals becomes manifest. For example, the appearance
of terms of the form Fu and Fv in Eq. (51) shows clearly how domain growth affects
the critical value of d as a function of wavenumber k at which spatial patterns may
emerge. Equally, with k defined in terms of model parameters by (51), Eq. (52)
shows how the domain size at which patterns emerge depends on the chemical
kinetics and the domain growth rate itself. At this order, (53) shows that there is
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local expansion and contraction, but the net effect of this cancels out, leading to
zero velocity on the boundary and so no net growth of the domain.

In the case F(u, v) = αu − βv, with β = αu0/v0 to satisfy (44), the dispersion
relation (51) for the Schnakenberg system becomes

dk4 + (αu0(d − 1) + dv2
0 + 1 − 2u0v0)k2

+ v2
0 − 3u0v0α(u0 + v0) + αu0 = 0. (54)

This can be solved to give the critical value for d at the onset of pattern formation,
as a function of wavenumber k.

d(k) = k2(αu0 − 1 + 2u0v0) − v2
0 + 3u0v0α(u0 + v0) − αu0

k4 + k2(αu0 + v2
0)

. (55)

Thus, although there is no net growth at this order, the linear stability condition for
the onset of pattern formation is modified by the inclusion of chemical-dependent
growth. It can be shown by differentiating d(k) with respect to α that d(k) increases
with α. This means that the inclusion of the chemical-dependent growth makes the
system more unstable to pattern formation (recall that we are assuming α > 0).
Figure 9 shows a plot of d(k) for three values of α.
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Fig. 9 Series of linear stability curves for the Schnakenberg model for three choices of α. The
curves show how the critical value of d at the onset of pattern formation varies with the spatial
wavenumber k (see Eq. (55)). As α increases the size of the region below the critical curve in (d, k)
parameter space in which the uniform steady state is linearly unstable also increases. Parameter
values: p = 0.9, q = 0.1 and α = 0 (solid line), α = 0.1 (dashed line), α = 0.2 (dash-dot line).
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4.2. O(ε2) analysis—O(ε) amplitude variation

We now extend our analysis to O(ε2) in order to determine how the amplitude
A(τ ) and the domain size evolve over time. Equating to zero coefficients of O(ε2)
it is straightforward to show that u2 = (u2, v2) and R1 solve

Lu2 = F(u1), (56)

dR1

dτ
= V2(R0, τ ) + R1

∂V1

∂x
(R0, τ ), (57)

where L was defined at O(ε) (see Eqs. (45)–(47)),

F(u1) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u1

∂τ
+ ∂

∂x
(u1V1) − 1

2
( fuuu2

1 + 2 fuvu1v1 + fvvv
2
1)

+u0

2
(Fuuu2

1 + 2Fuvu1v1 + Fvvv
2
1)

∂v1

∂τ
+ ∂

∂x
(v1V1) − 1

2
(guuu2

1 + 2guvu1v1 + gvvv
2
1)

+v0

2
(Fuuu2

1 + 2Fuvu1v1 + Fvvv
2
1)

and

∂V2

∂x
= Fuu2 + Fvv2 + 1

2
(Fuuu2

1 + 2Fuvu1v1 + Fvvv
2
1). (58)

Equations (56) and (57) are closed by imposing the following boundary and initial
conditions

0 = ∂u2

∂x
= ∂v2

∂x
= V2 at x = 0, (59)

∂u2

∂x
+ R1

∂2u1

∂x2
= 0 = ∂v2

∂x
+ R1

∂2v1

∂x2
at x = R0, (60)

R1(0) = 0. (61)

We do not need to solve the second order problem in order to find the evolution
equations for A(τ ) and R1(τ ). Only certain integrals of the second order variables
are required, so we define

M20 =
∫ R0

0
u2dx and N20 =

∫ R0

0
v2dx,

M21 =
∫ R0

0
u2 cos kxdx and N21 =

∫ R0

0
v2 cos kxdx.

The following pairs of equations for (M20,N20) and (M21,N21) may be ob-
tained by premultiplying Eq. (56) by the relevant factors and integrating with



Bulletin of Mathematical Biology (2006) 68: 1975–2003 1995

respect to x:

( fu − u0 Fu)M20 + ( fv − u0 Fv)N20 = θ2 R0 A2 − µ1k2 AR1 cos(kR0) (62)

(gu − v0 Fu)M20 + (gv − v0 Fv)N20 = γ2 R0 A2 − dν1k2 AR1 cos(kR0) (63)

and

(−k2 + fu − u0 Fu)M21 + ( fv − u0 Fv)N21 = µ1

(
R0

2
dA
dτ

− k2 R1 A
)

(64)

(gu − v0 Fu)M21 + (−dk2 + gv − v0 Fv)N21 = ν1

(
R0

2
dA
dτ

− dk2 R1 A
)

(65)

where

θ2 = u0

4
(Fuuµ

2
1 + 2Fuvµ1ν1 + Fvvν

2
1 ) − 1

4
( fuuµ

2
1 + 2 fuvµ1ν1 + fvvν

2
1 ),

γ2 = v0

4
(Fuuµ

2
1 + 2Fuvµ1ν1 + Fvvν

2
1 ) − 1

4
(guuµ

2
1 + 2guvµ1ν1 + gvvν

2
1 ).

Using the O(ε) condition (51) in Eqs. (64) and (65) we deduce that, for a nontrivial
solution, the amplitude A(τ ) must satisfy

dA
dτ

= 2k2 AR1

R0

(
1 + d�

1 + �

)

where � = (−k2 + fu − u0 Fu)
(−dk2 + gv − v0 Fv)

. (66)

It remains to determine how R1 evolves over time. We note from Eqs. (57) and
(58) that

dR1

dτ
= (FuM20 + FvN20) + R0

4
(Fuuµ

2
1 + 2Fuvµ1ν1 + Fvvν

2
1 )A2 (67)

+(Fuµ1 + Fvν1)AR1 cos kR0.

In Eq. (67), (M20,N20) satisfy (62) and (63), with solution

(

M20

N20

)

=
(

am

an

)

R0 A2 +
(

bm

bn

)

k2 AR1 cos kR0

where
(

am

an

)

= 1
�

(

(gv − v0 Fv) −( fv − u0 Fv)
−(gu − v0 Fu) ( fu − u0 Fu)

) (

θ2

γ2

)
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and

(

bm

bn

)

= − 1
�

(

(gv − v0 Fv) −( fv − u0 Fv)
−(gu − v0 Fu) ( fu − u0 Fu)

) (

µ1

dν1

)

.

After some algebra, it is possible to show that the coefficient of AR1 in (67) van-
ishes and, hence, that the evolution of R1 is given by

dR1

dτ
= R0 A2

(
1
4

[Fuuµ
2
1 + 2Fuvµ1ν1 + Fvvν

2
1 ] + [Fuam + Fvan]

)

. (68)

Equations (66) and (68) show how the slow O(ε) amplitude variation (A) of the
spatial patterns (see Eq. (50)) and the O(ε) correction to the domain size R1 evolve
over time. The properties of these equations are investigated in the following sec-
tion.

4.3. Behaviour of the amplitude equations

Equations (66) and (68) can be written in the following form:

dA
dτ

= QAR1, (69)

dR1

dτ
= P A2, (70)

where P and Q are constants that in general may be positive or negative. It is clear
from (66) and (68) that in general, P and Q are finite and non-zero.

Equation (69) states that the growth rate of the pattern is proportional to the
perturbation R1 of the domain size from R0. Recall that R0 is defined by the condi-
tion (52) which arises from specifying that the linear growth rate is zero at leading
order. In general, it is to be expected that the pattern growth rate will be linear
in R1, since as R varies, so does k and the growth rate. (Exceptionally, if d corre-
sponds to a maximum in Fig. 9, then Q = 0 and the first nonzero term in (69) would
be of order ε3 and proportional to AR2

1). This interpretation suggests another way
to find the coefficient Q: find the derivative of the linear growth rate with respect
to R0, when the growth rate is zero. We have verified that this gives the same value
of Q as given in (66).

In Eq. (70) there is no domain growth at linear order, as already discussed, but
the domain grows quadratically with the pattern amplitude A. This is because the
linear solutions are proportional to cos kx, with zero mean, but their square has a
non-zero mean.

The system (69) and (70) has a symmetry A↔ −A. Also, there is a line of fixed
points along A= 0, corresponding to the fact that the uniform basic state exists for
all values of R. The Eqs. (69) and (70) can in fact be regarded as a normal form for
systems with a line of fixed points and a reflection symmetry (Fiedler et al., 2000).
Their behaviour depends on the sign of PQ. If PQ > 0 then some solutions grow
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Fig. 10 Phase portrait of (69) and (70) in the case Q < 0, P > 0. All points on the R1 axis are
fixed points. The case Q > 0, P < 0 is the same but with the arrows reversed.

and become unbounded, indicating that terms of higher order need to be included.
By contrast for PQ < 0, solutions are bounded, and since

d
dτ

(P A2 − QR2
1) = 0, (71)

the trajectories are curves P A2 − QR2
1 = constant, which are ellipses, if PQ < 0.

In the case Q < 0 < P, the fixed points A= 0 with R1 < 0 are unstable, and those
with R1 > 0 are stable, and the elliptical trajectories form heteroclinic orbits that
link the unstable and stable fixed points, as shown in Fig. 10.

It is of interest to compute the sign of P from the formula (68), to determine
whether the domain size increases or decreases as the pattern forms. For the
Schnakenberg model with the growth law F(u, v) = αu − βv, this calculation re-
veals that P is proportional to 3v2

0 − 3αu0 − k2, so in general, the domain may grow
or shrink. For the parameter values p = 0.9 and q = 0.1, as used in most of our
simulations, u0 = 0.9 and v0 = 1, so P ∝ 3 − 2.7α − k2. For the simulation shown
in Fig. 7, the domain size is 1, so k is a multiple of π and P < 0. Hence the weakly
nonlinear analysis is consistent with the numerical simulation showing decreasing
domain size.

To compare the numerical simulations with the weakly nonlinear analysis and
the phase portrait shown in Fig. 10, some further simulations of (22)–(25) were
carried out closer to onset than those in Section 3.3. Fixing α = 0.1 (and hence
β = 0.09 to satisfy αu0 = βv0) we see from Fig. 9 that the maximum value of d for
which patterns can occur is near to 0.2 (in fact this value is 0.1973). Choosing to
fix d = 0.19 and solving (54) for k, we find that the critical wavenumbers are 1.165
and 1.495 (so that the uniform state is unstable to patterns with wavenumbers be-
tween these values). Choosing n = 2 in (52), this gives critical values of R0 as either
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Fig. 11 Phase portrait obtained from seven numerical simulations of (22)–(25), plotting ampli-
tude of the cos(2πξ) mode against R, with trajectories running in the direction of increasing R.
Parameter values: p = 0.9, q = 0.1, d = 0.19, α = 0.1, β = 0.09, with R(t = 0) = 4.7, 4.8, . . . , 5.3.

5.392 or 4.202. For these values of k, the above argument shows that P > 0, so the
domain size increases as the pattern forms. For bounded solutions we therefore
require Q < 0; this means that the growth rate must decrease as R increases, so we
must choose the larger value for R0, R0 = 5.392.

A sequence of numerical simulations with initial values of R slightly below this
value of R0 is shown in Fig. 11. In each case the initial condition is a small random
perturbation from u0 and v0, and the amplitude of u is plotted against R. In the
vicinity of R0, where the amplitude is small, the trajectories form nested ellipses,
in agreement with the phase portrait in Fig. 10 predicted by the weakly nonlinear
amplitude Eqs. (69) and (70). At larger amplitude, beyond the range of validity
of the weakly nonlinear theory, the trajectories are no longer elliptical, but the
picture remains qualitatively the same. This is to be expected since for αu0 = βv0

the spatially uniform state is an equilibrium for any value of the domain size R.
Further simulations confirmed that the full nonlinear system has the same A↔ −A
symmetry as the amplitude equations.

The behaviour of the chemicals u and v is shown in Fig. 12 for the simulation
with initial R = 4.7. In the initial phases, the amplitude A(t) grows exponentially
because R lies in the unstable band 4.202 < R < 5.392, but there is no discernible
change in R because R only increases quadratically with A. As A becomes larger,
R starts to increase, because P > 0, until the growth rate of A becomes negative.
A then decreases and the system ends up at the uniform state A= 0 with R =
constant. These simulations show that the amplitude Eqs. (69) and (70) provide a
good description of the behaviour of the full PDEs for small-amplitude patterns
when αu0 = βv0 provided that PQ < 0.

We can generalise the amplitude Eqs. (69) and (70) in several ways. If d differs
from the critical value given by (55) by an amount εd1, then there is an order ε
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Fig. 12 Simulation results for u (upper panel) and v (lower panel) when F(u, v) = αu − βv and
the chemicals interact via Schnakenberg kinetics. Parameter values: as per figure 11, with u(x, t) =
u0 + 0.5 cos(πξ), v(x, t) = v0 and R(t) = 4.7 at t = 0. We note that for small time the kinetics are
fast.

growth rate of Awhen R1 = 0, so (69) will become

dA
dτ

= r A+ QAR1, (72)

where r is proportional to d1. This additional term has no effect on the dynam-
ics other than to shift the origin of R1, since we can define R ′

1 = R1 + r/Q and
recover the original form (69), so the behaviour will be the same as shown in
Fig. 10.

Similarly, we might allow αu0 − βv0 to be nonzero, so that the domain grows
even when there is no pattern. In this case (70) becomes

dR1

dτ
= µ + P A2, (73)

where the constant µ is proportional to αu0 − βv0. This generalisation does lead
to different dynamics, since there is no longer a line of fixed points along A= 0. If
µ

P < 0 there are just two fixed points at A2 = − µ

P , and if PQ < 0 these fixed points
are centres. In this case the heteroclinic orbits in Fig. 10 are replaced by nested
periodic orbits.
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5. Conclusions

In this paper we have developed and analysed a theoretical model of pattern
formation on a growing domain that places previous work (Crampin et al.,
1999) in a more general context. The domain of interest represents a generic,
one-dimensional tissue that consists of live cells whose rates of proliferation and
death are regulated by local levels of two interacting, diffusible chemicals. The
volume changes associated with the net rate of cell growth generate a local cell
velocity and drive domain growth. As such our model combines previous moving
boundary problems developed to describe the development of multicellular tu-
mour spheroids in vitro (Byrne and Chaplain, 1997; Greenspan, 1976) with models
of Turing systems (Gierer and Meinhardt, 1972; Murray, 1981; Turing, 1952). To
illustrate how coupling domain growth to the chemical species affects the system
we investigated the cases of exponential and chemically-controlled domain growth.

Our analysis of exponential domain growth extended previous work by Crampin
et al. (1999) by investigating more thoroughly the impact on pattern formation of
dilution effects due to domain growth. We showed that for large domain growth
rates inclusion of the dilution terms is essential not only for correct pattern gener-
ation but also for ensuring that the amount of chemical in the domain is computed
correctly (compare Figs. 2 and 3). We note also that the frequency-doubling phe-
nomenon observed at slow growth rates is lost at high growth rates, regardless of
whether dilution is included or not. As we have mentioned, it is well known that
a uniform steady state which is linearly stable in the absence of diffusion, may
be driven unstable by the inclusion of diffusion (Turing, 1952). We have shown
that chemical dilution, caused by domain expansion, may further destabilize it.
Hence we reiterate that retention of dilution effects is essential for correct pattern
generation.

As mentioned above, real biological tissues consist of live cells and volume
changes associated with cell birth and death generate velocity fields that drives
domain growth (Alison and Sarraf, 1997; Jackson, 2002). Hence, our second case
study involved coupling the evolution of the domain size to that of the chemicals.
Numerical simulations of this nonuniform growth model reveal that the observed
behaviour is strongly influenced by the system parameters and that there is a com-
plex interaction between the chemical patterns and the evolving domain (compare
Figs. 5–8). In order to gain insight into the way in which interactions between the
diffusible chemicals and the evolving domain give rise to the range of behaviour
reported by our numerics we performed a weakly nonlinear analysis on a gener-
alised version of our model. This clearly demonstrates how the domain growth
influences the critical diffusion coefficient (as a function of the wavenumber) at
which spatial patterns may emerge. Also, with the wavenumber defined in terms
of model parameters, the domain size at which spatial patterns appear depends
on the chemical kinetics and the domain growth rate itself. We showed that the
inclusion of chemical-dependent growth makes the uniform state more unstable
to pattern formation, i.e. the region of (d, k) parameter space in which patterning
is predicted increases (see Fig. 9). Analysis at higher order revealed how the pat-
tern amplitude and domain size evolve over time. Indeed, the domain grows (or
shrinks) as a quadratic function of the pattern amplitude.
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The results presented in the paper are largely theoretical, our main aim being to
present a mathematical framework for studying pattern formation on growing do-
mains and to illustrate how domain growth may be influenced by (and influence)
diffusible species present within the domain. In order to make the model more bi-
ologically meaningful it must be specialised to a particular tissue (and cell popula-
tion) and candidate diffusible species known to influence tissue growth identified.
The diffusible species of interest may be externally supplied nutrients or drugs,
or cell-derived growth factors and proteins. For example, the cells and chemicals
of interest could be epithelial cells, oxygen and the protein Wnt (Kuhnert et al.,
2004; Pinto et al., 2003). Further analysis of such a specialised model may explain
how mutations in other proteins such as APC that are known to interact with the
Wnt signalling pathway may give rise to unwarranted (cancerous) expansion of the
epithelial tissue (Fodde, 2001).

Other model modifications that are of interest include relaxing the no-flux
boundary conditions to allow chemical transport across the domain boundary and
allowing for multiple cell types (Pettet et al., 2001; Ward and King, 1997; Wein
et al., 2003). We could also consider other spatial geometries, being mindful that
extension to two or more spatial dimensions requires the introduction of a consti-
tutive law to specify fully the velocity field (see Greenspan, 1976; Franks and King,
2003 for details).

In conclusion, the model presented in this paper provides a framework for study-
ing pattern formation in growing tissues. Our analysis demonstrates that interac-
tions between domain growth and the levels of diffusible species present in the
tissue, as embodied in the local cell proliferation rate, can have a significant im-
pact on both its size and chemical composition.
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