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Abstract The multistage carcinogenesis hypothesis has been formulated by a num-
ber of authors as a stochastic process. However, most previous models assumed
“perfect mixing” in the population of cells, and included no information about spa-
tial locations. In this work, we studied the role of spatial dynamics in carcinogen-
esis. We formulated a 1D spatial generalization of a constant population (Moran)
birth–death process, and described the dynamics analytically. We found that in
the spatial model, the probability of fixation of advantageous and disadvantageous
mutants is lower, and the rate of generation of double-hit mutants (the so-called
tunneling rate) is higher, compared to those for the space-free model. This means
that the results previously obtained for space-free models give an underestimation
for rates of cancer initiation in the case where the first event is the generation of a
double-hit mutant, e.g. the inactivation of a tumor-suppressor gene.

Keywords Moran process · Mathematical model · Tumor suppressor gene ·
Multistage carcinogenesis

Abbreviations TSG: Tumor suppressor gene · APC: Adenomatous polyposis
coli · ODE: Ordinary differential equation

1. Introduction

The multistage carcinogenesis hypothesis states that cancer proceeds as a sequence
of mutations and waves of clonal expansion. This theory was first proposed by
Nordling (1983) and by Armitage and Doll (1954), and further developed and
refined by Day and Brown (1980), Brown and Chu (1983) and by Moolgavkar
(1978). Further mathematical treatments of somatic mutation in multistage car-
cinogenesis have emphasized a Darwinian evolutionary perspective to the process
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(Greaves, 2002; Nowak et al. , 2002; Gatenby and Vincent, 2003; Michor et al.,
2004a; Komarova and Wodarz, 2004; Frank, 2005). From the evolutionary point
of view, there are different types of mutational events that have been described
as milestones on the pathway to cancer (Vogelstein and Kinzler, 2004, 1997).
Some mutations directly lead to the generation of advantageous mutants. This is
characteristic of the “gain-of-function” mutations (see e.g. Strachan and Read,
1999) which activate oncogenes. The corresponding cells have an advantageous
phenotype and have a tendency to expand. This scenario can be described by the
following simple diagram:

A(1)
u→ B(r). (1)

Here, type “A” is the wild type, “B” is the one-hit mutant, and u is the rate of
mutation. The fitness of type “B” is denoted by r and, in the case of oncogenes,
it is larger than the fitness of the wild type (which is normalized to 1). Other types
of mutations may not lead to a direct selection advantage but are nonetheless
necessary milestones on the way to the next clonal expansion. An example of such
a mutation can be an inactivating (“loss-of-function,” Strachan and Read, 1999)
mutation in a tumor suppressor gene (TSG) (Vogelstein and Kinzler, 2004). Upon
the first hit, when one of the copies of the TSG is inactivated, the fitness of the
cell is similar to that of wild-type cells, because there is still one functional copy
of the TSG remaining. However, a second inactivating hit in such a cell will lead
to a drastic increase in the fitness as the TSG is now completely turned off. The
mutation diagram describing these molecular events is the following:

A(1)
u→ B(r)

u1→ C(R). (2)

Here, type “B” represents the phenotype with one copy of the TSG inactivated
(and the fitness r equal to that of type “A”), and type “C” has no functioning
copies of the TSG, and an increased fitness, R > 1. Processes described by diagram
(2) can also be discussed in the context of the phenomenon of genetic instability
(Lengauer et al., 1998). If the first mutation, “A”→”B,” is an event by which a cell
acquires an unstable, mutator phenotype (Loeb, 1991, 2001), then the fitness of
type “B” (the unstable cells) could be equal to that of the wild type. Alternatively,
it could be lower (Komarova et al., 2003; Komarova and Wodarz, 2004), because
instability results in a higher chance to create non-viable offspring, and thus
confers a disadvantage to the cell. However, the next event could happen at an
accelerated rate, u1, and leads to a fast generation of type “C” cells, which may
have a selective advantage.

Inspired by Knudson’s two-hit hypothesis (Knudson, 1971), Moolgavkar (1978)
has created a mathematical two-hit model which describes the probability of accu-
mulation of two mutations in a population of cells. Initially the theory was limited
to an exponentially growing (on average) population, and later it was modified to
include other laws of overall population growth (Heidenreich et al., 1997), and ex-
tended to multi-hit scenarios (Luebeck and Moolgavkar, 2002). For two hits (of
which the second one is highly advantageous) some interesting analytical results
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on the hazard function have been obtained (Dewanji et al., 1991). In application to
colon cancer, the following question has been asked: what is the rate of inactiva-
tion of the tumor suppressor gene, APC (Komarova et al., 2003)? It was found
that if the mutation rate is small compared with the inverse of the population
size, the description of a two-hit model can be simplified significantly by looking
only at “long-lived,” homogeneous states. Other stochastic models have been pro-
posed, including Little and Wright (2003), Nowak et al. (2004), Tan (1991), and
Tan and Chen (1998). Models which distinguish between stem cells and differen-
tiated daughter cells have also been analyzed (Yatabe et al., 2001; Michor et al.,
2004b; Komarova and Wang, 2004).

All the models described above assume “perfect mixing” in the population of
cells. There is no information about spatial locations, and no spatial dynamics. This
may not be a shortcoming if we talk about liquid tumors (like leukemia). However
in a discussion of solid tumors spatial considerations must play a role. On the other
hand, many spatial mechanistic models of cancer spread have been proposed (e.g.
see the reviews Araujo and McElwain, 2004; Bellomo and Preziosi, 2000; Chaplain,
1996), but typically these models do not take account of the evolutionary nature of
cancer growth. Evolutionary dynamics of a spatial tumor is what we study in this
paper.

As an attempt to include spatial considerations in the stochastic dynamics of
selection and mutations, we have designed a one-dimensional spatial generaliza-
tion of the space-free Moran birth–death process. In this spatial model, the total
number of cells in the organ is kept at a constant level, and a continuous-time dis-
crete state-space birth–death process describes proliferation, death and mutations
of cells. In the present study we ask two specific questions: (i) For a system where
cells of type “A” can mutate into type “B,” diagram (1), what is the rate of fixation
of type “B” depending on the relative fitness of this type and the total number of
cells in the constant population? (ii) What is the rate of generation of double-hit
mutants, “C,” depending on the fitness of type “B,” mutation rates and the total
number of cells (diagram (2))? For each question, we consider a space-free model
as well as a one-dimensional stochastic spatial model, and compare the results. We
obtain the following insights.

(i) The fixation of a one-hit mutant (type “B,” diagram (1)) will happen faster in
a space-free model, if the mutant is either disadvantageous or advantageous.
In the case of a neutral mutant, the fixation rate is the same with and without
spatial effects (except for a thin “boundary layer,” where a mutant has a lower
chance to reach fixation).

(ii) The result for a two-hit model, diagram (2), is different. It turns out that for cer-
tain important regimes, the generation of a double-hit mutants happens faster
in the spatial model compared to the space-free model.

The second result implies that the results previously obtained for space-free mod-
els give an underestimation for rates of cancer initiation in the case where the first
event is the generation of a double-hit mutant, e.g. the inactivation of a tumor-
suppressor gene.
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This paper is organized as follows. In Section 2 we review our results for a space-
free model and come up with a new method of calculations which can be extended
to the spatial model. In Section 3 we formulate the spatial model and investigate
its dynamics. We calculate the rate of fixation for one-hit (diagram (1)) and two-hit
(diagram (2)) mutants. For processes of type (2) we consider the cases where the
intermediate type (type “B”) is neutral or disadvantageous. We derive exact ap-
plicability conditions for our method, as well as a rigorous definition of neutrality.
Section 4 is reserved for conclusions and discussion.

2. Stochastic non-spatial models

We assume the following process. Each of the N cells in a well-mixed population
belongs to one of the three types, “A,” “B” or “C.” The cells can divide (possibly
with mutations) and die. The rate of cellular division is governed by their relative
fitness. We take the fitness of type “A” to be 1 (this sets the time-scale of the pro-
cess). Relative to this, the fitness of type “B” is r and the fitness of type “C” is
R. We assume that R � 1, and r can be smaller, equal to, or greater than 1. The
mutation network is given by diagram (2). Note that we do not allow back muta-
tions. Each time a cell dies, it is immediately replaced by means of cell division, so
that the population is kept constant (this is a Moran process, see Komarova et al.,
2003). Cells are chosen for death at random. Reproduction happens proportional
to the cell’s fitness. The Moran process is illustrated in Fig. 1.

We say that the system is in the state j , 0 ≤ j ≤ N if (1) the number of cells
of type “B” is equal to j and (2) there are no cells of type “C” present. In order
to account for the production of double-mutants (cells of type “C”), we add state
j = E to the system. j = E means that there is at least one cell of type “C” in
the population. We assume that this state is absorbing, that is, once one mutant
of type “C” is produced, it will take over the population (this is equivalent to the
assumption R � 1).

Fig. 1 The Moran process: a cell is chosen for death at random, and is immediately replaced by
division of another cell. Cells for division are selected proportional to their fitness. There is no
notion of space, or distance between cells. In the diagram, white and black circles represent two
different cellular types, say types “A” and “B.”



Bulletin of Mathematical Biology (2006) 68: 1573–1599 1577

During a short time interval, �t , the following processes can happen:

� Transition j → j + 1 with probability �t Pj→ j+1, where

Pj→ j+1 = N − j
N

r j(1 − u1)
N − j + r j

+ N − j
N

(N − j)u
N − j + r j

, 0 ≤ j ≤ N − 1. (3)

Here, the first term is the probability for a cell of type “A” to be chosen for
death times the probability for a cell of type “B” to be chosen for reproduction
and reproduce faithfully. The second term is the probability of death of a
type “A” cell times the probability for a cell of type “A” to reproduce with a
mutation.

� Transition j → j − 1 with probability �t Pj→ j−1, where

Pj→ j−1 = j
N

(N − j)(1 − u)
N − j + r j

, 1 ≤ j ≤ N. (4)

Here, we multiply the probability of a cell of type “B” to die by the probability
of a cell of type “A” to reproduce without a mutation.

� Transition j → E with probability �t Pj→E, where

Pj→E = r ju1

N − j + r j
, 0 ≤ j ≤ N, (5)

which is just the probability for a cell of type “B” to be chosen for reproduction
and to reproduce with a mutation. It does not matter which cell type is chosen
for death in this case. We also have

� E → E with probability 1 and j → j for j �= E with probability 1 −
�t(Pj→ j+1 + Pj→ j−1 + Pj→E).

All other transitions have zero probability.

2.1. Invasion probability in a two-species model

We start our analysis with a review of simple but important results on the behavior
of a two-species model.

Let us first consider a simple system where all mutations are suppressed (u =
u1 = 0). We start from one cell of type “B” ( j = 1). The states reachable from
j = 1 are j ∈ {0, 1, . . . , N}, and there are two absorbing states: j = 0 (extinction
of type “B”) and j = N (fixation of type “B”). The first question we address is the
following: what is the probability that starting from one mutant of type “B,” the
system will get absorbed in state j = N? This is an important question as it gives
the probability of mutant invasion starting from low numbers. It can be calculated
by standard methods, see Komarova et al. (2003). Let us suppose that πi is the
probability to get absorbed in state N starting from state i . We have

πi = Pi→i+1πi+1 + Pi→i−1πi−1 + (1 − Pi→i+1 − Pi→i−1)πi , 0 ≤ i ≤ N,
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which simplifies to

rπi+1 + πi−1 − πi (r + 1) = 0,

with boundary conditions

π0 = 0, πN = 1.

The solution is given by

πi = 1 − 1/r i

1 − 1/r N
, (6)

and in particular,

π1 ≡ ρ(r) = 1 − 1/r
1 − 1/r N

. (7)

We have ρ(r) = 1/N for r = 1, which can also be shown from simple symmetry
considerations.

Next, let us include the possibility of mutations from “A” to “B,” that is, u > 0;
the second type of mutations is still suppressed (u1 = 0, see diagram (1)). There is
only one absorbing state in this system, j = N. The probability to be absorbed by
time t can be approximated by

1 − e−Nuρt , (8)

where we scaled the time with N, that is, effectively we measure time in terms of
generations of type “A” cells (this is equivalent to introducing a new time variable
t̃ = Nt ; in what follows the tildes are omitted). The average number of new mu-
tations arising in a unit time is given by Nu. Out of these, the fraction ρ, Eq. (7),
will proceed to fixation. Formula (8) holds if the mutation rate is sufficiently small.
The precise condition for this was derived in Komarova et al. (2003). For neutral
mutants, such that |1 − r | � 1/N, approximation (8) holds if

uN � 1, (9)

and for disadvantageous mutants, such that r < 1 and |1 − r | � 1/N, the condition
is weaker,

uN � r−(N−1). (10)

(Condition (9) is a sufficient condition for both cases; condition (9) follows from
condition (10) for r close to one). These conditions mean that if mutations are
rare, then the production of new mutants can be considered independent of the
dynamics of the existing mutants. The characteristic time for a mutant to go extinct
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is a lot smaller than a characteristic time of mutant production. Therefore, the rate
of fixation is a composite of the production of mutations, Nu, and the probability
for each mutant to reach fixation, ρ.

2.2. A three-species model

Let us now consider a positive mutation rate u1 > 0, and investigate the process of
fixation in the state E, which is the only absorbing state of system (2). It is possible
to show that if condition (10) holds, then the dynamics can be characterized by only
a small number of “long-lived,” homogeneous states. Let us denote the probability
to find the system in state j = 0 by x0, the probability to find it in state j = N by x1

and the probability to find it in state j = E by x2. Here, x0, x1 and x2 correspond
to the all “A”, all “B” and all “C” states respectively, and the subscripts refer to
the number of mutations (0, 1 or 2) that each type of cells has. Under assumption
(10) we have x0 + x1 + x2 = 1 − O(1/N). The dynamics can be characterized by
hopping between these states, as in the following system:

ẋ0 = −R0→1x0 − R0→2x0, (11)

ẋ1 = R0→1x0 − R1→2x1, (12)

ẋ2 = R1→2x1 + R0→2x0, (13)

with the initial condition

x0(0) = 1, x1(0) = x2(0) = 0.

Note that here and in what follows we use the generation time-scale; that is, we
scale time with N, the total number of cells, so that we have on average N cell-
divisions per time-unit. In system (11)–(13) we have introduced the three rate con-
stants, R0→1, R1→2 and R0→2. The first two rates are found very easily. Indeed, the
rate R0→1 is given by

R0→1 = Nuρ, (14)

formula (8). This rate reflects the production of mutants followed by their success-
ful fixation. The rate R1→2 is obtained similarly, except the probability of fixation
of mutants of type “C” is considered to be equal to 1, yielding

R1→2 = Nu1. (15)

The processes reflected in constants R0→1 and R1→2 are shown in Fig. 2a. First the
system gets into the all “B” state, after which another mutation brings it to the all
“C” state. We will call this scenario a two-step process.

The third constant appearing in system (11)–(13), R0→2, has the meaning of tun-
neling: the system reaches the all “C” state without first pausing at the all “B” state,
see Fig. 2b.
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Fig. 2 Typical dynamics of cells. The thin solid line corresponds to the number of cells of type
“A,” the dashed line is type “B” and the thick solid line is type “C.” (a) A two-step process, where
fixation of type “B” is followed by fixation of type “C.” (b) Tunneling, where fixation of type “B”
does not occur.

2.3. The approximation of a doubly-stochastic process

In order to calculate the rate at which tunneling occurs, we will use the approx-
imation of a doubly-stochastic process. Starting with all cells in state “A,” let us
denote the probability to have a double mutant at time t as P2(t). We will view the
stochastic process as a sequence of subprocesses, each of which is a mutation gen-
erating one cell of type “B,” and its subsequent evolution. Each such subprocess
describes the lineage starting with a single mutant of type “B.” We will assume
that these lineages are independent, that is, the total number of mutants of type
“B” is small compared to N. This assumption holds most of the time unless a mu-
tant of type “B” reaches fixation, in which case we have a two-step process with
rates R0→1 and R1→2. The exact condition for tunneling to be important is given in
Section 2.5. If P1(t) is the probability to obtain a double mutant by time t within
a lineage starting from 1 cell of type “B,” then we have, under the assumption of
independence of different lineages,

P2(t) = 1 − exp
[
−uN

∫ t

0
P1(t ′)dt ′

]
(16)

(see e.g. Parzen, 1999 for a derivation). The probability P1(t) was calculated by
Komarova et al. (2003) and then by Iwasa et al. (2004). The function P1(t) is
a monotonically increasing function of time, which starts off as linear and then
reaches a saturation level, P∞

1 . It turns out that it is the saturation level that gives
the main contribution to the integral in (16), see Section 2.5. Here we develop a
concise and instructive method for calculation of P∞

1 , which we will later use for
the spatial model.

For the number of cells of type “B” we have a one-dimensional Markov pro-
cess. The state j = 0 corresponds to extinction, which is an absorbing state. An
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additional value j = E is included in the state space to indicate that a cell of type
“C” has been produced. We will assume that this is also an absorbing state. The
transition probabilities are given by formulas (3), (4) and (5). The main feature of
tunneling is that fixation of the type “B” does not occur. In fact, for most realiza-
tions, the number of cells of type “B” is small compared to N. Using this fact, the
expressions for transition rates can be simplified to yield,

Pj→ j+1 = λ j, Pj→ j−1 = µj, Pj→E = β j. (17)

These transition coefficients are obtained by taking the highest-order term in the
expansion of coefficients (3), (4) and (5) in terms of the small parameter j/N:

λ = r(1 − u1), µ = 1, β = u1r.

Note that an extra term N contained in the denominator in formulas (3), (4) and
(5) is cancelled by using the generation time-scale. For generality purposes we will
carry out all the calculations for general constant values of λ, µ and β.

Let us denote by ξi (t)�t the probability to jump to state E during the time in-
terval (t, t + �t), given that at time 0 we are in state i . This function satisfies the
following equation:

ξi (t + �t) = λi�tξi+1(t) + µi�tξi−1(t) + βi�tξE(t) + (1 − i�t(λ + µ + β))ξi (t),

which is equivalent to the ODE,

ξ̇i = λiξi+1 + µiξi−1 + βiξE − i(λ + µ + β)ξi , 2 ≤ i.

The boundary condition is given by

ξ̇1 = λξ2 + µξ0 + βξE − (λ + µ + β)ξ1,

where obviously ξ0(t) = 0 and ξE(t) = 0. Let us take the Laplace transform of the
ODE, where

Lξi (t) = fi (s).

Using Lδ(t) = 1 and Lξ̇i = s fi − ξi (0), we obtain the following system of equa-
tions,

i [λ fi+1 + µfi−1 − (λ + µ + β) fi ] − fi s = −iβ, i > 1, (18)

[λ f2 − (λ + µ + β) f1] − f1s = −β. (19)

2.4. Mutation probability in each lineage

In order to obtain P1(t), the mutation probability in each lineage, we would need
to find f1(s) (we start from one cell of type “B”), and evaluate L−1[ f1(s)/s]. In-
deed, the cumulative probability P1(t) is related to the function ξ1(t) as ξ1 = dP1

dt .
Therefore their Laplace transforms differ by a factor s. However, it is the value
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P∞
1 = limt→∞ P1(t) that gives the main contribution to probability (16)). This

value is given simply by P∞
1 = f1(0). We can solve system (18)–(19) analytically

in the special case where s = 0. We have,

λ fi+1 + µfi−1 − (λ + µ + β) fi = −β, i > 1, (20)

[λ f2 − (λ + µ + β) f1] = −β. (21)

The general solution is given by

fi = 1 + Aαi
− + Bαi

+,

where the numbers α± are the roots of the quadratic equation, λα2 − (λ + µ +
β)α + µ = 0. We can see that α+ > 1 and 0 < α− < 1. Using the boundary con-
dition for f1 and boundedness of fi , we obtain A= −1 and B = 0, such that
fi = 1 − αi

−, and

f1(0) = 1 − 1
2λ

(λ + µ + β −
√

(λ + µ + β)2 − 4λµ).

We have three cases:

1. The mutant “B” is negatively selected, that is, µ > λ and β(λ + µ) � (λ − µ)2.
In this case, α− = 1 − β

µ−λ
and f1(0) =

P∞
1 = β

µ − λ
= ru1

1 − r
.

2. The mutant “B” is neutral, that is, β(λ + µ) � (λ − µ)2. In this case we obtain
α− = √

β/λ, and the tunneling rate,

P∞
1 =

√
β/λ = √

u1.

3. The mutant “B” is positively selected, that is, µ < λ and β(λ + µ) � (λ − µ)2.
In this case,

P∞
1 = 1 − µ

λ
+ µβ

λ(λ − µ)
= 1 − 1

r
+ u1

r − 1
.

It is noteworthy that one can obtain the same result for the tunneling rate (in
cases 1 and 2 above) by solving system (20)–(21) in a continuous limit. Indeed, let
us set µ = λ − ε. Equations (20)–(21) can be rewritten as

λ(−2 fi + fi−1 + fi+1) + ε( fi − fi−1) − β fi = −β, (22)

λ( f2 − f1) + (β + ε − λ) f1 = −β, (23)
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which in continuous limit reads

λ f ′′ + ε f ′ − β f = −β, (24)

λ f ′(0) + (β + ε − λ) f (0) = −β, (25)

where f (x) is a continuous equivalent of fi . This system can be solved exactly, by
setting

f (x) = 1 + Ae−γ x,

where γ = 1/2[(λ − µ) +
√

(λ − µ)2 + 4λβ]. From the initial condition we have

A= 2(2β − µ)

λ + µ − 2β +
√

(λ − µ)2 + 4βλ
.

The value f (0) gives the estimate for P∞
1 . In the limit where λ < µ and β(λ + µ) �

(λ − µ)2 we have

P∞
1 = β

µ − λ
, (26)

if β(λ + µ) � (λ − µ)2 we have

P∞
1 =

√
β/λ, (27)

and finally for λ > µ and β(λ + µ) � (λ − µ)2 we have

P∞
1 = 1 − µ

λ
+ λ2 + (λ − µ)2

λ2(λ − µ)
β. (28)

2.5. The tunneling rate in the space-free model

In order to estimate expression (16), we need to know the time-scale of change of
the function P1(t). It approaches its saturation level around the time tc ∼ √

βλ in
the case of neutral mutants and tc ∼ µ − λ in the case of disadvantageous mutants
(see the derivation in Appendix A).

Let us focus our attention on time-scales comparable to the value t1/2 such that
P2(t1/2) = 1/2. We have P2(t) ∼ 1/2 and therefore

uN
∫ t

0
P1(t ′)dt ′ ∼ log 2.

In order for our approximation of the independence of lineages to hold, condi-
tion (9) or (10) must be satisfied, which means that for the time-scale of interest,
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∫ t
0 P1(t ′)dt ′ ∼ (uN)−1. Since P1(t) ≤ P∞

1 for all values of t , we have
∫ t

0 P∞
1 dt ′ > 1,

or

t >
1

uNP∞
1

.

For neutral mutants this yields t >
√

λ/(uNβ), and for disadvantageous mutants
we have t > (µ − λ)/(uNβ). In both cases we can see that because uN < 1, we
have for the time-scale of interest,

t � tc.

Therefore the function P1(t) under the integral in Eq. (16) can be replaced by its
saturated value:

P2(t) = 1 − e−uNP∞
1 t .

This means that the rate of tunneling, R0→2 in Eqs. (11)–(13) is given by the fol-
lowing expressions:

� Disadvantageous mutants “B,” that is, µ < λ and β(λ + µ) � (λ − µ)2. In this
case, we have

R0→2 = uN
√

βµ − λ = uu1r N
1 − r

. (29)

� Neutral mutants “B,” that is, β(λ + µ) � (λ − µ)2. We have

R0→2 = uN
√

β/λ = u
√

u1 N. (30)

Tunneling is the dominant process if the inequality R0→1 < R0→2 holds, Wodarz
and Komarova (2005), which is equivalent to condition ρ < P∞

1 . A simple calcula-
tion shows that this can be rewritten in the following way:

N > Ntun, (31)

where in the case of disadvantageous mutants,

Ntun = log u1 + 2 log[r/(1 − r)]
log r

, (32)

and in the case of neutral mutants,

Ntun = 1√
u1

. (33)
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Fig. 3 The Moran process generalized to the one-dimensional space: a cell is chosen for death
at random, and is immediately replaced by a division of one of the two neighboring cells (chosen
proportional to their fitness).

3. The basic spatial model of cell division

Let us build a 1D model where cells are aligned along a regular grid, at locations
1, 2, . . . , N, see Fig. 3. We assume that the total number of cells does not change.
Cells are randomly chosen for death. Each cell death is followed by a cell division
of one of its two neighboring cells, which places its daughter cell at the empty slot.
Cell death occurs randomly and division is proportional to the relative fitness of
the cells.

3.1. A two-species model

Let us assume that there is a mutant cell with the relative fitness r at position j .
The mutant cell produces mutant cells upon reproduction. Wild-type cells pro-
duce other wild type cells (the mutation rate is set to zero). If any cell at position
1, . . . , j − 2 or j + 2, . . . , N dies, then there can be no change in configuration. A
change can occur only in two cases:

� Death occurs at position j , in which case the mutant disappears.
� Death occurs at position j + 1 or j − 1. Then the number of mutants can in-

crease by one if the mutant cell is chosen for division.

Similarly, if we have several mutant cells at sequential positions from i through
j , then a change of the number of mutants can only happen if death occurs at
positions i − 1, i , j or j + 1 (see Fig. 3). In this model, a mutant colony which
originated as one cell can only occupy adjacent slots (a joint set). A change in the
position of this set can only be caused by cell death at its boundary.

We can characterize the states of the system by the positions of the leftmost and
the rightmost mutant, i and j , such that

1 ≤ i ≤ j ≤ N. (34)



1586 Bulletin of Mathematical Biology (2006) 68: 1573–1599

The transition matrix is given by the following. If the left boundary of the mu-
tant domain is at 1 (or the right boundary is at N), then these boundaries can-
not move anymore. Otherwise, if the number of mutants is larger than one, then
the probabilities to expand the mutant domain to left and right are given by
Pi, j→i−1, j = Pi, j→i, j+1 = 1

N
r

1+r , and the probabilities to reduce the domain on left
and right are given by Pi, j→i+1, j = Pi, j→i, j−1 = 1

N
1

1+r . Finally, if there is only one
mutant (i.e., i = j), then we have Pi,i→i−1,i = Pi,i→i,i+1 = 1

N
r

r+1 , and the probabil-
ity to lose the mutant is 1

N . All the rest of the elements of the matrix are equal to
zero.

We can envisage the dynamics as a two-dimensional Markov random walk in-
side domain (34), with an additional absorbing state which can be reached from
the diagonal i = j ; this state corresponds to the extinction of the mutant and is
denoted by Ẽ. The other absorbing state is the fixation of the mutant, (0, N). The
random walk is governed by the matrix above. We can set i to be the horizontal
and j the vertical coordinate of the position of the walker, and then the above
probabilities can be referred as P→

i j , P←
i j , P↑

i j and P↓
i j .

3.2. Probability of mutant invasion

We can calculate the probability of absorption in (0, N) starting from a state (i, j),
which we call ui j . We have the following system of equations,

ui j = ui−1, j P← + ui+1, j P→ + ui, j−1 P↓ + ui, j+1 P↑

+ui j [1 − (P← + P→ + P↓ + P↑)], (35)

1 < i < j < N, (36)

u1 j = u1, j+1 P↑ + u1, j−1 P↓ + u1 j [1 − (P↑ + P↓)], 1 < j < N (37)

ui N = ui−1,N P← + ui+1,N P→ + ui N[1 − (P← + P→)], 1 < i < N, (38)

u j j = u j−1, j P← + u j, j+1 P↑ + u j j [1 − (P← + P↑ + PẼ)], 1 < j < N,

(39)
u11 = u12 P↑ + u11[1 − (P↑ + PẼ)], (40)

uNN = uN−1,N P← + uNN[1 − (P← + PẼ)], (41)

u1N = 1. (42)

The quantities uii are probabilities of invasion starting from one mutant at posi-
tion i .

The results for this model must be compared with the probabilities of invasion
in a space-free model, Eqs. (6) and (7). Numerical solutions for the probabilities of
absorption show that quantities uii are symmetric one-hump (flat) functions which
are smallest for i = 1 and i = N, where they are equal to 1/2ρ, see Fig. 4. The
inner values of this function are approximately constant, and they approach 1/N
for neutral mutants. What is interesting is that if the mutant is either advantageous
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Fig. 4 Numerical solutions of system (35)–(42), where the probability of absorption uii is plotted
as a function of the position of the mutant, i , in a system of N = 200 cells. (a) Disadvantageous
mutants, r = 0.95; (b) neutral mutants, r = 1; (c) advantageous mutants, r = 1.2. The dotted hor-
izontal line corresponds to the value ρ(r), the probability of fixation for the space-free system.

or disadvantageous, then the inner values of uii are smaller than the space-free
prediction, ρ.

It turns out that a slight change in Eqs. (39) and (41) can simplify the description
and allow for an analytical solution. The idea is that if point (i, j) is sufficiently
far away from the boundary, then the boundary effects are not felt and ui j only
depends on | j − i | rather than on the initial position of the mutant interval. In
order to solve the problem away from the boundary, we can use the following
trick. We will replace Eqs. (39) and (41) with the following:

u11 = u12 P↑ + u11[1 − (P↑ + PẼ/2)], (43)

uNN = uN−1,N P← + uNN[1 − (P← + PẼ/2)]. (44)

We observe that with the new boundary conditions, (43) and (44), quantities ui j

do not depend on the position of the mutant interval, but only on its length. This is
the consequence of the fact that the transition probability obey certain symmetries,
such as

P↑ = P←, P↓ = P→.

Let us denote by g j the probability that the mutant will invade starting from a
mutant interval of length j + 1. We have a self-consistent system of equations for
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the probabilities gi ,

gi (P↑ + P↓) = P↑gi+1 + P↓gi−1, 0 < i < N − 1, (45)

g0(P↑ + PẼ/2) = P↑g1, (46)

gN−1 = 1. (47)

This system can be solved by setting gi ∝ αi , and finding α = 1 and α = P↓/P↑ =
1/r . Therefore, we have

gi = A+ B/r i ,

and the constants Aand B are found from the boundary conditions,

A=
(

1 − r + 1
r N−1(3r − 1)

)−1

, B = r N−1(r + 1)
1 + r + r N−1 − 3r N

.

The probability to invade starting from only one mutant cell is given by g0 = A+
B. We have,

g0 = 2r N−1(1 − r)
1 + r + r N−1 − 3r N

.

We can compare this quantity with the invasion probability, ρ, without spatial dy-
namics,

g0 = ρ
2r(1 − r N−1)

1 + r + r N−1 − 3r N
.

In particular, for neutral mutants such that |r − 1| � 1/N, we have g0 = ρ = 1/N.
For large values of N, we obtain, in the case of advantageous mutants (r > 1, |r −
1| � 1/N),

g0 = 2r
3r − 1

ρ < ρ, (48)

and in the case of disadvantageous mutants (r < 1, |1 − r | � 1/N) we have

g0 = 2r
1 + r

ρ < ρ. (49)

3.3. Three-species model

Next, let us formulate the dynamics for a three-species model, diagram (2), in a
one-dimensional space. Again, we will use a homogeneous state approximation,
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and describe the behavior of the system by means of Eqs. (11)–(13). The appli-
cability conditions for this approximation are now somewhat more restrictive and
they are derived in Section 3.5. The rate constants R0→1 and R1→2 can be calcu-
lated in the same way as for the non-spatial model. We have, instead of formula
(14),

R0→1 = Nug0 = Nu
2r N(1 − r)

1 + r + r N − 3r N+1
,

where g0 is the probability of successful fixation of a mutant starting from
one cell of type “B.” Approximations for neutral and disadvantageous mu-
tants are given by formulas (48) and (49). Similarly, we calculate the second
rate in the two-step process, which is the same as in the space-free model,
Eq. (15),

R1→2 = Nu1.

Finally, we need to find the tunneling rate, R0→2.

3.4. Doubly-stochastic approximation

In order to find the rate of tunneling, we use the doubly-stochastic approximation
once more, formula (16). Each (independent) lineage of type “B” spreads as a one-
dimensional spot. The size of the spot is given by the random variable i . The state
i = 0 is equivalent to the state Ẽ of Section 3.1, i.e. extinction of the mutant. The
state i = E corresponds to the creation of a mutant of type “C.” The probability
P1(t) in formula (16) is the probability to acquire a second mutation among the
lineage of a single cell of type “B.” For the dynamics within a lineage, the transition
probabilities are given by

Pi→i+1 = r(1 − u1)
(r + 1)

, 0 ≤ i ≤ N − 1,

Pi→i−1 = 1
(r + 1)

, 1 ≤ i ≤ N,

P1→0 = 1
2
,

PN→N = N(1 − u1),

Pi→E = 4ru1

(r + 1)
+ (i − 2)u1, 3 ≤ i ≤ N,

P2→E = 4ru1

(r + 1)
,

P1→E = 2ru1

(r + 1)
,
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where time is measured in terms of generations. In what follows we will simplify
the problem so that the transition probabilities are

Pi→i+1 = λ, Pi→i−1 = µ, Pi→E = βi. (50)

These are spatial analogues of formulas (17). Note that in formulas (17), the coeffi-
cients λ, µ and β were obtained by taking the lowest order term in the Taylor series
in terms of the small i/N. In formula (50), the probabilities represent a “model”
of the real situation rather than an approximation. Indeed, in Eqs. (50), with

λ = r(1 − u1)/(r + 1), µ = 1/(r + 1), β = 3ru1/(r + 1),

we neglect several subtleties that we discovered for spatial propagation of mutants.
For instance, we ignore the fact that P1→0 �= Pi→i−1 for i > 1. We also ignore the
fact that the probability for exiting into state E from state i is not exactly propor-
tional to i : for i < 3 it does not depend on i , and for larger i it has a constant (in i)
term.

We will use the same method as we developed for the space-free system,
Sections 2.3 and 2.4. Let us denote by ξi (t)�t the probability to be absorbed in
E during the interval (t, t + �t) starting from i at t = 0. We have the following
equations for ξi :

ξ̇i = λξi+1 + µξi−1 + βiξE − (λ + µ + βi)ξi , 2 ≤ i,

with the boundary condition

ξ̇1 = λξ2 + µξ0 + βξE − (λ + µ + β)ξ1.

The Laplace transform yields the system,

[λ fi+1 + µfi−1 − (λ + µ + s) fi ] − fiβi = −iβ, i > 1, (51)

[λ f2 − (λ + µ + s) f1] − f1β = −β. (52)

This is similar to an inhomogeneous discrete Airy equation. Let us denote

hi = fi − 1,

and set µ = λ − ε. We have for the function hi ,

λ(hi+1 − 2hi + hi−1) + ε(hi − hi−1) − shi = βihi , (53)

λ(h2 − h1) − h1(λ − ε + β + s) = λ − ε. (54)

Using the continuous limit, we obtain the system

λh′′ + εh′ − sh = βxh, (55)

λh′(0) − h(0)(λ − ε + β + s) = λ − ε; (56)
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for the second boundary condition we use the boundedness of the solution for
large x. This system can be solved exactly in terms of the Airy function Ai and
its derivative. Here we present the stationary solution corresponding to s = 0. We
have

h(x) = 2e−εx/(2λ)(ε − λ)Ai[K(x)]
(2β − ε + 2λ)Ai[K(0)] − 2β(β/λ)−2/3 Ai ′[K(0)]

,

K(x) = ε2 + 4βλx
4(β/λ)2/3λ2

.

Setting x = 0, we obtain

h(0) = 2(ε − λ)

2β − ε + 2λ − 2β(β/λ)−2/3 R
([

ε

2λ(β/λ)1/3

]2) , R(z) = Ai ′(z)
Ai(z)

.

Depending on the fitness of type “B,” this expression has a different limiting be-
havior. We have three cases:

� Type “B” is disadvantageous: ε < 0 and ε � (β/λ)1/3. In this case, the argument
of the function R(z) tends to infinity and we can use the standard asymptotic
expansion of the Airy function and its derivative for a large argument. We obtain
h(0) = −1 + (λ−µ)2+λ2

(λ−µ)2µ
β, or f (0) = 1 + h(0) =

P∞
1 = (λ − µ)2 + λ2

(λ − µ)2µ
β = 3ru1

(r − 1)2 + r2

(r − 1)2
. (57)

This rate has the same order of magnitude as the corresponding rate in the non-
spatial calculation, Eq. (26).

� Type “B” is neutral, that is, ε � (β/λ)1/3. In this case, the argument of the func-
tion R(z) tends to zero. We obtain

P1∞ =
(

3β

λ

)1/3
�(2/3)
�(1/3)

= (9u1)1/3 �(2/3)
�(1/3)

. (58)

This rate is larger than the one found for the neutral mutant in the space-free
model, see expression (27).

� Type “B” is advantageous: ε > 0 and ε � (β/λ)1/3. We have

P∞
1 = 1 − µ

λ
+ µ(λ2 + (λ − µ)2)

(λ − µ)2λ2
β = 1 − 1

r
+ 3ru1

r2 + (1 − r)2

(1 − r)2r2
,

which is reminiscent of Eq. (28).
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3.5. The rate of tunneling in the spatial model

Now we can calculate the tunneling rate for the cases where type “B” is neutral or
disadvantageous. We will use the same method as in Section 2.5. Suppose tc is the
time where the function P1(t) comes close to its saturation value, P∞

1 . The values
for tc are found in Appendix B. Again, we will set the time-scale of the process
such that the probability of acquiring a mutant of type “C” is about 1/2. This is
equivalent to the estimate t ∼ 1/(P∞

1 uN), see Eq. (16). The condition t � tc will
guarantee that the tunneling rate is simply uNP∞

1 . For the case of disadvantageous
mutants, this condition is identical to

uN � r − 1
r + 1

. (59)

In the case of neutral mutants, we obtain

uN �
(u1

3

)1/3
(

�(1/3)
�(2/3)

)2 r
r + 1

. (60)

If these conditions of are satisfied, we get the following result for the two cases.

� Type “B” is disadvantageous: r < 1 and 1−r
1+r � (3u1)1/3. If condition (59) holds,

then the tunneling rate is given by

R0→2 = 3r Nuu1
(r − 1)2 + r2

(r − 1)2
. (61)

� Type “B” is neutral, that is, 1−r
1+r � (3u1)1/3. If condition (60) holds, then the

tunneling rate is given by

R0→2 = uN(9u1)1/3 �(2/3)
�(1/3)

. (62)

Note that the rate of tunneling in the case of disadvantageous mutants, (61), is
always larger than that for the space-free model, Eq. (29). It has the same order
of magnitude in terms of small u1. Regarding the case of neutral mutants, it is
interesting that the rate of tunneling in the spatial model, (62), has a larger order
of magnitude than that in the space-free model, Eq. (30). In both cases, tunneling
happens faster in the spatial model compared to the space-free model.

In Fig. 5 we present a numerical simulation where these effects are demon-
strated. We ran a stochastic spatial and non-spatial models in the regime where
tunneling played an important role (compared to a two-step process, see the con-
ditions below). The mutant “B” was taken to be neutral (r = 1). The initial con-
dition was the all “A” state, and the simulations were stopped as soon as the first
mutant of type “C” was created. For each model, we performed 10, 000 runs and
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Fig. 5 Cumulative probability distribution function for the generation of a mutant of type “C,” in
spatial and non-spatial models (numerical results). Here, r = 1, N = 100, u = 0.005 and u1 = 0.02.
The simulation was performed for a discrete-time Markov process.

found out numerically the distribution of times of generation of a double-hit mu-
tant. One can see that for the spatial model, the generation of a double-hit mutant
occurs earlier, that is, at a higher rate, than that for the space-free model.

The next remark is on the definition on neutrality in different models. It is the
same for spatial and space-free descriptions in the regime where a two-step process
dominates (or if we have only two types, “A” and “B” in the system). In this case
mutants with fitness satisfying |1 − r | � 1/N can be considered neutral. Indeed, in
the expansion of the fixation probability of a mutant in terms of r around the value
r = 1, the highest-order term is given by 1/N, and the next term is (N − 1)(r −
1)/2N without spatial effects, and (N − 1)2(r − 1)/2N2 in the spatial model. The
smallness of the second term compared to the first term is a criterion of neutrality.

The meaningful definition of neutrality changes in the regime where tunneling is
important. There, it is not the time-scale of fixation, but rather the rate of tunneling
which is the dominant factor. Now, the definition is different in the spatial model
compared to that in the space-free model. In the latter case, neutral mutants were
defined by the condition

|1 − r | � √
u1. (63)

In the spatial case, we have

|1 − r | � (3u1)1/3. (64)

That is, a larger region of fitnesses around r = 1 qualifies as neutral.
The relative importance of tunneling can be obtained by comparing the rates

R0→1 and R0→2. As in the space-free model, condition (31) implies that typically,
mutants of type “C” are generated before fixation of type “B” occurs. For disad-
vantageous mutants of type “B,” Ntun is given by

Ntun = log
[

3
2

u1r(r + 1)[(r − 1)2 + r2]
(1 − r)3

]
/ log r. (65)
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Fig. 6 The quantity Ntun for disadvantageous mutants, for the spatial and space-free models,
calculated from formulas (65) and (32) respectively. For this graph, u1 = 10−3; the range of r is
from zero to 0.75, so that the mutant is disadvantageous in the spatial model.

In Fig. 6 we present the comparison of Ntun for the space-free (see formula (32))
and spatial models, for a fixed value of u − 1, and different values of r . In the case
of neutral intermediate mutants, we have

Ntun = �(1/3)
�(2/3)

1
(9u1)1/3

, (66)

compare with formula (33) for the space-free model. We can see that Ntun is always
smaller for the spatial model compared to that for the space-free model.

Conditions (59) and (60) define whether the homogeneous state approximation
holds. They are a stronger version of the conditions (9) and (10) which were de-
rived for the space-free model. There, in order to be able to approximate the sys-
tem by three long-lived states, it was enough to require that the first mutation rate
is small compared to 1/N. Now, an additional factor comes in. The conditions for
applicability of system (11)–(13), inequalities (59) and (60), can be written as one
condition,

uN � max
{

1 − r
1 + r

, (3u1)1/3
}

. (67)

If condition (67) is violated, then the tunneling in this case happens according to a
different scenario, and system (11)–(13) does not apply. In particular, if the rele-
vant time-scale is very small compared to the saturation time, tc, then the function
P1(t) can be approximated as a linear function of time, P1(t) ≈ γ t , and we would
have

P2(t) = 1 − e−uNγ t2/2,

see also Nowak et al. (2004).
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4. Conclusions

We have studied the role of space in fixation of one-hit mutants and in generation
of double-hit mutants, in a stochastic birth–death process with a constant popula-
tion. A spatial (1D) generalization of the Moran process was defined and described
analytically. We investigated the mutation-selection networks of types (1) and (2)
and found the following results:

� Fixation probabilities of one-hit mutants are lower for disadvantageous
(Eq. (49)) and advantageous (Eq. (48)) mutants. They are the same for neutral
mutants.

� Generation of double-hit mutants can be described by using a homogeneous-
state approximation (Eqs. (11)–(13)). In this case, the generation of type “C”
occurs by means of a two-step process or by means of stochastic tunneling.

� For neutral intermediate mutants, the rate of generation of double-hit mutants
is higher in the spatial setting. More precisely, the two-step process happens at
the same rate, but the rate of tunneling scales as u1/3

1 (Eq. (62)) as opposed as
u1/2

1 in the space-free model (Eq. (30)). Here u1 is the second rate of mutation
which generates type “C” from type “B.”

� In the case of disadvantageous mutants of type “B,” the two-step process is
slower in the spatial model, but the tunneling is again faster (it has the same
order of magnitude in terms of small u1, see Eqs. (29) and (61)). In the regime
where tunneling predominates, the generation of double-mutants occurs faster
in the spatial model.

� We also obtained results on the applicability of a homogeneous state-
approximation (Eq. (67)), the definition of neutrality (Eq. (64) compared to
(63)) and the relative contribution of tunneling (Eqs. (31), (65) and (66)) for
the spatial model. All these differ from those found in the space-free model.

Perhaps the most interesting result is that the generation of double-hit mutants
occurs faster in the spatial model. There is an intuitive explanation for this. Let
us consider the probabilities for the number of cells of type “B” to increase or
decrease by 1 in the spatial and non-spatial models. For the latter, the probability
to increase/decrease during the time-interval �t is given by P( j → j + 1) ≈ r j�t ;
P( j → j − 1) ≈ j�t . For the spatial model we have P( j → j + 1) ≈ r�t ; P( j →
j − 1) ≈ �t . For these formulas we assumed j � N, which is true in the tunneling
regime. We can see that if j > 1, then the motion happens on a faster time-scale for
the space-free case, as the probabilities are multiplied by the number of mutants of
type “B.” In the spatial model, these probabilities are independent of j . Therefore,
we can say that once a colony of type “B” reaches a size larger than one, it tends
to “linger around” for a longer period of time in the spatial model. And of course,
such colonies are a breeding ground for mutants of type “C.” The longer they
persist, the higher is the chance to create a mutant of type “C” as a result of each
individual mutation “A”→”B.” The rate of generation of mutants of type “B”
is the same in both models. Therefore, this argument explains why the rate of
generation of mutants of type “C” is higher in the spatial setting.
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Compared to space-free models, the present model is an improvement in terms
of how well it describes real tumors. However, in order for a model to give accu-
rate quantitative predictions of the observed reality, two or three spatial dimen-
sions have to be used. Analytical results in two and three dimensions are much
harder to obtain and this is a focus of future research. However, some important
lessons learned from the 1D model will apply in higher dimensions. In particular,
the above argument which explains why the generation of double-hit mutants in a
spatial model happens faster than in a space-free model will hold in 2D and 3D,
so we can expect an acceleration of “tunneling” in a real tumor compared to that
predicted by a complete-mixing model.

Appendix A: Characteristic time-scale of the probability P1(t)
for the non-spatial process

Let us study the applicability of approximation (20) to Eq. (18). The values of s for
which the corresponding term can be ignored compared to other terms in Eq. (20)
will give a reciprocal of a time-scale where the solution approaches its steady state
value. We will assume for this analysis that β � 1. Let us write Eq. (20) in the
following way:

λ( fi+1 − 2 fi + fi−1) − (µ − λ)( fi − fi−1) + β(1 − fi ) = fi

i
s. (A.1)

For the cases where the mutant of type “B” is neutral or disadvantageous, we have
α− = 1 − δ, with δ � 1, where δ = √

β/λ and δ = β/(µ − λ) respectively. We have
for the terms on the left hand side of Eq. (A.1),

λδ2, (µ − λ)δ, β,

where for each term we took the highest contribution in terms of δ. The right hand
side can be estimated as δs. For the case of neutral mutants, we obtain that the
three terms on the left are

β, (µ − λ)
√

β/λ, β,

that is, in order for the s-term to be smaller than these, we must have s <
√

βλ.
For the case of disadvantageous mutants, we have

λ3 β2

(µ − λ)2
, β, β.

We can see that the first of these terms is actually small compared to the rest, and
we can ignore it, as our approximation only takes account of terms of the order
of β/(µ − λ). To get the right balance, we need to have s < µ − λ. Therefore, we
have the following time-scales of the process: for neutral mutants,

tc ∼ (
√

βλ)−1, “B” neutral,
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and for disadvantageous mutants,

tc ∼ (µ − λ)−1, “B” disadvantageous.

Appendix B: Characteristic time-scale of the probability P1(t)
for the spatial process

We would like to obtain the estimate for the time when the solution P1(t) ap-
proaches its steady-state level. This is equivalent to finding the maximum s for
which the corresponding terms can be ignored in Eq. (53). We cannot use the
same method as in the space-free system because we do not have an analytical so-
lution for the discrete problem. Instead, we will work with the continuous Eq. (55).
We can write down the exact solution with s > 0 and compare it with the solution
for s = 0. In the case of disadvantageous mutants, we have an additional term in
expansion (57), namely,

P∞
1 = − s

λ − µ
+ (λ − µ)2 + λ2

(λ − µ)2µ
β.

This suggests that for s � (λ−µ)2+λ2

(λ−µ)µ β, the solution is close to its saturation level.
We obtain

tc = (λ − µ)µ
(λ − µ)2 + λ2

β−1, “B” disadvantageous.

In the neutral case, we also have an additional term in expansion (58),

P∞
1 =

(
3β

λ

)1/3
�(2/3)
�(1/3)

+
(

�(2/3)
�(1/3)

)2 (
3
λ

)2/3 s
β1/3

.

This suggests that the values of s must satisfy s � �(1/3)
�(2/3) (3/λ)−1/3β2/3, which means

that

tc = �(2/3)
�(1/3)

(3/λ)1/3β−2/3, “B” neutral.
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