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Abstract A new mathematical model of the transport of mucus and periciliary liq-
uid (PCL) in the airways by cilia is presented. Mucus is represented by a linearly
viscoelastic fluid, the mat of cilia is modelled as an ‘active porous medium.’ The
propulsive effect of the cilia is modelled by a time-dependent force acting in a
shear-thinned ‘traction layer’ between the mucus and the PCL. The effects of sur-
face and interface tension are modelled by constraining the mucus free surface and
mucus–PCL interface to be flat. It is assumed that the epithelium is impermeable to
fluid. Using Fourier series, the system is converted into ODEs and solved numeri-
cally. We calculate values for mean mucus speed close to those observed by Matsui
et al. [J. Clin. Invest., 102(6):1125–1131, 1998], (∼40 µm s−1). We obtain more de-
tail regarding the dynamics of the flow and the nonlinear relationships between
physical parameters in healthy and diseased states than in previously published
models. Pressure gradients in the PCL caused by interface and surface tension are
vital to ensuring efficient transport of mucus, and the role of the mucus–PCL inter-
face appears to be to support such pressure gradients, ensuring efficient transport.
Mean transport of PCL is found to be very small, consistent with previous analyses,
providing insight into theories regarding the normal tonicity of PCL.

Keywords Mucus · Cilia · Muco-ciliary clearance · Salt–fluid controversy ·
Periciliary liquid transport

1. Introduction

In this paper we describe a ‘traction layer’ model of muco-ciliary transport. The
model considers the airway surface liquid (ASL) as three fluid layers, the lower
layer being Newtonian, the remaining two being linearly viscoelastic. The propul-
sive force produced by the cilia is modelled by a volume force which acts in the
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Fig. 1 Comparing the velocity profiles predicted by theory (typified by A), shear-driven flow (B)
and those apparently found by experiment (C). Redrawn from Matsui et al. (1998).

region—the traction layer—where the cilia penetrate the mucus, varying spatially
and temporally with the metachronal wave. The effect of the beating cilia on the
flow in the PCL is modelled using the ‘active porous medium’ ideas first presented
in Blake (1975a). A possible shear-thinning effect in the traction layer is included.
By using Fourier series analysis we exploit periodicity and convert the system of
PDEs to a system of ODEs which are solved numerically.

This study is motivated by the salt–fluid controversy described by Guggino
(2001) regarding the normal tonicity of ASL and hence the pathogenesis of cystic
fibrosis. Briefly, the hypotonic defensin hypothesis (Smith et al., 1996) states that
the epithelium is impermeable to fluid. This is consistent with very low mean trans-
port of PCL along the converging airways of the lung. Low mean PCL transport
was predicted by the physical models of Fulford and Blake (1986) and Blake and
Winet (1980), as depicted in Fig. 1A. The isotonic volume hypothesis (Boucher,
1994) states that there are large fluxes of fluid across the epithelium. This is consis-
tent with significant mean transport of PCL along the airways. Human tracheo-
bronchial epithelial culture tracer dispersion experiments conducted by Matsui
et al. (1998) appear to show approximately equal and significant transport of PCL
and mucus, as depicted in Fig. 1C. In this study we model the hypotonic defensin
hypothesis by considering the fluid flow in the PCL and mucus, determining the
mean transport of PCL and time-dependent fluctuations subject to the no-slip, no-
flux condition on the epithelium. The detailed information we obtain regarding
the spatial and temporal variations in the muco-ciliary flow will be useful for con-
ducting tracer dispersion simulations such as those described in Blake and Gaffney
(2001) and Smith et al. (2006). In addition, we obtain a detailed understanding of
the nonlinear response of the system to altered physical parameters, and the im-
portance of surface and interface tension.

2. Review of muco-ciliary modelling

The earliest attempt to model muco-ciliary flow mathematically was that of Barton
and Raynor (1967), modelling the cilium as a rigid rod which automatically short-
ens during the recovery stroke. This approach has several serious limitations, in
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particular, the motion of the cilia is not accurately modelled and the metachronal
wave is not included (Blake, 1973). However, their work was a forerunner of later
‘cilia sublayer’ models, and they calculated realistic flow rates. Their characterisa-
tion of the cilium as a rigid rod is exploited in Section 4.

The model of Ross (1971) took into account the non-Newtonian nature of the
upper mucous layer. The mucus–cilia interface was modelled as an impermeable
‘wavy wall,’ mucus was modelled as a nonlinear Maxwell fluid, and the resulting
system of equations was solved analytically using Fourier series and asymptotic
expansions in the amplitude of the metachronal wave. Mucus flow rates were cal-
culated which were in rough agreement with experimental data, but flow in the
PCL was not modelled. It has been noted (Blake, 1972) that at velocities found in
nature, wavy wall models are not adequate for systems, such as that found in the
lung, exhibiting antiplectic metachronism since the tips of the cilia may be widely
spaced during the effective stroke. Hence, representing the tips of the cilia with a
no-slip boundary is not appropriate. Nor did the model of Ross (1971) adequately
represent the effect of the cilia recovery stroke taking place below the mucus–PCL
interface.

An alternative ‘cilia sublayer’ approach was developed by Blake (1972), initially
for ciliated micro-organisms. Due to their slenderness, the cilia could be modelled
by distributing force singularities along their centre-lines. These ideas were ex-
tended in later papers including Liron and Mochon (1976) and Fulford and Blake
(1986). A detailed review of such models is given in Smith (2006).

For a genuinely accurate model, the ASL needs to be considered as at least two
separate layers, the lower being watery and nearly Newtonian, the upper being
viscous and non-Newtonian. Blake (1975b) applied the discrete sublayer model to
such a system, comparing the relative importance of muco-ciliary transport, gravity
and clearance due to air flow. The model differed from most in this field in that the
cilia were assumed to be synchronised rather than forming a metachronal wave,
based on the fact that the cilia in the lung are very closely packed, at least on
an individual cell. Limitations of this work were that there was no penetration
into the mucous layer by cilia, and the cilia beat cycle used was not particularly
accurate. These limitations were addressed in Fulford and Blake (1986), where the
cilia beat cycles found by Sleigh (1977) and Sanderson and Sleigh (1981) were used,
together with resistance coefficients for a slender body ‘straddling’ the interface
between two fluids of differing viscosity. They were also able to examine the effects
of having a large number of inactive cilia, as in a diseased lung. However, the upper
layer was modelled as a Newtonian fluid, and only a time-averaged profile was
obtained.

Keller (1975) developed a different approach to modelling the sublayer, known
as the ‘continuum sublayer’ or ‘traction layer’ model. The action of the cilia is mod-
elled as a spatially continuous volume force. This technique was applied to ciliated
micro-organisms where the mucous layer need not be considered. Exploiting the
periodicity of the ciliary beat, Fourier analysis was used to find the stream function
for Stokes flow in terms of the force distribution. The force distribution was found
using the resistive force theory of Gray and Hancock together with expressions for
the resistance coefficients derived by Chwang and Wu (1975) for a slender ellip-
soid. Blake and Winet (1980) applied the traction layer approach to mucociliary
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transport in the lung, using the idealised beat pattern of Barton and Raynor (1967).
They considered both the PCL and the mucous layers, but modelled mucus as a
Newtonian fluid, calculating time-averaged flow only. They also attempted to take
into account the resistance of the cilia sublayer by modelling it as an ‘active porous
medium,’ building on the earlier paper of Blake (1977). Their results suggested
that slight penetration into the mucous layer by the cilia substantially enhanced
transport. They predicted that mean PCL transport would be very small.

Liron and Rozenson (1983) examined tip penetration in a different way. They
modelled mucus as a non-Newtonian fluid with the linearised Oldroyd equations,
valid for small rates of shear. They assumed that the only forces driving the fluids
were a constant pressure gradient and a series of impulses, represented by Dirac
delta functions, produced by the cilium tips. After solving the resulting equations
by Fourier transforms they concluded that penetration was necessary for trans-
port. However, their approach did not take into account the resistance of the cilia
sublayer (Fulford and Blake, 1986).

In a more recent paper, King et al. (1993) formulated a simple analytical model
of the muco-ciliary system designed to test the effect of mucus viscoelasticity. They
predicted, amongst other things, that mucus transport increases as the shear mod-
ulus of elasticity decreases. However, their model is limited in a number of ways—
they assumed that there was no net transport of PCL in the cilia sublayer, a prop-
erty our model is designed to test, they only took into account steady motion of the
PCL, whereas oscillatory motion may prove important for mixing effects (Matsui
et al., 1998), and assumed that there was a layer of PCL between the top of the
cilia sublayer and the mucous layer, whereas micrographs taken by Puchelle et al.
(1998) appear to show the cilia penetrating the mucus.

3. The traction layer model

Motivated by the need to understand the salt–fluid controversy, Barlow (2000) de-
veloped a simple Newtonian traction layer model of muco-ciliary transport which
formed a starting point for the more detailed model described in this work. We
treat the ASL as three fluid layers separated by flat interfaces at y = h and y = L,
as shown in Fig. 2. This assumption seems reasonable if we examine the micro-
graphs of Sanderson and Sleigh (1981), in which the mucus–PCL interface is shown
to be remarkably flat, even when there are large undulations in the epithelium—
which are not present in the experiments of Matsui et al. (1998). The parameter h
is the depth of the PCL, L is the length of the cilia, H is the depth of the ASL. In
this paper we consider a two-dimensional model of the ASL, as shown in Fig. 2.
We refer to the direction of transport, the x1 direction, as the x or the ‘horizontal’
direction. We refer to the direction normal to the epithelium, the x3 direction, as
the y or the ‘vertical’ direction.

The lower layer 0 < y < h, representing the PCL, is modelled by a Newtonian
fluid of viscosity µP. We take µP = 0.001 N m−2 s, as for water. The traction layer
region h < y < L, representing the region in which the cilia penetrate the mucus, is
modelled by a Maxwell viscoelastic fluid with viscosity µM1 and relaxation time λ1.
The upper layer L < y < H, representing the mucus above the penetration region,
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Fig. 2 Diagram of the three-layer model. Newtonian PCL, viscosity µP, depth h. Traction layer,
viscosity µM1, elasticity λ1, depth L− h. Mucus layer, viscosity µM2, elasticity λ1, depth H − L.

is modelled by a Maxwell fluid of viscosity µM2 and the same relaxation time λ1.
In general, µM1 < µM2 because mucus is shear thinning and the shear forces in
the traction layer will be larger than above the traction layer. We shall discuss the
values of these parameters in Section 5.

The parameter h will be approximately 5 µm, L will be about 5–6 µm, and H −
L, depending on the thickness of the upper mucous layer, may vary from just 0 to
2 µm, corresponding to the terminal bronchii, up to an average of 15 µm, or more
in pathological conditions or in the trachea. The mucous layer is still thicker in the
pharynx and nasal passage, but we shall not be concerned with these regions (data
from ICRP, 1994).

Through momentum balance, one can derive the following form of the Navier–
Stokes momentum equations:

σ jk,k + f j = ρ
Du j

Dt
, (1)

where σ jk is the stress tensor, f j the body force (force per unit volume) on the fluid
representing the action of the cilia, ρ the density and u j the fluid velocity, with
summation over repeated indices and the comma denoting differentiation with
respect to the following index. D/Dt represents the convective derivative ∂/∂t +
ui∂/∂xi .

From the parameters given in ICRP (1994), we take scalings U = 40 ×
10−6 m s−1 for velocity, L = 6 × 10−6 m for length, ρ = 1000 kg m−3 for den-
sity and µ = µP = 0.001 Nm−2s for viscosity. The Reynolds number ρUL/µ is
approximately 2 × 10−4, so we neglect the convective term. In addition, the
nondimensional parameter σρL2/µ will be of the order of 2 × 10−3 since the fre-
quency σ will be of the order of 60 rad s−1, so we neglect the time-dependent term
∂u j/∂t and obtain

σ jk,k + f j = 0, (2)
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in dimensional variables. In addition to this, we require the equation of mass con-
servation. For an incompressible fluid this is

u j, j = 0. (3)

Given appropriate boundary conditions and expressions for the force, we shall
solve Eqs. (2) and (3) in the three fluid layers.

4. Modelling the volume force exerted by the cilia

As discussed above, we write the force on the fluid as the sum of a propulsive force
in the traction layer and a resistive force in the PCL, f = fprop + fres. Gravity is ne-
glected in this model, since except for diseased lungs with greatly thickened mu-
cous its effect is negligible (Blake, 1975b). It may be argued that the cilia will have
a propulsive effect due to beat cycle asymmetry, as in micro-organism movement.
However, the beat cycle asymmetry is far less pronounced in the muco-ciliary sys-
tem (Sanderson and Sleigh, 1981) and the propulsive effect due to the cilia engag-
ing with the highly viscous mucous layer will be an order of magnitude greater than
that in the PCL. Indeed Matsui et al. (1998) showed that in the absence of a mucus
layer, transport was slowed to less than 20%.

As mentioned above, we make the assumption that the mucus–PCL interface is
flat throughout the beat cycle. The reasons for this are further discussed in detail
in Sections 8.4 and 8.5. A consequence of this assumption is that positive propul-
sion necessitates penetration of the mucous layer by the cilia tips. In reality it may
be possible for cilia to exert force on the mucus by ‘pushing up’ the mucous layer,
without actually penetrating it. For all results shown in this paper, however, we
assume that ‘penetration’ takes place. Certainly, the micrographs of Sanderson
and Sleigh appear to show a nearly flat mucus–PCL interface. In addition, micro-
graphs taken by Puchelle et al. (1998) appear to show the cilia penetrating the
mucus.

4.1. The effect of the mat of cilia in the PCL—an active porous medium

The dense mat of cilia will resist the flow of fluid, somewhat like a porous medium.
In addition, the cilia oscillate, so that the fluid close to the surface of a cilium will
move with similar velocity as of the cilium. The combined effect is that the mat of
cilia will reduce the transport of PCL, but cause significant oscillations throughout
the layer. The resistive force will be assumed to act only in the PCL. This is because
the cilia only penetrate the mucus for a very short portion of the cycle—at any one
time, most of the volume of the mucus in the thin penetration layer will contain no
cilia.

In modelling a porous medium, one can write the resistive force as being pro-
portional to the fluid velocity, i.e. fres(x, y, t) = −γ u, where γ is a coefficient of
resistance. For our problem, the cilia are in motion, so we consider the relative
motion of the fluid and the field of cilia at each point in space, so that the resistive
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force is given by

fres(x, y, t) = −γ (u − ucilia), 0 < y < h, (4)

following Blake (1975a).
The cilia will have both a horizontal and vertical component to their motion, and

in addition the porous medium will be anisotropic—the array of cilia will have a
different resistance coefficient in the x and y directions. For this problem, we use

γx = 4πµ
(
log(d/r0) − (1/2)

(
d4 − r4

0

)
/
(
d4 + r4

0

))
d2

, (5)

γy = 8πµ
(
4r2

0 − r4
0 /d2 − 3d2 + 4d2 log(d/r0)

) ,

which are the coefficients for a concentrated array of circular cylinders aligned re-
spectively perpendicular and parallel to the flow. The parameter d is the spacing
of the cilia, r0 the radius of a cilium, log denotes the natural logarithm. This was
derived in Happel (1959), and was found by Happel to compare well with experi-
mental data. The resistance coefficients are proportional to the fluid viscosity. We
use γ P

x , γ P
y to denote the resistance coefficients in the PCL, determined from µP,

γ M1
x , γ M1

y to denote the resistance coefficients in the mucus, determined from µM1.
The latter will be necessary when considering propulsive effects in the traction
layer.

One might anticipate that the precise values of γ P
x , γ P

y will not be be particularly
important, since throughout most of the PCL, they will be large enough so that
asymptotically, u ∼ ucilia. This approximation was exploited in Blake (1975a) and
Blake (1977), in which the motion of the cilia was more accurately represented
so that propulsion due to beat cycle asymmetry, as is observed in micro-organisms,
could be modelled. However, the existence of large pressure gradients in the muco-
ciliary system may mean that the assumption u ∼ ucilia may not be appropriate
here. We shall see later that this is the case.

We require ucilia as a function of (x, y, t)—we suggest a simplified Fourier se-
ries model that captures all of the important aspects of the beat cycle—periodicity,
an effective stroke lasting only 20% of the duration of the total period and ve-
locity increasing linearly with distance from the epithelium. Of course we require∫ T

0 ucilia dt = 0, i.e. there is no net movement of any point of the cilium over a beat
cycle. Hence, we use the following representation for the horizontal and vertical
components of the cilium velocity:

ucilia(x, y, t) = νyσC(kx + σ t) = νyσ

(
N0∑

n=1

cn cos[(kx + σ t)n]

)

, (6)

vcilia(x, y, t) = νyσ D(kx + σ t) = νyσ

(
N0∑

n=1

dn sin[(kx + σ t)n]

)

.
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Fig. 3 Horizontal and vertical cilium tip velocity-idealised representation. See text for further
details.

The parameter k is the wavenumber 2π/λ, where λ is the wavelength, σ is the
cilia beat frequency in radians per second, ν is the duration of the cilia beat as a
fraction of the duration of the effective stroke. The functions C and D are shown in
Fig. 3. To obtain the Fourier series coefficients, we Fourier analysed the functions
C and D shown in Fig. 3, which provide a reasonable model of the velocity of
the cilium, using the idea that it is approximately a pendulum moving through an
arc of π/3 rad, with the effective stroke five times faster than the recovery stroke.
The period denoted 1 represents the cilium beating forwards during the first half
of the effective stroke, the cilium tip moving upwards into the mucus. Hence, the
horizontal velocity is positive, the vertical velocity is positive, although falls to zero
as the cilium tip approaches its apex. The period denoted 2 represents the cilium tip
during the second half of the effective stroke, during which the cilium tip continues
to beat forward, but now has negative vertical velocity until it reaches the end of
the effective stroke and stops. A satisfactory representation is given by taking the
first four and seven terms of the Fourier series respectively, as shown in Fig. 4.
For this paper, in which we require N0 = 15 terms for the solution, we set c5 =
· · · = c15 = 0 = d8 = · · · = d15. The values of the Fourier coefficients are given in
Appendix A.

The cilium moves through an angle of about π/3 rad in one-fifth of the
beat cycle, its tip covering a distance of Lπ/3. Assuming an angular fre-
quency of 60 rad s−1, the duration of the effective stroke is 2π/(60 × 5) s. The
velocity of the cilium tip during the effective stroke is therefore approxima-
tely

νLσ = Lπ/3
2π/(60 × 5)

= 5σ L
6

, (7)

so ν = 5/6. We assume that the vertical component of the velocity varies between
0 and 0.5 sin(π/6) of that of the horizontal velocity.
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Fig. 4 Horizontal and vertical cilium tip velocity-dimensional Fourier series, with parame-
ters L = 6 µm, k = 2π/30 µm−1, σ = 60 rad s−1, using four and seven terms respectively in the
Fourier expansion as discussed in text.

4.2. Traction layer force

A similar idea to that described above can be used to model the propulsive force
produced by the cilia penetrating the mucous layer. At the level of the interface,
where there will be many cilia bodies in the mucous layer, we apply the porous
medium model and write the force as fprop = ( fprop, 0, gprop), where

fprop(x, y = h, t) =
(

1
2

f0 +
N1∑

n=1

fn cos[(kx + σ t)n]

)

γ M1
x (u − ucilia), (8)

gprop(x, y = h, t) =
(

N1∑

n=1

gn sin[(kx + σ t)n]

)

γ M1
y (v − vcilia).

γ M1
x γ M1

y are resistance coefficients such as those chosen in the last section, and we
choose N1 = 15.

For mathematical simplicity, we simplify the interaction velocities (u − ucilia)
and (v − vcilia) by the constants −Uint and −Vint, making the assumption that they
do not vary greatly with x or t in this small region. These constants are determined
from an initial estimate and upper and lower bounds, using an iterative procedure.
This is explained in more detail in Section 10.

At a level between y = h and y = L fewer cilia will be present, at any point
in time, since the cilium tip only reaches the top of the traction layer for a brief
fraction of the cycle. Above y = L, there will be no cilia at all. The viscous coupling
between the cilia and the mucus is therefore much weaker. Hence, we assume that
the force exerted by the cilia on the mucus falls monotonically to zero between
y = h and y = L. Modelling this variation by the function sin(πy/L)/ sin(πh/L)
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we have

fprop(x, y, t) = −
(

1
2

f0 +
N1∑

n=1

fn cos[(kx + σ t)n]

)

γ M1
x Uint

sin(πy/L)
sin(πh/L)

, (9)

gprop(x, y, t) = −
(

N1∑

n=1

gn sin[(kx + σ t)n]

)

γ M1
y Vint

sin(πy/L)
sin(πh/L)

.

We have investigated a model with the function sin(πy/L)/ sin(πh/L) replaced by
a linear function, and the results are very similar.

This approach to modelling the force is not ideal, since in reality there will be
complex interactions between the tips of the penetrating cilia and the mucus–PCL
interface. The interface will not be a smooth, flat surface: it will deform in response
to the penetration of the cilia. There may be surface forces, and there may be
molecular level interactions between the ‘crown’ on the tip of the cilium (Puchelle
et al., 1987) and the mucus polymer network. We essentially model the inter-
face as moving closely with the penetrating cilia tips, then make a phenomenolog-
ical estimate for the force in the rest of the traction layer.

The Fourier coefficients fn are chosen by Fourier–analysing the functions F and
G as depicted in Fig. 5. The function F represents positive propulsion for one-
fifth of the beat-cycle—based on the data of Sanderson and Sleigh (1981)—rising
linearly to a maximum value, then falling linearly back to zero. The function G
scales with the vertical velocity of the cilium. Visualising the cilium beat as a simple
pendular motion, we see that at the apex of the stroke, the vertical velocity is zero.
In front of this point, the velocity is positive, as the cilium tip is moving up, behind
this point, the velocity is negative, as the cilium tip is moving downwards. The
values of the coefficients fn, gn can be found in Appendix A, graphs of the Fourier
series representations are given in Fig. 6. We shall see that the final results also
exhibit this sharp oscillation.

We have assumed that there is no variation in the force in the direction perpen-
dicular to the effective stroke (in Fig. 2 this is the direction into the page), which is

Fig. 5 Plots of the functions F and G, the idealised representations of the variations of the hori-
zontal and vertical propulsive force in x and t .
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Fig. 6 Fourier series representations 0.5 f0 + ∑15
n=1 fn cos(ξ),

∑15
n=1 gn sin(ξ), for F(ξ), G(ξ).

0 < ξ < 2π .

not strictly true—in fact we have averaged over the row of cilia which we assume
to be in phase. Progress towards a three-dimensional model of the flow patterns in
the PCL is currently being made (Smith, 2006).

5. Constitutive relations

The next step in solving (2) is to determine relations between stress and strain. We
shall consider the Newtonian PCL and non-Newtonian mucus separately.

5.1. Periciliary layer

Modelling the PCL as a Newtonian fluid, we have simply

τ jk = 2µPdjk. (10)

τ jk is the deviatoric part of the stress tensor, so that σ jk = −pδ jk + τ jk. djk is the
rate of strain tensor (1/2)(u j,k + uk, j ) where commas denote differentiation.

5.2. Mucous layer

Mucus is a complex polymer gel which exhibits, amongst other behaviours, shear-
thinning, viscoelasticity, spinnability and adhesiveness (Puchelle et al., 1987). A
detailed review of the composition, molecular structure and rheologic properties
of mucus may be found in Sleigh et al. (1988). There exists a plethora of experi-
mental results, with varying applicability to the in vivo system, due to differing ex-
perimental methods, mucus collection and storage techniques and variation within
and between individuals. It is also difficult to obtain uncontaminated and undis-
turbed mucus from the respiratory tract. Nor it is straightforward to determine
how experiments should be interpreted, since only a rather complex rheological
model—like that in Quemada (1984)—could be fitted to a whole spectrum of ex-
perimental results. In addition, it seems likely that, due to the varying strain rates,
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the rheological properties throughout the volume of the mucus are non-uniform
with, for instance, lower viscosity near the zone of ciliary penetration. It will be
necessary to find a constitutive equation with an appropriate choice of parame-
ters that provides a good representation of the relevant properties of mucus in the
muco-ciliary system.

Previous experimental studies have concluded that viscoelasticity is one of the
most crucial elements of the system for effective transport to occur. Meyer and
Silberberg (1980) discuss how ‘. . . during the very brief period of the power stroke
. . . the mucous layer must react elastically, i.e. with minimum relative slip. Then,
over the beginning of the recovery stroke, a period of sufficient length must again
be granted for the cilium to release itself from the contact of the mucus . . . .’ Hence,
we model mucus with an elastic component which allows it to deform and then
recoil in response to penetration. For analytic simplicity we choose the Maxwell
constitutive equation

λ1
δτ jk

δt
+ τ jk = 2µMdjk, (11)

with a single relaxation time λ1 and a steady flow viscosity µM. δ/δt is a time deriva-
tive which is invariant under change of coordinates.

If we assume that penetration of the cilia into the mucus is small, we can make
the linearisation

λ1
∂τ jk

∂t
+ τ jk = 2µMdjk. (12)

In fact, mucus will possess a spectrum of relaxation mechanisms up to possibly 60 s,
due to varying lengths of polymer chains and different mechanisms by which the
molecular network can deform (Silberberg, 1983). A more complete model would
involve a number of Maxwell elements, but since we shall restrict our attention to
very short-lived deformations, we argue that one mechanism will provide a good
representation. This model does not entail behaviours such as shear thinning and
so we shall have to choose viscosity values appropriate to the shear stresses ob-
served in the muco-ciliary system.

Three different classes of experiments have been performed on mucus samples:
steady shearing tests, creep tests and oscillatory tests. Steady shearing tests do not
represent the dynamic conditions found in the lung, and permanently destroy the
structure of the mucus sample (Davis and Dippy, 1969; Reid, 1973). Creep tests
give information on the time-dependent response of mucus, but are less suitable
for short timescale behaviour (Fung, 1993). Oscillatory testing provides the most
useful information. Two constants are found: G′, the storage modulus (associated
with elasticity) and G′′, the loss modulus (associated with viscosity). Fung (1993)
describes how these constants can be related to our constitutive equation. The
strain on the mucus will be of the form γ = γ0eiωt . For small oscillations the stress
will respond sinusoidally, with a phase difference δ: τ = τ0ei(ωt+δ). Then G∗ = G′ +
iG′′ := τ/γ . Noting that τ̇ = iωτ and γ̇ = iωγ we can substitute into Maxwell’s
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constitutive equation to show that

G′ = µMω2λ1

1 + ω2λ2
1

, G′′ = µMω

1 + ω2λ2
1

. (13)

As discussed above, a set of values for G′ and G′′ measured over a wide rage
of ω will lead to a widely varying set of values for µM and λ1. We cannot fit
the simple Maxwell model to a range of real experimental results. However, if
we choose a characteristic frequency of the system, 5–10 Hz, we can find appro-
priate values for µM and λ1. In this study, we use the results published by Lutz
et al. (1973) for canine tracheal mucus. At the frequency of 7.2497 Hz they re-
ported values of G′ = 1 Pa and G′′ = 0.64491 Pa, which correspond to the param-
eters λ = 0.034 s−1 and µM = 0.0482 N m−2 s. Since µP ≈ µwater ≈ 0.001 N m−2 s,
we have µM/µwater = 48.2.

6. Fourier series solution

Due to the periodicity of the ciliary beat, the force terms that drive the system are
periodic. In addition, since we are testing the hypotonic defensin (impermeable
epithelium) hypothesis, we take the boundary conditions on the epithelium to be
constant, u = 0. Neglecting airflows, the boundary conditions on the surface will
also be homogeneous. Finally, we neglect any steady pressure gradient, because
in the circular transport experiments of Matsui et al. (1998), no such pressure gra-
dients could have been present, due to the fact that any such pressure must be
continuous moving around one complete circle. Hence, we assume that the solu-
tion u, p is periodic.

Writing all variables as Fourier series we have for example,

τ jk = (τ jk)0

2
+

N∑

n=1

(τ jk)n, (14)

where for n ≥ 1, (τ jk)n = an(y) cos[n(kx + σ t)] + bn(y) sin[n(kx + σ t)], so that
each (τ jk)n is 2π/kn-periodic in x + σ t/2π . The term (τ jk)0 is independent of both
x and t . k is the wavenumber of the metachronal wave, 2π/λ, where λ is the wave-
length.

It is then possible to equate terms with periodicity in 2π/kn (and the terms con-
stant in x and t). By writing (τ jk)n = Rl{(τ̂ jk)neinσ t } (hats being used with other
variables analogously, Rl denoting real part) we convert from the ‘time domain’
to the ‘frequency domain,’ in which the independent variable t is replaced by the
frequency nσ . This results in a linear constitutive equation:

Rl{λ1inσ (τ̂ jk)neinσ t } + Rl{(τ̂ jk)neinσ t } = 2µMRl{(d̂jk)neinσ t }, (15)
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which leads to

(τ̂ jk)n = 2µM

1 + inσλ1
(d̂jk)n = 2µM

φn + iψn
(d̂jk)n, (16)

where φn = 1, ψn = nσλ1.
For the steady term (n = 0), we have the Newtonian constitutive equation

(τ̂ jk)0 = 2µM(d̂jk)0. (17)

7. Fluid flow equations

The subscripts are omitted in what follows, so that for instance un is written as u.

7.1. Steady terms (n = 0)

In all three layers we have the Newtonian constitutive equations τ̂ jk = 2µd̂jk, for
µP, µM1, µM2. This leads, with Eq. (2), to the familiar Stokes flow equations:

∇ p̂ = µ∇2û + f̂. (18)

Using the fact that p̂, û are constant in x1, we have

0 = µû1,33 + f̂1, (19)

p̂,3 = µû3,33 + f̂3.

We shall see later that the vertical pressure gradient will also be zero.

7.2. Unsteady terms (n � 1)

The transformed momentum equations are

−p̂,1 + τ̂11,1 + τ̂13,3 + f̂1 = 0, (20)

τ̂31,1 + τ̂33,3 − p̂,3 + f̂3 = 0.

In the mucous layers, the stress is given by Eq. (16), so

−p̂,1 + 2µM(φ + iψ)−1(d̂11,1 + d̂13,3) + f̂1 = 0, (21)

2µM(φ + iψ)−1(d̂31,1 + d̂33,3) − p̂,3 + f̂3 = 0.
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Using the continuity equation this simplifies to, in vector notation

∇ p̂ = µM

φ + iψ
∇2û + f̂, (22)

which we recognise as the Stokes flow momentum equation with complex viscosity
µM/(φ + iψ). Similarly, in the PCL we have

∇ p̂ = µP ∇2û + f̂. (23)

7.3. Force terms

To simplify the notation we replace u1, u3, x1, x3, f1 and f3 with u, v, x, y, f and
g, respectively. As before, we omit subscripts to denote the term in the Fourier
series for the force, velocity and pressure. In the PCL the force terms are, for
n � 0,

f = −γ P
x (u − νyσcn cos((kx + σ t)n),

g = −γ P
y (v − νyσdn sin((kx + σ t)n). (24)

Writing u = Rl{(ǔr + iǔi)ein(kx+σ t)}, and similarly for other variables we have

f̌ r = −γ P
x (ǔr − νyσcn), f̌ i = −γ P

x ǔi,

ǧi = −γ P
y (v̌i + νyσdn), ǧr = −γ P

y v̌r, 0 < y < h. (25)

In the traction layer the force terms are

f̌ r = −Uintγ
M1
x fn

sin(πy/L)
sin(πh/L)

, f̌ i = 0,

ǧi = Vintγ
M1
y gn

sin(πy/L)
sin(πh/L)

, ǧr = 0 (h < y < L). (26)

8. Field equations and boundary conditions

8.1. Field equations in the PCL

We nondimensionalise as follows: x = λx′, y = Ly′, u = σ Lu′, v = (σ L2/λ)v′, p =
PP p′, f = (µPσ/L) f ′. The scaling for v ensures that the continuity equation is
balanced. For convenience we omit the primes. We shall also use h and H to rep-
resent the nondimensional parameters h/L and H/L. The terms û, p̂ are now 1/n-
periodic in 2πx. In addition, we write θ1 and θ2 for the viscosity ratios µM1/µP and
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µM2/µM1, respectively. Then for n = 0,

0 = σµP

L
d2û
dy2

+ µPσ

L
f̂ ,

PP

L
d p̂
dy

= σ

λ
µP d2v̂

dy2
+ µPσ

L
ĝ, (27)

and for n � 1,

PP

λ

∂ p̂
∂x

= σ LµP
(

1
λ2

∂2û
∂x2

+ 1
L2

∂2û
∂y2

)
+ µPσ

L
f̂ ,

PP

L
∂ p̂
∂y

= σ L2

λ
µP

(
1
λ2

∂2v̂

∂x2
+ 1

L2

∂2v̂

∂y2

)
+ µPσ

L
ĝ. (28)

For n = 0, ∂û/∂x = 0, so by the continuity equation ∂v̂/∂y = 0. As discussed
above, v̂ = 0 on y = 0 so v̂ ≡ 0 for all y. Since the zeroth term of the vertical force
ĝ = 0, the second equation is then simply ∂ p̂/∂y = 0, and so the pressure is con-
stant. Hence

0 = d2û
dy2

+ f̂ . (29)

For n � 1, in order to balance the first equation we choose the pressure scaling
PP = µPσλ/L. Hence

∂ p̂
∂x

= L2

λ2

∂2û
∂x2

+ ∂2û
∂y2

+ f̂ , (30)

∂ p̂
∂y

= L4

λ4

∂2v̂

∂x2
+ L2

λ2

∂2v̂

∂y2
+ L

λ
ĝ. (31)

It may appear that it is possible to apply lubrication theory, by noting that
L2/λ2 	 1. However, the Fourier series representation of u means that û = (ǔr +
iǔi)e2πnxi, so that ∂2û/∂x2 = −4π2n2û. Using this representation, we can rewrite
the real and imaginary parts of the n � 1 equations as

−2πnp̌i = −χ2ûr + d2ǔr

dy2
+ f̌ r,

2πnp̌r = −χ2ûi + d2ǔi

dy2
+ f̌ i,

d p̌r

dy
= −χ2ε2v̌r + ε2 d2v̌r

dy2
+ εǧr ,

d p̌i

dy
= −χ2ε2v̌i + ε2 d2v̌i

dy2
+ εǧi, (32)
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where ε = L/λ and χ = 2πnε. Using the scaling µPσ/L for the force terms and
using Eq. (25), we have for n = 0,

0 = d2ǔr,i

dy2
− α2

xǔr,i, (33)

and for n � 1,

− 2πnp̌i = −β2
x ǔr + d2ǔr

dy2
+ νycnα

2
x,

2πnp̌r = −β2
x ǔi + d2ǔi

dy2
,

d p̌r y = −β2
yε

2v̌r + ε2 d2ǔr

dy2
,

d p̌i y = −β2
yε

2v̌i + ε2 d2ǔi

dy2
− ενydnα

2
y, (34)

where the resistance parameters are defined as α2
x = γ P

x L2/µP, α2
y = γ P

y L2/µP,
β2

x = χ2 + α2
x , β2

y = χ2 + α2
y. Note that αx, αy are independent of the value of the

viscosity, and so also apply in the mucous layer.

8.2. Field equations in the mucus

After nondimensionalising we have for n = 0,

0 = σµM

L
d2û
dy2

+ µMσ

L
f̂ ,

PM

L
d p̂
dy

= σµM

λ

d2v̂

dy2
+ µMσ

L
ĝ, (35)

and for n � 1,

PM

λ

∂ p̂
∂x

= σ LµM

φ + iψ

(−4π2n2

λ2
û + 1

L2

∂2û
∂y2

)
+ µMσ

L
f̂ ,

PM

L
∂ p̂
∂y

= σ L2µM

λ(φ + iψ)

(−4π2n2

λ2
v̂ + 1

L2

∂2v̂

∂y2

)
+ µMσ

L
ĝ. (36)

As before, for n = 0, v̂ ≡ 0 so the velocity can be found from Eq. (29). For
n � 1, in order to balance the first equation we choose the pressure scaling PM =
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µMσλ/(L[φ + iψ]), so

∂ p̂
∂x

=
(−4π2n2 L2

λ2
û + ∂2û

∂y2

)
+ (φ + iψ) f̂ ,

∂ p̂
∂y

=
(−4π2n2 L4

λ4
v̂ + L2

λ2

∂2v̂

∂y2

)
+ L(φ + iψ)

λ
ĝ. (37)

For n = 0, p̂ is constant, which may be taken to be zero, so that the first equation is
solved to give û, then the continuity equation gives v̂ ≡ 0. Decomposing variables
as previously we note that in terms of nondimensional variables,

f̌ r = − L
µM1σ

σ LUint fnγ
M1
x

sin(πy)
sin(πh)

, f̌ i = 0,

ǧi = L
µM1σ

σ L2

λ
Vintgnγ

M1
y

sin(πy)
sin(πh)

, ǧr = 0. (38)

Hence we have, in the traction layer h < y < 1 for n = 0,

0 = d2ǔr

dy2
− f0α

2
xUint

sin(πy)
sin(πh)

, 0 = d2ǔi

dy2
(n = 0) (39)

and for n ≥ 1,

−2πnp̌i = −χ2ǔr + d2ǔr

dy2
− φ fnα

2
xUint

sin(πy)
sin(πh)

,

2πnp̌r = −χ2ǔi + d2ǔi

dy2
− ψ fnα

2
xUint

sin(πy)
sin(πh)

,

d p̌r y = −χ2ε2v̌r + ε2 d2v̌r

dy2
− εψgnα

2
yVint

sin(πy)
sin(πh)

,

d p̌i y = −χ2ε2v̌i + ε2 d2v̌i

dy2
+ εφgnα

2
yVint

sin(πy)
sin(πh)

(n � 1) (40)

In the force-free mucous layer 1 < y < H, the fluid flow equations are given by
replacing fn, gn with zero in Eqs. (39) and (40)

8.3. Continuity equation

The continuity equation takes the same form in all three layers. As discussed
above, for n = 0, ∂u/∂x = 0, so v ≡ 0. For n � 1

−2πnǔi + dv̌r

dy
= 0, 2πnǔr + dv̌i

dy
= 0. (41)
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To solve the system it will be convenient to differentiate these equations with re-
spect to y,

−2πn
dǔi

dy
+ d2v̌r

dy2
= 0, 2πn

dǔr

dy
+ d2v̌i

dy2
= 0. (42)

If we impose these conditions in each layer, along with the original mass conser-
vation equation on a boundary and the interfaces, mass conservation will hold
throughout the fluid.

8.4. Surface and interface tension

Surface tension forces will act on the mucus–air interface, and possibly at the
interface between the mucus and PCL. By considering the surface as η = H +
ε cos(kx + σ t) and approximating the curvature as |ηxx| = O(4π2ε/λ2), and by ap-
proximating the surface stress as |µηt/L| = O(µεσ/L), we have the following es-
timate for the capillary number, the ratio of the magnitudes of surface tension to
viscous forces,

C = O
(

λ2µM2σ

4π2T L

)
. (43)

This is similar to the dimensionless number found by Ross (1971), only with an
additional factor of 4π2.

Albers et al. (1996) determined values of surface tension of sputum for patients
with cystic fibrosis and chronic bronchitis, comparing two different methods. The
means for each condition and each method lay between 72 and 93 dyne cm−1, so
we estimate mucus surface tension by 80 dyne cm−1, or 0.08N m−1 in SI units. Us-
ing the formula of Ross with the additional factor of 4π2, and parameters in SI
units, T = 0.08, L = 6 × 10−6, λ = 3 × 10−5, µM2 = 0.0482 and σ = 60 we have
C = 1/7300. This shows that surface tension forces will flatten the surface on a
timescale much shorter than the ciliary beat duration, and explains why in the
micrographs of Sanderson and Sleigh (1981), the mucus surface is remarkably flat,
despite the rapid oscillations in velocity below. It is therefore reasonable to assume
that surface tension flattens both the mucus surface and the mucus–PCL interface
on a timescale much faster than the ciliary beat. We shall take the mucus–PCL
interface to be a flat surface given by y = h and the mucus surface to be given
by y = H. The system will be solved with boundary conditions of zero normal ve-
locity. This is discussed briefly in Sections 11.4 and 11.6. Future modelling may
address the effect of small perturbations to the interface and surface, and the in-
teraction between such instabilities and the viscoelastic properties of the fluid.

8.5. Traction layer mucus–PCL interface

Because we do not explicitly model the action of interface tension, it is not possible
to calculate the normal stress balance on the interface. Instead we use the bound-
ary condition of zero vertical velocity. Together with continuity of tangential stress
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we have, in tensor notation

τP
13 = τM1

13 , uM1
3 = 0. (44)

Making the transformation to the frequency domain this becomes

µP(
ûP

1,3 + ûP
3,1

) = µM1(ûM
1,3 + ûM

3,1

)
, ûM1

3 = 0 (n = 0),

µP(
ûP

1,3 + ûP
3,1

) = µM1(φn + iψn)−1(ûM
1,3 + ûM

3,1

)
, ûM1

3 = 0 (n � 1). (45)

Nondimensionalising we have

(
ûP

1,3 + ε2ûP
3,1

) = θ1
(
ûM1

1,3 + ε2ûM1
3,1

)
, ûM1

3 = 0 (n = 0),

(φ + iψ)
(
ûP

1,3 + ε2ûP
3,1

) = θ1
(
ûM1

1,3 + ε2ûM1
3,1

)
, ûM1

3 = 0 (n � 1). (46)

As discussed above, for n = 0, û3 = 0 and p̂ = 0. Noting that ∂v̂/∂x = 2πniv̂, and
writing u1 = u, u3 = v as above,

∂ ûP

∂y
= θ1

∂ ûM1

∂y
, (47)

and for n � 1,

(φ + iψ)
(

∂ ûP

∂y
+ 2πniε2v̂P

)
= θ1

(
∂ ûM1

∂y
+ 2πniε2v̂M1

)
, v̂M1 = 0. (48)

There is now only one matching condition for n = 0, which is appropriate since
the vertical component of the momentum equation is trivially satisfied. By taking
real and imaginary parts,

dǔr,i P

dy
= θ1

dǔr,i M1

dy
, (49)

and for n � 1,

φ

θ1

dǔr P

dy
− ψ

θ1

dǔi P

dy
− 2πnε2

θ1

(
φv̌i P + ψv̌r P) = dǔr M1

dy
− 2πnε2v̌i M1,

φ

θ1

dǔi P

dy
+ ψ

θ1

dǔr P

dy
+ 2πnε2

θ1

(
φv̌r P − ψv̌i P) = dǔi M1

dy
+ 2πnε2v̌r M1,

v̌r M1 = 0,

v̌i M1 = 0. (50)
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8.6. Upper mucus–traction layer interface

In this section we examine the ‘interface’ at y = 1 between the shear thinned trac-
tion layer subject to the propulsive force of the cilia, and the upper mucous layer
free from volume forces. We assume that there is no interface tension acting since
the mucus is essentially one fluid. This leaves us to consider continuity of both
tangential and normal stress,

τM1
13 = τM2

13 , −pM1 + τM1
33 = −pM2 + τM2

33 . (51)

We nondimensionalise with pressure scalings PM1 = µM1σλ/([φ + iψ]L) and
PM2 = µM2σλ/([φ + iψ]L). Taking real and imaginary parts for n = 0,

dǔr M1

dy
= θ2

dǔr M2

dy
,

dǔi M1

dy
= θ2

dǔi M2

dy
, (52)

and for n � 1,

dǔr M1

dy
− 2πnε2v̌i M1 = θ2

(
dǔr M2

dy
− 2πnε2v̌i M2

)
,

dǔi M1

dy
+ 2πnε2v̌r M1 = θ2

(
dǔi M2

dy
+ 2πnε2v̌r M2

)
, (53)

− p̌r M1 + 2ε2 dv̌r M1

dy
= −θ2 p̌r M2 + 2θ2ε

2 dv̌r M2

dy
,

− p̌i M1 + 2ε2 dv̌i M1

dy
= −θ2 p̌i M2 + 2θ2ε

2 dv̌i M2

dy
. (54)

8.7. The mucus free surface

Neglecting the viscosity of air, supposing that the air pressure is constant, and mak-
ing the assumption that the mucus surface is flat, we have for the tangential stress
σ1knk = 0 where n = (0, 0, 1). As for the mucus–PCL interface we replace the nor-
mal stress balance with the condition that the vertical velocity is zero. The condi-
tions are therefore

τM2
13 = 0, ûM2

3 = 0. (55)

These are transformed into, for n = 0,

µM2(ûM2
1,3 + ûM2

3,1

) = 0, ûM2
3 = 0, (56)



310 Bulletin of Mathematical Biology (2007) 69: 289–327

and for n � 1,

µM2

φ + iψ

(
ûM2

1,3 + ûM2
3,1

) = 0, ûM2
3 = 0. (57)

Nondimensionalising as above and taking real and imaginary parts, for n = 0

dǔr M2

dy
= 0,

dǔi M2

dy
= 0, (58)

and for n � 1,

dǔr M2

dy
− 2πnε2v̌i M2 = 0,

dǔi M2

dy
+ 2πnε2v̌r M2 = 0,

v̌r M2 = 0, v̌i M2 = 0. (59)

8.8. No-slip conditions

As discussed above, we assume that there is no flow through the epithelium, so that
v = 0 on y = 0 for all n. In addition, for viscous flow we have the no-slip boundary
condition u = 0 on the solid interface at y = 0.

Finally, the fluid velocity will be continuous across the boundaries, so that
uP = uM1, vP = vM1 on y = h and uM1 = uM2, vM1 = vM2 on y = 1. For n = 0 we
have six variables, ǔr P, ǔi P, ǔr M1, ǔi M1, ǔr M2, ǔi M2, six second-order ODEs from
the u component of the momentum equations, and 12 boundary and matching
conditions. The ODEs are linear with constant coefficients and so can be solved
analytically.

For n � 1 we have additionally v̌r P, v̌i P, v̌r M1, v̌i M1, v̌r M2, v̌i M2, p̌r P, p̌i P, p̌r M1,
p̌i M1, p̌r M2, p̌i M2, a total of 18 variables. By counting the first derivatives of the ve-
locity terms as variables, we have a total of 30. There are 12 momentum equations,
given in Sections 8.1 and 8.2, and 6 equations following from mass conservation,
given in Section 8.3. Using the first derivatives of the velocity terms, the second or-
der momentum equations can be rewritten as 24 first order ODEs, giving a total of
30. There are 4 no-slip boundary conditions, 8 conditions for continuity of velocity,
12 conditions for continuity of stress, given in Sections 8.5–8.7, and 6 conditions to
enforce conservation of mass, as discussed in Section 8.3. This gives a total of 30
boundary and matching conditions in total, closing the system.

9. Steady flow solution

It is now possible to solve for the steady term of the fluid velocity analytically. It
is easily seen that ǔi = 0 is the solution for the imaginary part of the momentum
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equations. Hence u = ǔr. We have the momentum equations

−α2uP + d2uP

dy2
= 0,

d2uM1

dy2
= α2

xUint f0
sin(πy)
sin(πh)

,

d2uM2

dy2
= 0, (60)

boundary conditions,

uP(y = 0) = 0,
duM2

dy
(y = H) = 0, (61)

and matching conditions,

uP = uM1, µP duP

dy
= µM1 duM1

dy
(y = h),

uM1 = uM2, µM1 duM1

dy
= µM2 duM2

dy
(y = 1). (62)

These are integrated to give the solution

uP = −Uint f0αxθ1(1 + cos(πh)) sinh(αx y)
π sin(πh) cosh(αxh)

,

uM1 = − Uint f0α
2
x

π sin(πh)

{
θ1

α
tanh(αxh)(1 + cos(πh)) + l(y) − l(h)

}
,

uM2 = − Uint f0α
2
x

π sin(πh)

{
θ1

α
tanh(αxh)(1 + cos(πh)) + l(1) − l(h)

}
, (63)

where l(y) = y + sin(πy)/π . The constant Uint is determined in Section 10, and
through this the mean transport depends on the parameters λ1 and θ2. The solution
is very simple in form—throughout the region y > 1, the velocity is constant. In the
penetration region h < y < 1 the velocity is approximately linear. In the region
y < h, the solution is approximately proportional to the exponential eαx(y−h) in a
region of size O(1/αx) near the interface, and very close to zero elsewhere, for
αx 
 1. A solution is shown in Fig. 7(D). Immediately we notice the similarity
between our mean profile and that of Fulford and Blake (1986), as shown in Fig. 1.

Recalling that u = (1/2)u0 + ∑N
n=1 un where the un terms average to zero in

time, for αx 
 1 we have PCL flux

∫ h

0
u dy ∼ −Uint f0θ1(1 + cos(πh))

2π sin(πh)
, (64)
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Fig. 7 Traction layer numerical results: (A) Horizontal velocity profiles at five points along the
wavelength versus distance from epithelium. (B) Vertical velocity profiles at five points along
the wavelength versus distance from epithelium. (C) Horizontal velocity at three different levels
in the ASL, the PCL–mucus interface, the cilia tips y = L and the mucus surface y = H, versus
distance along the wavelength. (D) The mean and peak horizontal velocity versus height above
epithelium. Dimensional parameter values: L = 6 µm, λ = 30 µm, H = 10 µm, h = 5.4 µm, ν =
5/6, σ = 60 rad s−1, λ1 = 0.03 s. Viscosity ratios θ1 = 6, θ2 = 8. Sublayer resistance coefficients
αx = 90, αy = 75.

and mucus flux

∫ H

h
u dy ∼ −Uint f0

2π sin(πh)

{
1
2

(1 − h)(2H − h − 1) + 1 + cos(πh)
π2

− sin(πh)
π

(H − h) + O
(

1
αx

)}
. (65)

Numerical values for the flux are given in Section 11.1
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10. Numerical solution for n�1

To solve the full ODE system we use the NAG library routine D02GAF. De-
tails are given in Appendix B. The constants Uint and Vint are undetermined
in the above. In order for the solution to be self-consistent, we require that
Uint = u − ucilia and Vint = v − vcilia evaluated at y = 0. The condition is imposed
at the apex of the effective stroke, 2πx + σ t = 0. With the assumption that v = 0
at y = h, and the fact that by definition, vcilia = 0 at 2πx + σ t = 0, it follows that
Vint = 0. It remains to determine Uint. To address this we use an iterative procedure
as described next.

An initial estimate of Uint is made, together with upper and lower bounds. The
steady velocity, as calculated in Section 9 is evaluated, then for n = 1, . . . , 15 the
above numerical system is solved. The steady and unsteady terms are summed
to give the horizontal velocity u at the point x = 0.0, y = h, t = 0.0. We evaluate
u − ucilia, and adjust Uint using interval bisection. This is continued until conver-
gence is achieved. For example, with our standard parameter set, we obtained
Uint = −0.026017, u − ucilia = −0.026014. The parameter Uint is hence responsible
for coupling the Fourier modes, and causes the viscoelastic parameter λ1 and the
shear thinning ratio θ2 to influence the mean transport, although they do not ap-
pear explicitly in Eq. (63).

11. Numerical results and discussion

In Fig. 7, we present graphs of the numerical results. The ‘standard’ parameter
set which we use for reference is L = 6 µm, λ = 30 µm, H = 10 µm, h = 5.4 µm,
σ = 60 rad s−1, λ1 = 0.03 s, θ1 = 6, θ2 = 8, αx = 90 and αy = 75. The resistance co-
efficients αx and αy are defined as in Eqs. (34) and (6), and determined from the
parameters d = 0.3 µm for the cilia spacing and r = 0.1 µm for the cilium radius.
Figure 7A shows the horizontal velocity profile at different stages in the beat cy-
cle. Furthest to the right, the profile during the effective stroke is shown. There is
a large forward flow of mucus close to the point of penetration, decaying to a value
less than zero at the top of the mucous layer. In the PCL there is approximately
equal forward and backward flow at the top and bottom of the layer, caused by
the pressure gradient which maintains the interface at a constant height. It may be
surprising that so close to the epithelium, the fluid velocity is relatively large. This
is due to the effect of a large positive pressure gradient acting to maintain conser-
vation of mass in the face of a large shearing motion in the active porous medium.
It should be noted that the velocity is an average in the x2 direction—into the
paper—and that very close to the body of an individual cilium the fluid is likely to
move with a very similar velocity to the cilium. During the recovery stroke, shown
in the remaining four profiles, the mucus velocity is positive, a surprising finding
since the cilia are beating backwards at this time. This is due to the effect of the
pressure gradient in the mucus maintaining a constant forward flux. There is, nev-
ertheless a backward flow of mucus in the traction layer at certain points during
the recovery stroke. There is considerable elastic stretching of the mucous layer,
which is made possible by the Maxwell element in the model.
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Fig. 8 Traction layer numerical results: quiver plot of the velocity field for the ‘standard’ pa-
rameter set L = 6 µm, λ = 30 µm, H = 10 µm, h = 5.4 µm, σ = 60 rad s−1, λ1 = 0.03 s. Viscosity
ratios θ1 = 6, θ2 = 8. Sublayer resistance coefficients αx = 90, αy = 75, sublayer velocity scaling
ν = 5/6.

Figure 7B shows the corresponding vertical velocity profiles. By comparison, the
vertical velocity is relatively small, likely due to the constraining effect of the flat
surface and interface. Figure 7C shows the horizontal velocity at several different
levels in the fluid, showing the predominantly positive mucus velocity at the sur-
face and at y = L, and the large forward and backward oscillations at the level of
the interface. Figure 7D compares the peak velocity at the time of penetration with
the mean flow of mucus. The mean profile is very similar to the Fulford and Blake
(1986) profile, depicted in Fig. 1A.

We also present a ‘quiver plot’ of the velocity field, in Fig. 8. This graph shows
more clearly that the mucus above y = L flows nearly uniformly and steadily
throughout most of the beat cycle, except for the time of penetration. In addition,
this plot shows interesting circulation patterns in the PCL caused by the interac-
tion of the ciliary beat and the pressure gradients. These circulation patterns may
assist in the transfer of particles, for instance pathogens, or tracer particles in the
experiments of Matsui et al. (1998), from the PCL to the mucous layer for efficient
removal.

11.1. PCL and mucus flux results

For the standard parameter set, Uint = −0.026017. From Eq. (64), the nondi-
mensional PCL flux is 7.87 × 10−4, corresponding to a dimensional value of
1.70 µm2 s−1. This compares with a mucus flux of 8.07 × 10−2, corresponding to
a dimensional value of 174 µm2 s−1. The flux of mucus is over 100 times greater
than that of PCL, due to the viscous resistance of the cilia.

11.2. Mean mucus transport

Our simulation using the standard parameter set predicts a mean mucus velocity
of 38.3 µm s−1. Salathe et al. (1997) report a range of values of between 67 and
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Table 1 Mucus transport values for various parameter sets.

Parameters Mean mucus velocitya (µ m s−1)

Standard 38.3
σ =36 rad s−1 22.3 (↓ 41.8)
λ1 = 0.00 s 60.9 (↑ 59.0)
λ1 = 0.01 s 47.2 (↑ 23.2)
λ1 = 0.04 s 44.9 (↑ 17.2)
H = 6.5 µm 59.2 (↑ 54.6)
H = 12 µm 36.4 (↓ 4.96)

Note. The standard parameter set is L = 6 µ m, λ = 30 µ m, H = 10 µ m, h = 5.4 µ m, ν = 5/6,
σ = 60 rad s−1, λ1 = 0.03 s, θ1 = 6, θ2 = 8, αx = 90 and αy = 75.
aThe values in parentheses are the percentage values.

333 µm s−1, the authors believing that the first figure, based on less invasive
meansuring techniques, is likely to be more accurate. Reviewing the results of
similar studies, ICRP (1994) reported a wide range of values depending upon dis-
ease, ambient conditions and other factors. For healthy subjects, values of 70 and
92 µm s−1 for tracheal transport, and 40 µm s−1 for bronchial transport were re-
ported. Finally, the hTBE cultures studied by Matsui et al. (1998) showed a mean
transport of 39.2 µm s−1, very close to our predicted value.

To summarise the effect on mucus transport of different parameter sets, we
present Table 1. Decreasing the rate of ciliary beating within the experimen-
tally observed range (Salathe et al., 1997) by 40% to 36 rad s−1 results in an
approximately proportionate reduction in transport. Increasing the mucus ‘stiff-
ness’ by reducing the relaxation time to 0.01 s significantly increases mucus
transport by 23%, and surprisingly increasing the relaxation time to 0.04 s also
results in an increase in transport of 17%. Perhaps most surprisingly, setting
λ1 = 0, equivalent to Newtonian ‘mucus’, results in greatly enhanced transport.
The role of mucus viscoelasticity is hence more complex than can be eluci-
dated by our model. It is possible that there are molecular level interactions
between polymer chains and the cilia tips. It is also possible that viscoelastic-
ity serves some other purpose, for instance in the trapping of particles or in en-
hancing transport over non-ciliated regions. This should be a subject for future
study.

Deeper mucus (H = 12 µm) leads to only slightly slower mucus transport, pro-
vided that such parameters as the ciliary beat frequency and the mucus viscosity
remain the same. Due to the thickened layer, the cilia are actually propelling a con-
siderably larger volume of mucus. This suggests that if a thicker (deeper) mucus
is observed in patients with impaired mucus transport, it may not be the thick-
ness per se that causes the impairment, but rather it may simply be a symptom of
reduced transport. Conversely, this provides insight into how the body adapts to
a thickening mucous layer moving from the bronchioles to the trachea—the cilia
do not need to beat significantly faster to transport a greater volume of mucus.
A greatly depleted, but still continuous, mucous layer represented by H = 6.5 µm
shows transport increased significantly by 54.6%.
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11.3. Understanding the effects of different physical parameters on transport

Examining Eq. (63) we see that there are various ways in which mucus transport
can be altered. The mucus velocity uM2 is proportional to the interaction velocity
−Uint and the first term in braces is proportional to the traction layer viscosity
θ1. Simply altering the value of the beat frequency σ , all else being equal, will
have a proportionate effect on mucus transport. In addition, all of the parameters
interact in a nonlinear way to affect −Uint, which we explore next. Furthermore,
the dimensional value of uM2 is proportional to σ .

For brevity we write the fluid velocity at the apex of the effective stroke as
upen = u(2πx + σ t = 0, y = h). Since −Uint = ucilia − upen it is clear that reducing
the value of upen will increase −Uint and hence the mean mucus velocity. In gen-
eral, physical effects that resist the sharp forward flow of mucus in response to
penetration will tend to decrease upen and hence increase transport. The effect of
a positive instantaneous pressure gradient dp/dx is to act as a resistance force to
the forward flow of liquid, as can be seen from Eq. (30). At the point of penetra-
tion, this results in a reduction in upen and hence an increase in −Uint and mucus
transport.

Hence, the results in Table 1 can be understood physically. Reducing the relax-
ation time of the mucus to 0.01 s effectively reduces how readily the mucus will
deform elastically in response to penetration. The value of upen is hence smaller
and so −Uint is increased, and hence the mean transport. Increasing the relaxation
time to 0.04 s increases the elasticity of the mucus, and at the same time increases
the positive pressure gradient in the upper part of the PCL. This has the over-
all effect of reducing upen and hence increasing the mucus transport. Decreasing
the depth of the mucous layer greatly increases the effect of the mucus free sur-
face and hence increases the pressure gradient by about 50%, decreasing upen and
hence increasing transport.

11.4. Shear-thinning ratio

We were not able to determine parameters for the shear-thinning ratio, so we
have produced results for a spectrum of values of θ1 and θ2 corresponding to a
fixed free mucus viscosity of µM2 = θ1θ2 = 48. The effect on mean mucus trans-
port is shown in Fig. 9. For values of θ1 close to 3, a sharp spike occurs (not
shown). This is due to the fact that the pressure gradient in the PCL enforcing
v(y = h) = 0 becomes large and negative. In reality, the interface would simply de-
form, and our model assumptions would break down. Since the interface does not
appear to move significantly in the micrographs of Sanderson and Sleigh (1981), it
is likely that the viscosity of the traction layer does not approach this value. For
the standard parameter set, the jump in normal stress at the mucus–PCL inter-
face is no larger than 100 N m−2. For θ1 = 2.995, the jump in normal stress reaches
1000 N m−2. To balance this, the surface tension force must be 10 times larger,
which corresponds to the curvature of the interface being 10 times larger. Again
estimating the surface tension to be 0.08 N m−1, the curvature must increase from
1250 m−1 to 12, 500 m−1. If we make the simple assumption that the interface has
the form η = η0 + ε cos(kx + σ t), for some small perturbation ε, the curvature can
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Fig. 9 Mean mucus transport against traction layer viscosity θ1 for fixed mucus viscosity θ1θ2 =
48. Sublayer resistance coefficients αx = 90, αy = 75, sublayer velocity scaling ν = 5/6. Model as-
sumptions were not justified for θ1 ∼ 3.

be approximated by |ηxx| = εk2. If the wavenumber k = 2π/3.0 × 10−5 m−1, then
ε must increase from 2.8 × 10−2 to 0.28 µm, a significant disturbance on the scale
of the muco-ciliary system.

Even ignoring this point, the relationship between transport and θ1 is still nonlin-
ear, with transport being greatest at θ1 = 1, and also being greater at θ1 = 48 than
at θ1 = 6. For θ1 = 1, the PCL has a significant effect on the traction layer, through
the boundary condition (50). Hence, the positive pressure gradient in the PCL,
which resists the flow of fluid has a significant effect, reducing upen. Conversely, for
θ1 = 48, the upper mucus layer now has a significant effect on the traction layer,
through the boundary condition 53.

11.5. The relative importance of pressure gradients in the mucus and PCL

In addition to the above we have investigated similar models (not shown), with
no pressure in the mucous layer, and with no pressure anywhere in the fluid. With
no pressure at all we found only a very small mean mucus velocity—1.63 µm s−1

for the standard parameter set. The model with no pressure in the mucous layer
only predicted very similar mucus transport to the model presented here. This
suggests that it is the action of pressure gradients in the PCL, rather than the mu-
cous layer that are essential to ensuring positive transport of mucus. This calls into
question the earlier suggestion of Sleigh et al. (1988) that there is no significant
interface tension between the PCL and mucus.

11.6. Modelling diseased states

Our model is more suitable for comparison with diseases such as chronic obstruc-
tive pulmonary disease (COPD) or asthma, in which the distinct PCL and mu-
cous layers and interface are more clearly preserved, than diseases such as cystic



318 Bulletin of Mathematical Biology (2007) 69: 289–327

Table 2 Table of mucus transport values for various possible ‘diseased’ states.

Parameters Mean mucus velocitya (µm s−1)

Standard 38.3
Very slow ciliary beating σ = 10 rad s−1 7.33 (↓ 80.9)
Very viscous mucus θ1 = 30, θ2 = 30 56.8 (↑ 48.3)
‘Watery’ mucus λ1 = 0, θ1 = 1, θ2 = 1 58.8 (↑ 53.5)
Elastic, ‘watery’ mucus λ1 = 0.03 s, θ1 = 1, θ2 = 1 58.6 (↑ 53.0)
Deeper, less viscous mucus H = 40 µm,θ1 = 8, θ2 = 1 26.6 (↓ 30.5)
Double viscosity θ1 = 12, θ2 = 8 39.1 (↑ 2.08)

aThe values in parentheses are the percentage values.

fibrosis, in which mucins may be found in the PCL, and in which the PCL may be
significantly depleted. Detailed comparisons of these conditions may be found in
Rogers (2004) and Boucher et al. (2000). In Table 2 we present some results pro-
viding a tentative simulation of various ‘diseased’ states of the muco-ciliary system.
As one might expect, our model predicts that if the ciliary beat frequency is greatly
reduced from 60 rad s−1 by 83% to 10 rad s−1, mucus transport is reduced almost
proportionately. Hence, one likely cause of impaired clearance is reduced ciliary
beating. Surprisingly, altered rheological parameters such as much more viscous
(θ1 = θ2 = 30), or much more ‘watery’ mucus (λ1 = 0, θ1 = θ2 = 1), or more elastic
or Newtonian mucus (λ1 = 0.04, λ1 = 0), do not seem to significantly impair mucus
clearance when compared with our initial parameter set. It is possible, however,
that more viscous or less elastic mucus may have a more subtle effect by impairing
ciliary beating.

The results appear to show that mucus is important to transport by producing
an interface which supports pressure gradients in the PCL. The pressure gradients
need have no mean effect, but they nevertheless allow the cilia to interact with
the upper layer efficiently. The viscoelastic interaction of mucus and cilia itself
appears not to be the important mechanism. Nevertheless, it is also possible that
mucus elasticity is important in the interaction of the cilium tip and the mucous
layer. Detailed observation and mathematical modelling of this interaction will
provide further insight.

To simulate the effect of excessive fluid secretion, we chose the parameters H =
40 µm, θ1 = 8, θ2 = 1, representing a deep, less viscous mucous layer. The effect
was to reduce velocity to 26.6 µm s−1, which although significantly less than the
standard parameters, was not the virtual cessation of transport one might expect.
However, as discussed by Blake (1973), a very deep mucous layer will be subject
to significant gravitational force, which was not included in our model. In addition,
deeper mucus may result in ‘plugging’ of airways, and disruption of the normal
surface and interface properties. It should also be noted that for a deep mucus layer
or a very narrow airway, curvature in the x2 direction will no longer be negligible
(Rogers, 2004), and may lead to important pressure gradients caused by surface
tension.

In summary, nothing short of a cessation of normal ciliary beating appears suf-
ficient to interupt muco-ciliary functioning in our model. However, the fact that
transport is so impaired by the lack of a pressure gradient in the PCL caused by
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interface tension suggests strongly that mucus–PCL interaction is important for
maintaining efficient transport. For instance, excessive surfactant may, by low-
ering interface tension, impair the system. Our ‘interface’ is an idealisation of
the real system, which is known to deform in order to allow ciliary penetration
(Puchelle et al., 1998). Future modelling work should investigate the role of this
region further.

12. Comparision with experimental studies

Our simulations of disease states, which suggest that low mucus viscosity and elas-
ticity do not harm, and indeed benefit transport, and that ciliary beat frequency
is the most important determinant of normal functioning, show some interesting
parallels with experimental studies, though these must be qualified by the fact that
we have currently only considered an impermeable epithelium.

A study of patients with pseudohypoaldosteronism (PHA) (Kerem et al., 1999)
showed that no liquid is absorbed from the ASL by the epithelium, and conse-
quent greatly enhanced mucus transport. Our results showing enhanced transport
for ‘watery mucus’ support the hypothesis that increased water content of ASL,
even beyond the normal level, is beneficial to transport. Shibuya et al. (2003) used
a bovine trachea model to test the effect of both osmolality and liquid depletion
on viscosity and transport. Adding sodium caused a highly significant increase in
transport, whereas iso-osmolal removal of liquid resulted in approximately a dou-
bling of ‘viscoelasticity,’ and a nonsignificant increase in transport. This is qualita-
tively similar to our results predicting a very modest increase in transport of 2%
for doubled mucus viscosity.

Mucolytic drugs, designed to reduce mucus viscosity, have been studied in
an attempt to improve muco-ciliary transport and hence alleviate muco-ciliary
disfunction. However (Salathe et al., 1996; Rogers, 2005), mucolytics have tended
to be ineffective for improving muco-ciliary transport in vivo. Symptoms of chronic
bronchitis and chronic obstructive pulmonary disease have been slightly improved
by the use of oral mucolytics (Poole and Black, 2001), but this modest benefit
may be due to mechanisms other than improving muco-ciliary transport, such as
antioxidant properties (Ekberg-Jansson et al., 2001), anti-inflammatory properties
(Gibbs et al., 1999) or through increasing the water content of the ASL (Rochat
et al., 2004). Our results showing that mucus viscosity does not have any clear ef-
fect on transport are consistent with these findings.

Finally, β2-adrenergic agents such as salbutamol and salmeterol have been
shown to enhance ciliary beat frequency (Devalia et al., 1992) and salmeterol
has been shown to slightly enhance muco-ciliary clearance in patients with asthma
(Hasani et al., 2003). Conversely, the β-blocking drug propanolol depresses muco-
ciliary clearance significantly (Pavia et al., 1986), consistent with our findings.

13. Conclusions and future work

We presented a model of mucus transport which represented the propulsive
and resistive effects of the cilia by volume forces, and represented mucus as a
linearised Maxwell fluid. Our model incorporated metachronism, the periodicity
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Fig. 10 Schematic diagram of the influence of various physical parameters on mean mucus veloc-
ity. Working from the right, increases in the interaction velocity Uint, the traction layer viscosity
θ1 and the beat frequency σ all directly increase mean mucus velocity, as shown in Eq. (63). The
interaction velocity Uint may be increased by ‘stiffer’ mucus, by increasing the PCL and mucus
pressure gradients, and by increasing the effect of the PCL and mucus pressure gradients. These
effects are in turn caused by various changes to the model parameters, for instance increases in the
relaxation time λ1 and the mucous layer viscosity θ1θ2 both cause an increase in mucus and PCL
pressure gradients. Note that most parameters do not have a simple effect; for instance increas-
ing the depth of the ASL by increasing H leads to ‘stiffer’ mucus, increasing Uint, hence tending
to increase mean mucus velocity. However, increasing H will also render the pressure gradient
in the mucous layer less effective, which tends to have the opposite effect. The overall effect of
increasing H from 10 to 40 µm is shown in Table 2, a 30.5% decrease.

of the ciliary beat, resistance of the cilia sublayer, spatial variations in the propul-
sive force, a linear model of viscoelasticity of the mucous layer and surface and
interface tension, giving more insight regarding the temporal and spatial detail
of the flow than previously published models. By exploiting the periodicity of
the beat cycle, we converted the fluid flow equations into a system of coupled
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ordinary differential equations. We then calculated numerical solutions for various
parameter sets, assuming that surface and interface movement was negligible.

Subject to the assumption of no-flux through the epithelium and consistent with
the hypotonic defensin hypothesis, the time-averaged horizontal profile is qual-
itatively very similar to the results of Fulford and Blake (1986), and the earlier
work of Blake and Winet (1980) and unlike that predicted by Matsui et al. (1998).
This demonstrates that a detailed model consistent with the hypotonic defensin
hypothesis produces PCL flux inconsistent with the conclusions of Matsui et al.
(1998), even with the novel incorporation of mucus viscoelasticity, surface tension
and pressure gradients. Clearly, it will be of considerable interest to determine
whether models incorporating transepithelial fluxes, and thus consistent with the
isotonic volume hypothesis, produce significantly different results. In addition, we
observed large oscillations in the PCL relative to the net mucus transport, and cir-
culation patterns in the PCL that may assist in the mixing and removal of tracer
particles or contaminants. We are currently developing a model of tracer disper-
sion in the ASL, which will provide insight into whether our predicted fluid flow
profiles are consistent with experiment (Smith et al., 2006).

Our model predicted physiologically reasonable values for mucus transport,
from physiologically justified parameter sets. Our results predicted several inter-
esting properties of the muco-ciliary system. The dependence of transport on the
choice of physical parameters was nonlinear. It emerged that transport was only
significantly disrupted by a reduction in σ . The system was remarkably robust to
changes in other parameters, although this is notwithstanding the assumption that
the PCL–mucus interface and mucus surface remain flat. It might be expected that
the muco-ciliary system has evolved to function efficiently even when subjected to
various changes in physical properties. Pressure gradients with zero mean, brought
about by the interface and surface tension were crucial to ensuring efficient inter-
action between the mucus and cilia. Consistent with recent experimental findings,
ciliary beat frequency was a crucial determinant of efficient transport, and ‘watery’
mucus was transported more efficiently than normal mucus.

There are a number of ways the model could be developed. The cilium–mucus
interaction is difficult to represent in a simple way. There are many cilium bodies
penetrating the mucus, at different angles, in the presence of surface forces, with
possible molecular level interactions taking place. The role of surfactant in allow-
ing cilia tips to deform and penetrate the mucus may be very interesting to investi-
gate, and it will be instructive to test what happens when our assumptions regard-
ing the flat surface and interface are relaxed. To model further the way in which
different physical parameters interact, it would be necessary to model the internal
mechanics and energy consumption of the cilia, as has been done by Gueron and
Liron (1992), so that for instance we could test whether increasing viscosity would
affect beat frequency. It is also known that the presence of mucus provides a stim-
ulus for ciliary beating (Sleigh et al., 1988)—investigating possible mechanisms for
this coupling may be developed. It might also be useful to model movement of the
surface and interface, and the surface tension forces this would produce. Integra-
tion of more detailed models of mucus rheology, such as that of Quemada (1984)
with the fluid flow equations may provide still more insight, as would considering
possible non-Newtonian effects in the PCL (Boucher, 2003).
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Finally, our model of the behaviour of the ‘active porous medium’ is only an
approximation of the beating cilia. In particular, there is a gap between the tips of
the cilia and the mucus interface throughout the recovery stroke, which was not a
feature of our model. In Smith (2006), we develop a singularity model of the field
of cilia in order to model the flow in the PCL more accurately.
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Appendix

A. Fourier coefficients

A.1. Force coefficients fn, gn

f0 = 0.2, f1 = 0.19351, f2 = 0.17503, f3 = 0.14737
f4 = 0.11456, f5 = 0.08106, f6 = 0.05091, f7 = 0.02707
f8 = 0.01094, f9 = 0.00239, f10 = 0.0, f11 = 0.00160
f12 = 0.00486, f13 = 0.00785, f14 = 0.00935, f15 = 0.00901

g0 = 0.0, g1 = −0.04905, g2 = −0.08745, g3 = −0.10731
g4 = −0.10565, g5 = −0.08488, g6 = −0.05195, g7 = −0.01611
g8 = 0.01363, g9 = 0.03101, g10 = 0.03396, g11 = 0.02469
g12 = 0.00855, g13 = −0.00785, g14 = −0.01900, g15 = −0.02183

A.2. Active porous medium motion coefficients cn, dn

c0 = 0, c1 = 0.46775, c2 = 0.37843, c3 = 0.25228
c4 = 0.1169, cn = 0.0 (n ≥ 5)
d0 = 0, d1 = 0.09217, d2 = −0.19211, d3 = −0.23553
d4 = −0.23148, d5 = −0.18536, d6 = −0.11252, d7 = −0.03354
dn = 0 (n ≥ 8).

B. Numerical solution

B.1. Transforming the domain

In order to solve the system numerically it must be rewritten in the form

Y ′
i = Fi (X, Y1, . . . , Y30)

for i = 1, . . . , 30, and solved on a domain 0 < X < 1. We make the following trans-
formations:
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In the PCL y = hX, d/dy = (1/h)d/dX, y = 0, . . . , h, X = 0, . . . , 1. In the trac-
tion layer y = 1 − (1 − h)X, d/dy = −1/(1 − h)d/dX, y = h, . . . , 1, X = 1, . . . , 0.
In the force-free mucous layer y = 1 + (H − 1)X, d/dy = 1/(H − 1)d/dX, y =
1, . . . , H, X = 0, . . . , 1.

B.2. Variables of the ODE system

We now define the variables Y1, . . . , Y30 in order to write the boundary and match-
ing conditions in the form Yi = 0 at X = 0 or X = 1.

Y1 = ǔr
P,

Y2 = ǔi
P,

Y3 = v̌r
P,

Y4 = v̌i
P,

Y5 = −2πnǔi
P + v̌r′

P/h,

Y11 = ǔr
P − ǔr

M1,

Y12 = ǔi
P − ǔi

M1,

Y13 = v̌r
P − v̌r

M1,

Y14 = v̌i
P − v̌i

M1,

Y15 = −2πnǔi
M1 − v̌r′

M1/(1 − h),

Y6 = 2πnǔr
P + v̌i′

P/h,

Y7 = φǔr′
P/h − ψ ǔi′

P/h − 2πnε2
(
φv̌i

P + ψv̌i′
P − θ1v̌

i
M1

) + θ1ǔr′
M1/(1 − h),

Y8 = φǔi′
P/h + ψ ǔr′

P/h − 2πnε2
(
ψv̌i

P − φv̌i′
P + θ1v̌

r
M1

) + θ1ǔi′
M1/(1 − h),

Y9 = p̌r
P,

Y10 = p̌i
P,

Y16 = 2πnǔr
M1 − v̌i′

M1/(1 − h),

Y17 = −ǔr′
M1/(1 − h) − 2πnε2v̌i

M1 − θ2ǔr′
M2/(H − 1) + 2πnθ2ε

2v̌i
M2,

Y18 = −ǔi′
M1/(1 − h) + 2πnε2v̌r

M1 − θ2ǔi′
M2/(H − 1) − 2πnθ2ε

2v̌r
M2,

Y19 = − p̌r
M1 − 2ε2v̌r′

M1/(1 − h) + θ2 p̌r
M2 − 2θ2ε

2v̌r′
M2/(H − 1),

Y20 = − p̌i
M1 − 2ε2v̌i′

M1/(1 − h) + θ2 p̌i
M2 − 2θ2ε

2v̌i′
M2/(H − 1),

Y21 = ǔr
M1 − ǔr

M2,

Y22 = ǔi
M1 − ǔi

M2,

Y23 = v̌r
M1 − v̌r

M2,

Y24 = v̌i
M1 − v̌i

M2,

Y25 = −2πnǔi
M2 + v̌r′

M2/(H − 1),

Y26 = 2πnǔr
M2 + v̌i′

M2/(H − 1),

Y27 = ǔr′
M2/(H − 1) − 2πnε2v̌i

M2,

Y28 = ǔi′
M2/(H − 1) + 2πnε2v̌r

M2,

Y29 = p̌r
M2,

Y30 = p̌i
M2.

The boundary conditions take the form Yi = 0 on X = 0 for i = 1, . . . , 6,
17, . . . , 26, and Yi = 0 on X = 1 for i = 3, 4, i = 7, 8, i = 11, . . . , 16, i =
23, 24, 27, 28. There are no boundary conditions for the pressure Y9, Y10, Y29 and
Y30, but two boundary conditions for Y3, Y4, Y23 and Y24, so that there are 30 bound-
ary conditions for 30 variables. The algorithm D02GAF starts with an initial ap-
proximation calculated from the boundary conditions and estimates of the solution
at boundary points for which there is no boundary condition. This is then improved
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using a finite difference technique with deferred correction. Writing the system of
18 ODEs in terms of these variables we have

h(φ2 + ψ2)
( − 2πnY10 + (

β2
x + χ2

)
Y1 − νXhcnα

2
x − 2πnε2Y6

)

= φY′
7 + ψY′

8 + θ1φY′
17 + θ1θ2ψY′

27 + θ1ψY′
18 + θ1θ2ψY′

28

h(φ2 + ψ2)(2πnY9 + (
β2

x + χ2
)
Y2 + 2πnε2Y5)

= φY′
8 − ψY′

7 − θ1ψY′
17 − θ1θ2φY′

27 + θ1φY′
18 + θ1θ2φY′

28

(φ2 + ψ2)(Y′
9 + (

χ2 + β2
y

)
ε2hY3)

= 2πnhε2[φY8 − ψY7 − θ1ψY17 − θ1θ2ψY27 + θ1φY18 + θ1θ2φY28]

(φ2 + ψ2)(Y′
10 + (

χ2 + β2
y

)
ε2hY4)

= −2πnhε2[φY7 + ψY8 + θ1φY17 + θ1θ2φY27 + θ1ψY18 + θ1θ2ψY28]

−νh2dnα
2
yε(φ2 + ψ2)X,

Y′
5 = 0,

Y′
6 = 0,

−2πn[−Y20 + 2ε2Y16 + θ2Y30] − 2χ2θ2(Y1 − Y11 − Y21) + 4πnθ2ε
2Y26

= −4χ2(Y1 − Y11) − (Y′
17 + θ2Y′

27)/(1 − h) + 2πnε2Y16

−φ fnα
2
xUint sin(π(1 − (1 − h)X))/ sin(πh),

2πn[−Y19 + 2ε2Y15 + θ2Y29] − 2χ2θ2(Y2 − Y12 − Y22) − 4πnθ2ε
2Y25,

= −4χ2(Y2 − Y12) − (Y′
18 + θ2Y′

28)/(1 − h) − 2πnε2Y15

−ψ fnα
2
xUint sin(π(1 − (1 − h)X))/ sin(πh),

Y′
19 − 4πnε2(Y′

2 − Y′
12) − θ2Y′

29 − 4πnε2θ2(Y2 − Y12 − Y22) = (1 − h)

(−2χ2ε2(Y3 − Y13) + 2πn(Y18 + θ2Y28)

−εψgnα
2
yVint sin(π(1 − (1 − h)X))/ sin(πh)).

Y′
20 + 4πnε2(Y′

1 − Y′
11) − θ2Y′

30 + 4πnε2θ2(Y1 − Y11 − Y21) = (1 − h)

(−2χ2ε2(Y4 − Y14) − 2πn(Y17 + θ2Y27)

+ εφgnα
2
yVint sin(π(1 − (1 − h)X))/ sin(πh)).

Y′
15 = 0,

Y′
16 = 0,

Y′
27 = (H − 1)(2χ2(Y1 − Y11 − Y21) − 2πnε2Y26 − 2πnY30),

Y′
28 = (H − 1)(2χ2(Y2 − Y12 − Y22) + 2πnε2Y25 + 2πnY29),

Y′
29 = (H − 1)(−2χ2(Y3 − Y13 − Y23) + 2πnε2Y28),

Y′
30 = (H − 1)(−2χ2(Y4 − Y14 − Y24) − 2πnε2Y27),

Y′
25 = 0,

Y′
26 = 0,
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In addition, we have 12 equations that follow from the definitions of the Yi s,
hY5 = −2πnY2h + Y′

3,

hY6 = 2πnY1h + Y′
4,

Y7 = (φ/h + θ1/(1 − h))Y′
1 − 2πnε2φY4 − (ψ/h)Y′

2 − 2πnε2ψY3

−θ1Y′
11/(1 − h) + 2πnε2θ1(Y4 − Y14),

Y8 = (φ/h + θ1/(1 − h))Y′
2 + 2πnε2φY3 + (ψ/h)Y′

1 − 2πnε2ψY4

−θ1Y′
12/(1 − h) − 2πnε2θ1(Y3 − Y13),

Y15(1 − h) = −2πn(Y2 − Y12)(1 − h) − (Y′
3 − Y′

13),

Y16(1 − h) = 2πn(Y1 − Y11)(1 − h) − (Y′
4 − Y′

14),

Y17(1 − h) = Y′
11 − Y′

1 − 2πnε2(Y4 − Y14)(1 − h)

−θ2(Y′
1 − Y′

11 − Y′
21)(1 − h)/(H − 1) + 2πnθ2ε

2(Y4 − Y14 − Y24)(1 − h),

Y18(1 − h) = Y′
12 − Y′

2 + 2πnε2(Y3 − Y13)(1 − h)

−θ2(Y′
2 − Y′

12 − Y′
22)(1 − h)/(H − 1) − 2πnθ2ε

2(Y3 − Y13 − Y23)(1 − h),

Y25 = −2πn(Y2 − Y12 − Y22) + (Y′
3 − Y′

13 − Y′
23)/(H − 1),

Y26 = 2πn(Y1 − Y11 − Y21) + (Y′
4 − Y′

14 − Y′
24)/(H − 1),

Y27 = −2πnε2(Y4 − Y14 − Y24) + (Y′
1 − Y′

11 − Y′
21)/(H − 1),

Y28 = 2πnε2(Y3 − Y13 − Y23) + (Y′
2 − Y′

12 − Y′
22)/(H − 1).

These equations are rearranged into the form Y′
i = Fi (X, Y1, . . . , Y30) for i =

1, . . . , 30, and then solved numerically.
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