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Abstract Hantavirus pulmonary syndrome is an emerging disease of humans that
is carried by wild rodents. Humans are usually exposed to the virus through geo-
graphically isolated outbreaks. The driving forces behind these outbreaks is poorly
understood. Certainly, one key driver of the emergence of these viruses is the virus
population dynamics within the rodent population. Two new mathematical mod-
els for hantavirus infection in rodents are formulated and studied. The new models
include the dynamics of susceptible, exposed, infective, and recovered male and fe-
male rodents. The first model is a system of ordinary differential equations while
the second model is a system of stochastic differential equations. These new mod-
els capture some of the realistic dynamics of the male/female rodent hantavirus in-
teraction: higher seroprevalence in males and variability in seroprevalence levels.

Keywords hantavirus · SEIR epidemic model · stochastic differential equation

1. Introduction

Hantaviruses are rodent-borne zoonotic agents that, in humans, result in hemor-
rhagic fever with renal syndrome—HFRS (Europe and Asia) or hantavirus pul-
monary syndrome—HPS (Americas) (Schmaljohn and Hjelle, 1997). HFRS was
first recognized in 1951 when an outbreak occurred in military personnel involved
in the Korean War (Lee and van der Groen, 1989). HPS, identified in 1993 from
an outbreak in New Mexico, is recognized as an emerging disease (Schmaljohn
and Hjelle, 1997), and more recently, a biodefense agent. The case fatality rate for
HPS in the United States is 37%, which stands as the highest mortality rate for
any pathogen in the US (CDC MMWR, 2002). Human infection occurs primarily
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through the inhalation of aerosolized saliva and/or excreta of infected rodents
(CDC MMWR, 2002). However, HFRS or HPS may also occur after individu-
als have been bitten by infected rodents (CDC MMWR, 2002). Thirty different
hantavirus strains are recognized throughout the world; some of which are asso-
ciated with HPS or HFRS (Mills et al., 1997; Schmaljohn and Hjelle, 1997). Each
hantavirus is generally associated with a primary rodent host within which sub-
stantial coevolutionary adaptations have probably occurred (Monroe et al., 1999;
Plyusnin and Morzunov, 2001). Hantaviruses pathogenic to humans in the United
States include Sin Nombre virus hosted by the deer mouse (Peromyscus manicu-
latus) (Mills et al., 1997), New York virus hosted by the white-footed mouse (Per-
omyscus leucopus) (Song et al., 1994), Black Creek Canal virus hosted by the cot-
ton rat (Sigmodon hispidus) (Glass et al., 1998), and Bayou virus hosted by the
rice rat (Oryzomys palustris) (Ksiazek et al., 1997; McIntyre, et al., 2005). There
are many other hantaviruses associated with human disease. For example, Laguna
Negra virus hosted by the vesper mouse (Calomys laucha) is present in western
Paraguay (Yahnke et al., 2001; Chu et al., 2003). To increase our understanding
of the spread of the disease in humans, it is necessary to understand the disease
dynamics within the rodent population.

In this investigation, two new mathematical models for hantavirus infection in
rodents are formulated. The models include the dynamics of susceptible, exposed,
infective, and recovered male and female rodents. These new models extend some
recent epidemic models that have been applied to hantavirus infection in rodents
(Abramson and Kenkre, 2002; Abramson et al., 2003; Allen et al., 2003; Sauvage
et al., 2003). The models of Abramson and Kenkre (2002) and Abramson et al.,
(2003) were applied to Sin Nombre virus in deer mice. Their models are reaction–
diffusion systems of partial differential equations for susceptible and infected mice.
Mice move randomly within a one-dimensional spatial habitat. Logistic growth is
assumed with carrying capacity K. The carrying capacity is the driving force for the
model dynamics. Traveling wave solutions and variability in population densities
are studied as a function of the carrying capacity K. The model of Sauvage et al.
(2003) was applied to Puumala virus infection in bank voles (Clethrionomys glareo-
lus). Their model is a system of ordinary differential equations for rodents infected
with hantavirus in two different habitats: optimal and suboptimal. The population
is subdivided into susceptible and infected juveniles and adults. Logistic growth is
assumed but the population dynamics are driven by an annual periodic birth func-
tion and a 3-year periodic carrying capacity. The model of Allen et al. (2003) was
applied to an hantavirus infection (Black Creek Canal virus) and an arenavirus
infection (Tamiami virus) in cotton rats (Sigmodontine hispidus). Their model is a
system of differential equations with two states for infection with the two viruses.
The two viruses differ in their modes of infection; the first virus is horizontally
transmitted, whereas the second is primarily vertically transmitted. Conditions are
determined for the two strains to coexist in the population.

The infection and persistence of hantavirus in its rodent host has little or no ef-
fect on survival (Glass et al., 1998). However, several studies, including our own,
suggest there are distinct differences in males and females in the duration of shed-
ding and viremia (Klein et al., 2001; Yahnke et al., 2001; Chu et al., 2003; McIntyre,
et al., 2005). Further, males because of their biting and other aggressive behavior,



Bulletin of Mathematical Biology (2006) 68: 511–524 513

generally have a higher prevalence of antibody to hantavirus in a rodent commu-
nity (Childs, et al., 1994; Mills et al., 1997; Glass et al., 1998; Bernshtein, et al.,
1999; Klein et al., 2001; Yahnke et al., 2001; McIntyre, et al., 2005). The presence
of antibody does not give insight into the levels of virus that are shed nor into the
duration of the shedding (Klein et al., 2001). Unfortunately, these types of analy-
ses are difficult in nature, although recently, McIntyre et al. (2005) have looked at
the RNA levels in male and female rodents infected with Bayou virus. It is clear
that males are viremic but females are not. This suggests that the infectious period
is longer for males than for females. As in most infectious diseases, there is a lag
between exposure and infectivity, referred to as the incubation period. Because
the life expectancy of rodents is relatively short, the incubation period cannot be
neglected. Furthermore, infected rodents do not shed virus for their entire life.
Once their infectious period ends, animals can be classified as recovered.

Our two new models are based in part on these recent models, however, they
account for the differences in male and female seroprevalence and length of infec-
tivity. The new features in our models are the inclusion of (i) males and females,
(ii) an incubation or exposed class of individuals, (iii) and a recovered class of in-
dividuals (positive seroprevalence but not shedding the virus). The first model is
a system of ordinary differential equations. The second model extends the first
model to a system of stochastic differential equations (SDEs). Epidemic models
that include an exposed class and a recovered class, in addition to susceptible and
infective classes, are referred to as SEIR epidemic models. Unlike some of these
recent models, we do not include spatial variation nor stages based on juveniles
and adults.

In the next section, the male/female SEIR deterministic model is described. The
basic reproduction number is computed for this model. For a special case of this
model, the endemic equilibrium is computed. Then, in Section 3, a male/female
SEIR stochastic model is formulated. Several numerical examples are presented
in Section 4. The last section concludes with a summary.

2. SEIR deterministic model

The population is subdivided into males and females and further subdivided ac-
cording to disease status: susceptible (S), exposed (E), infective (I), and recovered
(R). Male rodents are denoted with a subscript m and females with a subscript f.
For male rodents, the SEIR model takes the form

dSm

dt
= B(Nm, Nf)

2
− Smd(N) − Sm(βf If + βm Im), (1)

dEm

dt
= −Emd(N) + Sm(βf If + βm Im) − δEm, (2)

dIm

dt
= δEm − Imd(N) − γm Im, (3)

dRm

dt
= γm Im − Rmd(N), (4)
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and for female rodents,

dSf

dt
= B(Nm, Nf)

2
− Sfd(N) − Sf(βf If + βmf Im), (5)

dEf

dt
= −Efd(N) + Sf(βf If + βmf Im) − δEf, (6)

dIf

dt
= δEf − Ifd(N) − γf If, (7)

dRf

dt
= γf If − Rfd(N), (8)

where density of males is Nm = Sm + Em + Im + Rm, density of females is Nf =
Sf + Ef + If + Rf, and total population density is N = Nm + Nf. The function
B(Nm, Nf) is the birth function. A harmonic birth function is assumed, one of the
most commonly used birth functions,

B(Nm, Nf) = 2bNm Nf

Nm + Nf
,

where b is the average litter size (Caswell, 2001; Iannelli et al., 2005). The maxi-
mal per capita birth rate occurs when the number of males equals the number of
females.

In model (1)–(8), βf, βm, and βmf are the contact rates, which differ depending
on whether contact is with an infective male. In particular, βf is the contact rate
of an infective female with either a susceptible female or a susceptible male. The
contact rate βm,f is an infective male with a susceptible female and the contact rate
βm is an infective male with a susceptible male. These contact rates generally differ
because of the males’ aggressive behavior. The quantity 1/δ is the average length of
the incubation period which is the same for males and females. The quantities 1/γm

and 1/γf are the average lengths of the infectious periods for males and females,
respectively.

The parameters γm, γf, βf, βm, and βmf account for the differences in the epizo-
ology between males and females. Fighting between males results in greater con-
tacts and spread of hantavirus. Also, the infectious period in females is thought to
be shorter than in males. Therefore, we make the following assumptions regarding
the contact rates and the infectious periods,

βm ≥ βmf ≥ βf,

and 1/γm > 1/γf, that is,

γf > γm.

The incubation period is the same for males and females (1/δ) as well as
the density-dependent death rate d(N) = a + cN, 0 < a < b/2, and 0 < c. A
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more general form for the density-dependent death rate can be assumed
(e.g., Allen and Cormier, 1996; Mena-Lorca and Hethcote, 1992), but here
we assume a simple linear form which leads to logistic growth of the
population.

Differential equations for the densities of males, females, and total popula-
tion can be found by summing the individual differential equations for the states.
The male, female, and total population densities satisfy the following differential
equations:

dNm

dt
= B(Nm, Nf)

2
− Nmd(N),

dNf

dt
= B(Nm, Nf)

2
− Nfd(N),

dN
dt

= B(Nm, Nf) − Nd(N),

respectively. It can be shown that there exists a globally stable positive equilib-
rium for the total population densities (see the appendix). At this equilibrium,
the number of males equals the number of females, Nm = K/2 = Nf, and the to-
tal population density is N = K, where K is referred to as the carrying capac-
ity. The carrying capacity K is the solution of d(K) = b/2 or K = (b/(2 − a))/c.
Therefore, every equilibrium for the full model (1)–(8), must have the property
that

Sm + Em + Im + Rm = K/2 = Sf + Ef + If + Rf.

One particular equilibrium with this property is the disease-free equilibrium
(DFE), where Sm = K/2 = Sf and Ej = Ij = Rj = 0, j = m, f. Whether the DFE
is stable in the full model (1)-(8) is important for the control of the disease in the
rodent population.

The stability of the DFE depends on the magnitude of the basic reproduction
number. The basic reproduction number, R0, is an important parameter in epi-
demiology. This parameter represents the number of secondary infections caused
by one infective individual in an entirely susceptible population (Diekmann et al.,
1990; Hethcote, 2000). When R0 < 1, then the DFE is locally asymptotically stable
and when R0 > 1, the DFE is unstable and a disease outbreak is possible (van den
Driessche and Watmough, 2002).

The method of Diekmann et al. (1990) and van den Driessche and Watmough
(2002) can be used to calculate the basic reproduction number. First, the next gen-
eration matrix FV−1 is formed. Then, the spectral radius of the next generation
matrix is calculated, R0 = ρ(FV−1).

To form the next generation matrix, states are divided into infectious,
(Em, Ef, Im, If), and noninfectious (Sm, Sf, Rm, Rf). Then, on the basis of the in-
fectious states at the DFE, entries in the matrix F represent the rate at which
new infections are created and the entries in matrix V−1 represent the average
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length of time spent in a particular state. For our model, F and V−1 are 4 × 4
matrices,

F =




0 0 βm K/2 βf K/2
0 0 βmf K/2 βf K/2
0 0 0 0
0 0 0 0


 ,

and

V−1 =




1
b/2+δ

0 0 0

0 1
b/2+δ

0 0
δ

(b/2+γm)(b/2+δ) 0 1
b/2+γm

0

0 δ
(b/2+γf)(b/2+δ) 0 1

b/2+γf


 .

The spectral radius ρ(FV−1) can be calculated,

R0 = βmδK/4
(b/2 + γm)(b/2 + δ)

+ βfδK/4
(b/2 + γf)(b/2 + δ)

+ δK/4
√

[βm(b/2 + γf) + βf(b/2 + γm)]2 − 4βf(βm − βmf)(b/2 + γf)(b/2 + γm)
(b/2 + γm)(b/2 + γf)(b/2 + δ)

. (9)

It is important to note that the basic reproduction number, defined in (9), is pro-
portional to the carrying capacity K. As K increases R0 also increases and so does
the likelihood of an outbreak. This relationship between R0 and K is a conse-
quence of the assumption of mass action transmission rate, a reasonable assump-
tion for rodent populations.

In the special case, βmf = βm, males and females have similar dynamics. The
basic reproduction number in this special case simplifies to

R0 = βmδK/2
(b/2 + γm)(b/2 + δ)

+ βfδK/2
(b/2 + γf)(b/2 + δ)

.

Notice that this latter expression for the basic reproduction number is the sum of
two basic reproduction numbers, one for males and one for females. The endemic
equilibrium is straightforward to calculate in this special case (Hethcote, 2000),

S̄j = K
2R0

,

Ēj = (b/2)(K/2)
b/2 + δ

(
1 − 1

R0

)
,

Ī j =
(

δ

b/2 + γ j

)
Ēj ,

R̄j =
(

γ j

b/2

)
Ī j ,
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for j = m, f. Thus, at the endemic equilibrium, the fraction of rodents that are
antibody positive (seroprevalence) equals the proportion of rodents that are either
infective or recovered.

Īm + Īf + R̄m + R̄f

K
= δ

b/2 + δ

(
1 − 1

R0

)
. (10)

An estimate for the magnitude of R0 can be obtained from formula (10). As an
example, we consider the rice rat (O. palustris), the rodent host for Bayou virus.
Let the time unit be 2 months which is the approximate gestation period (25 days)
plus the time to reach sexual maturity (40–45 days) (Davis and Schmidley, 1994).
The incubation period for Bayou virus in O. palustris is approximately 2–3 weeks,
1/δ ≈ 1/4 − 3/8 (Chu, personal communication). The litter size for O. palustris
ranges from two to seven with an average litter size of four (with five to six lit-
ters per year), b ≈ 4 (Davis and Schmidley, 1994). Studies conducted in eastern
Texas on the prevalence of Bayou virus in O. palustris indicate that the overall
seroprevalence is about 16% of the population (McIntyre et al., 2005). Applying
formula (10), the value of R0 is approximately 1.32–1.39, very close to the thresh-
old value of 1. When βm > βmf the value of R0 is even smaller, as can be seen from
formula (9).

When δ is large relative to b/2, the incubation period 1/δ is short and the ex-
posed class E may be ignored. The model in this case simplifies to an SIR model.
The equilibrium fraction in the SIR model corresponding to (10) satisfies

Īm + Īf + R̄m + R̄f

K
=

(
1 − 1

R0

)
.

In this case, the factor δ/(b/2 + δ) in formula (10) is equal to 1.
The estimate for R0 based on formula (10) assumes the proportion of seropos-

itive males and females are equal. Our data suggest that this is not the case for
New World hantaviruses. Thus, this estimate obtained from (10) provides only an
upper bound for the R0 given in (9). In the numerical simulations, we make the
more realistic assumptions that βm > max{βmf, βf} and βmf = βf. Contacts between
two males are generally aggressive encounters to defend territory and result in
greater transmission of the disease than contacts between two males or a male and
a female.

3. SEIR stochastic model

We formulate a stochastic differential equation (SDE) model based on the de-
terministic formulation (1)–(8). The stochastic model assumes there is variability
due to births, deaths, and transitions between the states (a susceptible individual
becomes exposed, then infective and recovered). We apply a method developed
by Allen (1999) to derive a system of Itô SDEs. The variables for the males,
Sm, . . . , Rm and the females, Sf, . . . , Rf, are continuous random variables whose
values lie in [0,∞]. The DFE, where the exposed, infective, and recovered states



518 Bulletin of Mathematical Biology (2006) 68: 511–524

are zero, Em = 0 = Ef, Im = 0 = If, and Rm = 0 = Rf, is an absorbing state for
the stochastic model. When this state is reached the epidemic ends. However,
depending on the parameters, the time to reach this state may be extremely long.

The derivation of the SDEs is based on the continuous-time Markov
chain formulation. The expected rate of change in the state variables, �X =
(�Sm,�Em, . . . ,�Rf)T, where �Sm = Sm(t + �t) − S(t), etc., is given by the right-
hand side of the SEIR deterministic model (1)–(8). However, the covariance for
the rate of change in the state variables leads to a system of Itô SDEs (Allen, 1999;
Allen, 2003; Kirupaharan and Allen, 2004). The Itô SDEs for the males take the
form

dSm

dt
= B(Nm, Nf )

2
− Smd(N) − Sm(β f I f + βmIm) +

8∑
j=1

a1 j
dWj

dt

dEm

dt
= −Emd(N) + Sm(β f I f + βmIm) − δEm +

8∑
j=1

a2 j
dWj

dt
,

dIm

dt
= δEm − Imd(N) − γmIm +

8∑
j=1

a3 j
dWj

dt
,

dRm

dt
= γmIm − Rmd(N) +

8∑
j=1

a4 j
dWj

dt
,

where Wj , j = 1, 2, . . . , 8, are eight independent Wiener processes. A similar set
of SDEs apply to the female population.

The coefficients ai j of the Wiener processes in the male/female SDE model are
elements of the matrix A= (ai j ). Matrix A is an 8 × 8 matrix satisfying A= √

CV,
the unique square root of the positive definite symmetric matrix CV. Matrix CV �t
is the approximate covariance matrix for the change in the states �X in time �t .
To order �t ,

CV �t = E(�X[�X]T) − E(�X)[E(�X)T]

≈ E(�X[�X]T)

= E




�Sm �Sm �Sm �Em · · · �Sm �Rf

�Sm �Em �Em �Em · · · �Em �Rf

...
...

...
...

�Sm �Rf �Em �Rf · · · �Rf �Rf




where E is the expectation (see, e.g., Allen, 1999; Allen, 2003; Kirupaharan and
Allen, 2004). The preceding approximation holds because E(�X)[E(�X)T] is or-
der (�t)2. In particular, for our model, matrix CV is the positive definite symmetric
matrix which takes the form,

CV =
(

Cm 0
0 Cf

)
.
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Submatrices Cm and Cf are 4 × 4 tridiagonal matrices and 0 is a 4 × 4 zero matrix.
Submatrix Cm is




B
2 + Sm(d + βf If + βm Im) −Sm(βf If + βm Im) 0 0

−Sm(βf If + βm Im) Em(δ + d) + Sm(βf If + βm Im) −δEm 0

0 −δEm δEm + Im(γm + d) −γm Im

0 0 −γm Im γm Im + Rmd




and submatrix Cf is




B
2 + Sf(d + βf If + βmf Im) −Sf(βf If + βm Im) 0 0

−Sf(βf If + βm Im) Ef(δ + d) + Sf(βf If + βmf Im) −δEf 0
0 −δEf δEf + If(γf + d) −γf If
0 0 −γf If γf If + Rfd


 ,

where d ≡ d(N).
The system of Itô SDEs can be easily seen to be consistent with the or-

dinary differential equation model (1)–(8). Numerical methods applied to the
Itô SDEs are generally more efficient than, for example, a continuous-time
Markov chain model (Kloeden and Platen, 1992; Kloeden et al., 1997; Allen
and Allen, 2003). Stochastic sample paths of the system of Itô SDEs are pre-
sented in the next section and compared to the solution of the deterministic
model.

4. Numerical examples

Three sets of figures illustrate the dynamics of the deterministic and the stochastic
SEIR epidemic models. Parameter values are chosen in accordance with the epizo-
ology of the rice rat (O. palustris) and Bayou virus. The basic time unit is chosen as
2 months, a time period approximately equal to the gestation period plus the time
for rodents to become sexually mature. For a bimonthly time period, we choose
δ = 4(1/δ = 2 weeks) and b = 4 (average litter size). Other parameter values are
chosen in a realistic range, but estimates for them are not known. We assume that
the contact rate for males is five times that for females, βm = 5βf and βmf = βf; the
infectious period for males is twice that for females, 1/γm = 2(1/γf); and the carry-
ing capacity is K = 1000 animals. The remaining parameter values are chosen so
that a reasonable estimate is obtained for R0.

βm = 0.01, γm = 0.5, a = 0.01, and c = 1.99 × 10−3.

With these parameter values, the basic reproduction number is R0 = 1.38 (based
on formula (9)). In the numerical simulations, the initial conditions are Sm(0) =
450 = Sf(0), Em(0) = 10 = Im(0) = Rm(0), and Ef(0) = 5 = If(0) = Rf(0).

Because R0 > 1, the DFE with S̄m = 500 = S̄f is not stable. However, there is
a stable endemic equilibrium, as illustrated in the numerical simulations in Fig. 1.
Solutions eventually level off at the endemic SEIR equilibrium, males: 357.1, 47.7,
76.2, 19.1, and females: 456.4, 14.5, 19.4, 9.7. It is clear that male seroprevalence
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Fig. 1 Solution to the deterministic SEIR epidemic as a function of time. An endemic equilib-
rium for males: 357.1, 47.7, 76.2, 19.1, and females: 456.4, 14.5, 19.4. 9.7, is reached. The total
population size at equilibrium equals the carrying capacity K = 1000. Seroprevalence is 12.5% at
the endemic equilibrium.

is much greater than female seroprevalence. Seroprevalence at the endemic equi-
librium is approximately 12.5%. Male seroprevalence is approximately 3.3 times
greater than female seroprevalence.

One sample path of the stochastic SEIR epidemic model is graphed in Fig. 2.
The parameter values are the same as in Fig. 1. Note that the stochastic
variability allows for certain disease stages to reach very low levels but, be-
cause infection is maintained in the male population, the disease persists in the
population.

In Fig. 3. 1000 sample paths are averaged. The average seroprevalence in the
second year is 10.4%. This level is lower than the deterministic model. The reason
for this difference in the two models is that in the stochastic model, absorption
may occur (the DFE is reached) or some of the random variables may be zero for
a period of time in some of the sample paths (as in Fig. 2).

5. Conclusion

Hantavirus seroprevalence in wild rodent populations is relatively low, ranging
from 5 to 12% in C. laucha in Paraguay (Yahnke et al., 2001; Chu et al., 2003) and



Bulletin of Mathematical Biology (2006) 68: 511–524 521

0 2 4 6 8 10 12
0

100

200

300

400

500

600

time (bimonthly)

Sf

Sm

0 2 4 6 8 10 12
0

50

100

150

time (bimonthly)

Ef
Em

0 2 4 6 8 10 12
0

50

100

150

time (bimonthly)

If
Im

0 2 4 6 8 10 12
0

10

20

30

40

50

time (bimonthly)

Rf
Rm

Fig. 2 One sample path of the stochastic SEIR epidemic model. The parameter values and initial
conditions are the same as in Fig. 1.

16% in O. palustris in eastern Texas (McIntyre et al., 2005). Seroprevalence is gen-
erally much higher in males than in females, four times greater in male O. palustris
in eastern Texas (McIntyre et al., 2005) and approximately three times greater in
male C. laucha in Paraguay (Chu et al., 2003). Two new SEIR epidemic models
have been developed to capture these realistic features of rodent–hantavirus dy-
namics. Their dynamics are illustrated in the numerical examples. In addition, the
stochastic models capture the large variability in male and female seroprevalence
that is seen in field data (Yahnke et al., 2001; Chu et al., 2003; McIntyre, et al.,
2005).

It is clear from calculation of the basic reproduction number (9) that the carry-
ing capacity K is an important parameter that affects disease outbreaks in rodent
populations. The importance of the carrying capacity was also shown in the han-
tavirus models studied by Abramson and Kenkre (2002) Abramson et al. (2003)
and Sauvage et al. (2003). The outbreak of Sin Nombre virus in 1993 that occurred
in New Mexico was associated with increased densities of deer mice (CDC NCID,
2004). Densities increased from less than one deer mouse per hectare prior to 1991
to 20–30 per hectare during the spring of 1993 (CDC NCID, 2004). Environmen-
tal variations in space and time impact the carrying capacity and ultimately rodent
densities (Langlois et al., 2001). In future work, we plan to extend our male/female
SEIR epidemic models to spatially explicit patch models.
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Fig. 3 An average of 1000 sample paths for the stochastic SEIR model. Compare this figure with
Fig. 1. The average seroprevalence in year 2 is 10.4%.
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Appendix

The dynamics of the male/female system without infection can be completely ana-
lyzed. The male/female system satisfies

dNm

dt
= B(Nm, Nf)

2
− Nmd(N) = Nm

(
bNf

Nm + Nf
− a − c(Nm + Nf)

)
,

dNf

dt
= B(Nm, Nf)

2
− Nfd(N) = Nf

(
bNm

Nm + Nf
− a − c(Nm + Nf)

)
,

where N = Nm + Nf, Nm(0) > 0 and Nf(0) > 0. Solutions Nm(t) and Nf(t) are pos-
itive for all time. This system has a unique positive equilibrium given by Nm =
K/2 = Nf, where K = (b/2 − a)/c > 0. We show that this equilibrium is globally
asymptotically stable.



Bulletin of Mathematical Biology (2006) 68: 511–524 523

Let u = Nm − Nf. Then

du
dt

= −u(a − cN).

It follows that limt→∞ u(t) = 0 = limt→∞[Nm(t) − Nf(t)]. In addition, if u(0) ≥ 0(≤
0), then u(t) ≥ 0(≤ 0) for all time. Without loss of generality, assume u(0) ≥ 0. Let
ε > 0 such that b/2 > cε + a. Choose T sufficiently large such that 0 ≤ u(t) < ε for
t > T. Then for t > T,

dNm

dt
≤ Nm

(
b
2

+ cε − a − 2cNm

)
,

and

dNf

dt
≤ Nf

(
b
2

− cε − a − 2cNf

)
.

Thus,

b/2 − cε − a
2c

≤ lim inf
t→∞ Nf(t) ≤ lim sup

t→∞
Nm(t) ≤ b/2 − cε − a

2c
.

Because ε is arbitrary, solutions Nm(t) and Nf(t) approach the unique positive
equilibrium K/2.
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