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Abstract We construct a population dynamics model of the competition among
immune system cells and generic tumor cells. Then, we apply the theory of optimal
control to find the optimal schedule of injection of autologous dendritic cells used
as immunotherapeutic agent.

The optimization method works for a general ODE system and can be applied
to find the optimal schedule in a variety of medical treatments that have been
described by a mathematical model.

Keywords Optimal control · Necessary conditions · Cancer · Immunotherapy ·
Autologous dendritic cells transfection

1. Background

Mathematical models in biology are being used since Lotka (1925) and, separately,
Volterra (1926) formulated the predator–prey model of biological species. Today,
by means of powerful computers, to solve numerically complex mathematical for-
mulations of biologically motivated problems is a routine task.

Computational and mathematical models are helping biologists to understand
various aspects of the complex realm of living matter, from the beating of the
heart to the molecular machinery underlying the cell-division cycle and cell
movement.

A specific area of study is that of the immune system dynamics. Mammalian
immune system can be considered as one of the most complex systems nature has
ever created. It is in charge to fight against all kinds of potentially dangerous agents
that break the anatomic barriers of the host organism (Goldsby et al., 2000). It is
composed of a variety of organs, cells, and molecules acting in concert to achieve
few basic functions, that is, recognition, response and memory. A malfunction of
the immune system usually results in a disease for the host. In the case of a tumor,
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for example, the immune system fails to detect and kill the anomalous cells. Such
failure allows for an uncontrolled growth of the tumor mass.

Immunotherapy is the “art” of stimulating the immune system to react against
something specific or, in contrast, to suppress its dangerous response as in the case
of allergic reactions or autoimmune diseases. For example, for people allergic to
bee sting the immunotherapy consists of repeatedly injecting small doses of venom
until the immune system “changes” its way of reacting to the venom and becomes,
so-to-say, more tolerant to it. Another example which is relevant to us is the im-
munotherapy applied to cancer. In that case the goal of the immunotherapy is just
the opposite, to teach the immune system to react against something which is oth-
erwise considered not foreign like a cancer cell.

In general, there are different ways of stimulating the immune system. One of
these is to instruct it to react against cells bearing the so-called tumor-associated
antigens (TAA) by actually inducing a TAA-specific immune response. The hope
is that, once instructed, the immune system cells will guard against any appearance
of cells bearing the same bits of tumor.

The immune system is composed of a variety of cell types. Among these, the
dendritic cells are perhaps the best of the so-called antigen presenting cells (APC)
in that their work consists in capturing the antigens and show them to other cells
called effector cells. If the presented molecules are “labeled” as dangerous, then
the immune system mounts a specific response to eliminate the danger. The im-
mune response is two faceted. There is the humoral immune response made by
antibodies that is more successful in eliminating soluble antigens like bacteria and
toxins, and the cellular immune response that is more efficacious in deleting ma-
lignant cells or cells infected by viruses.

Dendritic cell transplantation is the practice of cultivating autologous dendritic
cells (i.e., previously extracted from the same patient), together with some charac-
teristic molecules of the cancer cells (the tumor associated antigen) and then inject
them back into the patient. The resulting vaccine made by autologous TAA-loaded
dendritic cells is called dendritic cell vaccine (DCV). The idea is that the immune
system, confronted with such amount of tumor-antigen, starts to mount a response
against it, in place of an otherwise weak or completely absent response due to the
fact that the TAA belongs to the self. In fact, as a side effect of the immune re-
sponse against the vaccine, the immune system will eventually recognize the same
TAA molecule on tumor cells and kill them (Dietz et al., 2001; Boczkowski et al.,
2000).

Our first goal is to build a mathematical model to investigate the effect of tumor
immunotherapy for a generic solid a-vascular tumor (e.g., malignant melanoma).
The model obtained is made of five variables representing respectively the popu-
lation of cancer cells and those of four key immune cells involved in the immune
response.

Secondly, by applying the theory of optimal control we want to find the op-
timal protocol for the administration of DCVs loaded with TAA, that is, fixing
the number of vaccine injections, the optimal timing within the treatment period.
Therefore, the injected vaccine represents the control part of the model and affects
directly only the population of the dendritic cells while the tumor mass at the end
of the treatment period (that is, our optimization horizon) is the cost function.
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Since the typical treatment consists of a finite number of DCV injections, the
problem reduces itself to an optimization over a finite dimensional space, assum-
ing that the vaccine administration follows always the same procedure. More-
over, given that the typical time scale of the model evolution is much bigger
than that of the vaccine administration, we can use an approximation of the op-
timal control tools to compute the gradient of the cost function with respect to
the DCVs time schedule. More precisely, we consider a generalized setting for
defining weakly differentiable control variations of a reference trajectory. Changes
in the DCVs time schedule give rise to control variations that are weakly dif-
ferentiable, hence we use the variational equation, along the reference trajec-
tory, to compute the gradient of the cost function. The obtained approxima-
tion consists in considering each DCV injection as an impulse in the system
evolution.

From the computational point of view, our approach amounts to calculate the
reference trajectory corresponding to the actual schedule and solve a linear system
with a time varying matrix that is computed along the reference trajectory. There-
fore, any optimization algorithm relying only on the gradient of the cost function
can be used to search for the minima of our problem.

The results are quite satisfactory showing a decrease of the cost function (i.e., the
final value of the tumor mass) with the use of a simple steepest descent method.

This paper is organized as follows. In the following sections we first describe the
mathematical model of cancer-immune competition, then we give a background
of the theory of optimal control and, finally, we describe how we implemented the
optimization schema and the results obtained.

2. The mathematical model

The most popular mathematical models in theoretical immunology involve or-
dinary differential equations (ODE) to represent reaction kinetics. In general,
the equations are used to represent concentration or population of cells and/or
molecules and the parameters represent kinetic or affinity constants. Partial dif-
ferential equations (PDE) are generally used to have a spatial representation of
the diffusion of reagents or, as in the case of cancer, when one wants to study the
tumor formation and the phenomena of vascularization (Preziosi, 2003).

There are many mathematical models of the immune system known in the lit-
erature (Perelson and Weisbuch, 1997) and a relatively small subset considers
the interactions between immune system and cancer (Preziosi, 2003). A quite
known model of tumor-immune interaction is those of Kirschner and Penetta
(1998). However its dynamics is quite complex as it includes oscillatory behav-
ior of the tumor. Since this characteristic makes the treatment from the control
point of view more difficult, we decided to start with a model showing a simpler
dynamics and we constructed the one described in the following paragraph. Sim-
ple enough for our purpose of applying methods from control theory, neverthe-
less the model shows a quite interesting and rich dynamics that fits reasonably
to that of the tumor-immune interaction observed at the level of the cells
population.
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2.1. ODE modelling of tumor growth and dendritic cell presentation
of tumor-associated-antigen

The following ODE model is quite simple but it is probably the only one spe-
cialized for autologous dendritic cell transfection therapy. We decided from the
beginning to start with a simple representation of TAA-specific cells. We take the
following assumptions:

1. the time resolution is of 1 h;
2. it is a monoclonal model, that is, we consider only the dynamics of those

clones of cells which actually recognize the TAA, neglecting the effect of cross-
reactivity of other clones (this is a common approximation in this kind of models
of the immune system);

3. no special reference to a specific tumor is necessary at a first stage of the math-
ematical model development; the only requirement is that of working in the
range of the tumor mass where the effects of immune escape, immune down-
regulation or vascularization, is still negligible (Preziosi, 2003);

4. no geometry is considered at this time.

The model consists of few key immune cell populations. The lymphocytes CD4
T-helper cells and CD8 cytotoxic T cells are modeled together with the population
of cancer cells. Dendritic cells (the major antigen representing cells in vertebrate
immune systems) are the source of TAA presentation and are introduced exter-
nally. The system is:

dH
dt

= a0 − b0 H + c0 D
[

d0 H
(

1 − H
f0

)]
(1)

dC
dt

= a1 − b1C + c1 I(M + D)
[

d1C
(

1 − C
f1

)]
(2)

dM
dt

=
[

d2 M
(

1 − M
f2

)]
− e2 MC (3)

dD
dt

= −e3 DC (4)

dI
dt

= a4 HD − c4CI − e4 I (5)

where H are the tumor-specific CD4 T helper cells, C are the tumor-specific CD8
T cells or CTLs cytotoxic cell, M are the cancer cells that expose the TAA, D are
the mature dendritic cells loaded with the TAA (that is, that expose the tumor
peptides on the HLA molecule1) and I is the IL-2 secreted by H and responsible
for T cell growth.

1HLA: Human Leukocyte Antigen, proteins located on the surface of white blood cells and
other tissues in the body that play a key role in regulating the self/nonself discrimination
(Goldsby et al., 2000).
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Note that we decide to use the logistic growth factor proposed by Verhulst in
1836. R(x) = r(1 − x

f ) with r and f positive constants, where f is the carrying
capacity of the environment that is usually determined by the available sustaining
resources. R(x) represents the per capita birth rate, that is, it is dependent on x.

The term a0 − b0 H in Eq. (1) represents the production by the bone marrow
of a very small number of tumor specific cells. Although tumor antigens are very
poor immunogenic, it is reasonable to think that very few cells able to recognize
them circulates in the host body. An equivalent term in Eq. (2) is given for tumor
specific cytotoxic cells.

The term c0 D[d0 H(1 − H
f0

)] in Eq. (1) represents the clone expansion of tumor
specific helper cells upon presentation of tumor associated antigen by dendritic
cells. Dendritic cells are injected into the host already loaded, hence presenting the
tumor peptides bind both to HLA class I or II. A saturation term for the growth
of helper cells is considered.

The term c1 I(M + D)[d1C(1 − C
f1

)] in Eq. (2) represents the clone expansion of
tumor specific cytotoxic cells either by interaction with tumor cells or with den-
dritic cells. Since such clone expansion is possible only in presence of IL-2 which
is secreted by T-helper cells upon recognition of dendritic loaded cells, no tu-
mor specific response is possible without tumor antigen presentation by dendritic
cells.

Cancer (e.g., myeloid) cells grow (limited grow) [d2 M(1 − M
f2

)] in Eq. (3) and are
killed by tumor specific cytotoxic cells; −e2 MC.

Dendritic cells in Eq. (4) are killed by cytotoxic cells; −e3 DC.
Interleukin IL-2 is produced by helper cells upon recognition of tumor loaded

dendritic cells a4 HD and is consumed by cytotoxic cells during clonal growth
−c4CI (Eq. (5)), while the term −e4 I represents degradation of free interleukin.

The parameters of Table 1 have been chosen by tuning the system to a qualita-
tively reasonable dynamics starting from the set of values used for another math-
ematical model of the tumor-immune interaction (Kirschner and Panetta, 1998).
The model in Eqs. (1)–(5) shows the following dynamics:

� In case of no treatment there is no immune response and the tumor grows up to
the saturation limit;

� If we administer a vaccine, an immune response is obtained, that is a tumor spe-
cific response consisting of a growth of cytotoxic cells and helper cells recog-
nizing the tumor. In Fig. 1 we show the dynamics of the system subjected to a
given schedule of injections of DCs CTL cells kill dendritic cells because they
show the tumor peptides. As a side effect, they also kill tumor cells. IL-2 is pro-
duced by helper cells upon contact with dendritic cells presenting tumor peptide
together with MHC class II molecules. On the other hand, dendritic cells pre-
senting tumor peptides on the class I MHC molecule are able to bind cytotoxic
cell receptors and stimulate growth.

In the following section we give a short introduction of the theory of op-
timal control used herein and then the way we apply it. Finally, the results
are shown together with some consideration for the work we plan for the
future.
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Table 1 Parameters of the model in Eqs. (1)–(5).

Name Description Value Units (c = cells, h = hours)

a0 birth of CD4 T 10−4 c h−1 mm−3

b0 death of CD4 T 0.005 h−1

c0 max prolif of CD4 T 10
d0 1/2 satur const of CD4 T 10−2 c−1 h−1 mm−3

f0 carrying capacity of CD4 T 1 c mm−3

a1 birth of CD8 T 10−4 c h−1 mm−3

b1 death of CD8 T 0.005 h−1

c1 max prolif of CD8 T 10
d1 1/2 satur const of CD8 T 10−2 c−1 h−1 mm3

f1 carrying capacity of CD8 T 1 c mm−3

d2 1/2 satur const of tumor 0.02 h−1

e2 killing by CD8 of tumor 0.1 c−1 h−1 mm3

f2 carrying capacity of tumor 1 c mm−3

e3 CD8 T killing of DC 0.1 c−1 h−1 mm3

a4 production by CD4 T 10−2 c−1 h−1 mm3

c4 IL-2 uptake by CD8 T 10−7 c−1 h−1 mm3

e4 degradation rate 10−2 h−1 mm−3

Note: e2 = e3 since both dendritic and cancer cells express the same TAA by assumption.

3. Optimal control

Consider a general control system:

dx
dt

= F(x, u), (6)

where x ∈ Rn and u ∈ U compact subset of Rm. We fix a time horizon T > 0 and as-
sume that F is regular so that for every measurable control function u : [0, T] → U
and x̄ ∈ Rn there exists a unique solution x(·, u) satisfying ẋ(t, u) = F(x(t), u(t))
a.e. on [0, T] and x(0, u) = x̄. An optimal control problem in Mayer form is given
by:

min
u(·)∈U

ψ(x(T, u)), x(0) = x̄, (7)

where U is the class of admissible controls, ψ the final cost and x̄ the initial
condition. For example, under our assumptions, U can be defined as the set of all
measurable controls. The aim is then to find a control u(·) ∈ U so that ψ(x(T, u))
is minimized.

The well known Pontryagin Maximum Principle (PMP) (Pontryagin et al.,
1961) provides, under suitable assumptions, a necessary condition for optimality.
For problems in Mayer form with fixed final time and without final constraint as
(7), PMP can be stated as follows:
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Fig. 1 The dynamics of the system subjected to the optimized schedule of injections of DCs (cfr.
Fig. 4). The four plots show peaks of immune activity after each injection and, at the same time,
reduction of the tumor ma ss.(x-axis is time in hours).

Theorem 1. let u∗(·) be a (bounded) admissible control whose corresponding tra-
jectory x∗(·) = x(·, u∗) is optimal. Call p : [0, T] �→ Rn the solution of the adjoint
linear equation

dp
dt

(t) = −p(t) · Dx F(x∗(t), u∗(t)), p(T) = ∇ψ(x∗(T)). (8)

Then the maximality condition

p(t) · F(x∗(t), u∗(t)) = max
ω∈U

p(t) · F(x∗(t), ω), (9)

holds for almost every time t ∈ [0, T].

The proof of the PMP relies on a special type of variations, called needle vari-
ations, of a reference trajectory. Given a candidate optimal control u∗ and cor-
responding trajectory x∗, a time τ 2 and ω ∈ U, a needle variation is a family of
controls uε obtained replacing u∗ with ω on the interval [τ − ε, τ ], see Fig. 2. A
needle variation gives rise to a variation v of the trajectory satisfying, for t ≥ τ , the
variational equation

dv

dt
(t) = Dx F(x∗(t), u∗(t)) · v(t) (10)

2of approximate continuity for F(x∗(·), u∗(·)).
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Fig. 2 Representation of a needle variation.

where Dx F is the Jacobian of F w.r.t. x, with initial condition

F(x∗(τ ), ω) − F(x∗(τ ), u∗(τ )). (11)

Notice that v satisfies Eq. (10) in classical sense only after time τ . Recently, see
(Piccoli and Sussmann, 2000,G), it was introduced a setting in which needle and
other variations happen to be differentiable. Since we use this more general (and
mathematically natural) approach for the proof of a proposition in next section,
we report some basic facts in the Appendix.

4. Optimal control theory applied to cancer immunotherapy

We now consider the DCV as a possible control on (1)–(5), hence we obtain the
control system

dx
dt

= F(x, u) = f (x) + ug(x) (12)

where x = (H, C, M, D, I) represents the cells population, the field f is given by
(1)–(5) and, since DCV acts only on dendritic cells, we have g(x) = e4 the fourth
coordinate vector. Our cost is the final value of the tumor mass M. Thus we con-
sider the optimal control problem:

min
u(·)∈U

M(x(T, u(·))), x(0) = x0, (13)

where T is the final time of the treatment period, x0 is some fixed initial value of
cells population and the set U is still to be defined.

We consider a vaccine administration procedure described by a control function

ū : [0, η] �→ [0, V̄]

where V̄ is the maximal vaccine quantity. The function ū represents the value of
injected dendritic cells population as a function of time.
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The most important time scale, in the evolution of the system (1)–(5), is given
by the cellular duplication time, which is estimated about 1

3 of a day. On the other
side, the time duration of the vaccine administration is often of the order of one
hour or less, hence very small compared to the natural time scale of (1). Therefore
we assume that η is very small.

Consider now a family of controls uε corresponding to a single vaccine adminis-
tration procedure that happens at time tε = t̄ + ε. Then the family uε gives rise to
a trajectory variation characterized by next:

Proposition 1. Let uε be a family of controls corresponding to a single vaccine
administration procedure at time tε = t̄ + ε. If ū is constant, then, recalling that η is
the time duration of vaccine administration, the corresponding variation for t ≥ t̄ is
given by:

{
dv(t)

dt (t) = Dx f (x0(t)) · v(t)

v(t̄) = f (x0(t̄)) − f (x0(t̄) + V) + o(η),
(14)

where V = ηu(0)e4.

The proof of Proposition 1, under slightly more general assumptions, is post-
poned to the Appendix.

The clinical treatment of a patient via immunotherapy consists in a series of
DCVs that are scheduled over a time range of some months. We then consider a
control procedure that consists in N vaccinations inoculated according to a sched-
ule S = {ti : i = 0, . . . , N − 1, 0 ≤ t0 ≤ t1 − η < t1 ≤ · · · ≤ tN−1 ≤ T − η}. Let S be
the space of schedules, then for every S ∈ S we define u(S) to be the corresponding
control

uS(t) =
N−1∑
i=0

ū(t − ti )χ[ti ,ti +η].

The control uS corresponds to N vaccine administration procedures that occur at
time ti . Finally we set:

U = {uS : S ∈ S}

and the optimal control problem (13) is now well defined:

(P) Given the initial condition x0 determine a schedule S ∈ S so that the trajectory
xS of dx

dt = f (x(t)) + uS(t)g(x) attains the minimum of M(x(T, u)).

It is easy to notice that such optimal control problem is indeed a (finite dimen-
sional) optimization problem. In fact the space S can be clearly parameterized by
a subset of RN.

Remark 1. Thanks to Proposition 1, we can approximate this optimization prob-
lem considering the set of controls given by finite sums of delta functions centered
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at vaccination times of the schedule, thus considering formally η = 0. This can be
checked by computing the difference obtained by shifting a delta function.

The set S is obviously compact and the function S �→ M(xS(T)) continuous,
hence there exists a solution to (P). Analogously to Proposition 1, one can eas-
ily prove:

Proposition 2. For the problem (P) we have:

∂ M(xS(T))
∂ti

= ∇ψ(xS(T)) · vi (T) = e4 · vi (T) + o(η)

where vi (·) is the solution to (14) for t̄ = ti and x0 = xS.

To solve numerically problem (P) we can use Proposition 2 and steepest descent
or other optimization methods.

5. Optimization

The optimization algorithm is coded in C and consists of the following iterative
procedure:

Step 0 Fix the time T horizon, the number N of vaccine administrations, the value
V of vaccine quantity, an initial value x0 of cells population and an initial sched-
ule S0 (the vector of vaccine administration time);

Step 1 Solve the system (1)–(5) with initial value x0 via the fourth-order Runge-
Kutta integrator generating an approximation of the trajectory xS. At the same
time solve the variational equation dvi

dt = Dx f (xS) · vi with initial condition
vi (ti ) = f (xS(ti )) − f (xS(ti ) + V) for i = 1, . . . , N;

Step 2 Compute ∂ M(xS(T))/∂ti via Proposition 2.
Step 3 Update the schedule according to steepest descent, i.e., add to ti the value

h · ∂ M(xS(T))/∂ti for some small parameter h. Goto Step 1.

Remark 1. Notice that in Step 1 we compute at the same time the solution to
(1)–(5) and the variational Eq. (14), this allows to spare memory also in view of
more complex models. One has to notice, however, that in order to use a Runge–
Kutta method of step �t for the variation equations for v, the trajectory xS must be
computed with a step �t/2. In fact the computations for v require the knowledge
of the values of xS. Simulations based on more simple integrator, such as first or-
der Euler, for the variation equations give erroneous behavior of the optimization
procedure.

In particular a time horizon T of six months and N = 10 DCVs injections are
chosen. Moreover, we take the initial value of the tumor M(0) = 0.1, the H and
C initial levels are set to equilibrium that is H(0) = a0/b0 and C(0) = a1/b1, while
I(0) and D(0) are set to zero, meaning that there is no specific response at the
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Fig. 3 This figure shows the final value of the tumor (linear and logarithmic scale) for each opti-
mization step.

initial time. The vaccine quantity injected at each administration cycle is V(0) =
0.5.

We run the simulations with the initial schedule S0 chosen randomly and 2000
optimization steps. In Fig. 1 we represent the dynamics of the model variables
correspondent to the administration of the final schedule S̃, that is the output of
the optimization procedure.

In Fig. 3 we represent the outcome of final cancer cells population during
the same optimization run. Notice that the final value of the tumor decreased
consistently from about 0.55 of the first optimization step to an almost zero level,
which means essentially clearance of the tumor. Unfortunately, given the fast
growth rate of the tumor cells (M), these population tends to increase immedi-
ately after the effect of a vaccination cycle and corresponding immune response.
Moreover, given the fairly rapid decrease of immune cells coding for the immune
memory, the final value of the tumor mass is quite sensitive with respect to the time
of the last vaccination. While this is due to the relative simplicity of the model
(something we are going to improve as described in the conclusions) it does not
affect the optimization scheme presented in this work.

In Fig. 4 it is shown the evolution of the schedule during the iterations of the
program. The number of iterations is plotted on the first axis, while in the second
axis the vaccine administration times are reported. The time value is represented in
hours (4320 time steps equal to six months). Also here we notice that, as expected,
the cost function is more sensitive with respect to late vaccinations. Again, this is
consequential to the fact that the effect of the vaccine injection expires in time
and is consistent with mice experiments that only a continued therapy (chronic
therapy) is able to keep lifelong immunity and correspondent control of the tumor.



266 Bulletin of Mathematical Biology (2006) 68: 255–274

Fig. 4 We plot here the injection schedule versus the optimization steps. The initial schedule (or
protocol) is chosen at random. The dynamics shows a non trivial aggregation of injections at the
beginning and at about half of the period.

In this precise example the first vaccination time remains basically the same dur-
ing all the optimization phase (injection 0 in Fig. 4). The last five (i.e., injections
5–9) vary most rapidly. Injections 5, 6, and 7 essentially collapse in a unique triple
vaccination from the very beginning. Other joins take place during the optimiza-
tion and are described in more detail in Fig. 5.

The inset plot (a) of Fig. 5 reports the evolution of the injection vector S as
a function of the optimization step while inset (f) shows the cost function of the
same optimization run. Inset (b) zooms on the dynamics of injections 8 and 9 (the
upper box of (a)); it shows that the two injection times get very close in the first
place, then run together for few hundred steps and finally start to fluctuate as
shown in the zoomed area of inset plot (c). Also note in the latter box the three
spikes due to the discretization of the optimization procedure. Going back to
(a), note that the second box zooms to inset (d). This plot together with plot (e)
zooming from (f) reveals drastic changes in the search path that correspond to
different regimes in the minimization of the cost function.

Summarizing, Fig. 5 discloses the complexity of the optimization problem and in
particular that the variation of the injection times is not far from being trivial.

In Fig. 1 we have shown the evolution of all variables at the end of the optimiza-
tion algorithm. For the chosen values, the tumor is highly affected by the presence
of the H (tumor specific T helper) cells and the C (tumor specific cytotoxic) cells.
The decay of these cells is quite rapid and even more is that of dendritic (D) and
interleukin (I). Let us remark that the value of the tumor is not under control for
the whole time horizon but only the final value is taken as the cost of the optimiza-
tion procedure. This often results in concentrating some injection in the last part
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Fig. 6 This figure shows the value of the cost function during the optimization for a number of
runs starting from a different random schedule.

of the therapeutic horizon. Unfortunately, inoculating the vaccine at times which
are too close, may result in toxic effects like allergic reactions or other undesired
alterations of the physiologic state of the patient.

In order to have a better allocation of the injections in the therapeutic period,
one could, for instance, add a constraint or cost on the maximal value of the tumor
during the whole time horizon. While this is natural for the model on one side,
on the other side the optimal control problem obtained is much more difficult to
be treated. This question constitutes a topic of future investigation and is further
addressed in the conclusions.

5.1. Statistics

In Fig. 6 we show the value of the tumor mass at the end of each optimization step,
versus the optimization time for different runs of the algorithm starting from a
random initial schedule of vaccine injections. The figure shows that there are some
saddle points corresponding to the value of the cost function equal to about 0.3 and
another at 0.025. From Figs. 4 and 6 we conclude that the optimization procedure
reaches some critical points (saddles) where the decrease of the cost function is
strongly reduced.

To get an idea of how the optimization algorithm affects a random initial sched-
ule, we computed the distribution of the optimal schedule and compared with the
initial one. In other words, representing by S0 = (t0, . . . , t9) the schedule of injec-
tions, the optimization can be seen as a transformation into another vector S̃ =
(t̃0, . . . , t̃9) of injection times. Then, by running a large number of optimizations
from a randomly chosen initial schedule tk = rand(0, T) : tk < t j ,∀i, j ∈ {0, 9}, we
compared the distribution of each t j with that of the corresponding t̃ j . This is de-
picted in Fig. 7. To show the differences better we plotted the initial distribution
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Fig. 7 On the x-label we have the therapeutic time horizon in hours (equivalent to about six
months). On the y-label we have the normalized frequency (distribution). For visual comparison
negative values are assigned to the distribution of the final optimized schedule. The number on
the right of each plot is the index of the injection vector starting from 0.

of t j in gray on the y-positive semiplane and the distribution of the schedule at the
end of the optimization phase (i.e., the t̃ j s) on the y-negative semiplane in black.

Again, what is immediately evident is that those injections that are mostly
changed by the optimization algorithm are those at the end of the optimization
horizon while the first show little or no difference with respect to their initial
random values, meaning that they are less important for the final reduction of
the tumor mass. Moreover, a clear indication for the optimal values of t̃ j exist
for the last injections (i.e., j = 8 and j = 9) while injection 7 shows to have at
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least two possible optima. This is somehow interpretable as the need to keep low
the final value of the tumor that, indeed, is the cost of the optimization func-
tion. Clearly, by choosing a different cost function (as for example the integral
of the tumor on the time horizon), we would get quite diverse distributions of
S̃ = (t̃0, . . . , t̃9).

5.2. Robustness of the optimization algorithm

For what concerns the dependency of the solution of the optimization problem on
the parameters’ values one can divide the space of possible changes of the param-
eters, with respect to the choice in Table 1, in two parts: the first subspace is that
of parameters’ changes that favor the tumor growth and the other is the one that
makes a more effective immune system response (note that this is the “dual” of
the first). Examples of parameters’ changes in the first subset are: the increase of
tumor growth d2; decrease of cytolytic efficacy e2; of the immune responsiveness to
the vaccine (called immunogenicity) c0 and c1; increase of degradation rate of IL-2
e4; just to mention few. The impact of a parameters’ changes that favor the tumor
growth consists in a slower convergence of the optimization algorithm (smaller re-
duction of the tumor at the end of the therapeutic period for a fixed number of
optimization steps). In the opposite case of an increase of the immune system effi-
ciency (as for example having a slower degradation of IL-2 that keeps a sustained
immune response) the optimization algorithm converges faster but vary less the
vaccination schedule.

In both cases the optimization procedure shows to be robust with respect to
parameters’ changes since a tumor reduction is always attained.

The number of injections required to keep the tumor mass small is very much
dependent on the choice of the parameters that define the “balance” of the tumor
aggressiveness with the efficiency of the immune response. In other words N is a
function of all system parameters and of the initial condition.

Clearly a small N is better from the clinical point of view (less burden for the
patient, smaller risk of toxicity, cost, etc.) but it is quite difficult to find its lower
bound just by numerical analysis. Finally it is worth to say that for a fixed setting
of the carrying capacities in Eqs. (1)–(5), there is a threshold above which one
does not have any improvements in increasing the number of injections N, simply
because the immune system efficacy is limited.

6. Conclusions

We have constructed a mathematical model of the immune-cancer interaction to
study the effect of immunotherapy via dendritic cell vaccines (DCVs). The model
though quite simple reproduces the expected dynamics of tumor-immune interac-
tion both in the case of presence and absence of treatment. The question is then
how to allocate the injections within the time horizon so to have an optimal control
of the tumor.

Therefore we consider an optimal control problem with final value of tumor
mass as cost function and, as optimization horizon, the treatment period of six
months. Since the possible schedules take values in a finite dimensional set, the
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optimal control problem reduces to an optimization one. However, we used typ-
ical tools of optimal control to approximate the effect of DCVs and compute the
gradient of the cost function with respect to the schedule. The latter is obtained
via the solution of a generalized variational equation, while the optimization algo-
rithm is based on the steepest decent method.

The results are very satisfactory since the optimized schedule is always able to
reduce the tumor consistently within the therapeutic horizon. However, given the
fast grow of the tumor and the chosen cost function of the optimization schema,
there is a strong dependencies with respect to the last vaccine injections.

Further research should go in the direction of improving the model by choosing a
more realistic law for cancer growth and by adjusting the effects of DCVs on tumor
levels and other cells. Another possible direction is to consider more complicate
optimal control problems, e.g., including the maximal level of the tumor during the
treatment period as cost (and/or constraint) or asking for a minimal separation of
vaccination times. Whereas on one hand this leads to a more realistic model and
avoids the undesired side-effects of clustered injections, on the other hand it leaves
us with an optimal control and optimization problem that is much more difficult to
be treated.

Appendix

First let C = C([0, T]; Rn) be the space of Rn–valued continuous functions defined
on [0, T] and M its dual, the space of bounded Rn–valued Radon measures on
[0, T], see (Folland, 1999) for the basic theory.

Definition 1. A parameterized family of controls {uε : [0, T] → U; ε ∈ [0, ε̄]}
with corresponding trajectories xε is weakly differentiable at ε = 0 if uε converges
strongly to u0 in L1 and

wε(·) = F(x0(·), uε(·)) − F(x0(·), u0(·))
ε

converges for the weak∗-topology of M to some measure µ ∈ M. In other words,
for every continuous function φ ∈ C the map ε �→ ∫

φi (t)(wε)i (t) dt converges to∫
φi (t) dtµi (t) for every i = 1, . . . , n.

Given a weakly differentiable family uε the corresponding trajectory variation v

satisfies:

dv = Dx F(x0, u0) · v dt + dµ,

where now the equation is understood in integral sense. Otherwise stated, denot-
ing by M(·, ·) the fundamental matrix solution to (10) with x∗, u∗ replaced by x0, u0,
we get:

v(t) = M(t, t ′)v(t ′) +
∫ t

t ′
M(t, s)dµ(s).
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(Notice that now in the integral
∫ t

t ′ it matters to include endpoints, otherwise, since
µ may fail to be absolutely continuous w.r.t. Lebesgue measure, the value of the
second integral may change.) Thus for a needle variation we obtain:

dv = Dx F(x∗, u∗) · v dt + (
F(x∗(τ ), ω) − F(x∗(τ ), u∗(τ ))

)
dδτ ,

where δτ indicates a Dirac delta centered at τ . Restating in integral form:

v(t) = M(t, 0)v(0) +
∫ t

0
M(t, s)(F(x∗(τ ), ω) − F(x∗(τ ), u∗(τ ))) dδτ (s)

= χ[τ,T](t)M(t, τ )(F(x∗(τ ), ω) − F(x∗(τ ), u∗(τ ))), (A.1)

where χA is the indicator function of the set A. Then one can prove PMP in the
usual way.

Consider now a family of controls of type:

uε =
N∑

i=0

ui (t)χ[tε
i ,tε

i+1[ (A.2)

where ui : [0, T] → U is continuous and 0 = tε
0 < tε

1 < · · · < tε
N+1 = T. If tε

i = t0
i +

ε + o(ε), i = 1, . . . , N, then such a family is weakly differentiable and the variation
v of the corresponding trajectories xε satisfies:

dv = Dx F(x0, u0) · v dt +
N∑

i=1

dδti · (F(x0(ti ), ui−1(ti )) − F(x0(ti ), ui (ti ))).

Proof of Proposition 1.
We prove Proposition 1 under the more general assumptions: tε = t̄ + ε + o(ε), ū
is C1 and satisfies d

dt ū(t) = o(η).
Notice that the family uε is formed by control functions of type (A.2), thus
it is weakly differentiable. The corresponding expression for wε, defined as in
Definition 1, is given for ε < η by:

wε(t) =




1
ε
(F(x0(t), 0) − F(x0(t), ū(t − t̄))) if t̄ ≤ t < t̄ + ε

1
ε
(F(x0(t), ū(t − t̄ − ε)) − F(x0(t), ū(t − t̄))) if t̄ + ε ≤ t ≤ t̄ + η

1
ε
(F(x0(t), ū(t − t̄ − ε)) − F(x0(t), 0)) if t̄ + η < t < t̄ + η + ε.

Thus, since ū is continuous, passing to the weak∗ limit in M as ε tends to 0 we get:

wε(t) →∗ µ = δt̄ (t)(F(x0(t̄), 0) − F(x0(t̄), ū(0)))

+ δt̄+η(t)
(
F(x0(t̄ + η), ū(η)) − F(x0(t̄ + η), 0)

)
+χ[t̄,t̄+η](t)Du F(x0(t), ū(t − t̄)) · d

dt
ū(t − t̄) dt,
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thus using (12) and d
dt ū(t) = o(η):

wε(t) →∗ µ = −δt̄ (t)(ū(0)g(x0(t̄))) + δt̄+η(t)(ū(η)g(x0(t̄ + η))) + o(η).

Therefore, denoting by M(·, ·) the fundamental matrix solution to

dv

dt
= Dx F(x0(t), u0(t)) · v(t), (A.3)

the variation v satisfies:

v(t̄ + η) =
∫ t̄+η

t̄
M(t̄ + η, s) dµ(s)

= −ū(0)M(t̄ + η, t̄)g(x0(t̄)) + ū(η)M(t̄ + η, t̄ + η)g(x0(t̄ + η))

= −ū(0) (M(t̄ + η, t̄)e4 − e4) + o(η).

Denoting by ζ the solution to (A.3) with ζ (t̄) = ū(0)e4, we write:

v(t̄ + η) = ζ (t̄) − ζ (t̄ + η) + o(η)

= −
∫ t̄+η

t̄
Dx F(x0(s), u0(s)) · ζ (s) ds + o(η)

= −
∫ t̄+η

t̄
Dx f (x0(s)) · ū(0)e4 ds + o(η)

= −
∫ t̄+η

t̄

[
d
ds

f (x0(t̄) + (s − t̄)ū(0)e4)
]

s + o(η)

= f (x0(t̄)) − f (x0(t̄) + ū(0)e4) + o(η).
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