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Abstract. We prove that, for a Poisson vertex algebra V , the canonical injective
homomorphism of the variational cohomology of V to its classical cohomology is an
isomorphism, provided that V , viewed as a differential algebra, is an algebra of dif-
ferential polynomials in finitely many differential variables. This theorem is one of the
key ingredients in the computation of vertex algebra cohomology. For its proof, we
introduce the sesquilinear Hochschild and Harrison cohomology complexes and prove a
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1. Introduction

In the series of papers [BDSHK19], [BDSHK20], [BDSK20], [BDSKV21],
[BDSK21], the foundations of cohomology theory of vertex algebras have
been developed. The main tool for the computation of this cohomology is
the reduction to the variational Poisson vertex algebra (PVA) cohomol-
ogy. The latter is a well-developed theory with many examples computed
explicitly [DSK13], [BDSK20]. Its importance stems from the fact that
vanishing of the first variational PVA cohomology leads to the construc-
tion of integrable hierarchies of Hamiltonian PDEs.

The reduction of the computation of the vertex algebra cohomology
to the variational PVA cohomology is performed via the classical PVA
cohomology in three steps as follows. First, let V be a vertex algebra
over a field F, with an increasing filtration by F[∂]-submodules such that
V := grV carries a canonical structure of a PVA. Let (Cch(V ), d) be
the vertex algebra cohomology complex of V . A filtration on V induces
a decreasing filtration on Cch(V ), and we have a canonical injective map
[BDSHK19]:

grCch(V ) ↪−→ Ccl(V ), (1.1)
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where (Ccl(V ), gr d) is the classical PVA cohomology complex of V . More-
over, the map (1.1) is an isomorphism, provided that V � V , as F[∂]-
modules [BDSHK20].

Second, in [BDSK21], we constructed a spectral sequence from the
classical PVA cohomology of V to the vertex algebra cohomology of V .

Third, in [BDSHK19], we constructed a canonical injective map

HPV(V ) ↪−→ Hcl(V ) (1.2)

from the variational PVA cohomology of V to its classical PVA cohomol-
ogy, and we conjectured that (1.2) is an isomorphism, provided that V ,
viewed as a differential algebra, is an algebra of differential polynomials
in finitely many differential variables. The main goal of the present paper
is to prove this conjecture.

Recall that a Poisson vertex algebra (abbreviated PVA) is a differential
algebra V with a derivation ∂, endowed with a bilinear λ-bracket V ×
V → V [λ], satisfying the axioms of a Lie conformal algebra and the
Leibniz rules (see (i)–(iii) and (iv)–(iv′), respectively, in Definition 2.1). In
order to construct the variational PVA cohomology complex (CPV(V ), d),
introduce the vector spaces

Vn = V [λ1, . . . , λn]/(∂ + λ1 + · · ·+ λn)V [λ1, . . . , λn], n ≥ 0, (1.3)

where λ1, . . . , λn are indeterminates. Then the space of n-cochains Cn
PV(V )

consists of all linear maps

f : V ⊗n −→ Vn, v �−→ fλ1,...,λn(v), (1.4)

satisfying the sesquilinearity conditions (2.2), the skewsymmetry condi-
tions (2.3), and the Leibniz rules (2.4). The variational PVA differential
d : Cn

PV(V )→ Cn+1
PV (V ) is defined by formula (2.5).

In order to define the classical PVA cohomology complex (Ccl(V ), d),
denote by G (n) the set of oriented graphs with vertices {1, . . . , n} and
without tadpoles. Then the space of n-cochains Cn

cl(V ) consists of linear
maps (cf. (1.3), (1.4))

Y : FG (n)⊗ V ⊗n −→ Vn, Γ⊗ v �−→ Y Γ
λ1,...,λn

(v), (1.5)

satisfying the skewsymmetry conditions (4.3), the cycle relations (4.4),
and the sesquilinearity conditions (4.7). The classical PVA differential is
defined by formula (4.9).

The complexes (CPV(V ), d) and (Ccl(V ), d) both look similar to the
Chevalley–Eilenberg complex for a Lie algebra with coefficients in the
adjoint representation. The reason for this similarity is the operadic origin
for all these cohomology theories, as explained in [BDSHK19].



206 B. Bakalov, A. De Sole, R. Heluani, V.G. Kac and V. Vignoli

An important observation is that we have a canonical injective map of
complexes ϕ : CPV(V )→ Ccl(V ) defined by

ϕ(f)(Γ⊗ (v1 ⊗ · · · ⊗ vn)) = δΓ,[n]f(v1 ⊗ · · · ⊗ vn), (1.6)

where [n] denotes the graph with n vertices and no edges. It was proved
in [BDSHK19] that the map (1.6) induces an injective map in cohomology

ϕ∗ : HPV(V ) ↪−→ Hcl(V ). (1.7)

The main result of the present paper is the following (see Theorem 5.2).

Theorem 1.1. Provided that, as a differential algebra, the PVA V is a
finitely-generated algebra of differential polynomials, the map ϕ∗ is an
isomorphism.

The proof of this theorem uses the s-sesquilinear Hochschild cohomol-
ogy complex, defined for an associative algebra A with a derivation ∂ and
a differential bimodule M over A as follows. For s = 1, this complex is
the differential Hochschild cohomology complex, for which the space of
n-cochains is HomF[∂](A

⊗n,M) and the differential d is defined by the
usual Hochschild’s formula

(df)(a1 ⊗ · · · ⊗ an+1)

= a1f(a2 ⊗ · · · ⊗ an+1)

+
n∑

i=1

(−1)if(a1 ⊗ · · · ⊗ ai−1 ⊗ aiai+1 ⊗ ai+2 ⊗ · · · ⊗ an+1)

+ (−1)n+1f(a1 ⊗ · · · ⊗ an)an+1.

(1.8)

For an arbitrary positive integer s, the definition is similar but more com-
plicated. Given k = (k1, . . . , ks) ∈ Zs

≥0, let

K0 = 0, Kt = k1 + · · ·+ kt, t = 1, . . . , s,

and
n = Ks = k1 + · · ·+ ks.

Given v1, . . . , vn ∈ A, we denote

vtk = vKt−1+1 ⊗ · · · ⊗ vKt ∈ A⊗kt , t = 1, . . . , s,

so that
v = v1 ⊗ · · · ⊗ vn = v1k ⊗ · · · ⊗ vsk .

Then the space of s-sesquilinear Hochschild n-cochains consists of linear
maps (cf. (1.3), (1.4)):

FΛ1,...,Λs : A
⊗n −→M [Λ1, . . . ,Λs]/(∂ + Λ1 + · · ·+ Λs)M [Λ1, . . . ,Λs],
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satisfying the sesquilinearity conditions (t = 1, . . . , s),

FΛ1,...,Λs(v
1
k ⊗ · · · ∂vtk · · · ⊗ vsk ) = −ΛtFΛ1,...,Λs(v). (1.9)

The definition of the differential is similar to (1.8): see formulas (6.12) and
(6.14). Note that for s = 1 this coincides with the differential Hochschild
complex if we identify M with M [Λ1]/(∂ + Λ1)M [Λ1].

If A is a commutative associative algebra and M is a symmetric bi-
module over A, the differential Hochschild complex contains the Harrison
subcomplex, defined by the Harrison conditions (6.5). We define a similar
s-sesquilinear Harrison subcomplex of the s-sesquilinear Hochschild com-
plex by Proposition 6.6. Moreover, we define by (6.15) the action of the
symmetric group Ss on the s-sesquilinear Harrison complex, and the sym-
metric s-sesquilinear Harrison complex of Ss-invariants, which we denote
by (Cs

sym,Har(A,M), d).
Our key observation is that the classical PVA complex (Ccl(V ), d) is

closely related to the complex (Cs
sym,Har(V ,V ), d). Namely, introduce an

increasing filtration of Cn
cl by letting

FsC
n
cl = {Y ∈ Cn

cl |Y Γ = 0 if s > n− e(Γ)},
where e(Γ) is the number of edges of the graph Γ. We prove the following
(see Theorem 7.2):

Theorem 1.2. For a PVA V and s ≥ 1, we have a canonical isomorphism
of complexes:

grsCcl(V ) � Cs
sym,Har(V ,V ),

where on the right the first V is viewed as a commutative associative
differential algebra and the second V as a symmetric bimodule over it.

Consequently, Theorem 1.1 follows from Theorem 1.2 and the following
vanishing theorem for the sesquilinear Harrison cohomology (see Theorem
8.7).

Theorem 1.3. Let V be a finitely-generated algebra of differential poly-
nomials. Then

Hn(Cs
sym,Har(V ,V ), d) = 0 for 1 ≤ s < n.

In order to simplify the exposition, we restricted to the purely even
case. However, the same proofs work in the super case. Namely, Theorem
1.2 holds for any Poisson vertex superalgebra V , while Theorems 1.1 and
1.3 hold if V is a superalgebra of differential polynomials in finitely many
commuting and anticommuting indeterminates.

Throughout the paper, the base field F has characteristic 0, and, unless
otherwise specified, all vector spaces, their tensor products and Homs are
over F.
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2. Variational PVA cohomology

2.1. Poisson vertex algebras

Definition 2.1. A Poisson vertex algebra (PVA) is a differential algebra
V , i.e., a commutative associative unital algebra with a derivation ∂, en-
dowed with a bilinear (over F) λ-bracket [· λ ·] : V × V → V [λ] satisfying:

(i) sesquilinearity: [∂aλb] = −λ[aλb], [aλ∂b] = (λ+ ∂)[aλb];
(ii) skewsymmetry: [aλb] = −[b−λ−∂a], where ∂ is moved to the left to

act on coefficients;
(iii) Jacobi identity: [aλ[bμc]]− [bμ[aλb]] = [[aλb]λ+μc];
(iv) left Leibniz rule [aλbc] = [aλb]c+ [aλc]b.

From the skewsymmetry (ii) and left Leibniz rule (iv) we immediately
get the

(iv′) right Leibniz rule [abλc] = [aλ+∂c]→b+ [bλ+∂c]→a,

where the arrow means that ∂ is moved to the right, acting on b in the
first term, and on a in the second term.

2.2. Variational PVA complex

Given a Poisson vertex algebra V , the corresponding variational PVA
cohomology complex (CPV, d) is constructed as follows [DSK13]; see also
[BDSK20]. The space Cn

PV of n-cochains consists of linear maps

f : V ⊗n −→ V [λ1, . . . , λn]/〈∂ + λ1 + · · ·+ λn〉, (2.1)

where 〈Φ〉 denotes the image of the endomorphism Φ, satisfying the sesquilin-
earity conditions (1 ≤ i ≤ n):

fλ1,...,λn(v1 ⊗ · · · ⊗ (∂vi)⊗ · · · ⊗ vn) = −λifλ1,...,λn(v1 ⊗ · · · ⊗ vn), (2.2)

the skewsymmetry conditions (1 ≤ i < n):

fλ1,...,λi,λi+1,...,λn(v1 ⊗ · · · ⊗ vi ⊗ vi+1 ⊗ · · · ⊗ vn)

= −fλ1,...,λi+1,λi,...,λn(v1 ⊗ · · · ⊗ vi+1 ⊗ vi ⊗ · · · ⊗ vn),
(2.3)

and the Leibniz rules (1 ≤ i ≤ n):

fλ1,...,λn(v1, . . . , uiwi, . . . , vn) = fλ1,...,λi+∂,...,λn(v1, . . . , ui, . . . , vn)→wi

+ fλ1,...,λi+∂,...,λn(v1, . . . , wi, . . . , vn)→ui.

(2.4)
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For example, C0
PV = V /∂V and C1

PV = Der∂(V ) is the space of all
derivations of V commuting with ∂.

The variational PVA differential d : Cn
PV → Cn+1

PV , for n ≥ 0, is defined
by

(df)λ1,...,λn+1(v1 ⊗ · · · ⊗ vn+1)

= (−1)n
n+1∑
i=1

(−1)i [viλi
f
λ1,

i
.̌..,λn+1

(v1⊗
i
ˇ. . . ⊗vn+1)]

+ (−1)n+1
∑

1≤i<j≤n+1

(−1)i+j f
λi+λj ,λ1,

i
.̌..

j
.̌..,λn+1

([viλi
vj ]⊗ v1⊗

i
ˇ. . .

j
ˇ. . . ⊗vn+1).

(2.5)
One shows that d2 = 0, hence we can define the variational PVA coho-
mology

HPV(V ) =
⊕
n≥0

Hn
PV(V ), Hn

PV(V ) = Ker (d|Cn
PV

)/d(Cn−1
PV ). (2.6)

Remark 2.2. It was shown in [DSK13] and [BDSHK19], that the varia-
tional PVA cohomology complex associated to the PVA V has the struc-
ture of a Z-graded Lie superalgebra. The element X ∈ C2

PV, given by

Xλ,−λ−∂(a⊗ b) = [aλb], (2.7)

is odd and satisfies [X,X] = 0. Hence, (adX)2 = 0, and d = adX was
taken as the differential of the variational PVA cohomology complex. As
a consequence, the variational PVA cohomology HPV(V ) has an induced
Lie superalgebra structure. Actually, what we call here variational PVA
cohomology was called in [DSK13] PVA cohomology; the variational PVA
cohomology was a subcomplex there, which is equal to the PVA cohomol-
ogy if V is an algebra of differential polynomials.

3. Preliminaries on the symmetric group and on graphs

3.1. Shuffles

A permutation σ ∈ Sm+n is called an (m,n)-shuffle if

σ(1) < · · · < σ(m), σ(m+ 1) < · · · < σ(m+ n).

The subset of (m,n)-shuffles is denoted by Sm,n ⊂ Sm+n. Observe that,
by definition, S0,n = Sn,0 = {1} for every n ≥ 0. If either m or n is
negative, we set Sm,n = ∅ by convention.
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3.2. Monotone permutations

The following notion is due to Harrison [Har62] (see also [GS87]), and it
will be used in Sect. 6 to define Harrison cohomology.

Definition 3.1. A permutation π ∈ Sn is called monotone if, for each
i = 1, . . . , n, one of the following two conditions holds:

(a) π(j) < π(i) for all j < i;
(b) π(j) > π(i) for all j < i.

(Not necessarily the same condition (a) or (b) holds for every i.) When
(b) holds, we call i a drop of π. Also, π(1) = k is called the start of π
(and we say that π starts at k).

We denote by Mn ⊂ Sn the set of monotone permutations, and by
M k

n ⊂Mn the set of monotone permutations starting at k.
Here is a simple description of all monotone permutations starting at k.

Let us identify the permutation π ∈ Sn with the n-tuple [π(1), . . . , π(n)].
To construct all π ∈M k

n , we let π(1) = k. Then, for every choice of k− 1
positions in {2, . . . , n} we get a monotone permutation π as follows. In
the selected positions we put the numbers 1 to k − 1 in decreasing order
from left to right; in the remaining positions we write the numbers k + 1
to n in increasing order from left to right. (The selected positions are the
drops of π.)

Example 3.2. The only monotone permutation starting at 1 is the identity,
while the only monotone permutation starting at n is

σn = [n n− 1 · · · 2 1]. (3.1)

Example 3.3. Let n = 5 and k = 3. The monotone permutations starting
at 3 are

[3 2 1 4 5], [3 2 4 1 5], [3 2 4 5 1 ],

[3 4 2 1 5], [3 4 2 5 1 ], [3 4 5 2 1 ],

where we underlined the positions of the drops.

Given a monotone permutation π, we denote by dr(π) the sum of all the
drops with respect to π. According to the previous description, we can
easily see that

(−1)dr(π) = (−1)k−1 sign(π), (3.2)

if k is the start of π.
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3.3. Graphs

For an oriented graph Γ, we denoted by V (Γ) the set of vertices of Γ,
and by E(Γ) the set of edges. We call an oriented graph Γ an n-graph
if V (Γ) = {1, . . . , n}. Denote by G (n) the set of all n-graphs without
tadpoles, and by G0(n) the set of all acyclic n-graphs.

An n-graph L will be called an n-line, or simply a line, if its set of
edges is of the form {i1 → i2, i2 → i3, . . . , in−1 → in}, where {i1, . . . , in}
is a permutation of {1, . . . , n}.

We have a natural left action of Sn on the set G (n): for the n-graph Γ
and the permutation σ, the new n-graph σ(Γ) is defined to be the same
graph as Γ but with the vertex which was labeled as i relabeled as σ(i),
for every i = 1, . . . , n. So, if the n-graph Γ has an oriented edge i → j,
then the n-graph σ(Γ) has the oriented edge σ(i) → σ(j). Obviously, Sn

permutes the set of n-lines.

Example 3.4. Let

Γ =
1 2 3 4 5 6

.

For σ = (6 5 4) and τ =

(
1 2 3 4 5 6
3 4 1 5 6 2

)
, we have:

σ

(
1 2 3 4 5 6

)
=

1 2 3 4 5 6
,

and

τ

(
1 2 3 4 5 6

)
=

1 2 3 4 5 6
.

3.4. Graphs of type k and proper k -lines

For s ≥ 1, let

k = (k1, . . . , ks) ∈ Zs
≥0 and n = k1 + · · ·+ ks,
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and denote

K0 = 0 and Kt = k1 + · · ·+ kt, t = 1, . . . , s, (3.3)

so that Ks = n. We denote by Γ k ∈ G (n) the standard k -line, union
of connected lines of lengths k1, . . . , ks, with the labeling of the vertices
ordered from left to right:

Γ k =
1 2

· · ·
K1 K1+1

· · ·
K2

· · ·
Ks−1+1

· · ·
n

.

(3.4)
We allow some of the ki’s to be zero, in which case the corresponding
connected component of Γ k is empty. In the special case s = 1 we recover
the standard n-line

Γn =
1 2 n

· · · . (3.5)

An arbitrary k -line is obtained by permuting the vertices of Γ k :

Γ =
i11 i12

· · ·
i1k1 i21 i22

· · ·
i2k2

· · ·
is1 is2

· · ·
isks

, (3.6)

where the set of indices {iab} is a permutation of {1, . . . , n}. Note that, if
Γ is a k -line, then it is a σ( k )-line for every permutation σ ∈ Ss. Hence,
when considering k -lines we can (and we will) assume that k1 ≤ · · · ≤ ks.
We say that a k -line is proper if the following further condition holds on
the indices of the vertices:

il1 = min{il1, . . . , ilkl} ∀ l = 1, . . . , s. (3.7)

We then let

L (n)

= {proper k -lines Γ ∈ G (n) with k ∈ Zs
≥1, s ≥ 1, k1 + · · ·+ ks = n}.

(3.8)
Note that, in order not to have repetitions in the set (3.8), we may assume
that k1 ≤ · · · ≤ ks, and that, if kl = kl+1, then il1 < il+1

1 . Obviously,
Γ k ∈ L (n) for every k ∈ Zs

≥1, while a permutation of Γ k does not
necessarily lie in L (n).

Finally, we say that a graph Γ ∈ G (n) is of type k if it is disjoint union
of s connected components of sizes k1 ≤ · · · ≤ ks. Obviously, any k -line
is of type k .

We can extend the definition of Γ k for k ∈ Zs
≥0 by removing all 0’s

from k . In particular Γ0 is the empty graph.
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3.5. Cycle relations on graphs

Let FG (n) be the vector space with basis the set of graphs G (n), and
R(n) ⊂ FG (n) be the subspace spanned by the following cycle relations :

(i) all Γ ∈ G (n) \ G0(n) (i.e., graphs containing a cycle);
(ii) all linear combinations

∑
e∈C Γ \ e, where Γ ∈ G (n) and C ⊂ E(Γ)

is an oriented cycle.

By convention, FG (0) = F and R(0) = 0.
Note that reversing an arrow in a graph Γ ∈ G (n) gives us, modulo

cycle relations, the element −Γ ∈ FG (n). For example, for n = 3, a cycle
relation of type (ii) is:

2 3

1

+ 2 3

1

+ 2 3

1

(3.9)

Theorem 3.5 ([BDSHK20, Theorem 4.7]). The set L (n) is a basis
for the quotient space FG (n)/R(n).

3.6. Harrison relations

The following result will be used in Sect. 7.

Lemma 3.6 ([BDSKV21, Lemma 4.8]). Let Γn be the standard n-line,
as in (3.5). For every m ∈ {2, . . . , n}, the following identity holds:

Γn + (−1)m
∑

π∈Mm
n

πΓn ∈ R(n), (3.10)

where the sum is over all monotone permutations π starting at m and the
action of Sn on graphs is described in Subsect. 3.3.

3.7. Notation for subgraphs and collapsed graphs

Let us introduce the following notation. For h ∈ {1, . . . , n} and Γ ∈ G (n),
we denote by Γ\h ∈ G (n− 1) the complete subgraph obtained from Γ by
removing the vertex h and all edges starting or ending in h, and relabeling
the vertices from 1 to n − 1. Moreover, for i, j ∈ {1, . . . , n}, we define
the graph πij(Γ) ∈ G (n − 1) obtained by collapsing the vertices i and j
(and any edges between them) into a single vertex, numbered by 1, and
renumbering the remaining vertices from 2 to n− 1.
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Example 3.7. For example, if

Γ =
1 2 3 4

,

we have

Γ\2 =
1 2 3

, Γ\3 =
1 2 3

,

and

π12(Γ) =
1 2 3

, π23(Γ) =
2 1 3

.

For Γ ∈ G0(n) and i ∈ {1, . . . , n}, we denote by deg−Γ (i) the indegree
of i in Γ, namely the number of edges of Γ incoming to i, by deg+Γ (i) the
outdegree of i in Γ, namely the number of edges of Γ outcoming from i,
and

degΓ(i) := deg−Γ (i) + deg+Γ (i),

the degree of i in Γ. For i, j ∈ {1, . . . , n}, we also let

εΓ(i, j) :=

⎧⎨
⎩
1, if i→ j ∈ E(Γ),

−1, if i← j ∈ E(Γ),

0, otherwise.

Note that, since Γ ∈ G0(n), i→ j and j → i cannot be both in E(Γ).

4. Classical PVA cohomology

4.1. Space of classical cochains

Let V be a Poisson vertex algebra. The corresponding classical PVA coho-
mology complex (Ccl, d) is constructed as follows [BDSHK19]. The space
Cn
cl of classical n-cochains consists of linear maps

Y : FG (n)⊗ V ⊗n −→ V [λ1, . . . , λn]/〈∂ + λ1 + · · ·+ λn〉, (4.1)

mapping the n-graph Γ ∈ G (n) and the monomial v1 ⊗ · · · ⊗ vn ∈ V ⊗n
to the polynomial

Y Γ
λ1,...,λn

(v1 ⊗ · · · ⊗ vn), (4.2)
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satisfying the skewsymmetry conditions, cycle relations, and sesquilinear-
ity conditions described below.

The skewsymmetry conditions on Y say that, for each permutation
σ ∈ Sn, we have

Y
σ(Γ)
λ1,...,λn

(v1 ⊗ · · · ⊗ vn) = sign(σ)Y Γ
λσ(1),...,λσ(n)

(vσ(1) ⊗ · · · ⊗ vσ(n)), (4.3)

where σ(Γ) is defined in Subsect. 3.3.
Recall that R(n) ⊂ FG (n) is the subspace spanned by the cycle rela-

tions (i) and (ii) from Subsect. 3.5. The cycle relations on Y say that

Y Γ = 0 for Γ ∈ R(n). (4.4)

Hence, Y induces a map on FG (n)/R(n). As an example, observe that,
by the first cycle relation (i), changing orientation of a single edge of the
n-graph Γ ∈ G (n) amounts to the change of sign of Y Γ.

Let Γ = Γ1 � · · · � Γs be the decomposition of Γ as a disjoint union of
its connected components, and let I1, . . . , Is ⊂ {1, . . . , n} be the sets of
vertices of these connected components. For each Γα we write

λΓα =
∑
i∈Iα

λi, ∂Γα =
∑
i∈Iα

∂i, (4.5)

where ∂i denotes the action of ∂ on the i-th factor in the tensor product
V ⊗n. Then, the sesquilinearity conditions on Y say that, for v ∈ V ⊗n,

Y Γ
λ1,...,λn

(v) is a polynomial in λΓ1 , . . . , λΓs , (4.6)

(and not in the variables λ1, . . . , λn separately), and, for every α = 1, . . . , s,

Y Γ
λ1,...,λn

((∂Γα + λΓα)v) = 0. (4.7)

Observe that the second sesquilinearity condition (4.7) implies

Y Γ
λ1,...,λn

(∂v) = −
n∑

i=1

λi Y
Γ
λ1,...,λn

(v) = ∂(Y Γ
λ1,...,λn

(v)), v ∈ V ⊗n, (4.8)

i.e., Y Γ : V ⊗n → V [λ1, . . . , λn]/〈∂ + λ1 + · · · + λn〉 is an F[∂]-module
homomorphism.

Remark 4.1. When the graph Γ is connected, the first sesquilinearity con-
dition (4.6) implies that Y Γ

λ1,...,λn
(v) is a polynomial of λ1+ · · ·+λn ≡ −∂.

Hence, it is an element of

V [λ1 + · · ·+ λn]/〈∂ + λ1 + · · ·+ λn〉 � V .

In this case, we will omit the subscript of Y Γ.

By convention, for n = 0 the graph Γ is empty and s = 0; hence
C0
cl = V /∂V . Note also that C1

cl = EndF[∂] V .
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4.2. Differential

The classical PVA cohomology differential d : Cn
cl → Cn+1

cl is defined by
the following formula:

(dY )Γλ1,...,λn+1
(v1 ⊗ · · · ⊗ vn+1)

=
∑

h: degΓ(h)=0

(−1)n−h[vhλh
Y

Γ\h
λ1,...

h
�...,λn+1

(v1 ⊗ · · ·
h
� · · · ⊗ vn+1)]

+
∑

h: degΓ(h)=1
j: εΓ(j,h)	=0

(−1)deg+Γ (h)+n−h+1

Y
Γ\h
λ1,...

h
�...,λj+x,...,λn+1

(v1 ⊗ · · ·
h
� · · · ⊗ vn+1)(|x=λh+∂

vh)

+
∑

i<j: εΓ(i,j)=0

(−1)n+i+j−1Y πij(Γ)

λi+λj ,λ1,...
i,j
� ...,λn+1

([viλi+X(i)vj ]

⊗ (|x1=λ1+∂v1)⊗ · · ·
i,j
� · · · ⊗ (|

xn+1=λn+1+∂
vn+1))

+
∑
i<j

εΓ(i, j)(−1)n+i+j−1

Y
πij(Γ)

λi+λj ,λ1,...
i,j
� ...,λn+1

(vivj ⊗ v1 ⊗ · · ·
i,j
� · · · ⊗ vn+1),

(4.9)

where X(i) is the sum of the variables xk with k �= i in the same connected
component as the vertex i.

Theorem 4.2. Formula (4.9) defines a differential on the space of clas-
sical cochains Ccl =

⊕
n≥0C

n
cl, i.e., d2 = 0.

Proof. As we will see in Subsect. 4.3, formula (4.9) corresponds to the
differential of the classical PVA cohomology defined in [BDSHK19] with
an operadic approach.

Remark 4.3. The Poisson vertex algebra structure on V defines an element
X ∈ C2

cl by

X•−→•(a⊗ b) = ab, X• •λ,−λ−∂(a⊗ b) = [aλb]. (4.10)

The skewsymmetry of X is equivalent to the commutativity of ab and the
skewsymmetry of [aλb], while the sesquilinearity of X is equivalent to the
sesquilinearity of [aλb] and the fact that ∂ is a derivation of ab. Moreover,
the associativity for ab, the Jacobi identity for [aλb] and the Leibniz rule
relating them, together are equivalent to the condition that dX = 0, see
[BDSHK19, Theorem 10.7].
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Example 4.4. Consider the completely disconnected graph Γ = • • · · · •.
Then in formula (4.9), all degΓ(h), εΓ(i, j) and X(i) vanish, and we obtain

(dY )• ··· •λ1,...,λn+1
(v1 ⊗ · · · ⊗ vn+1)

=

n+1∑
h=1

(−1)n−h[vhλh
Y • ··· •
λ1,...

h
�...,λn+1

(v1 ⊗ · · ·
h
� · · · ⊗ vn+1)]

+
∑

1≤i<j≤n+1

(−1)n+i+j−1

Y • ··· •
λi+λj ,λ1,...

i,j
� ...,λn+1

([viλi
vj ]⊗ v1 ⊗ · · ·

i,j
� · · · ⊗ vn+1),

which is the same as (2.5).

Example 4.5. Consider the case when Γ = Γn+1 is the standard (n + 1)-
line (3.5). Then degΓ(h) = 1 for the endpoints h = 1 or n+1, degΓ(h) = 2
otherwise, so that the first sum in (4.9) vanishes. The third sum vanishes
as well because, when εΓ(i, j) = 0, the graph πij(Γ) has a cycle. In the
fourth sum we only have the terms with j = i+ 1. Thus we obtain

(dY )Γn+1(v1 ⊗ · · · ⊗ vn+1)

= (−1)n+1v1Y
Γn(v2 ⊗ · · · ⊗ vn+1) + Y Γn(v1 ⊗ · · · ⊗ vn)vn+1

+
n∑

i=1

(−1)n+i−1Y Γn(v1 ⊗ · · · ⊗ vivi+1 ⊗ · · · ⊗ vn+1).

For the last term we used the skewsymmetry of Y to bring the factor
vivi+1 in position i. This is the formula for the Hochschild differential
[Hoc45].

4.3. Proof of the formula for the differential
In the present paper, the formula (4.9) for the classical PVA cohomology
differential d is taken as a definition. Here, we show how that formula is
derived from the approach of [BDSHK19]. This implies Theorem 4.2.

Recall from [BDSHK19, Section 10] the classical operad Pcl(ΠV ), de-
fined as follows. The space Pcl(ΠV )(n) consists of maps (4.1) satisfy-
ing the cycle relations (4.4) and the sesquilinearity conditions (4.6)–(4.7).
There is a natural action of the symmetric group Sn on Pcl(ΠV )(n) de-
fined by simultaneously permuting all the λi’s, the vectors vi’s and the
vertices of the graph Γ, and multiplying by the sign of the permutation,
since all vectors in ΠV are odd. Explicitly (see [BDSHK19, Equation
(10.10)])

(Y σ)Γλ1,...,λn
(v1⊗· · ·⊗vn) = sign(σ)Y

σ(Γ)
λσ−1(1),...,λσ−1(n)

(vσ−1(1)⊗· · ·⊗vσ−1(n)).

(4.11)
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Then the skewsymmetry conditions (4.3) are equivalent to the Sn invari-
ance of Y . Therefore

Cn
cl = Wn−1

cl (ΠV ) = (Pcl(ΠV )(n))
Sn (4.12)

is the space of fixed points under the action of the symmetric group Sn

in the classical operad Pcl(ΠV ).
The composition products in Pcl(ΠV ) are given by [BDSHK19, Equa-

tion (10.11)]. Here we need the special case of ◦1-product (see [BDSHK19,
Remark 10.3 and Equation (8.18)]). For A ∈ Pcl(k), B ∈ Pcl(m) and
G ∈ G (m+ k − 1), the ◦1-product A ◦1 B ∈Pcl(m+ k − 1) is given by

(A ◦1 B)Gλ1,...,λm+k−1
(v1 ⊗ · · · ⊗ vm+k−1)

= AḠ′′
λG′ ,λm+1,...,λm+k−1

(BG′
λ1+λG1

+∂G1
,...,λm+λGm+∂Gm

(v1 ⊗ · · ·
⊗ vm)⊗ vm+1 ⊗ · · · ⊗ vm+k−1).

(4.13)

Here G′ is the subgraph of G with vertices 1, . . . ,m and all edges from G
among these vertices; G′′ is the subgraph of G that includes all edges of G
not in G′; and Ḡ′′ is the graph with vertices labeled 1,m+1, . . . ,m+k−1
and edges obtained from the edges of G′′ by replacing any vertex 1 ≤ i ≤
m with 1, keeping the same orientation. Finally, the graph Gi (1 ≤ i ≤ m)
is the subgraph of G′′ obtained from the connected component of the
vertex i in G′′ by removing from it the vertex i and all edges connected
to i.

By [BDSHK19, Theorem 3.4], Wcl(ΠV ) =
⊕

k≥−1W
k
cl(ΠV ) has the

structure of a Z-graded Lie superalgebra. In particular, for X ∈W 1
cl(ΠV )

and Y ∈Wn−1
cl (ΠV ), their Lie bracket is given by [BDSHK19, Equations

(3.13), (3.16)]:

[X,Y ] =
∑

σ∈Sn,1

(X ◦1 Y )σ
−1

+ (−1)n
∑

τ∈S2,n−1

(Y ◦1 X)τ
−1
, (4.14)

where Sn,1 and S2,n−1 denote the sets of shuffles from Subsect. 3.1.
The element X ∈ C2

cl = W 1
cl(ΠV ) in (4.10) is odd and satisfies [X,X] =

0, see [BDSHK19, Theorem 10.7]. Hence, (adX)2 = 0, and d = adX
was taken as the differential of the classical PVA cohomology complex in
[BDSHK19, Definition 10.8]. As a consequence, the classical PVA coho-
mology Hcl(V ) has an induced Lie superalgebra structure. Here we show
that the differential d in (4.9) coincides with adX from (4.14):

Proposition 4.6. For Y ∈ Cn
cl = Wn−1

cl (ΠV ), we have dY = [X,Y ].
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Proof. Recalling from Subsect. 3.1 the definition of shuffles, we have Sn,1

= {σh}n+1
h=1 where

σh =

(
1 · · · · · · · · · n n+ 1

1 · · · h� · · · n+ 1 h

)
,

and S2,n−1 = {τi,j}1≤i<j≤n+1 where

τi,j =

(
1 2 3 · · · · · · · · · n+ 1

i j 1 · · · i,j� · · · n+ 1

)
.

Clearly,

sign(σh) = (−1)n−h+1 and sign(τi,j) = (−1)i+j−1.

Hence, formula (4.14) becomes

[X,Y ]Γλ1,...,λn+1
(v1 ⊗ · · · ⊗ vn+1)

=
n+1∑
h=1

((X ◦1 Y )σ
−1
h )Γλ1,...,λn+1

(v1 ⊗ · · · ⊗ vn+1)

+ (−1)n
∑
i<j

((Y ◦1 X)τ
−1
i,j )Γλ1,...,λn+1

(v1 ⊗ · · · ⊗ vn+1)

=
n+1∑
h=1

(−1)n−h+1(X ◦1 Y )
σ−1
h (Γ)

λ1,...
h
�...,λn+1,λh

(v1 ⊗ · · ·
h
� · · · ⊗ vn+1 ⊗ vh)

+
∑
i<j

(−1)n+i+j−1

(Y ◦1 X)
τ−1
i,j (Γ)

λi,λj ,λ1,...
i,j
� ...,λn+1

(vi ⊗ vj ⊗ v1 ⊗ · · ·
i,j
� · · · ⊗ vn+1),

(4.15)

where
h
� denotes a missing factor.

Let us study the two summands in the right-hand side of (4.15) sepa-
rately. To compute the first summand, we use equation (4.13) with A = X,
B = Y , k = 2, m = n and G = σ−1h (Γ). Note that σ−1h (Γ) is obtained by
moving the h-th vertex at the end of the graph. Hence, G′ = Γ\h and G′′
is the subgraph of Γ obtained by keeping only the edges in or out of the
vertex h. Then Ḡ′′ is a graph with two vertices labeled 1 and h, and

Ḡ′′ =

⎧⎨
⎩
• • if degΓ(h) = 0,

1•→•h if degΓ(h) = deg−Γ (h) = 1,

1•←•h if degΓ(h) = deg+Γ (h) = 1,

and Ḡ′′ has a cycle if degΓ(h) ≥ 2. Moreover, if degΓ(h) = 0 then Gi = ∅
for all i, while if degΓ(h) = 1 and there is an edge connecting h with j then
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Gi = ∅ for all i �= j and Gj = •h. As a result, provided that degΓ(h) ≤ 1,
we obtain

(X ◦1 Y )
σ−1
h (Γ)

λ1,...
h
�...,λn+1,λh

(v1 ⊗ · · ·
h
� · · · ⊗ vn+1 ⊗ vh)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X• •−λh−∂,λh
(Y

Γ\h
λ1,...

h
�...,λn+1

(v1 ⊗ · · ·
h
� · · · ⊗ vn+1)⊗ vh)

if degΓ(h) = 0,

X•→•(Y Γ\h
λ1,...

h
�...,λj+λh+∂h,...,λn+1

(v1 ⊗ · · ·
h
� · · · ⊗ vn+1)⊗ vh)

if j → h ∈ E(Γ),

X•←•(Y Γ\h
λ1,...

h
�...,λj+λh+∂h,...,λn+1

(v1 ⊗ · · ·
h
� · · · ⊗ vn+1)⊗ vh)

if j ← h ∈ E(Γ),

(4.16)

where ∂h denotes the action of ∂ on vh, while (X ◦1 Y )σ
−1
h (Γ) = 0 if

degΓ(h) > 1.
To compute the second summand in the right-hand side of (4.15), we

use equation (4.13) with A = Y , B = X, k = n, m = 2 and G = τ−1i,j (Γ).
Note that τ−1i,j (Γ) is obtained by moving vertices i and j at the beginning
of Γ, keeping the order between i and j. Hence,

G′ =

⎧⎨
⎩
• • if there is no edge between i and j in Γ,

•→• if i→ j ∈ E(Γ),

•←• if i← j ∈ E(Γ),

while Ḡ′′ = πij(Γ). As a result, we obtain

(Y ◦1 X)
τ−1
i,j (Γ)

λi,λj ,λ1,...
i,j
� ...,λn+1

(vi ⊗ vj ⊗ v1 ⊗ · · ·
i,j
� · · · ⊗ vn+1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y
πij(Γ)

λi+λj ,λ1,...
i,j
� ...λn+1

(X• •λi+λGi
+∂Gi

,λj+λGj
+∂Gj

(vi ⊗ vj)

⊗v1 ⊗ · · ·
i,j
� · · · ⊗ vn+1)

if εΓ(i, j) = 0,

Y
πij(Γ)

λi+λj ,λ1,...
i,j
� ...λn+1

(X•→•(vi ⊗ vj)⊗ v1 ⊗ · · ·
i,j
� · · · ⊗ vn+1)

if εΓ(i, j) = 1,

Y
πij(Γ)

λi+λj ,λ1,...
i,j
� ...λn+1

(X•←•(vi ⊗ vj)⊗ v1 ⊗ · · ·
i,j
� · · · ⊗ vn+1)

if εΓ(i, j) = −1.
(4.17)
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Combining equations (4.15), (4.16) and (4.17) and recalling (4.10), we
obtain (4.9).

5. The main theorem

To a Poisson vertex algebra V we associate two cohomology complexes:
the variational PVA cohomology complex CPV introduced in Subsect. 2.2,
and the classical PVA cohomology complex Ccl introduced in Sect. 4.
Recall also from Remark 2.2 and Subsect. 4.3, that these complexes have
the structure of a Lie superalgebra. It is natural to ask what is the relation
between these two cohomology theories. A partial answer was provided by
the following:

Theorem 5.1 ([BDSHK19, Theorem 11.4]). We have a canonical in-
jective homomorphism of Lie superalgebras

HPV(V ) ↪−→ Hcl(V ) (5.1)

induced by the map that sends f ∈ Cn
PV to Y ∈ Cn

cl such that

Y • ··· • = f and Y Γ = 0 if |E(Γ)| �= ∅.
It was left as an open question in [BDSHK19] whether (5.1) is, in fact,

an isomorphism. The main result of this paper will be the proof that this
is indeed the case, under some regularity assumption on V .

Theorem 5.2. Assuming that the PVA V , as a differential algebra, is a
finitely-generated algebra of differential polynomials, the Lie superalgebra
homomorphism (5.1) is an isomorphism.

The remainder of the paper will be devoted to the proof of Theorem 5.2. In
Sect. 6, we introduce a new cohomology complex, called the sesquilinear
Harrison cohomology complex. In Sect. 7, we define a filtration of the clas-
sical PVA cohomology complex and we prove that its associated graded
is isomorphic to the sesquilinear Harrison cohomology complex. We then
show, in Sect. 8 that the cohomology of the sesquilinear Harrison coho-
mology complex vanishes in positive degree. Using that, we complete, in
Sect. 9, the proof of Theorem 5.2.

6. Sesquilinear Harrison cohomology

In the present Section we introduce the sesquilinear Hochschild and Har-
rison cohomology complexes. In order to do so, we first review the differ-
ential Hochschild and Harrison cohomology complexes.
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6.1. Differential Hochschild cohomology complex

Let A be an associative algebra over the base field F, and M be an A-
bimodule. The corresponding Hochschild cohomology complex of A with
coefficients in M is defined as follows [Hoc45]. The space of n-cochains is

Hom(A⊗n,M), (6.1)

and the differential d : Hom(A⊗n,M)→ Hom(A⊗n+1,M) is defined by

(df)(a1 ⊗ · · · ⊗ an+1)

= a1f(a2 ⊗ · · · ⊗ an+1)

+
n∑

i=1

(−1)if(a1 ⊗ · · · ⊗ ai−1 ⊗ aiai+1 ⊗ ai+2 ⊗ · · · ⊗ an+1)

+ (−1)n+1f(a1 ⊗ · · · ⊗ an)an+1.

(6.2)

If A is an associative algebra with a derivation ∂ : A → A, and M is
a differential bimodule over A (i.e., the action of ∂ is compatible with
the bimodule structure), we may consider the differential Hochschild co-
homology complex by taking the subspace of n-cochains

HomF[∂](A
⊗n,M). (6.3)

It is clear by the definition (6.2) that the differential d maps HomF[∂](A
⊗n,M)

to HomF[∂](A
⊗n+1,M). Hence, we have a cohomology subcomplex.

6.2. Differential Harrison cohomology complex

Let us now recall Harrison’s original definition of his cohomology com-
plex [Har62], see also [GS87], [L13]. Let A be a commutative associative
algebra, and M be a symmetric A-bimodule, i.e., such that am = ma,
for all a ∈ A and m ∈ M . For every 1 < k ≤ n define the following
endomorphism on the space Hom(A⊗n,M):

(LkF )(a1 ⊗ · · · ⊗ an) :=
∑

π∈M k
n

(−1)dr(π)F (aπ(1) ⊗ · · · ⊗ aπ(n)), (6.4)

where M k
n is the set of monotone permutations starting at k, defined in

Subsect. 3.2.
A Harrison n-cochain is defined as a Hochschild n-cochain F ∈ Hom(A⊗n,M)

fixed by all operators Lk:

LkF = F for every 2 ≤ k ≤ n. (6.5)
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We will denote by

Cn
Har(A,M) ⊂ Hom(A⊗n,M) (6.6)

the space of Harrison n-cochains.
Furthermore, if A is a differential algebra with a derivation ∂ : A→ A,

and M is a symmetric differential bimodule, we may consider the space
of differential Harrison n-cochains

Cn
∂,Har(A,M) ⊂ HomF[∂](A

⊗n,M), (6.7)

again defined by Harrison’s conditions (6.5).

Proposition 6.1 ([GS87], [BDSKV21]).

(a) The Harrison cohomology complex (CHar(A,M), d) is a subcomplex of
the Hochschild cohomology complex.

(b) If A is a differential algebra, with a derivation ∂ : A → A, the differ-
ential Harrison cohomology complex (C∂,Har(A,M), d) is a subcomplex
of the differential Hochschild cohomology complex.

The cohomology of the complex (C∂,Har(A,M), d) is the differential
Harrison cohomology of A with coefficients in M , and is denoted by
H∂,Har(A,M). Clearly, H0

∂,Har(A,M) = M and H1
∂,Har(A,M) = Der∂(A,M)

is the space of all derivations from A to M commuting with ∂.

Remark 6.2. It follows from [GS87] that Hn
∂,Har(A,M) is a direct summand

of the differential Hochschild cohomology, for n ≥ 2.

6.3. The sesquilinear Hochschild cohomology complex

Let V be an associative differential algebra with derivation ∂, and let M
be a differential bimodule over V . Fix s ≥ 1 and let, as in Subsect. 3.4,

k = (k1, . . . , ks) ∈ Zs
≥0, K0 = 0, Kt = k1 + · · ·+ kt, t = 1, . . . , s,

and
n = Ks = k1 + · · ·+ ks.

Given v1, . . . , vn ∈ V , we denote

vtk = vKt−1+1 ⊗ · · · ⊗ vKt ∈ V ⊗kt , t = 1, . . . , s, (6.8)

so that
v := v1 ⊗ · · · ⊗ vn = v1k ⊗ · · · ⊗ vsk ∈ V ⊗n. (6.9)

Note that we allow kt to be 0, and in this case vtk = 1 ∈ F.
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The s-sesquilinear Hochschild cohomology complex (Cs
sesq,Hoc(V ,M), d)

of V with coefficients in M , is defined as follows. First we introduce the
space C

k
Hoc of all linear maps

FΛ1,...,Λs : V ⊗n −→M [Λ1, . . . ,Λs]/〈∂ + Λ1 + · · ·+ Λs〉,
v �−→ FΛ1,...,Λs(v),

(6.10)

satisfying the sesquilinearity conditions (t = 1, . . . , s),

FΛ1,...,Λs(v
1
k ⊗ · · · ∂vtk · · · ⊗ vsk ) = −ΛtFΛ1,...,Λs(v). (6.11)

For every t = 1, . . . , s, we define the t-th differential d(t) : C k
Hoc → C

k+ e t

Hoc ,
where e t is the s-tuple with all 0 except for 1 in position t, given by

(d(t)F )Λ1,...,Λs(v1 ⊗ · · · ⊗ vn+1)

= (−1)Kt−1(|
x=∂

vKt−1+1)FΛ1,...,Λt+x,...,Λs(v1 ⊗ · · ·
Kt−1+1

� · · · ⊗ vn+1)

+

Kt∑
i=Kt−1+1

(−1)iFΛ1,...,Λs(v1 ⊗ · · · ⊗ vivi+1 ⊗ · · · ⊗ vn+1)

+ (−1)Kt+1FΛ1,...,Λt+x,...,Λs(v1 ⊗ · · ·
Kt+1
� · · · ⊗ vn+1)(|x=∂vKt+1).

(6.12)
In other words, up to the overall sign (−1)Kt−1 and up to the shift by
∂ in the variable Λt, this is the Hochschild cohomology differential of F ,
viewed as a function of vtk+ e t

= vKt−1+1 ⊗ · · · ⊗ vKt+1, considering all
other vectors vt

′
k+ e t

with t′ �= t as fixed parameters. In equation (6.12)
and throughout the rest of the paper, the substitution |x=∂ means that
the polynomial in x is expanded, x is replaced by ∂, and it is applied, in
this case, to the vector vKt−1+1 in the first term of the right-hand side,
and to the vector vKt+1 in the last term.

Remark 6.3. Note that M [Λ1]/〈∂ + Λ1〉 � M . Using this, we identify
the 1-sesquilinear Hochschild cohomology complex with the differential
Hochschild cohomology complex, defined in Subsect. 6.1.

Remark 6.4. Note that, for s > 1, by the sesquilinearity condition (6.11),
we have C

k
Hoc = 0 if one of the ki’s is zero.

Theorem 6.5. For each k ∈ Zs
≥0, equation (6.12) gives well defined maps

d(t) : C
k
Hoc −→ C

k+ e t

Hoc , t = 1, . . . , s,

which are anticommuting differentials:

d(t)d(t
′) = −d(t′)d(t) for all t, t′ = 1, . . . , s.
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Hence, we get a Zs
≥0-graded s-complex,( ⊕

k∈Zs
≥0

C
k
Hoc, d

(1), . . . , d(s)
)
. (6.13)

As a consequence, letting

Cs,n
Hoc =

⊕
k :Ks=n

C
k
Hoc and d =

s∑
t=1

d(t) : Cs,n
Hoc −→ Cs,n+1

Hoc , (6.14)

we get a cohomology complex (Cs
sesq,Hoc(V ,M) =

⊕
n≥0C

s,n
Hoc, d).

Proof. In order to prove that d(t) is well defined, we first check that, if

FΛ1,...,Λs(v) = (∂ + Λ1 + · · ·+ Λs)GΛ1,...,Λs(v),

for every v ∈ V ⊗n, then the right-hand side of (6.12) lies in 〈∂ + Λ1 +
· · · + Λs〉. Indeed, using the fact that ∂ is a derivation of the product in
V , the first term of the right-hand side is equal to

(−1)Kt−1(∂ + Λ1 + · · ·+ Λs)

(GΛ1,...,Λt+∂,...,Λs(v1 ⊗ · · ·
Kt−1+1

� · · · ⊗ vn)→vKt−1+1).

The second and third term are similar.
Next, we check that d(t)F satisfies the sesquilinearity conditions (6.10)

for every t′ ∈ {1, . . . , s} in place of t and for k + e t in place of k . Let
v = v1k+ e t

⊗· · ·⊗v1k+ e t
be the factorization of v ∈ V ⊗(n+1) as in (6.9). If

∂ acts on the factor vt′k+ e t
with t′ �= t, then in each term of the right-hand

side of (6.12) we get a factor of −Λt′ , by the sesquilinearity of F . In the
case when t′ = t we observe that

vtk+ e t
= vKt−1+1 ⊗ w, where w = vKt−1+2 ⊗ · · · ⊗ vKt+1.

Then
∂vtk+ e t

= ∂vKt−1+1 ⊗ w + vKt−1+1 ⊗ ∂w.

Hence, if we replace vtk+ e t
by ∂vtk+ e t

in (d(t)F )Λ1,...,Λs(v), the first term
in the right-hand side of (6.12) becomes, up to the sign (−1)Kt−1 ,

FΛ1,...,Λt+∂,...,Λs(v1 ⊗ · · · ∂w · · · ⊗ vn)→vKt−1+1

+ FΛ1,...,Λt+∂,...,Λs(v1 ⊗ · · ·w · · · ⊗ vn)→∂vKt−1+1

= FΛ1,...,Λt+∂,...,Λs(v1 ⊗ · · ·w · · · ⊗ vn)→(−Λt − ∂)vKt−1+1

+ FΛ1,...,Λt+∂,...,Λs(v1 ⊗ · · ·w · · · ⊗ vn)→∂vKt−1+1

= −ΛtFΛ1,...,Λt+∂,...,Λs(v1 ⊗ · · ·w · · · ⊗ vn)→vKt−1+1.
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The other two terms in (6.12) are similar, proving the sesquilinearity of
d(t)F .

Next, we prove that d(t) and d(t
′) anticommute for all t, t′. For t′ �= t,

d(t) and d(t
′) act on a different set of variables, hence, due to the overall

signs, they anticommute. For t′ = t we need to show that (d(t))2 = 0,
which is similar to the proof that the square of the Hochschild differential
is zero. For simplicity of notation, let us check this for t = 1. Then K1 = k1
will be denoted simply as k. Applying formula (6.12) twice, we obtain:

(d(1)(d(1)F ))Λ1,...(v1 ⊗ · · · ⊗ vk+2 ⊗ · · · )
= (|x=∂v1)(d

(1)F )Λ1+x,...(v2 ⊗ · · · ⊗ vk+2 ⊗ · · · )

+

k+1∑
i=1

(−1)i(d(1)F )Λ1,...(v1 ⊗ · · · ⊗ vivi+1 ⊗ · · · ⊗ vk+2 ⊗ · · · )

+ (−1)k+2(d(1)F )Λ1+x,...(v1 ⊗ · · · ⊗ vk+1 ⊗ · · · )(|x=∂vk+2)

= (|x=∂v1)(|y=∂v2)FΛ1+x+y,...(v3 ⊗ · · · ⊗ vk+2 ⊗ · · · )

+

k+1∑
j=2

(−1)j−1(|x=∂v1)FΛ1+x,...(v2 ⊗ · · · ⊗ vjvj+1 ⊗ · · · ⊗ vk+2 ⊗ · · · )

+ (−1)k+1(|x=∂v1)FΛ1+x+y,...(v2 ⊗ · · · ⊗ vk+1 ⊗ · · · )(|y=∂vk+2)

− (|x=∂(v1v2))FΛ1+x,...(v3 ⊗ · · · ⊗ vk+2 ⊗ · · · )

+

k+1∑
i=2

(−1)i(|x=∂v1)FΛ1+x,···(v2 ⊗ · · · ⊗ vivi+1 ⊗ · · · ⊗ vk+2 ⊗ · · · )

+
k+1∑
i=3

i−2∑
j=1

(−1)i+jFΛ1,...(v1 ⊗ · · · ⊗ vjvj+1 ⊗ · · ·
⊗ vivi+1 ⊗ · · · ⊗ vk+2 ⊗ · · · )

−
k+1∑
i=2

FΛ1,...(v1 ⊗ · · · ⊗ vi−1vivi+1 ⊗ · · · ⊗ vk+2 ⊗ · · · )

+
k∑

i=1

FΛ1,...(v1 ⊗ · · · ⊗ vivi+1vi+2 ⊗ · · · ⊗ vk+2 ⊗ · · · )

+
k−1∑
i=1

k+1∑
j=i+2

(−1)i+j−1FΛ1,...(v1 ⊗ · · · ⊗ vivi+1 ⊗ · · ·
⊗ vjvj+1 ⊗ · · · ⊗ vk+2 ⊗ · · · )
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+

k∑
i=1

(−1)i+k+1FΛ1+x,...(v1 ⊗ · · · ⊗ vivi+1 ⊗ · · · ⊗ vk+1 ⊗ · · · )(|x=∂vk+2)

+ FΛ1+x,...(v1 ⊗ · · · ⊗ vk ⊗ · · · )(|x=∂(vk+1vk+2))

+ (−1)k(|x=∂v1)FΛ1+x+y,...(v2 ⊗ · · · ⊗ vk+1 ⊗ · · · )(|y=∂vk+2)

+

k∑
i=1

(−1)k+iFΛ1+x,...(v1 ⊗ · · · ⊗ vivi+1 ⊗ · · · ⊗ vk+1 ⊗ · · · )(|x=∂vk+2)

− FΛ1+x+y,...(v1 ⊗ · · · ⊗ vk ⊗ · · · )(|x=∂vk+1)(|y=∂vk+2).

An inspection of the right-hand side shows that all terms pairwise cancel
with each other. The remaining assertions of the theorem are an immediate
consequence.

The symmetric group Ss acts naturally on each Cs,n
Hoc as follows. A

permutation σ ∈ Ss maps C
k
Hoc → C

σ( k )
Hoc , where we recall that σ( k ) =

(kσ−1(1), . . . , kσ−1(s)). Given F ∈ C
k
Hoc, its image F σ ∈ C

σ( k )
Hoc is given by

(F σ)Λ1,...,Λs(v) = ±FΛσ−1(1),...,Λσ−1(s)
(v

σ−1(1)
k ⊗ · · · ⊗ v

σ−1(s)
k ), (6.15)

where the sign in the right-hand side is

± = (−1)
∑

t<t′ :σ(t′)<σ(t) ktkt′ , (6.16)

which is the Koszul sign obtained by permuting vectors v1, . . . , vn, viewed
as having odd parity, according to (6.15). Moreover, for every σ ∈ Ss and
t = 1, . . . , s, we have

σ ◦ d(t) = d(σ(t)) ◦ σ. (6.17)

6.4. The sesquilinear Harrison cohomology complex

Let V be a commutative associative differential algebra, and M be a
differential symmetric V -bimodule. We define the s-sesquilinear Harrison
cohomology complex (Cs

sesq,Har(V ,M), d) as a subcomplex of the sesquilin-
ear Hochschild cohomology complex of V with coefficients in M . First,
let C k

Har be the subspace of C k
Hoc consisting of all linear maps FΛ1,...,Λs as

in equation (6.10) satisfying, in addition to the sesquilinearity conditions
(6.11), the following Harrison conditions (1 ≤ t ≤ s, 2 ≤ m ≤ kt):

L(t)
m F :=

∑
π∈Mm

kt

(−1)dr(π)FΛ1,...,Λs(v
1
k⊗· · ·π−1(vtk ) · · ·⊗vsk ) = FΛ1,...,Λs(v),

(6.18)
where Mm

kt
is the set of monotone permutations in Skt starting at m, cf.

(6.4).
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Proposition 6.6. For every k ∈ Z≥0, 1 ≤ t, t′ ≤ s and 2 ≤ m ≤ kt we
have

d(t)L(t′)
m = L(t′)

m d(t).

In particular, we obtain a cohomology subcomplex Cs
sesq,Har(V ,M) of

Cs
sesq,Hoc(V ,M) given by

Cs,n
Har =

⊕
k :Ks=n

C
k
Har and d =

s∑
t=1

d(t) : Cs,n
Har −→ Cs,n+1

Har . (6.19)

Proof. For t �= t′, the operators d(t) and L
(t′)
m commute because they act on

different sets of variables, vtk and vt
′
k respectively. For t = t′, the equation

d(t)L
(t)
m = L

(t)
m d(t) holds by a straightforward computation, which is similar

to the proof that the Harrison cohomology complex is a subcomplex of
the Hochschild complex, see [GS87].

Proposition 6.7. Equation (6.15) gives a well defined action of the sym-
metric group Ss on Cs,n

Har, which maps C
k
Har to C

σ( k )
Har . Moreover, σ com-

mutes with the differential d in (6.14).

Proof. Recall from the end of the previous subsection, that we have an
action σ which maps C

k
Hoc to C

σ( k )
Hoc . We only need to check that this

action preserves the Harrison conditions (6.18). This is true because L
(t)
m

acts on the vectors from the t-th group v
(t)
k , while σ permutes the groups.

The claim that σ commutes with d follows from (6.17).

Thanks to Proposition 6.7, we get a cohomology subcomplex given by
the Ss-invariants:(

Cs
sym,Har(V ,M) =

⊕
n≥0

(Cs,n
Har)

Ss , d
)
, s ≥ 1. (6.20)

We will call this complex the symmetric s-sesquilinear Harrison coho-
mology complex of V with coefficients in M . The degenerate case s = 0
corresponds to setting

k = ∅, n = K0 = 0, v = 1 ∈ V ⊗0 = F.

In this case, the symmetric (s = 0)-sesquilinear Harrison cohomology
complex Cs=0

sym,Har(V ,M) is concentrated in degree n = 0 and it is equal
to M/∂M , with the zero differential.

Remark 6.8. As in Remark 6.3, we have M [Λ1]/〈∂+Λ1〉 �M , and, using
this, we identify the (s = 1)-sesquilinear Harrison cohomology complex
with the differential Harrison cohomology complex, defined in Subsect.
6.1.
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7. Relation between symmetric sesquilinear Harrison and
classical PVA cohomology complexes

We introduce a filtration of the classical PVA complex (Ccl, d) defined
in Subsect. 4.1. For a graph Γ we let s(Γ) be the number of connected
components of Γ. Recall that for an acyclic graph Γ ∈ G0(n) with n
vertices, we have s(Γ) = n− |E(Γ)|. We then let, for s ∈ Z,

FsCcl = {Y ∈ Ccl |Y Γ = 0 for every graph Γ such that s(Γ) < s}. (7.1)

This defines a decreasing filtration of vector spaces. Note that FsCcl = Ccl

for s ≤ 0, because any graph Γ with n vertices and |E(Γ)| > n has a
cycle and therefore Y Γ = 0 by definition. The same argument also gives
F1C

n
cl = Cn

cl for n ≥ 1, because any non-empty graph Γ with n vertices and
|E(Γ)| > n− 1 has a cycle. However, F1C

0
cl = 0, and moreover, FsC

n
cl = 0

for s > n, since s(Γ) = n− |E(Γ)| ≤ n.

Proposition 7.1. The filtration (7.1) is preserved by the action of the
differential d defined by (4.9).

Proof. For Y ∈ FsC
n
cl, we need to prove that dY ∈ FsC

n+1
cl . This means

that, for any Γ ∈ G (n + 1) such that s(Γ) < s, we have (dY )Γ = 0. Let
us consider separately the four terms in the right-hand side of (4.9).

First, if degΓ(h) = 0, then h is an isolated vertex of Γ and s(Γ\h) =
s(Γ)−1 < s−1, so that Y Γ\h = 0. Second, if degΓ(h) = 1, then h is a leaf
of Γ and s(Γ\h) = s(Γ) < s, so that again Y Γ\h = 0. Third, if εΓ(i, j) = 0,
then there is no edge connecting i and j. Hence when we collapse them
into a single vertex, either we get a loop in πij(Γ), if i and j are in the
same connected component of Γ, or else s(πij(Γ)) = s(Γ)−1 < s. In both
cases Y πij(Γ) = 0. Finally, if εΓ(i, j) �= 0, then there is an edge connecting
i and j. In this case s(πij(Γ)) = s(Γ) < s, and again Y πij(Γ) = 0. In
conclusion, all four terms in the right-hand side of (4.9) vanish if s(Γ) < s,
as claimed.

As a consequence, the s-degree component of the associated graded of
the classical PVA complex

grsCcl = FsCcl/Fs+1Ccl

is again a complex for any fixed s ≥ 0 with the induced action of the
differential d. Note that in the special case s = 0 we have gr0Ccl = C0

cl =
V /∂V , which is concentrated in degree n = 0.

By the proof of Proposition 7.1, if Γ ∈ G (n + 1) and degΓ(h) = 0,
then s(Γ\h) = s(Γ) − 1. Moreover, if εΓ(i, j) = 0, then either πij(Γ) has
a loop or s(πij(Γ)) = s(Γ)− 1. As a consequence, for Y ∈ FsC

n
cl, the first
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and third term in the right-hand side of (4.9) vanish. Therefore, we get
the following explicit formula for the differential of [Y ] = Y + Fs+1C

n
cl ∈

grsCn
cl, evaluated at Γ ∈ G (n+ 1) with s(Γ) = s:

(d[Y ])Γλ1,...,λn+1
(v1 ⊗ · · · ⊗ vn+1)

=
∑

h: degΓ(h)=1
j: εΓ(j,h)	=0

(−1)deg+Γ (h)+n−h+1

Y
Γ\h
λ1,...

h
�...,λj+x,...,λn+1

(v1 ⊗ · · ·
h
� · · · ⊗ vn+1)(|x=λh+∂

vh)

+
∑
i<j

εΓ(i, j)(−1)n+i+j−1

Y
πij(Γ)

λi+λj ,λ1,...
i,j
� ...,λn+1

(vivj ⊗ v1 ⊗ · · ·
i,j
� · · · ⊗ vn+1).

(7.2)

Theorem 7.2. For every s ≥ 0 we have an isomorphism of complexes
between the s-degree component of the associated graded of the classical
PVA cohomology complex and the symmetric s-sesquilinear Harrison co-
homology complex:

grsCcl � Cs
sym,Har. (7.3)

Explicitly, for Y ∈ FsC
n
cl and k ∈ Zs

≥0 such that Ks = n, the image of
the linear map

Y Γ k : V ⊗n −→ V [λ1, . . . , λn]/〈∂ + λ1 + · · ·+ λn〉
depends only on the sums

Λt = λKt−1+1 + · · ·+ λKt , t = 1, . . . , s, (7.4)

and therefore it can be viewed as a linear map

Y Γ k : V ⊗n −→ V [Λ1, . . . ,Λs]/〈∂ + Λ1 + · · ·+ Λs〉.
Then the isomorphism (7.3) maps

Y + Fs+1C
n
cl �−→

∑
k∈Zs

≥0 :Ks=n

Y Γ k ∈ (Cs,n
Har)

Ss . (7.5)

Proof. The case s = 0 is obvious, so we shall assume s ≥ 1. Clearly, for
k ∈ Zs

≥0, we have s(Γ k ) ≤ s. Hence, for Y ∈ Fs+1C
n
cl, we have Y Γ k = 0,

and the map (7.5) is well defined.
Next, we show that Y Γ k ∈ C

k
Har for each k ∈ Zs

≥0. By the first
sesquilinearity condition (4.6), Y Γ k is a map V ⊗n → V [Λ1, . . . ,Λs]/〈∂ +
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Λ1+· · ·+Λs〉, since Λt = λ(Γ k )t . The second sesquilinearity condition (4.7)
for Y implies the sesquilinearity (6.11) of Y Γ k . Moreover, the Harrison
conditions (6.18) for Y Γ k follow from Lemma 3.6, or more precisely from
equation (3.10) applied to the t-th connected component (Γ k )t = Γkt of
Γ k , and the cycle relations (4.4) for Y . Hence, Y Γ k ∈ C

k
Har, as stated.

In order to check that the right-hand side of equation (7.5) is invariant
under the symmetric group Ss, pick a permutation σ ∈ Ss and consider
its action on Y Γ k , for a fixed k ∈ Zs

≥0. Using equation (6.15), we find

((Y Γ k )σ)Λ1,...,Λs(v) = ±Y Γ k

Λσ−1(1),...,Λσ−1(s)
(v

σ−1(1)
k ⊗ · · · ⊗ v

σ−1(s)
k ). (7.6)

where ± is as in (6.16). Let σ̃ ∈ Sn be the permutation

σ̃(Kt−1 + i) = kσ−1(1) + · · ·+ kσ−1(σ(t)−1) + i, t = 1, . . . , s, i = 1, . . . , kt.
(7.7)

This permutation is defined so that

vσ̃−1(1) ⊗ · · · ⊗ vσ̃−1(n) = v
σ−1(1)
k ⊗ · · · ⊗ v

σ−1(s)
k . (7.8)

Indeed, we have, by (6.8),

v
σ−1(1)
k ⊗ · · · ⊗ v

σ−1(s)
k

= (vKσ−1(1)−1+1 ⊗ · · · ⊗ vKσ−1(1)
)⊗ (vKσ−1(2)−1+1 ⊗ · · ·

⊗ vKσ−1(2)
)⊗ · · · ⊗ (vKσ−1(s)−1+1 ⊗ · · · ⊗ vKσ−1(s)

).

On the other hand, we obviously have

vσ̃−1(1) ⊗ · · · ⊗ vσ̃−1(n)

= (vσ̃−1(1) ⊗ · · · ⊗ vσ̃−1(kσ−1(1))
)⊗ (vσ̃−1(kσ−1(1)+1) ⊗ · · ·

⊗ vσ̃−1(kσ−1(1)+kσ−1(2))
)⊗ · · · ⊗ (vσ̃−1(kσ−1(1)+···+kσ−1(s−1)+1) ⊗ · · ·

⊗ vσ̃−1(kσ−1(1)+···+kσ−1(s))
).

The above two formulas match thanks to the definition (7.7) of σ̃ with t
replaced by σ−1(t). Notice also that, for the same reason, (cf. (7.4))

λσ̃−1(kσ−1(1)+···+kσ−1(t−1)+1)+· · ·+λσ̃−1(kσ−1(1)+···+kσ−1(t))
= Λσ−1(t), (7.9)

and
σ̃(Γ k ) = Γσ( k ), (7.10)
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or, equivalently, σ̃−1(Γ k ) = Γσ−1( k ). We then use the skewsymmetry of
Y (4.3) with respect to σ̃−1 evaluated on the graph Γ k :

Y
σ̃−1(Γ k )

λ1,...,λn
(v1⊗· · ·⊗vn) = sign(σ̃)Y

Γ k

λσ̃−1(1),...,λσ̃−1(n)
(vσ̃−1(1)⊗· · ·⊗vσ̃−1(n)).

(7.11)
Notice that the ± sign in (7.6) is precisely sign(σ̃). Hence, combining
equations (7.6)–(7.11), we get

(Y Γ k )σ = Y
Γσ−1( k ) . (7.12)

As a consequence, the sum in the right-hand side of (7.5) is Ss-invariant,
as claimed.

Next, we observe that the map (7.5) is injective. Indeed, if
∑

k∈Zs
≥0 :Ks=n Y

Γ k

= 0 in Cs,n
Har =

⊕
k :Ks=nC

k
Har, then Y Γ k = 0 for every k ∈ Zs

≥0, and
therefore, by Theorem 3.5, Y Γ = 0 whenever s(Γ) ≤ s. Hence, Y ∈
Fs+1C

n
cl, so its image in grsC

n
cl is zero.

Now we prove that (7.5) is surjective. Take an element

F =
∑
k

F k ∈ Cs,n
Har =

⊕
k :Ks=n

C
k
Har,

which is invariant under the action of the symmetric group Ss. We want
to construct Y ∈ FsC

n
cl such that Y Γ k = F k for every k ∈ Zs

≥0. Note
that, by Remark 6.4, we can restrict to k ∈ Zs

>0. In the degenerate case
s = 1 and k1 = 0, we have n = 0 and in this case the claim is obvious.
First, we define Y ∈ Pcl(ΠV )(n), see Subsect. 4.3. Recall by Theorem
3.5 that the proper k -lines Γ ∈ L (n), defined by (3.6), (3.7), form a
basis for the vector space FG (n)/R(n), if k1 ≤ · · · ≤ ks and il1 < il+1

1
whenever kl = kl+1. Hence, it is enough to define Y Γ for each proper
k -line Γ satisfying these conditions. Given such Γ, there is a permutation
τ ∈ Sn such that Γ = τ(Γ k ), and we set

Y Γ
λ1,...,λn

(v1 ⊗ · · · ⊗ vn) = sign(τ)F
k
Λ1,...,Λs

(vτ(1), . . . , vτ(n)), (7.13)

where the Λt’s are as in (7.4). This is well defined, since if τ ∈ Sn fixes
Γ k , then τ = σ̃ for some σ ∈ Ss fixing k , and in this case the right-
hand side of (7.13) equals F

k
Λ1,...,Λs

(v1, . . . , vn) by the Ss-symmetry of F .
The cycle relations (4.4) and the first sesquilinearity condition (4.6) on Y
hold by construction. The second sesquilinearity condition (4.7) follows
immediately from the sesquilinearity (6.11) of F .

We are left to check that the map Y defined by (7.13) satisfies the
skewsymmetry (4.3), or equivalently, the Sn-invariance Y = Y σ, σ ∈ Sn,
with respect to the action (4.11). It is enough to check this separately in
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the cases when the permutation only acts on the vertices of a single line,
or when it permutes the lines. In the first case, the invariance condition
reduces to the case s = 1, for which the sesquilinear Harrison complex is
equivalent to the differential Harrison complex, and the claim was proved
in [BDSKV21, Lemma 4.9]. In the second case, when the permutation σ
permutes the lines, the σ-invariance of Y holds by construction.

Finally, we show that the map (7.5) commutes with the action of the
differentials (4.9) and (6.14). Recall that the differential (4.9) induces, in
the associated graded complex grsCcl the differential (7.2). Let us evaluate
the right-hand side of (7.2) for Γ = Γ k . In the first sum, h is a vertex of
degree 1, hence it must be the beginning or end point of one of the s lines in
Γ k , and j is the vertex adjacent to it in the line. Hence, when h is the first
vertex of the t-th line, we get the first term of (6.12), while when h is the
last vertex of the t-th line, we get the third term of (6.12). Furthermore,
in the second sum of the right-hand side of (7.2), the only non-zero terms
have εΓ k

(i, j) = 1, which means that i and j are consecutive vertices of
the same line in Γ k . When they are in the t-th line we recover the second
term of (6.12). This completes the proof.

8. Vanishing of the sesquilinear Harrison cohomology

In this section, we prove a vanishing theorem for the (symmetric) sesquilin-
ear Harrison cohomology, introduced in Subsect. 6.4. First, we recall some
basic facts about the Hochschild homology and cohomology, and a weak
form of the Hochschild–Kostant–Rosenberg (HKR) Theorem. Next, we
state an analogous theorem for the differential Hochschild cohomology,
due to P. Etingof, the proof of which is included in Appendix A. We gen-
eralize this to the sesquilinear Hochschild cohomology, introduced in Sub-
sect. 6.3, to derive the vanishing theorem for the (symmetric) sesquilinear
Harrison cohomology, which is used in the proof of the main theorem.

8.1. The Bar complex

Let A be an associative F-algebra. Its Bar-resolution B•(A) is a complex
of A-A-bimodules with

Bk(A) = A⊗ · · · ⊗A︸ ︷︷ ︸
k+2–times

, k ≥ 0, (8.1)

where the differential d : Bk(A)→ Bk−1(A) is given by

d(a0 ⊗ · · · ⊗ ak+1) =
k∑

i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ ak+1, k ≥ 1.
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Let Aop be A with the opposite product and Ae = A ⊗ Aop. Then B(A)
is a complex of left Ae-modules by letting

(a⊗ b) · a1 ⊗ · · · ⊗ ak+2 = a · a1 ⊗ · · · ⊗ ak+2 · b.
Any A-A-bimodule M can be viewed as a right Ae-module by letting
m · (a⊗ b) = b ·m · a. Then

B•(A,M) := M ⊗Ae B(A)

is a complex of F-vector spaces. The homology of this complex is known
as the Hochschild homology of A with coefficients in M and is denoted by
HH•(A,M).

Given an A-A-bimodule M , we obtain a complex of F-vector spaces

C•(A,M) := HomA-A-bimod(B•(A),M).

The homology of this complex is known as the Hochschild cohomology of
A with coefficients in M . It is easy to see that this cohomology coincides
with the one defined in Subsect. 6.1.

For a unital algebra A, we will use the normalized Hochschild complex
C̄•(A,M) [L13, 1.5.7] consisting on Hochschild cochains f ∈ C•(A,A)
vanishing on elements of the form a0 ⊗ · · · ⊗ ak, where one of the aj is 1.
The inclusion C̄•(A,A) ↪→ C•(A,A) is a quasi-isomorphism. Indeed the
map

a1 ⊗ · · · ⊗ ak+2 −→ 1⊗ a1 ⊗ · · · ⊗ ak+2,

induces a homotopy between the identity map of C•(A,A) and its pro-
jection to C̄•(A,A). Suppose that the algebra A is unital and augmented,
with an augmentation ideal A+; in this case we have

C̄i(A,A) = HomF(A
⊗i
+ , A). (8.2)

8.2. Kähler differentials

Let A be an associative commutative F-algebra, and I ⊂ A ⊗ A be the
kernel of the multiplication map A⊗ A→ A. The A-module Ω1

A := I/I2

is called the module of Kähler differentials of A.
For an A-module M , a derivation of A with values in M is a linear

map D ∈ HomF(A,M) satisfying

D(a · b) = a ·D(b) + b ·D(a).

The space of all derivations Der(A,M) is an A-module and we have

Der(A,M) � HomA(Ω
1
A,M).
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In particular, the identity map of Ω1
A gives a derivation d ∈ Der(A,Ω1

A);
explicitly,

da = a⊗ 1− 1⊗ a mod I2.

We define the module of n-forms by

Ωn
A :=

∧n

A
Ω1
A, n ≥ 0.

Let V be a F-vector space, and consider the free commutative associa-
tive unital algebra A = S(V ) generated by V . In this case,

Ωn
A � A⊗

∧n
V,

since Ω1
A is a free A-module of rank = dimV . We view Ω•A =

⊕
n≥0Ω

n
A as

a complex with zero differential. We have the following map of complexes
ε : Ω•A → B•(A,A), called the antisymmetrization map, defined by

ε(a⊗ v1 ∧ · · · ∧ vn) =
∑
σ∈Sn

sign(σ)a⊗ vσ−1(1) ⊗ · · · ⊗ vσ−1(n). (8.3)

Theorem 8.1 (HKR Theorem [L13, Theorem 3.2.2]). Let A =
S(V ) as above. Then the antisymmetrization map ε, given by (8.3), is
a quasi-isomorphism. In particular, we have an isomorphism ε∗ : Ωn

A
∼−→

HHn(A,A) for all n ≥ 0 induced in homology. Its inverse is given by the
surjective map

π∗ : HH•(A,A) −→ Ω•A, π∗(a0 ⊗ · · · ⊗ ak) = a0da1 ∧ · · · ∧ dak.

Similarly, we have:

Theorem 8.2. For A = S(V ) as above, the inclusion of complexes

π	 :
∧•

A
Der(A,A) ↪−→ C•(A,A)

is a quasi-isomorphism. Consequently, we have an isomorphism of coho-
mology groups

ε	∗ : HH•(A,A) −→
∧•

A
Der(A,A) � A⊗

∧•
V ∗,

defined as the inverse of the map π	
∗ induced by π	 in cohomology.
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8.3. The differential setting

Let now A be a differential associative algebra, that is an associative
algebra over F with a derivation ∂. Then the complex B(A) is a complex
of F[∂]-modules. Given a differential A-bimodule M , we have the complex
of F-vector spaces

C•∂(A,M) := Hom∂
A-A-bimod(B•(A),M),

where the Hom is taken in the category of differential A-A-bimodules.
The homology of this complex is the differential Hochschild cohomology
of A with coefficients in M , denoted by HH•∂(A,M). It is clear that this
definition coincides with the definition in Subsect. 6.1.

Let A = F[x
(j)
i | 1 ≤ i ≤ N, j ≥ 0] be a differential polynomial algebra

in N variables xi = x
(0)
i and their derivatives ∂x

(j)
i := x

(j+1)
i , j ≥ 0. Let

A+ ⊂ A be the augmentation ideal. We will need the following well known
result, whose proof we provide for completeness.

Lemma 8.3. A+ is free as an F[∂]-module.

Proof. Consider first the case when A is a differential polynomial algebra
in one variable x = x(0), that is A = F[x(0), x(1), . . . ]. An F-basis of A+ is
given by the monomials

x(λ) = x(λ1) · · ·x(λk), λ = λ1 ≥ · · ·λk ≥ 0, k ≥ 1. (8.4)

We have

∂x(λ) =
k∑

i=1

x(λ1) · · ·x(λi+1) · · ·x(λk). (8.5)

The module A+ is a graded F[∂]-module with deg x(λ) = k+
∑k

i=1 λi, and
deg ∂ = 1. Notice that the homogeneous components (A+)n of degree n are
finite dimensional over F. We consider the weighted reverse lexicographic
order on the set of monomials (8.4): for two partitions λ, μ we let x(λ) >
x(μ) if deg x(λ) > deg x(μ) or deg x(λ) = deg x(μ) and there exists i0 ≥ 1
such that λi = μi for 1 ≤ i ≤ i0 and λi0 > μi0 . This is a total ordering on
the set of monomials (8.4).

We construct an F[∂]-basis of A+ as follows. For each homogeneous
degree component (A+)n, we consider a set of monomials Bn ⊂ (A+)n
such that their images in (A+)n/∂(A+)n−1 form an F-basis. This set exists
since we have a total ordering of a monomial basis of (A+)n over F. We
let B =

∐
n≥1 Bn. We claim that B is an F[∂]-basis of A+.

First, let us prove by induction that B spans A+. Let a ∈ A+ be a
homogeneous element of degree n. We prove by induction that a can be
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written as a linear combination with coefficients in F[∂] of elements of B.
When n = 1 there is nothing to prove as (A+)1 has as a basis B1 = {x(0)}.
Assume that every homogeneous element of degree less than n is in the
F[∂]-span of B. We can assume that a is a monomial. By the definition
of Bn, there exist b ∈ (A+)n and c ∈ (A+)n−1 such that a = b+ ∂c with
the property that b is an F-linear combination of elements of Bn. By our
induction hypothesis, c (and therefore ∂c) can be written as an F[∂]-linear
combination of elements of B. Therefore, B spans A+ over F[∂].

Let us now prove that the elements of B are linearly independent over
F[∂]. Suppose we are given b1, . . . , br ∈ B such that

α1∂
j1b1 + · · ·+ αr∂

jrbr = 0, αi ∈ F, αi �= 0, ji ≥ 0. (8.6)

We may assume that each summand is homogeneous of degree n and that
j1 ≥ · · · ≥ jr. Since ∂ is injective on A+, we may assume that jr = 0. Let
i0 be the minimum such that ji0 = 0. Thus bi ∈ Bn for i0 ≤ i ≤ r. It
follows that

∑r
i=i0

αibi vanishes modulo ∂(A+)n−1, which contradicts our
choice of Bn. This proves that B is an F[∂]-basis of A+.

For general N , writing AN in place of A and denoting the case N = 1
again by A, we have an isomorphism of F[∂]-modules

AN � A⊗N = (A+ ⊕ F1)⊗N .

Hence, the augmentation ideal (AN )+ is a direct sum of tensor products
of free F[∂]-modules, and so is free.

Now we introduce the subspace of poly-vector fields

P • ⊂ HomF(A
⊗•, A),

i.e., alternating maps that are derivations in each argument. We consider
P • as a complex with the zero differential. Since A is a differential algebra,
P • is naturally an F[∂]-module; let P •∂ = Ker ∂.

The proof of the following theorem due to P. Etingof is included in
Appendix A.

Theorem 8.4. Let A = F[x
(j)
i | 1 ≤ i ≤ N, j ≥ 0] be a differential polyno-

mial algebra in N variables and their derivatives. Then for all k ≥ 0 we
have an isomorphism

HHk
∂ (A,A) � P k

∂ .
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8.4. The sesquilinear setting

Let A be an associative differential algebra and s ≥ 1. Consider the total
complex of the s-complex

B(A)⊗s = B(A)⊗A · · · ⊗A B(A)︸ ︷︷ ︸
s times

.

This is a complex of A-A-bimodules and of F[∂1, . . . , ∂s]-modules. Let M
be a differential A-A-bimodule. Define

ΔsM = M ⊗F[∂] F[∂1, . . . , ∂s],

where the left F[∂]-module structure on F[∂1, . . . , ∂s] is given by the diag-
onal map ∂ �→∑

∂i. Then ΔsM is an A-A-bimodule and an F[∂1, . . . , ∂s]-
module. We have the complexes

Cs,• = HomA-A-bimod(B(A)⊗s,ΔsM), Cs,•
∂ = Hom(B(A)⊗s,ΔsM),

the Hom in the right-hand side being taken in the category of A-A-
bimodules and F[∂1, . . . , ∂s]-modules. It is clear from the definition that
Cs,•
∂ (A,A) coincides with the complex Cs,•

Hoc from (6.14).

Remark 8.5. Notice that the complexes Cs,• and Cs,•
∂ decompose under

the action of products of symmetric groups as follows. For each degree i
and a partition k1 + · · ·+ ks = i, the complex Cs,• has a direct summand
consisting of maps

Bk1(A)⊗ · · · ⊗Bks(A) −→ ΔsM.

The group Sk1 × · · · × Sks acts by permuting the entries on the left-
hand side. The complex Cs,• is a direct sum of these symmetric group
representations for all i and all partitions.

Let now A be in addition commutative, let Ω1
A be the module of Kähler

differentials of A, and let

Ω•A =
∧•

A
Ω1
A

be the module of differential forms. We consider Ω•A as a complex with
zero differential. We have P • = Hom(Ω•, A). Note that Ω1

A and therefore
Ω•A are differential A-modules. Hence P •∂ = HomA−F[∂](Ω•A, A), where the
Hom is taken in the category of differential A-modules.
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Theorem 8.6. Let A = F[x
(j)
i | 1 ≤ i ≤ N, j ≥ 0] be a differential poly-

nomial algebra, and M be its differential module. Then for every i ≥ 0 we
have isomorphisms

H i(Cs,•(A,M)) � H i(Hom((Ω•A)
⊗s,ΔsM)),

H i(Cs,•
∂ (A,M)) � H i(HomA−F[∂1,...,∂s]((Ω

•)⊗s,ΔsM)).

Proof. The first isomorphism is simply a consequence of the HKR Theo-
rem 8.1 for A stating that B(A) is quasi-isomorphic to Ω•A. Since the latter
is a free A-module, it is flat, and therefore B(A)⊗s is quasi-isomorphic to
(Ω•A)

⊗s. The result follows by taking Homs into ΔsM .
The quasi-isomorphism B(A)⊗s → (Ω•A)

⊗s is a quasi-isomorphism of
complexes of A-modules and F[∂1, . . . , ∂s]-modules. It follows that we have
a quasi-isomorphism of complexes of A-modules and F[∂1, . . . , ∂s]-modules

Cs,•(A,M) −→ HomA((Ω
•
A)
⊗s,ΔsM),

and hence the following two complexes are quasi-isomorphic

RHomF[∂1,...,∂s](F, C
s,•(A,M))

−→ RHomF[∂1,...,∂s](F,HomA((Ω
•
A)
⊗s,ΔsM)).

(8.7)

In order to compute the cohomology of (8.7), we use the Koszul resolution
of F as an F[∂1, . . . , ∂s]-module. We consider the free module Ω1

F[∂1,...,∂s]

with a basis d1, . . . , ds and the resolution

· · · −→
∧k

Ω1
F[∂1,...,∂s]

−→
∧k−1

Ω1
F[∂1,...,∂s]

−→ · · ·
−→ Ω1

F[∂1,...,∂s]
−→ F[∂1, . . . , ∂s] −→ F.

(8.8)

This resolution coincides with the two-term resolution (A.2) when s = 1.
The complex (8.8) is non-negatively graded, with F[∂1, . . . , ∂s] in de-

gree 0. The Koszul differential is defined by di �→ ∂i and extending by the
Leibniz rule to a derivation of degree −1 of the free commutative superal-
gebra

∧•Ω1
F[∂1,...,∂s]

. Hence, in order to compute the cohomology of (8.7),
we need to compute the cohomology of the total complexes with s + 1
rows∧•

Fs ⊗ Cs,•(A,M) and
∧•

Fs ⊗HomA((Ω
•
A)
⊗s,ΔsM). (8.9)

We compute first the vertical cohomology of the complex on the right.
We claim that for each column i ≥ 1 the vertical cohomology in

∧•
Fs ⊗

Hom((Ω•A)
⊗s,ΔsM) vanishes in positive degrees. Indeed, let T s,• be the

set of all maps in Cs,•(A,M) that are derivations in each argument. We
have a split injection Hom((Ω•A)

⊗s,ΔsM) ↪→ T i, since the latter splits as
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a representation of the symmetric group as in Remark 8.5. It suffices then
to prove that the vertical cohomology of

∧•
Fs⊗T s,• vanishes in positive

degrees. For each partition k1 + · · · + ks = i ≥ 1, the corresponding
summand of T s,• is given by maps

(A+/A
2
+)
⊗k1 ⊗ · · · ⊗ (A+/A

2
+)
⊗ks −→ ΔsM. (8.10)

Notice that if some ki = 0, the corresponding space of maps vanishes since
there are no non-trivial derivations of F. So we may assume that all ki > 0.
Since A+/A

2
+ is free as an F[∂]-module, it follows that the left-hand side

of (8.10) is free as an F[∂1, . . . , ∂s]-module. Hence

Extj
F[∂1,...,∂s]

(F, T i) = 0, i, j ≥ 1,

proving that the vertical cohomology of the second complex in (8.9) van-
ishes in positive degrees for each column i ≥ 1. The zeroth column is
given by the complex

∧•
F ⊗ ΔsM , where the differential is defined by

di ⊗m �→ m∂i extended to a derivation of degree −1. Since the horizon-
tal differentials are zero, we obtain the following description of the total
cohomology. In each degree i ≥ 1, we have

H i(HomA−F[∂1,...,∂s]((Ω
•)⊗s,ΔsM))⊕H i

(∧•
Fs ⊗ΔsM

)
, (8.11)

where the first summand corresponds to the i-th horizontal cohomology
of the zeroth row, while the second is the i-th vertical cohomology of the
zeroth column. In degree 0, we have F.

We now analyze the vertical cohomology of the first bicomplex in (8.9).
We notice that, in the same way as in the proof of Theorem 8.4, for any
partition k1 + · · · + ks = i where all ki > 0, we have (A+)

⊗∑
kj is a free

F[∂1, . . . , ∂s]-module. Hence, we obtain

Extj
F[∂1,...,∂s]

(F, Cs,j) = 0, i, j ≥ 1.

The cohomology is therefore again concentrated in the zeroth row and the
zeroth column. The zeroth vertical cohomology is given by Cs,•

∂ , while the
zeroth column is given by

∧•⊗ΔsM . We see that the zeroth column con-
tributes the same cohomology to the second summand of (8.11), while the
horizontal cohomology of the zeroth row is now given by H i(Cs,•

∂ (A,M)),
proving the theorem.
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8.5. The sesquilinear Hodge decomposition

We recall here the Hodge decomposition of the Hochschild cohomology of
a commutative algebra A with coefficients in its module M ; see [GS87],
[L13]. The symmetric group Sn acts on

Cn := Cn(A,M) � Hom(A⊗n,M)

by permuting the n factors. Recall the Eulerian idempotents e
(i)
n ∈ Q[Sn]

of the group algebra of Sn (see [L13, 4.5.2] for an explicit description).
They satisfy

1 = e(1)n + · · ·+ e(n)n ,

e(i)n e(j)n = 0, if i �= j, and e(i)n e(i)n = e(i)n .

It follows from [L13, 4.5.10] that, putting Cn
(k) := e

(k)
n Cn, and letting

HHn
(k)(A,M) ⊂ HHn(A,M) consist of cohomology classes of elements in

Cn
(k), we obtain a direct sum decomposition

HHn(A,M) = HHn
(1)(A,M)⊕ · · · ⊕HHn

(n)(A,M), n ≥ 1.

The first summand HHn
(1)(A,M) is identified canonically with the Harri-

son cohomology Hn(C•Har(A,M)) by [L13, 4.5.13]. The last summand is
identified with polyvector fields [L13, 4.5.13]:

HHn
(n)(A,M) � Hom

(∧n
Ω1
A,M

)
. (8.12)

The above description generalizes to the sesquilinear setting. Recall
from the proof of Proposition 6.7 that the complexes Cs,•

∂ (A,M) are com-
plexes in the category of representations of symmetric group Ss, so that
the action of the symmetric group Ss as described in Subsect. 6.3 com-
mutes with the differential. In addition, it preserves the Harrison condi-
tions (6.18). For each s and k1 + · · · + ks = n, we have an action of the
product Sk1 × · · ·×Sks on Cs,•

∂ (A,M) by permuting the entries and com-
muting with the differential. Consider the corresponding Eulerian idem-
potents e

(i)
kj
∈ Q[Skj ], for i ≥ 0 and j = 1, . . . , s. For i = (i1, . . . , is) and

k = (k1, . . . , ks), we let

e
(i)
k = e

(i1)
k1
⊗ · · · ⊗ e

(is)
ks
∈ Q[Sk1 × · · · × Sks ].

For each i, we set

Cs,n
(i),∂(A,M) =

⊕
k1+···+ks=n

e
(i)
k C

s,k
∂ (A,M).
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We obtain the corresponding decomposition of the sesquilinear Hochschild
cohomology

Hn(Cs,•
∂ (A,M)) =

⊕
i

Hn(Cs,•
(i),∂(A,M)).

Denote by 1 the s-tuple (1, . . . , 1). The summand for i = 1 is identified
with the sesquilinear Harrison cohomology in the same way as above:

Hn(Cs,•
sesq,Har(A,M)) = Hn(Cs,•

(1),∂(A,M)). (8.13)

In the other extreme case, we obtain from (8.12) the identification of
sesquilinear polyvector fields with the following sum

Hn(HomA−F[∂1,...,∂s]((Ω
•)⊗s,ΔsM)) �

⊕
k1+···+ks=n

Hn(Cs,•
(k),∂(A,M)).

(8.14)

The main result of this section is the following:

Theorem 8.7. Let A = F[x
(j)
i | 1 ≤ i ≤ N, j ≥ 0] be a differential polyno-

mial algebra, and M be its differential module. Then for every n > s > 0
the sesquilinear Harrison cohomology of A with coefficients in M van-
ishes:

Hn(Cs,•
sesq,Har(A,M)) = 0.

Proof. Let n > s > 0 and consider the sesquilinear Hochschild cohomol-
ogy of A with coefficients in M , namely Hn(Cs,•

∂ (A,M)). By Theorem 8.6
and (8.14), we have an isomorphism

Hn(Cs,•
∂ (A,M)) �

⊕
k1+···+ks=n

Hn(Cs,•
(k),∂(A,M)).

If n > s this implies that in the sum in the right-hand side we must have
some ki > 1, and hence k �= 1. This implies that

Hn(Cs,•
(1),∂(A,M)) = 0,

and therefore the theorem follows by (8.13).

Corollary 8.8. With the notation of Theorem 8.7, for every n > s > 0
the symmetric s-sesquilinear Harrison cohomology of A with coefficients
in M vanishes:

Hn(Cs,•
sym,Har(A,M)) = 0.
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Proof. It follows from Proposition 6.7 that the sesquilinear Harrison co-
homology complex Cs,•

sesq,Har is a complex of Ss-modules. The symmet-
ric s-sesquilinear Harrison cohomology complex Cs,•

sym,Har(A,M) is defined
in (6.20) as its subcomplex of Ss-invariants. It follows that the sym-
metric s-sesquilinear Harrison cohomology is a direct summand of the
s-sesquilinear Harrison cohomology.

9. Proof of the Main Theorem 5.2

Recall that by Theorem 5.1 the map (5.1) is injective, and we only need to
prove that it is surjective. The main step is to show that for every closed
element Y ∈ Cn

cl in the classical complex, dY = 0, there exist Z ∈ Cn−1
cl

and Ỹ ∈ Cn
cl such that

Y = dZ + Ỹ , (9.1)

and
Ỹ Γ = 0 if |E(Γ)| �= 0. (9.2)

Recall the filtration FsC
n
cl of the classical complex, given by equation (7.1).

Clearly, Y ∈ F1C
n
cl = Cn

cl, and the condition (9.2) on Ỹ is equivalent to
saying that Ỹ ∈ FnC

n
cl. Hence, by induction, it suffices to prove that, for

1 ≤ s ≤ n− 1 and Ys ∈ FsC
n
cl such that dYs = 0, we can find Zs ∈ Cn−1

cl
and Ys+1 ∈ Fs+1C

n
cl satisfying

Ys = dZs + Ys+1. (9.3)

Consider the coset Ys+Fs+1C
n
cl ∈ grsC

n
cl. Then, since the differential d of

Ccl preserves the filtration (7.1), Ys + Fs+1C
n
cl is a closed element of the

complex grsCcl. By Theorem 7.2, the complex grsCcl is isomorphic to the
complex Cs

sym,Har, which, by Corollary 8.8, has trivial n-th cohomology,
since s ≤ n−1. As a consequence, there exists Zs+Fs+1C

n−1
cl ∈ grsC

n−1
cl

such that
Ys + Fs+1C

n
cl = d(Zs + Fs+1C

n−1
cl ).

This is equivalent to Ys+1 := Ys−dZs ∈ Fs+1C
n
cl, proving the claim (9.1)–

(9.2).
To conclude the proof of Theorem 5.2, we are left to show that all

cocycles Ỹ ∈ Cn
cl satisfying (9.2) are in the image of the map (5.1). Indeed,

by [BDSHK20, Lemma 11.3], the condition (dỸ )Γ = 0 for a graph Γ with
one edge implies that f = Ỹ •···• satisfies the Leibniz rule. Hence f lies in
Cn
PV. Moreover, again by [BDSHK20, Lemma 11.3], df = (dỸ )•···• = 0.

Therefore, Ỹ is the image of f under the map (5.1).
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A. Proof of Theorem 8.4 (by Pavel Etingof)

We consider the normalized Hochschild complex C̄•(A,A) defined in (8.2).
It follows from Theorem 8.2 that π	 : P • ↪→ C̄•(A,A) is a quasi-isomorphism.
Notice also that the inclusion π	 commutes with the F[∂]-action. That
is, the complexes P • and C̄•(A,A) are quasi-isomorphic as complexes of
F[∂]-modules. Considering F as a trivial F[∂]-module, it follows that we
have a quasi-isomorphism of complexes of vector spaces:

RHomF[∂](F, P
•) −→ RHomF[∂](F, C̄

•(A,A)), (A.1)

where RHom is the right derived functor of Hom, whose cohomology
computes the Ext groups. To compute the cohomology of these complexes,
we consider the resolution

F[∂]
∂·−−→ F[∂] −� F. (A.2)

We replace F by the two term complex F[∂]→ F[∂] in (A.1) and therefore
the space of morphisms of F[∂]-modules

(F[∂]
∂·−−→ F[∂]) −→ P •, (F[∂]

∂·−−→ F[∂]) −→ C̄•(A,A),

are naturally bi-complexes of vector spaces. They consist of complexes
with two rows and infinitely many columns. Thus, the cohomology of the
complexes in (A.1) are given by the cohomology of the total complexes as-
sociated to the two-row bicomplexes P • ∂−→ P • and C̄•(A,A)

∂−→ C̄•(A,A).
We compute the vertical cohomology of the complex P • ∂−→ P • first.

We claim that the map ∂ : P i → P i is surjective for i ≥ 1. In fact, if we
let T i ⊂ C̄(A,A)i be the subspace of all maps that are derivations on each
argument, we see that P i ↪→ T i is a split injection since T i decomposes
as a representation of the symmetric group Si on i elements. It suffices to
prove that ∂ : T i → T i is surjective for i ≥ 1. This is equivalent to showing
that Ext1F[∂](F, T

i) = 0 for i ≥ 1. Indeed, we may replace F by (A.2) and
computing the Ext groups amounts to computing the cohomology of the
complex T i ∂−→ T i, which vanishes in degree 1 if and only if ∂ is surjective.
Notice that

T i = HomF((A+/A
2
+)
⊗i, A),

since a derivation is determined on A2
+ by the Leibniz rule. Also note that

A+/A
2
+ is a free F[∂]-module M � F[∂]N , with basis given by {x(0)i }1≤i≤N .

Since M is a free F[∂]-module, we obtain

Ext1F[∂](F, T
i) = Ext1F[∂](F,HomF(M

⊗i, A)) = 0, i ≥ 1.
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Since the horizontal differentials of P • ∂−→ P • vanish (as the differential
of P • vanishes), we obtain that the total cohomology of the bicomplex
P • ∂−→ P • is given as follows. In degree i ≥ 2, it is P i

∂ , that is the ϕi ∈ P i

such that ∂ϕi = 0. In degree 1, we have P 1
∂ ⊕ (A/∂A), the first summand

corresponds to the vertical cohomology in degree 0 of P 1 while the second
is the vertical cohomology of degree 1 of P 0 = A. Finally, in degree 0, we
have P 0

∂ = F.
We now consider the cohomology of the complex C̄•(A,A)

∂−→ C̄•(A,A)
which computes the right-hand side of (A.1). It follows from Lemma 8.3
that

Ext1F[∂](F, C̄i(A,A)) = Ext1F[∂](F,HomF(A
⊗i
+ , A))

= Ext1F[∂](A
⊗i
+ , A) = 0, i ≥ 1.

Thus, the vertical differentials of C̄•(A,A)
∂−→ C̄•(A,A) are also surjec-

tive for i ≥ 1. The vertical cohomology of this bicomplex is therefore
C̄i
∂(A,A) for i ≥ 1, while in the first column we have the cohomol-

ogy C̄0
∂(A,A) = A∂ = F in degree 0 and C̄0(A,A)/∂C̄0(A,A) = A/∂A

in degree 1. Computing now the horizontal cohomology, we obtain that
the total cohomology of the bicomplex C̄•(A,A) → C̄•(A,A) consists of
H i(C̄∂(A,A)) for i ≥ 2. In degree 1 we have H1(C̄∂(A,A))⊕ A/∂A, and
in degree 0 we have F. We have therefore obtained H i(C̄∂(A,A)) � P i

∂
for all i ≥ 0 as claimed.
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