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Abstract. Information geometry has emerged from the study of the invariant struc-
ture in families of probability distributions. This invariance uniquely determines a
second-order symmetric tensor g and third-order symmetric tensor T in a manifold of
probability distributions. A pair of these tensors (g, T ) defines a Riemannian metric and
a pair of affine connections which together preserve the metric. Information geometry
involves studying a Riemannian manifold having a pair of dual affine connections. Such
a structure also arises from an asymmetric divergence function and affine differential
geometry. A dually flat Riemannian manifold is particularly useful for various applica-
tions, because a generalized Pythagorean theorem and projection theorem hold. The
Wasserstein distance gives another important geometry on probability distributions,
which is non-invariant but responsible for the metric properties of a sample space.
I attempt to construct information geometry of the entropy-regularized Wasserstein
distance.
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1. Introduction

Statistics involves the study of a parameterized family of probability dis-
tributions, which is a statistical model that forms a manifold where the
parameters play the role of local coordinates. We search for a natural geo-
metric structure to be introduced in such a statistical manifold. [RAO45]
introduced a Riemannian structure by using the Fisher information ma-
trix. It was [CHEN72] who proposed the criterion of invariance such that
the structure should be invariant under Markov morphisms. We refor-
mulate generally that the geometry should be invariant when sufficient
statistics are used instead of the original random sample.

The invariance criterion determines two quantities, a second-order
positive-definite symmetric tensor g and third-order symmetric tensor T .
The former is the Fisher information matrix, playing the role of a Rie-
mannian metric. The g together with T gives two invariant affine connec-
tions, which are dually coupled in the sense that, although each is non-
metric, they together preserve the Riemannian metric ([AMN00], [AM16],
[AM85]).

Information geometry involves the study of the geometry of a manifold
equipped with a Riemannian metric g and symmetric cubic tensor T , or
equivalently a Riemannian manifold equipped with a pair of dual affine
connections. Such a structure also emerges from a manifold in which a
divergence function is defined. A divergence function is an asymmetric
function D[p : q] of two points p and q in the manifold such that it is non-
negative, equal to 0 when and only when p = q and, when q is infinites-
imally close to p, the Taylor expansion of D gives a positive quadratic
form, playing the role of a Riemannian metric. Hence, a divergence is
a generalization of the square of Riemannian distance in an asymmetric
manner. We show that a manifold equipped with a divergence introduces
a Riemannian structure with a pair of dual affine connections ([EG83]).

Information geometry is closely connected to affine differential ge-
ometry ([NOS94]), which involves the study of the structure of an n-
dimensional manifold immersed in an (n+1)-dimensional affine space to-
gether with a transversal vector field attached to it. A dual pair of affine
connections may emerge from affine differential geometry.

A Riemannian manifold having a pair of flat affine connections is par-
ticularly interesting. Such a manifold is generally not Euclidean, because
the Levi-Civita connection has non-zero curvature. It has a unique canon-
ical divergence, for which a generalized Pythagorean theorem holds to-
gether with mutually orthogonal primal and dual geodesics. A projection
theorem also holds, which gives a useful tool in many applications. In-
terestingly, this gives a geometrical meaning to the well-known Legendre
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transformation. We give an application to statistical inference by using
the semi-parametric statistical model.

The Wasserstein distance is an interesting topic of research concern-
ing the distance of probability distributions ([VIL09]). It is not invariant
but depends on the distance in the sample space. There has been exten-
sive research on this topic with various applications [SAN15], [PEC18],
where the distance in the sample space plays an important role, such as
visual patterns. Since the original Wasserstein problem is computation-
ally difficult to solve, [CUT13] used the entropy-regularized Wasserstein
distance, showing its effectiveness in various applications. We give a diver-
gence function derived from the entropy-regularized Wasserstein problem
and study its relation to information geometry ([AKO18], [AKOC19]). A
more fundamental approach is found in a recent paper ([LIZ19]).

We study mostly statistical models specified by finite numbers of pa-
rameters. However, Sect. 5 and Subsect. 7.7 include models of function
spaces. We admit these parts are intuitive and not mathematically rigor-
ously formulated.

2. Riemannian manifold with dually coupled affine connections

2.1. Invariant geometry of manifold of probability distributions

We begin with a finite-dimensional regular statistical model, which is a pa-
rameterized family of probability distributions p(x, ξ) over a sample space
Ω, x ∈ Ω. Here, ξ is an n-dimensional vector in a parameter space Rn, x
is a random variable and p(x, ξ) is a probability density of x with respect
to measure μ(x) of Ω. (A random variable is conventionally denoted by
capital X and its realization is by small case x. But we use only small
case x for the both cases, hoping no confusion occurs.) We assume that
p(x, ξ) is differentiable with respect to ξ. The set of such distributions

M = {p(x, ξ)} (1)

forms an n-dimensional manifold (see [AM16]; more rigorously [AY17]),
where ξ is a coordinate system in a local chart.

We show two simple examples:

1) Exponential family

p(x, ξ) = exp{ξixi − ψ(ξ)}, (2)

where
x = (xi), ξ = (ξi), i = 1, . . . , n (3)
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and the summation convention is used in the form ξixi, implying that
ξixi =

∑
ξixi. The function ψ(ξ) is derived from the normalization con-

dition ∫
p(x, ξ) dμ(x) = 1 (4)

and given explicitly as

ψ(ξ) = log

∫
exp{ξixi} dμ(x). (5)

This is the logarithm of the Laplace transform of μ(x). An exponential
family is said to be regular and minimally represented, when ψ(ξ) is dif-
ferentiable and its Hessian,

gij =
∂2

∂ξi∂ξj
ψ(ξ), (6)

is positive-definite.
There are many exponential families depending on μ(x). One simple

example is a family of Gaussian distributions of random variable z, which
can be written as

p(z,m, σ2) =
1√
2πσ

exp
{
− (z −m)2

2σ2

}
(7)

in terms of mean and variance parameters (m,σ2). When we introduce
vector x,

x = (x1, x2), x1 = z, x2 = z2, (8)

and define
ξ = (ξ1, ξ2), ξ1 =

m

σ2
, ξ2 = − 1

2σ2
, (9)

it is rewritten in the standard form (2) of the exponential family since

ξ · x = ξixi = −(z −m)2

2σ2
+
m2

2σ2
. (10)

The μ(z) is the Lebesgue measure on R1 and μ(x) is defined on x21 −
x2 = 0. Multivariate Gaussian distributions form another exponential
family. The class of exponential families covers many well-known families
of probability distributions.



Information geometry 5

2) Discrete distributions

When Ω consists of (n+ 1) points, a probability over Ω is represented
by an (n+ 1)-dimensional vector

p = (p0, p1, . . . , pn), (11)

satisfying ∑
pi = 1, pi > 0, (12)

where pi is the probability of x = i, i = 0, 1, . . . , n. The family of proba-
bility distributions is called a probability simplex Sn. It is an exponential
family since we have

p(x, ξ) = exp{ξixi − ψ(ξ)}, (13)

where

ξi = log
pi
p0
, i = 1, . . . , n, (14)

xi = δi(x) =

{
1, when x = i,

0, otherwise,
(15)

ψ(ξ) = − log p0 = log
(
1 +

∑
eξi

)
, (16)

with the trivial counting measure μ(x).

2.2. Invariance under sufficient statistic

We pose an invariance criterion for the purpose of introducing a differential-
geometrical structure in a manifold of probability distributions. A statistic
s(x), a function of x, is said to be sufficient when the probability density
is decomposed as

p(x, ξ) = p(s, ξ)p(x|s), (17)

in which the conditional probability density p(x|s) of x conditioned on s
does not depend on ξ. We used an abused notion of representing proba-
bilities p(s, ξ) and p(x|s) by using the same letter p. Roughly speaking,
only s part depends on ξ, so s is sufficient for estimating parameter ξ.
When Ω is a real line R1, any invertible function of s(x) is a sufficient
statistic. We show a proposition posed by [AMN00] as the start of infor-
mation geometry, which was originally due to [CHEN72] in the discrete
case.

Invariance Criterion: Geometry is said to be invariant when the geom-
etry of M = {p(x, ξ)} is identical to that of M ′ = {p(s, ξ)}.
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Proposition. Manifold M of probability distributions has a unique in-
variant second-order symmetric tensor g and a third-order symmetric ten-
sor T under the invariance criterion. They are given in the component
form by

gij = E[∂il(x, ξ)∂jl(x, ξ)], (18)
Tijk = E[∂il(x, ξ)∂jl(x, ξ)∂kl(x, ξ)], (19)

except for a common scale, where E is the expectation with respect to
p(x, ξ), l is log probability,

l(x, ξ) = log p(x, ξ) (20)

and ∂i denotes differentiation

∂i =
∂

∂ξi
. (21)

It is easy to see that the tensors in (18) and (19) are invariant. The
converse is not so easy. The proposition was originally proved by a Rus-
sian mathematician [CHEN72] in the discrete case Sn. There are many
papers for justifying this proposition in the function space, see [AY17] and
[BAU16]. A recent paper by [DOW18] proved it for exponential families
and curved exponential families.

To show the implications of the invariance criterion, we give a simple
example. Let S1 = {p(x, ξ)} be given by probability distributions

p(x, ξ) = ξδ1(x) + (1− ξ)δ0(x), (22)

where x = 0, 1, δi(x) is the Kronecker delta, and ξ = Prob{x = 1} ∈ (0, 1).
The manifold is an interval S1 = (0, 1). We next consider another family
S2 of probability distributions,

p(x, ξ) = ξ1δ1(x) + ξ2δ2(x) + (1− ξ1 − ξ2)δ0(x), (23)

where x = 0, 1, 2, and ξ = (ξ1, ξ2), ξ1, ξ2 > 0, ξ1 + ξ2 < 1. When we
introduce ξ0 = 1− ξ1 − ξ2, S2 is represented by a triangle satisfying

ξ0 + ξ1 + ξ2 = 1, ξ0, ξ1, ξ2 > 0 (24)

in R3 and is called the probability simplex S2. We consider the following
probability model S̃1 parameterized by ξ:

Prob{x = 0} = 1− ξ, (25)
Prob{x = 1} = rξ, (26)
Prob{x = 2} = (1− r)ξ, (27)
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Fig. 1. Embedding of S1 in S2

where 0 < r < 1 is a known constant. The model is one-dimensional with
Prob{x = 0} = 1 − ξ and when x �= 0, Prob{x = 1 | x �= 0} = r and
Prob{x = 2 | x �= 0} = 1− r. Hence, this model is specified by

p̃(x, ξ) = ξrδ1(x) + ξ(1− r)δ2(x) + (1− ξ)δ0(x). (28)

So it is a submanifold of S2.
Let us put

s(x) = δ1(x) + δ2(x), (29)
where s(x) = 0 when x = 0, and 1 when x �= 0. By introducing

p̃(s, ξ) = ξδ1(s) + (1− ξ)δ0(s), (30)

we have
p̃(x, ξ) = p̃(s, ξ)p̃(x | s), (31)

where

p̃(x = 1 | s = 1) = r, p̃(x = 2 | s = 1) = 1− r, p̃(x = 0 | s = 0) = 1,
(32)

and 0 otherwise. Since p̃(x | s) does not depend on ξ, s is a sufficient
statistic.

Note that S̃1 is a submanifold of S2 (see Fig. 1) specified by

ξ1 = rξ, ξ2 = (1− r)ξ. (33)

The invariance criterion requires that the geometry of S1 is the same as
S̃1 embedded in S2 for any r. We may consider an embedding of Sn in Sm
(n < m) in a similar manner. The center of Sn,

ξcenter =
1

n+ 1
(1, . . . , 1) (34)

is isotropical because a permutation of (0, 1, . . . , n) gives the same proba-
bility model. [CHEN72] proved this Proposition from the fact that geom-
etry of Sn is the same as that of submanifolds S̃n ⊂ Sm inherited from
Sm. See also a book in Japanese by [FUJ15].



8 S. Amari

2.3. Affine connections derived from (g, T )

We have two invariant tensors g and T in a manifold of probability distri-
butions. Here, g plays the role of a Riemannian metric. It is the well-known
Fisher information matrix, playing a fundamental role in statistics. It gives
how much information is included in an observed sample x for estimating
parameter ξ. The other invariant tensor T has not been well studied in
statistics. We call T a cubic tensor.

Riemannian geometry involves the study of a manifold {M, g} equipped
with g. We study a manifold {M, g, T} equipped with g and T , not nec-
essarily derived from probability distributions. Since it is motivated from
the invariance criterion of statistics, it is called a statistical manifold by
[LAU87].

In the case of a Riemannian manifold, we have a unique torsion-free
metric affine connection, the Levi-Civita connection, that satisfies

0
∇igjk = 0, (35)

where
0
∇i is the covariant derivative in the direction of ∂/∂ξi, and

0
∇i is

metric preserving.
In the case of a statistical manifold, a pair of torsion-free affine con-

nections, or equivalently covariant derivatives ∇ and ∇∗, are derived from
g and T , which satisfy

∇igjk = Tijk, (36)
∇∗

i gjk = −Tijk. (37)

These covariant derivatives are not metric preserving but the pair (∇,∇∗)
is metric preserving in the dual sense, as described in the following subsec-
tion. The pair is called dually coupled affine connections. They are given
in terms of the components of affine connections as

Γk
ij =

{
k

ij

}
− 1

2
T k
ij , (38)

Γ∗k
ij =

{
k

ij

}
+

1

2
T k
ij , (39)

where
{
k
ij

}
is the Christoffel symbol showing the Levi-Civita connection,

{
k

ij

}
= gkm[ij;m], (40)

[ij;m] =
1

2
(∂igjm + ∂jgim − ∂mgij), (41)
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where (gkm) is the inverse of (gmk) and

T k
ij = gkmTijm. (42)

We may generalize these connections by using a real parameter α,

α
Γ
k
ij =

{
k

ij

}
− α

2
T k
ij , (43)

−α
Γ

k
ij =

{
k

ij

}
+
α

2
T k
ij , (44)

forming a dually coupled pair of affine connections, which are called α- and
−α-connections, respectively. When α = 0, it reduces to the Levi-Civita
Riemannian connection. The ±α-connections define the α-geometry.

An affine connection gives covariant derivative ∇YX of vector field X
in the direction of another vector field Y . It also gives a parallel transport
of vector X in tangent space Tξ at ξ to another tangent space Tξ′ at ξ′
along a smooth path

c : ξ(t), (45)

where

ξ(0) = ξ, (46)
ξ(1) = ξ′, (47)

connecting the two points ξ and ξ′. Let X(t) be a vector field along the
curve c. When

∇ξ̇(t)X(t) = 0, (48)

where
ξ̇ =

d

dt
ξ(t), (49)

X(t) is said to be a parallel field along c. The X ′ = X(1) is the parallel
transport of X = X(0) at ξ to ξ′ along c (Fig. 2). It is written as

X ′ =
∏ξ′

ξ,c
X. (50)

A curve ξ(t) is a geodesic, when it satisfies

∇ξ̇(t)ξ̇(t) = 0. (51)
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Fig. 2. Parallel transport of X at ξ to X ′ at ξ′

2.4. Dual connections and metric preservation

The Levi-Civita connection
0
∇ is metric preserving, and the parallel trans-

port does not change the magnitude of a vector for any c. Equivalently,
for any c,

〈 0∏
ξ′
ξ X,

0∏
ξ′
ξ Y

〉
= 〈X,Y 〉, (52)

where 〈 , 〉 is the inner product,

〈X,Y 〉 = gijX
iY j . (53)

This is rewritten in terms of the covariant derivative
0
∇ for vector fields

X,Y, Z as

Z〈X,Y 〉 = 〈 0
∇Z X,Y 〉+ 〈X, 0

∇Z Y 〉. (54)

For
X = ei, Y = ej , Z = ek, (55)

where

ei =
∂

∂ξi
, i = 1, . . . , n (56)

are the natural basis vectors of the tangent space for coordinates ξ, (54)
is rewritten as

∂kgij = [ki ; j] + [kj ; i]. (57)

The dual connections or covariant derivatives ∇ and ∇∗ given in (38)
and (39) are not generally metric preserving. Instead, the pair of dual
affine connections ∇ and ∇∗ preserves the metric in the following dual
manner:
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Theorem 1. Let
∏

and
∏∗ be the parallel transports by two dually cou-

pled connections. Then, we have

〈X,Y 〉 =
〈∏

X,
∏ ∗Y

〉
. (58)

In terms of the covariant derivatives, this is written as

Z〈X,Y 〉 = 〈∇ZX,Y 〉+ 〈X,∇∗
ZY 〉 (59)

and, in the component form,

∂kgij = Γkij + Γ∗
kji, (60)

where
Γkij = gkmΓm

ij , Γ∗
kji = gkmΓ∗m

ji . (61)

Proof. We first prove (60). Since the Christoffel symbol is written as

[ij; k] =

{
l

ij

}
glk =

1

2
(∂igjk + ∂jgik − ∂kgij) (62)

in the covariant form, we easily have (60) by using (38), (39) and (57),
since Tijk is symmetric. Hence, (59) holds for the natural vector fields
X = ei, Y = ej and Z = ek. Therefore, it holds for any X,Y, Z. By
considering X(t) and Y ∗(t) which are parallel fields along curve c due to
two covariant derivatives ∇ and ∇∗, we have

d

dt
〈X(t), Y ∗(t)〉 = 0, (63)

implying the inner product is preserved by the two parallel shifts.

The two dual connections (38), (39), or ∇, ∇∗, are obtained from g
and T . On the contrary, when ∇ and ∇∗ are dually coupled in the sense
of metric preservation, we have a cubic tensor

Tijk = Γ∗
ijk − Γijk (64)

which is symmetric, satisfying

∇igjk = Tijk, ∇∗
i gjk = −Tijk. (65)

Recall that primal and dual geodesics ξ(t) and ξ∗(t) do not minimize
the arc length, because ∇ and ∇∗ are non-metric. Their average

0
∇ =

1

2
(∇+∇∗) (66)

is the Riemannian (Levi-Civita) connection and is metric. A straight line
in a Euclidean space has the following properties:
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1) It is a curve of the minimum length.
2) It does not change its direction.

Geodesics of the Riemannian (Levi-Civita) connection keep these proper-
ties. Geodesics in a statistical manifold have 2) but not 1). Instead, they
have a duality.

It is easy to see that ±α-connections (43), (44) are dually coupled.
When α = 0, 0-connection is the Riemannian connection and is self-dual.
Since a pair of dual connections are given from g and T , the α-geometry
is given from g and αT .

The two connections in a statistical manifold give two Riemann–
Christoffel curvatures. The two Riemann–Christoffel curvatures are mutu-
ally related, because of duality. The Riemann–Christoffel curvature tensor
of ∇ is defined by a vector

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z (67)

for vector fields X,Y, Z, where

[X,Y ] = XY − Y X. (68)

Theorem 2. The curvatures R and R∗ of a statistical manifold satisfy

〈R(X,Y )Z,W 〉 = −〈R∗(X,Y )W,Z〉. (69)

Corollary. R = 0 when and only when R∗ = 0.

We omit the proof of Theorem 2, since it is given by technical calcula-
tion from the definition of curvature. Instead, we give a simple proof for
Corollary. Let

∏
and

∏∗ be dual parallel transport operators of a vector
through a loop c which passes through ξ. When R = 0, we have

A =
∏

A (70)

for any vector A ∈ Tξ and vice versa. From the duality, we have

〈A,B〉 =
〈∏

A,
∏∗

B
〉
=

〈
A,

∏∗
B
〉

(71)

for any vector B. Hence
B =

∏∗
B, (72)

proving that R∗ = 0.
In the case of probability distributions, g and T are determined from

the log likelihood by the invariance principle. Let us consider the inverse
problem. Let M be a manifold equipped with g and T . Is this a statistical
manifold, in other words, is there a statistical model that gives g and T
by (18) and (19)? This is a problem posed by [AM85] and affirmatively
answered by [LE05].
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Theorem 3. Given an n-dimensional manifold M with g and T , there
exists a probability simplex SN with finite N , in which M is immersed
isometrically and isocubically, that is, g and T are derived from those of
SN .

The theorem justifies the use of the name ‘statistical manifold’. For
the proof, see [LE05] and [AY17].

3. Dual geometry induced from divergence

3.1. Divergence

Let D[p(x, ξ) : p(x, ξ′)] be a differentiable function of two points in a
manifold M = {p(x, ξ)} of probability distributions in a local chart. We
denote it as D[ξ : ξ′] in short for D[p(x, ξ) : p(x, ξ′)].

It is called a divergence, when the following three properties are satis-
fied:

1) D[ξ : ξ′] ≥ 0,
2) D[ξ : ξ′] = 0, if and only if ξ = ξ′,
3) D[ξ : ξ + dξ] = gij(ξ) dξ

i dξj +O(|dξ|3),
for infinitesimally small dξ, where (gij) is a positive-definite matrix, O(|dξ|3)
being higher-order terms of dξ.

We may add one more:

4) Let Uβ(ξ) be a subset of M called the β-neighborhood of ξ, defined by

Uβ(ξ) = {ξ′ | D[ξ : ξ′] < β}. (73)

Then, Uβ(ξ) ⊂ Uβ′(ξ), when β < β′.

A divergence D[ξ : ξ′] is invariant, when it does not change if we use
a sufficient statistic s(x) instead of x. It is said to be additive when there
exists a function d(p, q) that

D[ξ : ξ′] =
∫
d{p(x; ξ), q(x; ξ′)} dμ(x) (74)

or in the discrete case

D[ξ : ξ′] =
∑

d{pi(ξ), pi(ξ′)}. (75)

A divergence D[ξ : ξ′] induces a Riemannian metric g together with
dually coupled affine connections ([EG83]). Let us introduce the following
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notation ∂i1,...,im ; j1,...,jk for differentiation of D[ξ : ξ′] with respect to ξ
and ξ′, for example,

∂i;jD =
∂2

∂ξi∂ξ′j
D[ξ : ξ′], (76)

∂i;jkD =
∂3

∂ξi∂ξ′j∂ξ′k
D[ξ : ξ′]. (77)

Theorem 4. Given divergence D[ξ : ξ′],

gij = ∂ijD[ξ : ξ′]ξ′=ξ = −∂i;jD[ξ : ξ′]ξ′=ξ (78)

is positive-definite, playing the role of a Riemannian metric, and

Γijk = −∂ij;kD[ξ : ξ′]ξ′=ξ, (79)
Γ∗
ijk = −∂k;ijD[ξ : ξ′]ξ′=ξ (80)

are the coefficients of dually coupled affine connections. The cubic tensor
is given by

Tijk = Γ∗
ijk − Γijk. (81)

Proof. It is easy to see from the requirement for a divergence D that g
in (78) is positive-definite. By differentiating the right side of (78) further
with respect to ξ, we have

∂kgij = Γkij + Γ∗
kji. (82)

This shows that Γ and Γ∗ are dually coupled.

For a divergence D, we define its dual by

D∗[ξ : ξ′] = D[ξ′ : ξ]. (83)

Then, D∗ gives the same dual geometry as that of D, except that ∇ and
∇∗ are interchanged. A divergence induces a dual geometry. Conversely,
there always exists a divergence for a Riemannian manifold having dually
coupled affine connections. It is not difficult to construct a divergence
from g and T ([MAT93]). However, this divergence is not unique.

Theorem 5. Let f be a monotonically increasing differentiable function
satisfying f(0) = 0 and f ′(0) = 1. Then, given D[ξ : ξ′],

D̃[ξ : ξ′] = f(D[ξ : ξ′]) (84)

is a divergence inducing the same dual geometrical structure.
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Proof. From
∂if(D) = f ′(D)∂iD, (85)

we have
∂i;jf(D) = f ′′(D)∂iD∂;jD + f ′(D)∂i;jD. (86)

By evaluating the above at ξ′ = ξ, we have

gij = g̃ij (87)

because of
∂iD[ξ : ξ′]ξ′=ξ = 0 (88)

and f ′(0) = 1. Similarly, we have

Γijk = Γ̃ijk. (89)

A divergence D[ξ : ξ′] is not necessarily symmetric with respect to ξ
and ξ′. When it is symmetric, T = 0. In this case, the manifold is self-dual
and ∇ = ∇∗ is the Levi-Civita connection. If we use the half of the square
of the Riemannian distance as a divergence, the derived geometry is the
same as the original one.

We give a class of divergences for a manifold of probability distribu-
tions. A typical one is f -divergence ([CSI67], [MOR63]) using a convex
function f satisfying

f(1) = 0, f ′′(1) = 1. (90)

The f -divergence between p(x, ξ) and p(x, ξ′) is defined by

Df [ξ : ξ′] =
∫
p(x, ξ)f

{p(x, ξ′)
p(x, ξ)

}
dμ(x). (91)

The class of f -divergences includes various well-known divergences.
The Kullback–Leibler divergence (KL-divergence) is an f -divergence

with

f(u) = − log u, (92)

DKL[ξ : ξ′] =
∫
p(x, ξ) log

p(x, ξ)

p(x, ξ′)
dμ(x). (93)

For real α, the α-divergence is defined by the α-function

fα(u) =
4

1− α2
(1− u

1+α
2 ), (94)
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giving

Dα[ξ : ξ′] =
4

1− α2

(
1−

∫
p(x, ξ)

1−α
2 p(x, ξ′)

1+α
2 dμ(x)

)
, α �= ±1. (95)

The square of the Hellinger distance is given by α = 0,

f 1
2
(u) = 4(1−√

u), (96)

D0[ξ : ξ′] = 4
(
1−

∫ √
p(x)q(x) dμ(x)

)
. (97)

This is a symmetric divergence. The KL-divergence and its dual are de-
rived from the α-divergence by taking limit α → ∓1. The f -divergence
is invariant and additive. There are many non-invariant and non-additive
divergences. The Wasserstein divergence we study later is such an exam-
ple.

3.2. Transformation of divergence

Given divergence D[ξ, ξ′], we introduce another divergence

D̃[ξ : ξ′] = σ(ξ, ξ′)D[ξ : ξ′], (98)
σ(ξ, ξ′) = exp{λ(ξ) + τ(ξ′)} (99)

by using functions λ and τ . This is called a conformal transformation of
divergence ([MATS10], [AOM12]). We study the change in the geometrical
structure due to a conformal transformation of divergence.

Theorem 6. The geometry of M is changed by a conformal transforma-
tion of divergence as

g̃ij = σgjk, (100)

T̃ijk = σ(Tijk + {λ, τ, g}ijk), (101)
{λ, τ, g}ijk = ∂i(τ − λ)gjk + ∂j(τ − λ)gik + ∂k(τ − λ)gij , (102)

where σ = σ(ξ, ξ).

Proof. By differentiation, we have

∂iD̃ = σ(∂iλD + ∂iD), (103)

∂i;jD̃ = σ(∂iλ∂jτD + ∂iλ∂;jD + ∂jτ∂iD + ∂i;jD). (104)

Evaluating the above at ξ = ξ′, we have (100). The T̃ is calculated simi-
larly.
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4. Dually flat manifold

4.1. Geometry of exponential family

A statistical manifold is dually flat when

R = R∗ = 0. (105)

However, it is not generally Euclidean, because the Riemannian curvature
due to g is generally not equal to 0. A dually flat manifold inherits nice
properties from the Euclidean space as follows. Before stating them, we
study the structure of an exponential family as a typical example of the
dually flat manifold.

We rewrite (2) as

p(x,θ) = exp{θixi − ψ(θ)} (106)

by using θ denoting natural parameters instead of ξ. The expectation of
random variable x = (xi) is given by

η = Eθ[x] =

∫
xp(x,θ) dμ(x). (107)

Hence η is called the expectation parameter. Differentiating (106), we
have

∂

∂θ
p(x,θ) =

{
x− ∂

∂θ
ψ(θ)

}
p(x,θ). (108)

From ∫
∂

∂θ
p(x,θ) dμ(x) =

∂

∂θ

∫
p(x,θ) dμ(x) = 0, (109)

we have

η =
∂

∂θ
ψ(θ). (110)

Similarly, differentiating (108) again and integrating it, we have the vari-
ance of x,

E[(x− η)(x− η)T ] =
∂2

∂θ∂θ
ψ(θ). (111)

This shows that ψ(θ) is a convex function.
The expectation parameter η is the Legendre transform of θ given by

(110). Hence, it forms another local coordinate system. The Legendre dual
of ψ(θ) is given by

ϕ(η) = θ · η − ψ(θ), (112)
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where θ is regarded as a function of η implicitly given by (110). The ϕ(η)
is a convex function, and the inverse transform from η to θ is given by

θ =
∂

∂η
ϕ(η). (113)

We use the KL-divergence

DKL[θ : θ′] =
∫
p(x,θ) log

p(x,θ)

p(x,θ′)
dμ(x) (114)

to define the dual geometry. The divergence is calculated as

DKL[θ : θ′] = ψ(θ′) + ϕ(η)− θ′ · η, (115)

where η is the η-coordinates of θ. The geometric quantities are calculated
from (18), (19), (38) and (39) as

gij(θ) = ∂i∂jψ(θ), (116)
Tijk(θ) = ∂i∂j∂kψ(θ), (117)
Γijk(θ) = 0, (118)
Γ∗
ijk(θ) = Tijk. (119)

Dually to the above, we calculate these quantities in the η-coordinate
system. We denote η = (ηi) by using the lower index and ∂i = ∂/∂ηi,

gij(η) = ∂i∂jϕ(η), (120)

T ijk(η) = ∂i∂j∂kϕ(η), (121)

Γijk(η) = T ijk, (122)

Γ∗ijk(η) = 0. (123)

Note that

∂i = gij∂
j , (124)

∂j = gji∂i. (125)

Therefore, gij and T ijk are the contravariant components of gij and Tijk,
respectively.

From (118) and (123), we see that the manifold is dually flat, R =
R∗ = 0. Moreover, θ denotes affine coordinates of ∇ connection and η
denotes affine coordinates of ∇∗ connection.
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4.2. Fundamental theorem on dually flat manifold

We now study a general theory of a dually flat manifold. When M is
dually flat, there exists a local coordinate system θ = (θi) such that

Γijk(θ) = 0. (126)

A geodesic is linear in θ and coordinate curve θi is a geodesic. We call θ
a primal affine coordinate system.

There also exists a coordinate system η = (ηi),

Γ∗ijk(η) = 0. (127)

We call η the dual affine coordinate system and any dual geodesic is
linear in η. We sometimes call the θ coordinates the e-coordinates and η
coordinates the m-coordinates. This is because the primal geodesic is an
exponential family and a dual geodesic is a mixture family in the case of
probability distributions.

We have the following fundamental theorem for a dually flat manifold.

Theorem 7. When M is dually flat, the following holds:

1) There exist two affine coordinate systems θ and η with respect to ∇
and ∇∗, respectively, in a local chart and two convex functions ψ(θ)
and ϕ(η) such that the natural basis vectors ei and ej with respect to
the two coordinate systems

ei =
∂

∂θi
, ej =

∂

∂ηj
(128)

are bi-orthonormal,
〈ei, ej〉 = δji . (129)

2) The metric g is given by

gij = 〈ei, ej〉 = ∂i∂jψ(θ) (130)

in the e-coordinates and

gij = 〈ei, ej〉 = ∂i∂jϕ(η) (131)

in the m-coordinates.
3) The cubic tensor T is given by

Tijk = ∂i∂j∂kψ(θ), T ijk = ∂i∂j∂kϕ(η). (132)

4) There exists a unique divergence between θ,θ′ ∈M , called a canonical
divergence,

D[θ : θ′] = ψ(θ) + ϕ(η′)− θ · η′, (133)
where η′ denotes the η-coordinates of θ′.
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Proof. We consider the θ-coordinate system. From (60) and (126), we
have

∂igjk = Γ∗
ikj . (134)

Because Γ∗
ikj is symmetric (torsion-free) with respect to i and k, we have

∂igjk = ∂kgji, (135)

which is
∂igk· = ∂kgi· (136)

by suppressing index j. Hence, there exists a function ψ·, satisfying

gi· = ∂iψ· (137)

or
gij = ∂iψj . (138)

Since gij is symmetric,
∂iψj = ∂jψi, (139)

which guarantees the existence of ψ such that

ψj = ∂jψ (140)

and
gij = ∂i∂jψ. (141)

Since ∇i = ∂i in this case, we have

Tijk = ∂i∂j∂kψ. (142)

By a similar argument, the existence of the dual potential ϕ(η) is guar-
anteed in the dual coordinates η.

Note that θ and η are not unique, because any affine transformations
for constant matrices A, A′ and vectors b, b′,

θ̃ = Aθ + b, (143)
η̃ = A′η + b′ (144)

give other affine coordinate systems for which (126) and (127) hold. Be-
cause of this, we may choose θ and η such that their natural bases are
biorthogonal at one point, that is (129) holds, and then everywhere by
virtue of (59). The canonical divergence (133) is constructed from ψ(θ)
and ϕ(η) and is unique even though θ and η are not uniquely deter-
mined.
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4.3. Geometry of Legendre transformation

A dually flat manifold M has a convex function ψ(θ) in the affine coor-
dinates satisfying (130) and (132). Conversely, a strictly convex function
ψ(θ) generates a dually flat structure. When ψ(θ) is given, we define a
flat affine connection

Γijk(θ) = 0, (145)

in terms of θ-coordinates. We also define a Riemannian metric by

gij(θ) = ∂i∂jψ(θ). (146)

The manifold is flat, R = 0 and thus R∗ = 0. The dual affine coordinates
η is given by the Legendre transformation

ηi = ∂iψ(θ). (147)

There exists the dual potential ϕ(η) defined by

ϕ(η) = θ · η − ψ(θ), (148)

where
θi = ∂iψ(η) (149)

is the inverse transformation of (147).
The canonical divergence (133) is known as the Bregman divergence

([BRE67])
D[θ,θ′] = ψ(θ)− ψ(θ′)−∇ψ(θ′) · (θ − θ′) (150)

constructed from ψ(θ). The dually flat theory is regarded as the geometry
of the Legendre transformation, when we supplement it with the canonical
divergence.

The exponential family plays a guiding role in defining a dually flat
manifold. Given a dually flat manifold M with convex ψ(θ), is it possible
to have an exponential family that has the same geometric structure? The
problem was affirmatively answered by [BAN05].

When ψ(θ) is given, we consider an exponential family

p(x,θ) dμ(x) = exp{θ · x− ψ(θ)} dμ(x). (151)

This is possible if we can find a measure μ(x) on x ∈ Ω that satisfies,
given ψ(θ),

exp{ψ(θ)} =

∫
exp(θ · x) dμ(x). (152)

This is the problem of finding the inverse Laplace transform of exp{ψ(θ)}.
It is possible to find μ(x) under a certain regularity condition on ψ(θ).
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We immediately see that the canonical divergence of an exponential
family is the KL-divergence. The KL-divergence is used frequently in
statistics, information theory and other fields without any justification.
The present theory shows that it is the canonical divergence when the
underlying manifold is dually flat.

4.4. Generalized Pythagorean theorem and projection theorem

We have the following fundamental theorem, which is a generalization of
the Pythagorean theorem applicable to a dually flat manifold M (Fig. 3).

P

Q
R

-geodesice

-geodesicm

Fig. 3. Pythagorean theorem

Theorem 8. For three points P,Q,R in a dually flat M and the canonical
divergence D,

D[P : Q] +D[Q : R] = D[P : R] (153)

when the e-geodesic connecting P and Q is orthogonal at Q to the m-
geodesic connecting Q and R. Dually,

D∗[P : Q] +D∗[Q : R] = D∗[P : R] (154)

when the m-geodesic connecting P and Q is orthogonal to the e-geodesic
connecting Q and R.

Proof. From (133), we have by calculations

D[P : Q] +D[Q : R]−D[P : R] = (θP − θQ) · (ηR − ηQ), (155)

where θP , ηP , etc. are the θ- and η-coordinates of P , etc. The e-geodesic
connecting P and Q is

θ(t) = (1− t)θP + tθQ, (156)

so its tangent at Q is
θ̇ = θQ − θP . (157)
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Similarly, the m-geodesic connecting Q and R is

η(t) = (1− t)ηQ + tηR, (158)

and its tangent at Q is
η̇ = ηR − ηQ. (159)

Hence, the right-hand side of (155) vanishes.

This is a generalization of the Pythagorean theorem in a Euclidean
space, since this is a self-dual flat manifold and its canonical divergence
is the half of the square of the Euclidean distance

D[P : Q] =
1

2

∑
i

(θiP − θiQ)
2. (160)

As a consequence, we have the following projection theorem (Fig. 4).

P

S

-projectione

P̂

Fig. 4. Projection theorem

Theorem 9. Let S be a smooth submanifold in a dually flat M . Given
P ∈ M outside of S, and letting P̂ ∈ S be the minimizer of D[P : Q],
Q ∈ S. Then, the e-geodesic connecting P and P̂ is orthogonal to S at
P̂ . Dually, let P̂ ∗ ∈ S be the minimizer of D∗[P : Q], Q ∈ S. Then, the
m-geodesic connecting P and P̂ ∗ is orthogonal to S at P̂ ∗.

Proof. We prove only the former part. When P̂ is an extreme point of
D[P : Q], Q ∈ S, we consider a small deviation P̂ + dP ∈ S. Then, dP is
regarded as a tangent vector of S orthogonal to the e-geodesic connecting
P and P̂ . Therefore,

D[P : P̂ + dP ] = D[P : P̂ ] +D[P̂ : P̂ + dP ] (161)

≥ D[P : P̂ ], (162)

proving the theorem. The P̂ is called the e-projection of P to S and the
P̂ ∗ is called the m-projection of P to S.
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When S is m-flat, the e-projection is unique. When S is e-flat, the
m-projection is unique.

5. Semiparametric statistical model and estimating function

5.1. Rough sketch on function space of probability distributions

We give a rough sketch on the geometry of a function space of probability
distributions. There are delicate problems for extending the geometry from
a finite dimensional space to a function space of infinite dimensions. See,
e.g. [CEP07], [PIS95], [AY17], etc. The theories in this section might not
be rigorously founded, although they are useful in many applications.

Let S = {p(x)} be a set of all probability distributions, where x is
a random variable in Rn, p(x) is a density function equivalent to the
Lebesgue measure. We assume that p(x) is differentiable and x has mo-
ments of any orders. We attach random variables w(x) to each p(x) ∈ S,
which satisfy

Ep[w(x)] = 0, (163)

Ep[{w(x)}2] <∞, (164)

where Ep is the expectation with respect to p(x). Since all w(x)’s form a
linear space, we consider it as a tangent space at p,

Tp = {w(x)}. (165)

Intuitively, a small deviation w(x) = δ log p(x) of p(x) is considered as an
infinitesimally small tangent vector, since it satisfies (163) provided (164)
is satisfied. We introduce the Fisher information metric defined by

ds2 = Ep[{w(x)}2] dt2, (166)

where ds2 is the square of the magnitude of δ log p(x). Because of (164),
the tangent space is a Hilbert space.

Let c : p(x, t) be a smooth curve parametrized by t, where p(x, 0) =
p(x). We define the tangent vector of the curve by

wc(x) =
d

dt
log p(x, t)

∣∣∣
t=0

. (167)

From
wc(x) =

1

p(x, t)

d

dt
p(x, t)

∣∣∣
t=0

, (168)

by differentiating ∫
p(x, t) dx = 1, (169)
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we have
Ep[wc(x)] = 0. (170)

We further assume that

Ep[{wc(x)
2}] <∞, (171)

excluding tangent vectors which do not satisfy (171). Then, the squared
magnitude of δ log p(x) = wc(x) dt is

ds2 = g dt2, (172)

g = Ep[{wc(x)}2]. (173)

The tangent space Tp is a Hilbert space attached to p(x), consisting of
all such w(x). The inner product of two tangent vectors w(x) and v(x) is

〈w, v〉 = Ep[w(x)v(x)]. (174)

In order to define a dual pair of affine connections, we define two par-
allel transports of tangent vector w(x) from p(x) to q(x) by

e∏q

p
w(x) = w(x)− Eq[w(x)], (175)

m∏q

p
w(x) =

p(x)

q(x)
w(x), (176)

provided they belong to Tq. It is easy to confirm the following proposition,
which shows the metric preservation by the pair of dual parallel transports.
The proof is easy. (We do not use the term theorem but proposition,
because we do not specify the exact conditions under which it holds.) See
[AMK97] and also [AM16].

Proposition. The inner product of two tangent vectors is kept constant
by the two parallel transports,

〈w(x), v(x)〉p =
〈 e∏q

p
w(x),

m∏q

p
v(x)

〉
q
. (177)

5.2. Semiparametric statistical model

When we have interest in a specific set of parameters ξ = (ξ1, . . . , ξn)
concerning unknown probability densities p(x), we single out them and
denote the distribution by p(x, ξ). Here, the densities p(x, ξ) may have a
function degrees of freedom. We call it a semiparametric statistical model,
denoting S = {p(x, ξ)}. We have interest in estimating ξ from observed
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iid data D = {x1, . . . , xN}, not the density function p(x, ξ) itself. Here, ξ
is called the parameter of interest.

A simple example is the location model

S = {p(x− ξ)}, (178)

where p(x) is an arbitrary probability density function satisfying regular-
ity conditions such as the continuity and existence of moments. We also
request ∫

xp(x) dx = 0, (179)

which is necessary for identifying ξ. The statistical problem is to estimate
the “mean” (or the “center”) ξ from a number of independent observations
D in spite that the exact form of p(x) is unknown. When p is fixed, for
example, to be a Gaussian distribution with variance 1,

p(x) =
1√
2π

exp
{
− x2

2

}
, (180)

S reduces to a simple parametric statistical model and the maximum-
likelihood estimator ξ̂ is given by the arithmetic mean of data

ξ̂ =
1

N

∑
xi. (181)

This is optimal, but it is not optimal for a general (unknown) p.
The location-scale model has two parameters of interest ξ = (μ, σ2),

such that the semiparametric model is given by

p(x, ξ) = p
{(x− μ)2

σ2

}
, (182)

where p satisfies ∫
x2p(x) dx = 1 (183)

in addition to (179).
The Neyman–Scott problem, which had been an unsolved problem for

long years, is understood from the semiparametric point of view. Let us
consider a parametric statistical model

M = {p(x, ζ, ξ)} (184)

specified by two types of (finite-dimensional) parameters ξ and ζ. The
former is the parameter of interest which we want to estimate and ζ is
the nuisance parameters which we do not care about. We estimate ξ from
N independently generated data D = {x1, . . . , xN}. However, xi is gen-
erated from distribution p(x, ζi, ξ), where ξ is common (but unknown)
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for all data but ζi are unknown and may be different for each i. Neyman
and Scott presented the problem, showing that the maximum likelihood
estimator is not necessarily consistent nor efficient. To search for the op-
timal estimator had been a long-standing unsolved problem, bothering
theoretical statisticians.

We show a typical example. Let ȳ be a random variable proportional
to z̄,

ȳ = ξz̄, (185)

and we want to know ξ, the ratio of proportion from noisy observations
of (ȳ, z̄). Here, ξ is the parameter of interest. Let x = (y, z) be a pair of
random variables y and z, which are noisy observations of ȳ and z̄,

yi = ȳi + εi, (186)
zi = z̄i + ε′i. (187)

We assume that εi and ε′i are independent Gaussian variables subject to
N(0, 1). We observe xi = (yi, zi), i = 1, 2, . . . , N , where ȳi = ξz̄i and
z̄1, . . . , z̄N may take different values,

z̄i = ζi, (188)

which are the nuisance parameters. Hence, xi = (yi, zi) are subject to
zi ∼ N(ζi, 1), yi ∼ N(ξζi, 1). We then have a model

M = {p(x, ξ, ζi)}. (189)

We assume that ζi are selected from an unknown distribution k(ζ)
each time i. Then, we consider a mixture of statistical models,

p(x, ξ; k) =

∫
k(ζ)p(x, ξ, ζ) dζ. (190)

We may regard that all xi are generated independently from it. The family
SM = {p(x, ξ; k)} is called a mixture-type semiparametric model, which
is a submanifold of S. It is specified by two types of parameters: One is
finite-dimensional ξ which is to be estimated and the other is k(ζ) called a
mixing function which has function degrees of freedom. A semiparametric
model SM is used for estimating the parameter ξ of interest without caring
about the nuisance function parameter k(ζ). We present useful results
intuitively along the spirit of “experimental mathematics”. The results
elucidate mathematical structure of the geometry of the semiparametric
model.
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5.3. Decomposition of tangent space

Since SM is included in S, the tangent space Tp of S includes tangent
vectors of SM , which are given by those in the directions of parameters ξ
of interest and those in the directions of nuisance mixing parameter k(ζ).
We denote the first one by TU ,

TU = {u(x, ξ, k) = ∂ξ log p(x, ξ; k)} (191)

and call the space generated by the components ui of u the tangent space
of interest. The second one is given by

T V = {v(x, ξ, k) = ∂k log p(x, ξ; k)}, (192)

where ∂k is the Fréchet differentiation. It is called the nuisance tangent
space. When we consider a curve k(ζ, t) passing through k(ζ) = k(ζ, 0),
the tangent vector along this curve is

v(x, ξ, k) =
d

dt
log p{x, ξ; k(ζ, t)}

∣∣∣
t=0

. (193)

We have the third tangent directions in S which are orthogonal to both
TU and T V . Thus, the tangent space of S is decomposed into a direct
sum,

Tp = (TU
p ⊕ T V

p )⊕ TA
p , (194)

but it should be noted that TU
p and T V

p are not necessarily orthogonal.

5.4. Estimating function

An estimating function gives us a good means of estimating the param-
eters ξ of interest in a semiparametric model. An n-dimensional vector
function f(x, ξ) is called an estimating function, when

Ep(x,ξ,k)[f(x, ξ)] = 0, (195)

A = Ep(x,ξ,k)[∂ξf(x, ξ)] > 0, (196)

where A > 0 implies that A is symmetric and positive-definite for any
(ξ, k). The two conditions are equivalent to

Eξ,ζ [f(x, ξ)] = 0, (197)
Eξ,ζ [∂ξf(x, ξ)] > 0, (198)

for the finite-dimensional model

t{p(x, ξ, ζ)}, (199)
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where Eξ,ζ is the expectation with respect to p(x, ξ, ζ). The latter condi-
tions are easier to check. u(x, ξ, k) is a generalization of the score vector

u(x, ξ) =
∂

∂ξ
log p(x, ξ) (200)

of a usual parametric statistical model p(x, ξ). When an estimating func-
tion exists, an estimator ξ̂ is obtained, by replacing the expectation by
the empirical mean, as the solution of

1

N

∑
f(xi, ξ) = 0. (201)

Let ξ̂ be the estimator for a mixture semiparametric model SM that
satisfies (201). The estimation error e is written as

ξ̂ = ξ + e. (202)

By expanding f(xi, ξ̂), we have

0 =
1

N

∑
f(xi, ξ̂) ≈ 1

N

∑
f(xi, ξ) +

1

N
∂ξf(xi, ξ) · e. (203)

When N is large, the central limit theorem guarantees that

r =
1√
N

∑
f(xi, ξ) (204)

is asymptotically Gaussian subject toN(0,E[ffT ]). The law of large num-
bers guarantees that (1/N)

∑
∂ξf(xi, ξ) converges to

A = E[∂ξf(x, ξ)] > 0. (205)

Hence, we have

e ≈ − 1√
N
A−1r. (206)

Proposition. The estimator ξ̂ is consistent, asymptotically Gaussian and
its asymptotic error covariance matrix is given by

E[eeT ] ≈ 1

N
E[(A−1f)(A−1f)T ]. (207)

The geometry of estimating functions is studied by using the tangent
bundle structure. An estimating function is geometrically characterized
in this approach to give all the estimating functions.

A semiparametric model SM is a (curved) submanifold embedded in
S. We consider parallel transport of a tangent vector from p{x, ξ, k1(t)}
to p{x, ξ, k2(t)} in the manifold S of all distributions. We show that the
estimating function is characterized in terms of the e-parallel transport.
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Proposition. An estimating function f(x, ξ) is orthogonal to T V at any
p(x, ξ, k), where T V consists of tangent vectors along the nuisance param-
eters ζ,

T V =
{
v(x, ξ, ζ) =

∂

∂ζ
log p(x, ξ, ζ)

}
. (208)

Moreover, it is invariant under the e-parallel transport,

e∏k2

k1
f(x, ξ) = f(x, ξ). (209)

Outline of proof. From (175) and (197), it is immediate to see that f is
e-invariant, that is,

E[f(x, ξ)] = 0 (210)

for any k. By differentiating (210) in the direction of curve k(ζ, t), we
have

〈v(x, ζ, ξ),f(x, ξ)〉 = 0, (211)

which shows that f is orthogonal to T V .

By differentiating (210) with respect to ξ, we have

〈f(x, ξ),u(x, ξ, k)〉 = −E
[ ∂
∂ξ

f(x, ξ)
]
�= 0. (212)

Hence, f(x, ξ) includes a non-zero component in the direction of the
score vector ∂ξ log p(x, ξ, k). Let uI(x, ξ, k) be the projection of the score
u(x, ξ, k) to the orthogonal subspace of T V . We call it an information
score. The following proposition follows immediately.

Proposition. An estimating function exists when and only when the in-
formation score uI does not vanish. Any estimation function is a sum of
the information score and an ancillary vector,

f(x, ξ) = uI(x, ξ, k) + a(x), (213)

a(x) ∈ TA. (214)

Proposition. When the true distribution is p(x, ξ, k), the best estimating
function is the information score at k.

Since we do not know the true k(ζ), we cannot find the best estimating
function. However, if we guess k(ζ) adequately, then the guessed informa-
tion score is f = uI +a and gives a good estimating function yielding an
asymptotically unbiased estimator. Note that if we use a guessed k(ζ) and
use the score function itself for estimation, it does not necessarily give an
unbiased estimator.
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For many semiparametric estimation problems, we can analyze the
structure of the estimating functions, giving the optimal and semi-optimal
solutions. See [AMK97] for details, where the Neyman–Scott problem is
fully explored (see also [AM16]). The geometry of estimating functions
have been applied to various problems such as independent component
analysis ([AMC97], [AM00]) and estimation of the statistic of the inter-
spike intervals of a neuron under unknown firing rate ([MOA06]).

6. α-geometry: conformally-projectively flat geometry in Sn

6.1. α-divergence

When {M, g, T} is dually flat, the geometry of {M, g, αT} is called the α-
geometry. Since we can construct an exponential family (151) from (g, T ),
we study the α-geometry of an exponential family. For simplicity, we
mainly study Sn as a typical example because the α-geometry has not
yet been fully explored.

The α-geometry is induced by the α-divergence. In Sn, it is given by

Dα[p : q] =
4

1− α2

(
1−

∑
p

1−α
2

i q
1+α
2

i

)
, α �= ±1, (215)

where α is a real parameter. When α = ±1, we define

D−1[p : q] = DKL[p : q], (216)
D1[p : q] = DKL[q : p] (217)

by considering limit α→ ±1.
The Riemannian metric derived from Dα is the Fisher information

matrix g, not depending on α. However, the α-covariant derivative derived
from Dα satisfies

α
∇igjk = αTijk. (218)

The α-geometry (M, g, αT ), α �= ±1, is not dually flat, because the
Riemann–Christoffel curvature is

Rα
ijkl = (1− α2)(TkmiTjln − TkmjTiln)g

mn. (219)

The two connections
α
∇ and

−α
∇ are dually coupled. [KUR99] proved that

they are dually projectively flat in Sn from the affine geometry point of
view.
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6.2. Affine differential geometry

Affine differential geometry ([NOS94]) is closely related to information
geometry. Let M be an n-dimensional manifold. We immerse it in an
(n+ 1)-dimensional affine space Rn+1 by f ,

f(p) ∈ Rn+1, p ∈M. (220)

We attach a transversal vector field ξ(p) to f(M). Affine differential ge-
ometry involves the study of the geometrical structure of M induced from
{f(p), ξ(p)}, see Fig. 5. An affine fundamental form h = (hij) is derived,

f(p)

ξ(p)

f(M)

Rn+1

Fig. 5. Affine differential geometry

which is not necessarily positive-definite. When h is positive-definite, it
gives a Riemannian metric. An affine connection is also induced in M .

Let Rn+1 be the dual space of Rn+1. We naturally consider an immer-
sion f∗(p) ∈ Rn+1 corresponding to {f(p), ξ(p)}. They together induce
a Riemannian metric and a dual pair of affine connections, when a cer-
tain condition is satisfied. In such a case, it is possible to study the dual
geometry from the affine geometry point of view.

[SH07] studied the Hessian manifold, which is a dually flat manifold.
[KUR94], [KUR02] defined a geometrical divergence when the induced
connection is dually projectively flat. When the manifold is dually flat, it
reduces to the canonical divergence. [MATS99] further studied immersion
of M to Rn+2, together with two transversal vector fields ξ1 and ξ2. A
conformally-projectively flat connection is defined from such an immersion
and a canonical divergence is also defined.

Not all n-dimensional statistical manifolds are realized by immersion
to Rn+1 or Rn+2. The Lê theorem suggests that any statistical manifold is
realized by immersion to SN with finite N . It is interesting to characterize
a statistical manifold by the number N that is the minimum for realizing
it by immersion in SN .

A statistical manifold is dually projectively flat when the curvature
is constant and the reverse holds when n ≥ 3 ([KUR99]). The geometry
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constructed from the α-divergence is dually projectively flat. The following
theorems are given by [KUR94].

Theorem 10. When the α-geodesic connecting P and Q is orthogonal to
the −α-geodesic connecting Q and R for P,Q,R,∈ Sn,

Dα[P : R] = Dα[P : Q]+Dα[Q : R]− 1− α2

4
Dα[P : Q]Dα[Q : R]. (221)

From this, we have the projection theorem.

Theorem 11. Let S be a smooth submanifold of Sn and P̂ be the −α-
projection of P to S. Then the −α-geodesic connecting P to P̂ is orthog-
onal to S.

6.3. Rényi divergence and Pythagorean theorem

We now show a theory given by [WON18], which is applicable to a gen-
eral dually projectively flat manifold, although we state it only in Sn for
simplicity. The key idea is exponential convexity (concavity) instead of
convexity (concavity). Here, we study the case of α > 0. Let us rewrite
the probability distributions of Sn by using another parameterization ξ,

p(x, ξ) = (1 + αξ · x)− 1
α eϕα(ξ), (222)

xi = δi(x), i = 1, . . . , n, (223)

where

ξi =
1

α

{(p0
pi

)α − 1
}
, i = 1, . . . , n, (224)

ϕα(ξ) = log p0. (225)

The potential function is written as

ϕα(ξ) = − log
n∑

i=0

(1 + αξi)−
1
α , (226)

where we put ξ0 = 0. The ϕα(ξ) is α-exponentially concave, when exp{αϕα(ξ)}
is concave, that is,

− ∂i∂jϕα − α∂iϕα∂jϕα > 0 (227)

in the sense of matrix positive-definiteness.
We define a dual function by

ψα(η) = − 1

α
log

n∑
i=0

p1+α
i , (228)
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where η = (η1, . . . , ηn) is given by

ηi =
p1+α
i

n∑
k=0

p1+α
k

. (229)

A new α-divergence is defined by

D̄α[ξ : ξ′] =
1

α
log(1 + αξ · η′)− ϕα(ξ)− ψα(η

′). (230)

This is a Legendre-like duality, where log(1+αξ ·η) is used instead of ξ ·η.
It is easily proved that this is the Rényi α̂-divergence, where α̂ = 2α+ 1,

D̄α[p : q] = − 2

1− α̂
log

(∑
p

1−α̂
2

i q
1+α̂
2

i

)
. (231)

This is a function of the α̂-divergence,

D̄α[p : q] = − 2

1− α̂
log

{
1− 1− α̂2

4
Dα̂[p : q]

}
. (232)

Therefore, the geometry induced by D̄α is essentially the same as that
induced by Dα̂. [WON18] proved the following theorem.

Theorem 12. Let P , Q, R be three points in Sn. When the α̂-geodesic
connecting P and Q is orthogonal to the −α̂-geodesic connecting Q and
R, we have

D̄α[P : Q] + D̄α[Q : R] = D̄α[P : R]. (233)

It is surprising that Pythagorean and projection theorems hold even
in a dually projectively flat manifold. However, it is possible to derive
the Pythagrean relation from Kurose’s formula (221). Recall that (221) is
rewritten as

1− κDα̂[P : R] = (1− κDα̂[P : Q])(1− κDα̂[Q : R]), (234)

where

κ =
1− α̂2

4
(235)

is the scalar curvature. Hence, taking the logarithm of (234), we have the
Pythagrean theorem, which is equivalent to (233).
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6.4. Tsallis q-entropy and induced non-invariant dually flat structure

We consider the α-exponential family of probability distributions. Since
this is closely related to Tsallis q-entropy ([TSA09], [NAU11]), we use the
q = (1 + α)/2 instead of α. Let us define the q-logarithm by

logq u =
1

1− q
(u1−q − 1), (236)

and its inverse is
expq(u) = {1 + (1− q)u} 1

1−q . (237)

The q-exponential family is defined by

p(x,θ) = expq{θ · x− ψq(θ)}, (238)

where ψq(θ) corresponds to the normalization factor. In limit q → 1,
logq u = log u, so this class includes the exponential family.

We first prove that ψq(θ) is a convex function.

Lemma 1. ψq is a convex function of θ.

Proof. By differentiating (238) with respect to θ, we have

∂ip(x,θ) = p(x, θ)q{xi − ∂iψq} (239)

and

∂i∂jp(x,θ) = qp2q−1{xi − ∂iψq}{xj − ∂jψq} − pq∂i∂jψq. (240)

From
∂i

∫
p(x,θ) dμ(x) = 0, ∂i∂j

∫
p(x,θ) dμ(x) = 0, (241)

by putting

hq(θ) =

∫
p(x,θ)q dμ(x), (242)

we have
∂iψq(θ) = ηi =

1

hq(θ)

∫
p(x,θ)qxi dμ(x) (243)

and

∂i∂jψq(θ) =
q

hq(θ)

∫
{xi − ∂iψq}{xj − ∂jψq}p2q−1 dμ(x). (244)

This latter shows that ∂i∂jψq is positive-definite, that is, ψq(θ) is convex.
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We can construct a dually flat geometry from ψq(θ), which is not
invariant and different from the α-geometry derived from the α-divergence
or q-divergence ([AOM12]). The dual parameters derived from convex ψq

are
ηi =

1

hq

∫
xip(x,θ)

q dμ(x), (245)

which are different from the dual parameters in the case α = 1 of an
exponential family. The dual potential is

ϕq(θ) =
1

1− q

{ 1

hq(θ)
− 1

}
. (246)

We have the canonical divergence in Sn,

D̃q[p : q] =
q

hq(q)
Dα[p : q]. (247)

The Pythagorean theorem holds with respect to D̃q, where the e-geodesic
is linear in θ and m-geodesic is linear in η defined by (245), which is
different from the exponential family case of q = 1.

In the case of Sn, probability distributions can be represented in the
following form

logq p(x,θ) =

n∑
i=1

θiδi(x)− ψq(θ), (248)

for any q. Hence, the affine parameters θ and η due to D̃q are defined by

θi =
1

1− q
(p1−q

i − p1−q
0 ), (249)

ηi =
1

hq
pqi . (250)

They differ from (224) due to the α-divergence.
The canonical flat divergence D̃q is a conformal transformation of the

α-divergence Dα, as shown in (247). Therefore, the two geometries de-
rived from the D̃q divergence and Dα divergence are conformally related.
We now use the α-representation instead of q. Since D̃q and its dual
D̃∗

q are flat, the α-geometry derived from Dα is dually conformally flat.
Then, we see that the α-geometry is dually projectively flat (see [KUR94],
[KUR02], [MATS98], [MATS10]). It is surprising that the Pythagorean
relation holds in Sn for two divergences D̄q and D̃q by using different
geodesics.
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7. Information geometry of Wasserstein distance

7.1. Wasserstein distance

A well-known non-invariant distance between two probability distribu-
tions is the Wasserstein distance. It has a long history of research ([VIL09],
[SAN15], [PEC18]) and is still a hot topic in mathematics. Let Ω be a
metric space and p(x) and q(x) be two probability densities on Ω. Let us
consider two distributions of commodities subject to p(x) and q(x) on Ω.
We consider the problem of transporting commodities in Ω such that the
original distribution is p(x) and the resultant distribution becomes q(x),
see Fig. 6. The distance between two points x and y ∈ Ω is denoted as
d(x, y). We assume that the cost of transporting a unit of commodity from
x to y is m(x, y), which is an increasing function of d(x, y),

m(x, y) = f{d(x, y)}, (251)

satisfying f(0) = 0, for example f(d) = d2.

p(x)
q(x)

x

Fig. 6. Transportation of p(x) to q(x)

Let P (x, y) denote the amount of commodities transporting from x to
y. This satisfies the sender and receiver conditions,∫

P (x, y) dy = p(x), (252)
∫
P (x, y) dx = q(y). (253)

This is a stochastic matrix on Ω× Ω satisfying P (x, y) ≥ 0 and
∫
P (x, y) dx dy

= 1.
The total transportation cost is

C(P ) = 〈m(x, y), P (x, y)〉 =
∫
m(x, y)P (x, y) dx dy. (254)

The minimum of C under the constraints (252) and (253) is called the
Wasserstein distance between p(x) and q(x),

DW (p, q) = 〈m(x, y), P ∗(x, y)〉, (255)

where P ∗(x, y) is the optimal solution that minimizes (254), when it exists.
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The transportation problem searches for the minimizer of the linear
function 〈m,P 〉 under the linear constraints on P (252), (253); thus it is a
LP (linear programming) problem. Therefore, the uniqueness of the opti-
mal solution P ∗ is not guaranteed. The optimal solution is not necessarily
continuous with respect to p and q, as one can easily see in the discrete
LP case. It is generally difficult to obtain an analytical solution except
for the case of Ω = R1. The numerical computation is a burden when the
size of the problem is large in the discrete case.

7.2. Entropy-regularized transportation plan

The Wasserstein distance takes the metric structure d(x, y) of the under-
lying space Ω into account. Therefore, it is natural for certain applications
such as computer vision. A visual pattern is represented by a distribution
of brightness over a plane R2. Usually, R2 is discretized into n2 pixels,
and we solve the discrete LP problem for obtaining the transportation
cost from p(x) to q(x) x ∈ R2. However, the computational cost is huge
when n is large.

[CUT13] used the idea of modifying the problem by introducing a
regularization such that the entropy of P should be larger than a constant,
where the entropy is

H(P ) = −
∫
P (x, y) logP (x, y) dx dy. (256)

Then the cost function to be minimized becomes

Cλ(P ) = 〈m,P 〉+ λH(P ), (257)

where λ is a Lagrange multiplier. The additional term relaxes the solu-
tion, letting the entropy become larger. Its degree is controlled by λ, and
when λ = 0, the solution reduces to the original Wasserstein distance. In-
troduction of the λ > 0 term makes the optimal plan P ∗(p, q) be uniquely
determined in the discrete case of the following subsections, and P ∗(p, q)
is continuous with respect to p and q.

7.3. Manifold of optimal transportation plans

We concentrate on the discrete case Ω = {0, 1, . . . , n}, where distributions
are patterns on Ω and belong to S̄n, where S̄n is the closure of Sn. The
problem is to transport p = (pi) ∈ S̄n to q = (qi) ∈ S̄n, where the cost
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is M = (mij), mii = 0. A transportation plan is a stochastic matrix
P = (Pij), satisfying

n∑
j=0

Pij = pi, i = 0, 1, . . . , n, (258)

n∑
i=0

Pij = qj , j = 0, 1, . . . , n, (259)

n∑
i,j=0

Pij = 1, Pij ≥ 0. (260)

We use the following Lagrange function

L =
1

1 + λ
〈M,P 〉+ λ

1 + λ
H(P )−

n∑
i,j=0

αiPij −
n∑

i,j=0

βjPij (261)

to be minimized, where αi, βj are Lagrange multipliers corresponding to
constraints (258), (259). We may put α0 = 0, β0 = 0. By differentiating
L with respect to Pij , we have

1 + λ

λ

∂L

∂Pij
=

1

λ
mij + logPij − 1 + λ

λ
(αi + βj). (262)

Therefore, we have the following theorem ([AKO18], [CP16]).

Theorem 13. The optimal transportation plan sending p to q is given by

P ∗
ij = exp

{
− 1

λ
mij +

1 + λ

λ
(αi + βj)− ψ

λ

}
, (i, j) �= (0, 0), (263)

ψ = −λ logP ∗
00, (264)

where ψ is the normalization constant and αi and βj are to be determined
from constraints (258), (259).

The above theorem shows that the set of all optimal transportation
plans form an exponential family ([AKO18]). By introducing random vari-
ables xij = δij(x), where x denotes branches connecting two nodes of Ω,
the optimal transportation plan is

P ∗(x) = exp
{∑

i,j

(α̃i + β̃j)δij(x)− ψ̃ −
∑
i,j

mij

λ
δij(x)

}
, (265)

where random variables δij(x) are

δij(x) =

{
1, when x = (i, j),
0, otherwise, (266)
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and (α̃, β̃) are canonical parameters,

α̃i =
(1 + λ)αi

λ
, β̃j =

(1 + λ)βj
λ

, α̃0 = β̃0 = 0, ψ̃ =
1

λ
ψ. (267)

The ψ̃(α̃, β̃) is the potential function, and the dual parameters (expecta-
tion parameters) are p, q, because

E
[∑

j

δij(x)
]
= pi, E

[∑
i

δij(x)
]
= qj . (268)

Since ψ̃(α̃, β̃) is a convex function, we have its dual ϕ̃(p, q), and the
Legendre relations hold

p =
∂

∂α̃
ψ̃(α̃, β̃), q =

∂

∂β̃
ψ̃(α̃, β̃), (269)

α̃ =
∂

∂p
ϕ̃(p, q), β̃ =

∂

∂q
ϕ̃(p, q). (270)

Theorem 14. The optimal cost function Cλ(p, q) is convex with respect
to (p, q) and is the Legendre dual ϕ̃λ(p, q) of the potential ψ̃λ(α̃, β̃),

Cλ(p, q) = ϕ̃λ(p, q). (271)

Proof. Since Cλ(p, q) is rewritten as

Cλ(p, q) = 〈M,P ∗〉+ λ
∑

P ∗
ij

{
(α̃i + β̃j)− mij

λ
− ψ̃λ(α̃, β̃)

}
(272)

= p · α̃+ q · β̃ − ψλ(α̃, β̃), (273)

we have
Cλ(p, q) = ϕ̃λ(p, q). (274)

This shows that Cλ(p, q) is convex with respect to (p, q).

7.4. Minimizer of Cλ(p, q), given p

[CUT13] used the cost function Cλ(p, q) as a substitute of the trans-
portation cost from p to q instead of the Wasserstein distance DW (p, q).
He solved various problems in vision research with remarkable success,
because the entropy regularized approach is computationally tractable.

However, Cλ(p, q) is not necessarily positive. More seriously, it is not
minimized at p = q. Therefore, it is not adequate as a distance or
divergence. The minimizer of Cλ(p, q), given p, is obtained as follows
([AKOC19]).
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Theorem 15. For fixed p, Cλ(p, q) is minimized at

q∗ = K̃p =
( n∑

i=0

K̃i|jpi
)
, (275)

where K̃ is a linear operator defined by

Kij = exp
{
− mij

λ

}
, (276)

K̃i|j =
Kij∑
j

Kij =
Kij

ki
. (277)

Proof. Since q∗ satisfies

∂qCλ(p, q
∗) = 0, (278)

this implies β̃ = 0. Hence, the optimal plan from p to q∗ is

P ∗
ij = exp

{
− mij

λ
+ α̃i − ψ̃

}
= Kij exp{α̃i − ψ̃}. (279)

From ∑
j

P ∗
ij = pi, (280)

we have
exp{α̃i − ψ̃}ki = pi. (281)

Hence,
P ∗
ij =

pi
ki
Kij . (282)

From ∑
i

P ∗
ij = q∗j , (283)

q∗ = K̃p (284)

is proved.
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7.5. New divergences introduced in Sn

It is possible to modify Cλ(p, q) to give a true divergence. We show two
such divergences. One was derived by [AKOC19],

Dλ[p : q] = Cλ(p, K̃q)− Cλ(p, K̃p). (285)

Since Cλ(p, q) is a convex function because of Theorem 14, its modi-
fication Dλ[p, q] is a convex function with respect to (p, q). This is a
divergence but is not dually flat. The Riemannian metric is given by

gij = ∂ijDλ[p : q]q=p. (286)

The other divergence is simply given by

D̃λ[p : q] = Cλ(p, q)− 1

2
{Cλ(p,p) + Cλ(q, q)}. (287)

This was used in [GPC18] and [RTC17] without any justification. We need
to show that this is convex with respect to (p, q).

Conjecture. When mij = mji, D̃λ[p : q] is a divergence in Sn.

It is easy to see that
D̃λ[p : p] = 0 (288)

for any p. We calculate the derivative of D̃λ with respect to q,

∂qD̃λ[p : q] = ∂qCλ(p, q)− 1

2
{∂pCλ(q, q) + ∂qCλ(q, q)}, (289)

where ∂p and ∂q denote differentiation in Cλ(p, q) with respect to p and
q, respectively, and we have

∂qD̃λ[p : q]q=p =
1

2
{∂qCλ(p, q)− ∂qCλ(p, q)}q=p = 0, (290)

because Cλ(p, q) = Cλ(q,p), provided mij = mji. Hence, for fixed p,
q = p is a critical point of Cλ(p, q). We need to prove that the second
derivative ∂qqD̃λ[p, q] is positive-definite at q = p. See [FEY19], where
this is proved in the case of Wasserstein divergence regularized by the
Shannon mutual information.
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7.6. Barycenter of patterns: shape-location separation theorem

We give an example in computational vision, showing the superiority
of the Wasserstein distance to invariant divergences such as the KL-
divergence. We consider a set of patterns S = {p1(ξ), . . . , pn(ξ)}, where
ξ ∈ R2. A pattern p(ξ) is a distribution over R2. For a divergence D, the
D-barycenter of S is the pattern q∗D(ξ) that minimizes

FS(q) =
n∑

i=1

D[pi : q], (291)

q∗D = argminFS(q). (292)

The Dλ-barycenter q∗(ξ) captures a common shape of S as shown in
the following shape-location separation theorem ([AKOC19]). The theo-
rem holds for Cλ-, D̃λ-, andDλ-barycenters but does not hold for invariant
divergences such as KL-divergence or Hellinger divergence.

We define the center ξp of pattern p(ξ) by

ξp =

∫
ξp(ξ) dξ. (293)

A shift of pattern p(ξ) by ξ̄ is

Tξ̄p(ξ) = p(ξ − ξ̄). (294)

We shift all p1(ξ), . . . , pn(ξ) such that their centers become ξ = 0,

p̄i(ξ) = pi(ξ − ξpi), i = 1, . . . , n. (295)

All p̄1(ξ), . . . , p̄n(ξ) are located at ξ = 0, that is, their centers are 0,
without changing the shapes.

Theorem 16. The Cλ-barycenter q∗Cλ
are located at the barycenter of the

centers ξ1, . . . , ξn of patterns p1(ξ), . . . , pn(ξ) and its shape is congruent
to the shape of the barycenter of the co-located p̄1(ξ), . . . , p̄n(ξ). This holds
for Dλ- and D̃λ-barycenters.

Proof. Let P ∗
p,q(ξ, ξ

′) be the optimal transportation plan from p(ξ) to
q(ξ), and let

ξ̄ = ξq − ξp. (296)

Then q̄(ξ) = Tξ̄q(ξ) and p(ξ) have the same center. Let the optimal plan
sending p(ξ) to q̄(ξ) be P ∗

p,q̄. Then, we easily have

Cλ(P
∗
p,q) = Cλ(P

∗
p,q̄) + |ξp − ξq|2, (297)
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since the entropy of P does not change by shift of patterns. This shows
that the transportation cost Cλ(P

∗
p,q) is decomposed into a sum of the

costs due to their location difference and shape difference. Hence∑
Cλ(P

∗
pi,q) =

∑
Cλ(P

∗
pi,q̄) +

∑
|ξpi − ξq|2, (298)

which proves the theorem. The same discussion holds for Dλ- and D̃λ-
barycenters.

[CUT13] demonstrated that the Cλ-barycenter extracts a common
shape from patterns. We confirmed this by proving the shape-location
separation theorem for the Cλ-barycenter. However, since Cλ(p, q) is not
a divergence, there is a problem. Let p1(ξ), . . . , pn(ξ) be shifted patterns
of p(ξ). Then, their Cλ-barycenter is the minimizer of Cλ(p, q), that is

q∗Cλ
= K̃p, (299)

which is a blurred pattern of p. However, the Dλ- and D̃λ-barycenters are
the same as the original pattern

q∗Dλ
= q∗

D̃λ
= p. (300)

7.7. Information matrix connecting the Fisher metric and Wasserstein
metric

Recently, [LIZ19] proposed an interesting idea of connecting the Fisher
information metric with the Wasserstein Riemannian metric by using a
one-parameter operator. We shortly introduce their idea. Let us consider
a one-dimensional base space Ω = R1. Let M = {p(x,θ)} be a regular
statistical model parameterized by θ. Moreover, let g be a metric tensor
over R1. We define the Riemannian metric G(θ) induced in M by the
pullback of g, as

G(θ) =

∫
∂

∂θ
p(x,θ)g{p(x,θ)} ∂

∂θ
p(x,θ) dx. (301)

It is given in the components form as

Gij(θ) =

∫
∂ip(x,θ){g(p(x,θ))∂jp(x,θ)} dx, (302)

where
∂i =

∂

∂θi
. (303)
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When g is a simple scalar function,

g(p) =
1

p(x,θ)
, (304)

the Riemannian metric is

Gij =

∫
1

p(x,θ)
∂ip(x,θ)∂jp(x,θ) dx, (305)

which is equal to the Fisher information matrix,
We define the Wasserstein metric tensor by using the inverse of differ-

ential operator as
gW (p) = (−Δp)

−1, (306)

where the Laplacian Δp is defined by

Δp = ∇ · p∇, (307)

∇ =
d

dx
. (308)

The induced metric is the Wasserstein information matrix

GW
ij (θ) = −

∫
∂ip(x,θ)Δ

−1
p ∂jp(x,θ) dx. (309)

Let P (x,θ) be the cumulative distribution of p(x,θ),

P (x,θ) =

∫ x

−∞
p(u,θ) du. (310)

Then, the Wasserstein information matrix is explicitly given by

GW
ij (θ) =

∫
1

p(x,θ)
∂iP (x,θ)∂jP (x,θ) dx. (311)

It is interesting to explore statistical inference based on the Wasserstein
distance. See [AMM20] for the recent developments by another approach.

Conclusions and future perspectives

I discussed information geometry, which emerged from the invariant prop-
erties of a manifold of probability distributions. It gives a Riemannian
geometry equipped with a third-order symmetric tensor T , from which a
dual pair of affine connections are introduced. This is a natural geometry
derived from an asymmetric divergence function of two points in a man-
ifold and related to affine differential geometry. A dually flat statistical
manifold has good properties such as existence of a canonical divergence,
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the generalized Pythagorean theorem and projection theorem. They are
particularly useful for applications in statistics, signal processing, game
theory, computer vision, artificial intelligence, etc., although we do not
touch upon applications in this paper, except for the semi-parametric es-
timation and the Wasserstein problem.

Geometry having dual affine connections has not yet been fully ex-
plored. There are lots of problems to be studied in future from the mathe-
matical point of view. For example, a diffusion process or random walk in
a manifold of dual affine connections is an interesting topic, where dually
coupled Laplacians Δ and Δ∗ and diffusion flows exist. It is interesting
to know the role of duality in this setting. Another example is dual Ricci
flows. It will be interesting to extend the various results in Riemannian
geometry to these problems in the dual setting.

We studied the information geometry of the entropy-regularized
Wasserstein problem, obtaining a new Wasserstein-motivated divergence
in a manifold of probability distributions. It is also an interesting mathe-
matical topic to explore the geometry derived from the divergence of the
entropy-regularized Wasserstein problem.

I cannot touch two important subjects on information geometry. One
is the geometry of a function space of probability distributions initiated
by [PIS95]. See also [AY17]. The other is quantum information geometry
which studies the geometry of quantum states ([AMN00], [HAY17]).
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