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Abstract. This article is concerned with the existence theory of closed minimal hypersurfaces in
closed Riemannian manifolds of dimension at least three. These hypersurfaces are critical points
for the area functional, and hence their study can be seen as a high-dimensional generalization of
the classical theory of closed geodesics (Birkhoff, Morse, Lusternik, Schnirel’mann,...). The best
result until very recently, due to Almgren ([2], 1965), Pitts ([37], 1981), and Schoen—Simon ([43],
1981), was the existence of at least one closed minimal hypersurface in every closed Riemannian
manifold.

I will discuss the methods I have developed with André Neves, for the past few years, to
approach this problem through the variational point of view. These ideas have culminated with
the discovery that minimal hypersurfaces in fact abound.
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1. Introduction

In these notes, prepared for the occasion of the Takagi Lectures of 2018, we will
be concerned with the n-dimensional area functional. We will consider a closed
Riemannian manifold (M"*!, g) and closed hypersurfaces £ ¢ M"*!. Crit-

* This article is based on the 22nd Takagi Lectures that the author delivered at The University
of Tokyo on November 17-18, 2018.

** The author is partly supported by NSF-DMS-1811840.

F.C. MARQUES
Princeton University, Fine Hall, Washington Road, Princeton NJ 08544-1000 USA
(e-mail: coda@math.princeton.edu)



208 F.C. Marques

ical points for the area functional are called minimal hypersurfaces. More pre-
cisely, we say that ¥ is minimal if

% t=0area(Ft(Z)) =0
for every smooth one-parameter family {F}};e(—¢¢) of ambient diffeomorphisms
F; - M — M satisfying Fy = id. Equivalently, ¥ is minimal in M if its mean
curvature vanishes identically.

If n = 1, minimal hypersurfaces are just closed geodesics. This is an impor-
tant special case, because closed geodesics can also be defined as periodic orbits
of the geodesic flow. Hence dynamics plays a role when the ambient dimension
is two, but is not available in higher dimensions.

The subject started with a question of Poincaré ([38]), who asked whether
any Riemannian sphere (S2, g) contains a nontrivial closed geodesic. If the
genus of the surface is at least one, then one can find a nontrivial closed geodesic
by minimizing the length functional inside a nontrivial homotopy class of loops.
This method fails for the 2-sphere since the sphere is simply-connected.

Birkhoff [4] was the first to realize that in the sphere this is not a prob-
lem of minimization. His main insight was that the space of closed loops in S?
has interesting topology, and that this would force the existence of a nontriv-
ial critical point. Birkhoff introduced the notion of sweepout, a homotopically
nontrivial one-parameter family of closed loops in S2. A sweepout is a family
{cs = f oCsjse[—1,1], Where Cy is the loop x3 = s and [ : §? - S?isa
degree one map. He proved that the min-max number

L = inf sup L(cy),
{esh se[—1,1]

where L(c) denotes the length of c, is positive and that there exists a closed
geodesic y : S — (82, g) such that

L(y)=L.
Hence

Theorem 1.1 (Birkhoff, [4]). Every Riemannian 2-sphere contains at least one
nontrivial closed geodesic.

One way of seeing this is by considering the curve shortening flow, defined
to be the process of evolving a closed curve « in the direction of the curvature
vector:

Ja —

a
The equation is parabolic hence there is always a solution for small positive
time ¢ € [0, ). Grayson [14] studied the longtime behavior as ¢ converges to
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the maximal time of existence Ty,,x. He proved that either 7},,x < oo and the
curve converges to a point or 7i,,x = 00 and there is a sequence f; — 0o such
that oz, converges to a nontrivial closed geodesic.

The idea then is to apply curve shortening flow simultaneously to all curves
in a sweepout. Because f has degree one it cannot be that every curve in a
sweepout converges to a point through curve shortening flow. Hence there must
be at least one curve in any sweepout that subsequentially converges to a closed
geodesic. Birkhoff did not have the technology of parabolic curve shortening
flow available in his time, but he devised a more elementary discrete curve short-
ening process based on local replacements by length minimizing geodesic seg-
ments. Curve shortening flow has the advantage of preserving embeddedness
of curves and hence can be used as above to prove the existence of a simple
(embedded) closed geodesic.

The work of Birkhoff later inspired Morse [34] and also Lusternik and
Schnirel’mann [25] to study more general types of critical points. These the-
ories brought together the fields of topology and calculus of variations.

In the early 1990s, by combining dynamical and variational arguments one
obtains:

Theorem 1.2 (Bangert [3], Franks [11], Hingston [19]). Every Riemannian
2-sphere contains (geometrically distinct) infinitely many closed geodesics.

Here geometrically distinct means that the closed geodesics as maps from S
do not differ by iteration. The possibility of getting the same geodesic iterated
many times is a crucial difficulty in the theory of closed geodesics. In higher
dimensions this is replaced by the multiplicity problem, as mentioned later in
this article.

We would like to consider the higher dimensional case n > 2, through the
variational point of view. Classically one can produce closed minimal surfaces
by the parametric approach, in which surfaces are thought as maps from a fixed
topological 2-dimensional surface into the manifold. This works only in dimen-
sion two (although the codimension can be arbitrary), where one can take ad-
vantage of the existence of conformal parametrizations. The area of the image of
a conformal map coincides with its Dirichlet energy, which has more coercivity
properties than the area functional.

Schoen—Yau [44] and Sacks—Uhlenbeck [42] used this approach to produce
incompressible minimal surfaces, while Sacks—Uhlenbeck [41] used it to under-
stand bubbling and produce minimal 2-spheres. Recently, Riviere [40] revisited
the subject and proposed a viscosity alternative to the perturbed functionals of
Sacks—Uhlenbeck. The minimal surfaces produced by this method might have
branch points and self-intersections.

We are going to take the Geometric Measure Theory (GMT) point of view,
in which one thinks of submanifolds by themselves and not necessarily as
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parametrized objects. This can be used to solve the Plateau Problem [8] in great
generality, by allowing hypersurfaces of arbitrary topological type. The Plateau
Problem asks for the hypersurface of least area with a given boundary. This pro-
duces embedded hypersurfaces and is in contrast with the classical/parametric
approach of Douglas [7] and Rado [39].

We will consider the space of flat chains mod 2 endowed with the flat topol-
ogy. Two closed submanifolds X1, 2, of dimension p are close to each other
in the flat topology if there is a (p + 1)-dimensional submanifold €2 with very
small (p + 1)-dimensional area and 02 = X — X,. The space of flat cycles
mod 2 of dimension n in R” is the completion of the space of boundaryless
polyhedral chains mod 2 with respect to the flat topology. The space of flat cy-
cles has the right kind of compactness properties which together with the lower
semicontinuity of the area (or mass in GMT language) allow the solution of the
Plateau Problem in that class.

We will isometrically embed our closed Riemannian manifold (M"*1, g)
into some Euclidean space R by Nash’s Theorem [35] and consider the space
%,(M; Z,) of n-dimensional flat cycles X of RY with support contained in M.
We will take only those cycles that are boundaries in M: X = 92, where Q is
an (n + 1)-dimensional flat chain mod 2 in M.

A one-parameter family {X;},¢[0,1] of cycles, with X9 = ¥; = 0, is a
sweepout of M if one can find a continuous family of (n + 1)-dimensional
chains mod 2 {2;} in M with 0Q2; = X;, Qo = 0 and 2; = M. An example
is givenby {¥; = 0{ f <t}}, where f : M — [0, 1] is any Morse function.

As in Birkhoff, one can define the width of M as the min-max invariant

W = inf sup area(X;).
{51 refo,1]

There is always some o € [0, 1] such that vol(€2,,) = vol(M)/2, and hence
area(X;,) > c for some fixed constant ¢ > 0 by the Isoperimetric Inequality.
This implies W > 0.

The Min-Max Theorem states:

Theorem 1.3 (Almgren’65 [2], Pitts’81 [37], Schoen—Simon’81 [43]). Sup-
pose 3 < (n + 1) < 7. Then there exist a disjoint collection {X1,..., 24}
of smooth, closed, embedded minimal hypersurfaces in M and a collection
{m1,...,mg} C N such that

W = mjarea(X1) + --- + mgarea(Z,).

Almgren ([2]) devised a general min-max theory that succeeded in proving
the existence of minimal varieties (or stationary integral varifolds) of any di-
mension, and Pitts ([37]) proved smoothness of the varifold in the codimension
one case for (n + 1) < 6. Regularity for higher dimensions was proven by
Schoen and Simon ([43]).
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If (n + 1) > 8, the above theorem is still true but the minimal hypersurface
can have a singular set of Hausdorff dimension at most (n — 7). This follows
from the existence theory of Almgren—Pitts combined with the regularity theory
of Schoen—Simon.

If (n + 1) = 2, the min-max theory with flat cycles does not necessarily
produce a closed geodesic. In general the min-max minimal variety could be a
stationary geodesic network (with integer multiplicities).

In 1982, Yau [53] conjectured:

Conjecture. Every closed Riemannian three-manifold (M3, g) contains infinitely
many smooth, closed minimal surfaces.

A few years ago, I started working with André Neves on the subject. The
starting point is the rich topology of the space of cycles mod 2.

Almgren [1] proved that there is a canonical isomorphism between the ho-
motopy group 7;(Z%(M,7Z3)) of the space of k-dimensional cycles and the
homology group Hy+;(M,Z;) of M (he did it for integer coefficients but the
same proof applies to coefficients in Z,). In the codimension one case this gives

m1(Zn(M, Z3)) = Z»,

and
7 (Zn(M,Z2)) =0

for all k > 2. This is exactly the list of homotopy groups of RIP*°. This gives us
homotopically nontrivial k-parameter families of hypersurfaces to work with,
like in the inclusion RP¥ ¢ RP*.

There is another way of understanding this RP*° structure (see Sect. 4),
through the boundary map

0 LM Z,) — 2,(M" 1, Z,),

where I, 1 (M" %1, Z,) is the space of (n + 1)-dimensional flat chains modulo
two. If T = 90U, then also T = d(M — U). The chains U and M — U are,
by the Constancy Theorem of Geometric Measure Theory ([46]), the only two
chains with boundary equal to 7'. This implies that the boundary map is a two
cover. The involution

o Typ 1 (M"1, ) — Ty 1 (M1, Z)

defined by ¢ (U) = M —U plays the role of the antipodal map and the boundary
map is a two-cover just like the standard projection S — RIP*°.

In 1988, Gromov [15] performed a study of the area functional in which hy-
persurfaces were thought as zero sets of a real function defined on M. The space
of real functions is an infinite dimensional vector space, and since multiplica-
tion by a nonzero scalar does not change the zero set we can think of the area
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as defined in an infinite-dimensional projective space. Gromov was interested in
defining the spectrum of such functional, in analogy with the standard spectrum
of the Laplacian defined through the Rayleigh functional

f— e/ [

We will come back to this later.

In Sect. 2, I will discuss recent existence theorems of closed minimal hy-
persurfaces. In Sect. 3, I will discuss characterizations of the Morse index of
min-max minimal hypersurfaces. In Sect. 4, I will prove that the space of flat
hypercycles mod 2 is weakly homotopically equivalent to RP*°. In Sect. 5, I
will sketch the proof of density of minimal hypersurfaces for generic metrics.
In Sect. 6, I will be more technical and describe how the min-max theory for the
area functional is formulated.

2. Infinitely many minimal hypersurfaces

We proved:

Theorem 2.1 (—, Neves [31]). Suppose 3 < (n + 1) < 7. Then for any closed
Riemannian manifold (M" 11, g),

(1) either there exist infinitely many closed, embedded, minimal hypersurfaces,
(1) or there exists a disjoint collection of (n + 1) closed, embedded, minimal
hypersurfaces {X1, ..., Xn+1}.

We say the manifold satisfies the Frankel property if any two closed minimal
hypersurfaces have to intersect. Hence we get:

Corollary 2.2 (—, Neves [31]). Suppose 3 < (n + 1) < 7. Then any closed
Riemannian manifold (M"Y, g) that satisfies the Frankel property contains
infinitely many smooth, closed, embedded minimal hypersurfaces.

If the Ricci curvature of g is positive, it follows from Frankel’s theorem
([10]) that (M, g) satisfies the Frankel property.

This property is also implied when there are no stable minimal hypersur-
faces. A minimal hypersurface is said to be stable if the second variation of the
area functional is nonnegative for any variation, like in a minimum point. If the
initial velocity of the variation is given by X = f N, where N is a unit normal
to X (assuming X is two-sided and minimal), the Second Variation Formula
states that

2

% ptrea(Xy) = [Z{IVzﬂ2 — (|A]* + Ric(N, N)) f2}d =,
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where A denotes the second fundamental form of ¥. Hence one immediately
sees from the formula, by choosing f to be constant equal to 1, that ¥ cannot
be stable if Ric(g) > 0. If ¥ and X, are two disjoint and homologous mini-
mal hypersurfaces, by minimizing area in the homology class one finds a stable
minimal hypersurface between 3 and X,. Hence X and ¥, must intersect if
there are no stable hypersurfaces.

In order to prove Theorem 2.1, we need to use the RIP* structure. The defi-
nition of the sweepouts will be given in terms of cohomology classes.

The cohomology ring H*(RP*, Z,) is the polynomial ring Z,[A] where
A is the generator of H!(RP™®,Z,) = Z,. In particular, H*(RP*®,Z,) =
{O,Xk} where Xk = A U---U A is the cup product power. We use the same
notation A to denote the generator of H(%5,(M"+1,7,),75) = Z».

The cohomology class A has geometric meaning. Given a continuous loop
of cycles y : S1 — 25,(M"*1, Z,), we have that A - (y) = 1 if and only if y is
a sweepout of M (i.e., if and only if the lift 7 of y to I, .1 (M" 11, Z,) is open).

Let X be a finite dimensional simplicial complex. We make the following
definitions.

Definition. A continuous map ® : X — Z,(M" 1, Z,) is called a k-sweepout

o -k .
if it detects the cohomology class A in the sense that

—k
P*(A") #£ 0 e HY (X, Zy).
In this case we write ® € Zy,.
Definition. The k-width of M is the number

wr(M,g) = inf  sup area(P(x)),
PE€ Pk xedmn(®)

where dmn(®) denotes the domain of ®, which might depend on ®.
Definition. The volume spectrum of M is the sequence of numbers:
{w1(M.g) Swr(M.g) < =wp(M,g) <---}.
The sequence is ordered because every (k + 1)-sweepout is also a k-sweepout.

Example. The volume spectrum is nonlinear and hence extremely hard to com-
pute even for the simplest manifolds. For the unit three-sphere endowed with
the standard metric g, we have:

w01(5%,8) = 02(5%,7) = 03(5%,7) = 04(53,3) = 4n.
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The fact that
ws(S3,2) < 4n

follows from the existence of the 4-sweepout ® : RP* — 25(S53,7Z,) given
by:
D([ag :ay :az :asz:aq]) ={x € S3 :ap+aixi+asxstazxz+asxs = 0}.
The lower bound

4 < w1(S?)

follows from min-max theory and the fact that any closed minimal surface in
S3 has area at least 477.
It turns out we know the next nontrivial element:

ws(S3) = 272,

The proof of this is not easy and requires the solution of the Willmore Conjec-
ture ([28]).

If there are no stable minimal hypersurfaces, for instance if the Ricci cur-
vature is positive, then Almgren—Pitts min-max theory applied to the class of
k-sweepouts gives that

wr (M, g) = my, - area(Xy),

with mj € N and X a connected minimal hypersurface. In [31], we prove that
this contradicts the sublinear bounds:

Theorem 2.3 (Gromov [16], Guth [18]). There exist constants c1,cp > 0 de-
pending on M such that

1k T+ < @ (M) < ek 7T,
for every k € N.
To be precise, the fact that

wr(M, g) = mgk)area(z(lk)) et mg;)area(zél;))

as in Theorem 1.3 does not follow immediately from Almgren—Pitts min-max
theory because that theory worked with homotopy (and not cohomology) classes.
In any case, the above formula can be proven using the Morse index estimates
of the author and Neves [30] and Sharp’s Compactness Theorem [45]. See The-
orem 3.3 of Sect. 3.

In [16], Gromov conjectured:

Conjecture. The volume spectrum obeys a Weyl law (just like the standard Weyl
law for the spectrum of the Laplacian, [49]).
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In order to explain the analogy, recall that the p-th eigenvalue A, of the
Laplace-Beltrami operator Ag can be given a min-max characterization:

Ap(M) = inf su E(f),
pM)= ot s E()
" 2
where 0 € WUL2(M) and E(f) = M is the Rayleigh functional.

Note that E(c - f) = E(c) for any constant ¢ € R \ {0} and so the Rayleigh
functional descends to the projectivization of W 1-2(M):

E :PWY2(M) — R.

A (p + 1)-plane in W12(M) becomes a p-projective space in PW1-2(M) and
one should think of PW 12(M) as an RP*°. Hence we have the analogous char-
acterization:

Ap(M) = inf sup E(f).
RP? CPW1-2(M) [ £]eRP?

In the late 1980s, Gromov [15] wrote a paper in which he first mentions the
analogies explained above and explores applications of the classical Borsuk—
Ulam Theorem. This theorem states that for any continuous map f : S ks Rk,
there is always a point x € § k such that f(x) = f(—x). Here is one such
application. Take a bounded domain @ C R”T! an integer k € N, a disjoint
collection 21, ..., Qj of subdomains of €2 and a vector subspace E C C°°(R2)
of dim E = k + 1. Then for every u € Sk, where S g C E is the unit sphere
with respect to some norm, consider

F(u) = (vol{u <0} N Qq,...,vol{u <0} N Q) € Rk,

The Borsuk—Ulam Theorem implies the existence of a function ugy € E such
F(uog) = F(—ug), which means that the zero set Z(ug) = {x € Q : u(x) = 0}
bisects each €2; into two regions of equal volume.

From this we can derive an estimate for the area of Z(u¢). Choose a cube
C CQandlet/ = Lknlﬁj. Denote by a the length of the sides of C. Divide
C into /"1 subcubes of size a/l. Since k > ["T1, there exists ug € E such
that the zero set Z(ug) = {x € Q : u(x) = 0} bisects each subcube C; into
two regions of equal volume. The relative isoperimetric inequality then implies
area Z(ug) N C; > d(n)a™1™" for every i. Hence

area Z(ug) > d(n)a"l > C(n,a)knflrl.

This is another instance of some kind of similarity with the eigenvalue problem.
In [24], we proved Gromov’s conjecture:
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Theorem 2.4 (Liokumovich, —, Neves). There exists a dimensional constant
a(n) > 0 such that

lim wy (M, g)k_nlﬁ = a(n)vol(M, g)nnﬁ,
k—o0

This theorem holds in any dimension as it has nothing to do with the regular-
ity of minimal hypersurfaces. The constant a(n) can be estimated (for instance,
one can take families of zero sets of polynomials on the standard sphere) but it
1s not known explicitly. The Weyl Law also holds for manifolds with boundary,
in which case one does everything with relative cycles (relative to the boundary
of M). In fact, the proof of Theorem 2.4 starts by considering the case in which
M is the Euclidean unit cube.

The proof of our Weyl law is based on a result inspired by Lusternik—
Schnirel’mann theory that we proved in [24]:

Theorem 2.5. Let {Q21,...,R2p} be a disjoint collection of subregions of Q.
Then

p
o (Q2.8) = ) o, (Qi.8)

i=1
as long as Zf)zl k; <k.

The proof uses the cup product structure and goes as follows. Let ® : X —
Zn(2,092,7Z7) be a k-sweepout of mod 2 relative cycles of 2. This means

—k
O*(A)|x #0.

Define X; = {x € X : M(®(x)NQ;j) < wg,;(2;,g)}. Themap T — TNL;
from relative cycles of €2 to relative cycles of €2; preserves the fundamental co-

—ki )
homology class. Hence ®*(A ")|x;, = 0. A basic property of the cup prod-

- —k i+t
uct implies ®*(A ' ’

—k
®*(A)|x,u--ux, = 0. This implies there must exist x € X \ (X1 U---U Xp).
Hence

)x,u-ux, = 0. Because Zleki < k, we get

p
M(@(x)) = M(®(x) N Q1)+ + M(@(x) N Qp) = Y g, (. 8).

i=1

Since @ is an arbitrary k-sweepout of €2, we are done.

As an application of the Weyl Law for the volume spectrum, we were able
to prove Yau’s Conjecture for generic metrics by proving a stronger property is
true:

Theorem 2.6 (Irie, —, Neves, [21]). Suppose 3 < (n + 1) < 7. For a generic
metric on M" 11, the union of all closed, smooth, embedded, minimal hypersur-
faces of M is dense in M.
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White ([50], [52]) had proved that a generic metric is bumpy, meaning that
every minimal hypersurface is nondegenerate as a critical point of the area func-
tional. Nondegeneracy here means the second variation quadratic form has no
kernel, as in traditional Morse theory. Together with Sharp’s Compactness The-
orem ([45]), this implies the set of minimal hypersurfaces for such metrics is
countable.

The basic idea for proving Theorem 2.6 goes as follows (see Sect. 5 for
more details). Suppose (M, g) has precisely m minimal hypersurfaces. We can
choose a point p outside the union of such hypersurfaces and a small ball
B around p that is disjoint from the hypersurfaces. We can consider a one-
parameter family of Riemannian metrics (g(7));e[o,¢] near g, with g(0) = g,
vol(M, g(e)) > vol(M, g) and such that g(¢) coincides with g outside U.
This can be achieved easily through a conformal deformation. The fact that
vol(M, g(e)) > vol(M, g) implies together with the Weyl Law that for some
k € N, we must have w; (M, g(¢e)) > wr (M, g). If for every ¢ € [0, €], no new
minimal surface is created intersecting U, we would have that wi (M, g(t)) is
an integer combination of the areas of the m minimal hypersurfaces of g. But
the function ¢ — wy (M, g(t)) is continuous (Lipschitz, in fact), which leads to
a contradiction. We conclude that for some ¢’ € [0, €], the metric g(¢’) has the
original m minimal hypersurfaces of g and at least one new minimal hypersur-
face crossing U. We can iterate this argument. A similar argument was used by
Irie [20] for the case of (immersed) closed geodesics in dimension two, using a
different kind of asymptotic law ([6]).

At this point we do not know anything about the topology or geometry of
these hypersurfaces. It should be interesting, for instance, to understand how
the Morse index grows. In the above argument we have no control on how large
k has to be, depending on the choice of U and g(¢).

In [33], we were able to make the argument more quantitative and proved an
equidistribution property:

Theorem 2.7 (—, Neves, Song). Suppose 3 < (n+1) < 7. For a generic metric
on M1 there is a sequence {X;} of closed, connected, smooth, embedded,
minimal hypersurfaces of M such that

o XSy, SA5 [y fdM
p~oo P area(¥;)  vol(M)

for any continuous function f : M — R.
In [47], Song settled Yau’s Conjecture:

Theorem 2.8. Suppose 3 < (n + 1) < 7. Any closed Riemannian manifold
(M"Y, g) contains infinitely many smooth, closed, embedded minimal hyper-
surfaces.
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Song was able to localize the methods of [31] and proved that there are
infinitely many minimal hypersurfaces inside any domain bounded by stable
minimal hypersurfaces. In order to do that, he considers the least volume such
domain €2 in M, called the core. The point is that the Frankel property holds for
minimal surfaces that are completely contained in the interior of €2. He defines
a cylindrical extension

Q=QU@OQ x[0,00)),

and outside €2 he puts the product metric. This is a noncompact Riemannian
manifold with a metric ¢ that is not smooth. Song defines wy (€2, &) as the limit
of wr (2, &) over an exhaustion ; of 2. In contrast with the compact case
these numbers grow linearly, but Song is able to determine the linear coefficient:

k -area(T1) < wr (R, 8) < k -area(Z1) + Cknlﬁ,

where X is the largest area component of d€2. Song finishes the argument with
an arithmetic lemma that generalizes the counting argument of the author and
Neves [31]. The minimal hypersurfaces he constructs are limits of free boundary
minimal hypersurfaces produced by applying the min-max theory for relative
cycles of Li and Zhou [23] to each 2;.

3. Morse index of min-max minimal hypersurfaces

For generic metrics one can hope to have a Morse theory. In a series of pa-
pers ([26], [29], [30], [36]), the authors proposed a program to obtain a Morse-
theoretic description of the set of minimal hypersurfaces in the generic case.
The authors conjectured:

Morse Index Conjecture 3.1. For a generic metric g on M" 11,3 < (n+1) <7,
there exists a sequence {2} of smooth, embedded, two-sided, closed minimal
hypersurfaces such that:

(1) index(XZg) = k,
1
(2) C ekt < area(Xj) < Ckn+T for some C > 0.

The authors proposed a program to prove this conjecture based on three main
components: the use of min-max constructions over multiparameter sweepouts
to obtain existence results, the characterization of the Morse index of min-max
minimal hypersurfaces under the multiplicity one assumption, and a proof of
the Multiplicity One Conjecture:

Multiplicity One Conjecture 3.2. For generic metricson M"T1, 3 < (n + 1) <
7, any component of a closed, minimal hypersurface obtained by min-max meth-
ods is two-sided and has multiplicity one.
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The first part of the program was done in the Almgren—Pitts setting by the
authors ([31], [30]). In [32], we completed the characterization of the Morse
index of Almgren—Pitts min-max minimal hypersurfaces under the multiplicity
one assumption for bumpy metrics. We used the fact that any nondegenerate
minimal hypersurface is a solution of a local min-max problem (White, [51]).

In [30], we proved the upper bound:

Theorem 3.3 (—, Neves). If X is the min-max minimal hypersurface produced
by min-max over a k-dimensional homotopy class, then

index (support(X)) < k.
If Y =mX +---+mygXy, then we define
index (support(X)) = index(X1) + --- + index(X,).
Recently, we proved also the lower bound:

Theorem 3.4 (—, Neves, [32]). Suppose the metric is bumpy. If 3 is the min-
max minimal hypersurface produced by min-max over the class of k-sweepouts,
and if it is achieved with multiplicity one:

wr(M,g) = 1-area(X),

then
index(X) = k.

It remains to prove the Multiplicity One Conjecture in the Almgren—Pitts set-
ting'. We proved the Multiplicity One Conjecture for two-sided components in
the one-parameter case and we were also able to rule out one-sided components
with multiplicity in some settings ([30], [22], see also [27], [54], [55]).

The Morse Index Conjecture would also follow if one can implement the
three parts of the program in the alternative Allen—Cahn setting, which can be
seen as an g-regularization of the Almgren—Pitts setting. In the Allen—Cahn set-
ting one considers the Sobolev space W1-2(M) and associates to a function
u € WH2(M), for fixed & > 0, the energy:

Eo(u) = /M (§|Vu|2 + W;“)),

where W is a double-well potential like W(u) = %. Critical points of E,
satisfy the Euler—Lagrange equation:

" A proof of the Multiplicity One Conjecture has been recently announced by X. Zhou [56],
using the prescribed mean curvature min-max theory of Zhou—Zhu [57].



220 F.C. Marques

from which one can see that the constant functions —1, 1 and O are trivial critical
points. The variational problem associated to the Allen—Cahn energy satisfies
the Palais—Smale condition for fixed ¢. Interesting behavior, like formation of
phase transitions, happens in the singular limit, as & goes to zero. Notice that
E:(0) - oo as e — 0, so the constant function 0 will not be a relevant critical
point in our discussion.

In [17], Guaraco used the regularity theory of Tonegawa and Wickramasek-
era [48] to prove the following result:

Theorem 3.5 (Guaraco, [17]). Suppose (ug; )i is a sequence of critical points,
g; — 0, with bounded energy and Morse index. Then there is a subsequence
(ug;); such that the level sets of uy; accumulate at a minimal hypersurface
possibly with integer multiplicities.

In the complement of the limiting minimal hypersurface the solutions con-
verge to either 41 or —1 smoothly in compact sets. This is the so-called phase
transition phenomenon.

In [17], Guaraco performed a mountain-pass argument to construct nontriv-
1al solutions to the Allen—Cahn equations and by passing to the limit as ¢ — 0
he obtained a PDE-based proof of the existence of at least one minimal hyper-
surface. In [12], Gaspar and Guaraco generalized this existence theory to the
case of multiparameter sweepouts for each fixed ¢. This again explores an RIP>°
structure coming from the identity E,(u) = E.(—u). The areas of the mini-
mal hypersurfaces produced by Gaspar and Guaraco grow sublinearly with the
dimension of the parameter space, as in the Almgren—Pitts setting.

The Multiplicity One Conjecture 3.2, adapted to the Allen—Cahn setting, was
recently proven when (n 4+ 1) = 3 in work by Chodosh and Mantoulidis [5].
They proved that in this dimension, for bumpy metrics, the limiting minimal
hypersurfaces of Gaspar and Guaraco are two-sided and occur with multiplicity
one. In [5], they also finish the Morse index characterization for multiplicity one
Allen—Cahn minimal hypersurfaces (assuming smoothness) in any dimension.
Putting this all together, they obtain:

Theorem 3.6 (Chodosh, Mantoulidis, [S]). The Morse Index Conjecture is true
if(n+1)=23.

Recently, Gaspar and Guaraco [13] used the Allen—Cahn regularization to
obtain different proofs of density and equidistribution of minimal hypersurfaces
for generic metrics. The proofs follow the lines of [21] and [33] and are based

on a Weyl law for the Allen—Cahn volume spectrum. It is not known whether
the constants in the Weyl laws of [24] and [13] are the same.

4. Topology of the space of hypercycles

In this section, we will prove the following theorem:
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Theorem 4.1. The space of cycles %7, (M ; Zy) is weakly homotopically equiva-
lent to RIP*°.

Proof. Let f © M — R be a Morse function, with /(M) = [0, 1]. We assert
that the map @ : RP® — 2,,(M;Z;) given by the formula

&D([ag:al ceeetap 0 ) =0xeM :a0+a1f(x)+---—|—akf(x)k <0}

is a weak homotopy equivalence, i.e. it induces isomorphisms in every homo-
topy group. In [31] (Claim 5.5), we proved the map & is continuous in the flat
topology.

Lifting Property 4.2. Let ¥ : I? — 2,(M;Z;) be a continuous map, p € N,
and Uy € I,+1(M;Z3) be such that dUy = W(0). Then there exists a unique
continuous map U : I? — I,4+1(M;Z,) such that U(0) = Up and dU(x) =
W(x) forevery x € I7.

We start with uniqueness. Let U, U’ be two such maps and consider the
difference V. = U — U’'. Then V : I? — I,41(M;Z,) satisfies V(0) = 0
and 0V (x) = O for every x € I?. By the Constancy Theorem for mod 2 flat
chains, V(x) € {0, M} for every x € I”. This implies that the set A = {x €
I? : V(x) = 0} is both closed and open. Since 0 € A, we have A = I? and
therefore U = U’.

Now we prove the existence of the lifting U when p = 1. By the Isoperi-
metric Inequality of Federer—Fleming (see Proposition 1.11 or Corollary 1.14
of [1]), adapted to the setting of mod 2 flat chains, there exist constants g7 > 0
and vys > O such that if T € 29, (M;Z,) satisfies .Z#(T) < &y, then there
exists W € I,4+1(M; Zy) with oW = T and M(W) < vy % (T). Here .% and
M denote the flat norm and the mass norm, respectively. We can choose €3 to
be small so that W is unique by the Constancy Theorem.

Since W is continuous, we can find a partition 0 = fp <t < --- <51 <
tq = 1 such that for every 5,7 € [t;_1,;], 1 <i < ¢q, we have

F(V(s), V(1)) <epm.

Fort € [ti—1,t;], let W;(t) be the unique element of I,,1 (M ; Z,) with 0W; ()
= W(1) — W(t—1) and M(W;(?)) < vy F(V(t) — Y(ti—1)). The map W; :
[ti—1,ti]] = Lh4+1(M;Z5) is continuous and W;(t;—1) = 0. For ¢t € [0, 1], we
define U(¢t) = Uy + Wi(t). Then U : [0,t1] — I,4+1(M;Z3) is continuous,
with U(0) = Uy and dU(¢t) = W(¢) for all ¢ € [0, ¢1]. Suppose that we have
found a continuous map U : [0,ti—1] — In+1(M;Z;) with U(0) = Up and
dU(t) = W(¢) forallt € [0, t;—1]. Then we extend it to [0, ¢;] by putting U(¢) =
U(ti—1) + W(t) for t € [ti—1,t;]. The existence of the lifting U : [0, 1] —
I,+1(M;Z>) follows by induction.
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Now suppose p > 1. Given x € [?, we choose a continuous path o :
[0,1] — I? with 0(0) = 0 and 0(1) = x and define ¥, = Yoo :
[0,1] = Z5(M;Z;). We know there exists a continuous map Uy : [0,1] —
I,+1(M;7Z3) with Uy (0) = Ug and dU, (t) = W, (2) forallt € [0, 1]. Then we
put U(x) = Uy(1). Note that dU(x) = W(x). Because 12 is simply-connected,
a standard argument gives that U(x) does not depend on o and the obtained
extension U : I? — I,,41(M;Z,) is a continuous map. This ends the proof of
the lifting property.

Claim 4.3. The space 1,4+1(M ; Z;) is contractible.

We define the deformation H : [0,1] x ;41 (M;Z3) — 1,41(M;7Z>) by
putting
H@,U)=U{f <1}.
The map H is continuous, H(1,U) = U and H(0,U) = 0 for every U €
I,+1(M;7Z3). This proves the claim.

The homotopy groups of the infinite-dimensional projective space are given
by

71 (RP*°, 1) = Z,, and
7 (RP*°, 1) =0 for every k > 2.

Ifk >2,and ¥ : I¥ — %,(M:Z,) is a continuous map with W(d/¥) =
{0}, the Lifting Property implies there exists a unique continuous map U :
1% = X, .1(M;Z,) with U(0) = 0 and dU(x) = W(x) for every x € IX. By
the uniqueness of the liftings of maps defined on 7¥~1, we have U(37%) = 0.
Claim 4.3 implies U is homotopically constant relative to o/ k Hence W is ho-
motopically constant relative to 9/%. This establishes that

7k (Zn(M:Z2),0) =0

for every k > 2.

Now leto : [0,1] - Z,(M;Z;) be a continuous map with ¢(0) = o(1) = 0.
The Lifting Property gives a unique continuous map U : [0, 1] — L, +1(M;Z>)
with U(0) = 0 and dU(¢) = o(¢) forevery t € [0, 1]. Then dU(1) = o (1) = 0,
hence either U(1) = O0or U(1) = M. If U(1) = 0, the map o is homotopically
constant relative to {0, 1} as in the higher-dimensional argument. Conversely,
if such a homotopy exists then we can lift it and a standard argument implies
U(1) = 0. These arguments give that

mi(Zn(M;Z3),0) = Z,,

and o : [0,1] - 2,(M;Z) given by o(t) = d{f < t} is a generator. Since
®([cos(mt) :sin(mwt) :0:---]) = 0{f < —cot(mt)}, the map

d, : 1 (RP™, 1) —> 71 (25(M: Z5). 0)



Abundance of minimal surfaces 223

is an isomorphism. The higher homotopy groups of both spaces are trivial, hence
® is a weak homotopy equivalence. O

Note that if we take integer coefficients (flat chains with integer coefficients
are called integral currents), and M i1s oriented, Almgren’s formula will give

m1(Zn(M.Z2)) = Z,

and
i (Zn(M,Z2)) =0

for all k > 2. It follows that 2, (M,Z) is weakly homotopically equivalent
to the circle S', and hence there are no nontrivial multiparameter families of
integral currents.

5. Density of minimal hypersurfaces for generic metrics

In what follows we explain in more detail the proof of density of minimal hy-
persurfaces for generic metrics ([21]).

We denote by .# the space of all smooth Riemannian metrics on M, en-
dowed with the C*° topology.

The key proposition is the following:

Proposition 5.1. Suppose 3 < (n + 1) < 7, and let U C M be a nonempty
open set. Then the set My of all smooth Riemannian metrics on M such that
there exists a nondegenerate, closed, smooth, embedded, minimal hypersurface
Y that intersects U is open and dense in the C*° topology.

Proof (Openness). Let g € .#y and X be as in the statement of the proposition.
Because X is nondegenerate, an application of the Inverse Function Theorem
implies that for every Riemannian metric g’ sufficiently close to g, there exists
a unique nondegenerate closed, smooth, embedded minimal hypersurface X’
close to X. In particular, X' NU # @ if g’ is sufficiently close to g. This implies
M is open.

(Density) Let g be an arbitrary smooth Riemannian metric on M and ¥ be
an arbitrary neighborhood of g in the C°° topology. By the Bumpy Metrics
Theorem of White (Theorem 2.1, [52]), there exists g’ € ¥ such that every
closed, smooth immersed minimal hypersurface with respect to g’ is nondegen-
erate. If one of these minimal hypersurfaces is embedded and intersects U then
g’ € My, and we are done.

Therefore we can suppose that every closed, smooth, embedded minimal
hypersurface with respect to g’ is contained in the complement of U. Since g’
is bumpy, it follows from Sharp (Theorem 2.3 and Remark 2.4, [45]) that the set
of connected, closed, smooth, embedded minimal hypersurfaces in (M, g’) with
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both area and index bounded from above by ¢ is finite for every ¢ > 0. This
implies that the set

N
€ ={ ijvolg/(Ej) : N €N, {mj}j-vzl CN, {Zj}j-vzl disjoint collection
j=1

of closed, smooth, embedded minimal hypersurfaces in (M, g’ )}

is countable.

Now we choose 7 : M — R a smooth nonnegative function such that
supp () C U and h(x) > 0 for some x € U. We define g'(t) = (1 + th)g’
for ¢+ > 0, and choose 7y > 0 sufficiently small so that g’(z) € ¥ for every
t € [0, t9]. By construction g’(t) = g’ outside some compact set K C U for
every t > 0.

We have vol(M, g’(tg)) > vol(M, g’). It follows from the Weyl Law for the
Volume Spectrum that there exists k € N such that wy (M, g'(t9)) > wr (M, g’).
Assume by contradiction that for every ¢ € [0, #g], every closed, smooth, embed-
ded minimal hypersurface in (M, g’(¢)) is contained in M \ U. Since g'(t) = g’
outside K C U we conclude from that w (M, g’(¢t)) € € forall ¢t € [0, to]. But
% is countable and we know that the function ¢ + wy (M, g’(¢)) is continuous.
Hence t — wi (M, g’(t)) is constant in the interval [0, z9]. This contradicts the
fact that wi (M, g’ (1)) > wr (M, g').

Therefore we can find ¢ € [0, ¢p] such that there exists a closed, smooth, em-
bedded minimal hypersurface X with respect to g’(¢) that intersects U . Through
a conformal deformation it is possible to perturb the metric slightly to make X
nondegenerate (and remains minimal). Since g’(¢) € ¥, we find a Riemannian
metric g” € ¥ such that X is minimal and nondegenerate with respect to g”’.
Therefore g” € ¥ N.#y and we have finished the proof of the Proposition. O

Let {U;} be a countable basis of M. Since, by Proposition 5.1, each .Zy, is
open and dense in .7 the set (*); .#y, is C *° Baire-generic in .# . This finishes
the proof of density of minimal hypersurfaces for generic metrics.

6. Min-max Theory for the area functional

In this section we explain in more detail the Min-max Theorem applied to ho-
motopy classes of maps.

Let (M"*1, g) be an (n + 1)-dimensional closed Riemannian manifold. We
assume, for convenience, that (M, g) is isometrically embedded in some Eu-
clidean space R

We consider the following spaces:
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e the space I; (M ; Z,) of [-dimensional flat chains in R’ with coefficients in
Z and support contained in M, where [ = n orn + 1;

e the space %, (M ;7Z,) of flat chains T € I,,(M;Z;) such that there exists
Uel,-1(M;Zy) withdU =T

e the closure 7, (M), in the weak topology, of the space of n-dimensional
rectifiable varifolds in RY with support contained in M.

We assume implicitly that M(7') + M(d7T) < oo for every T € 1;(M;Z5).
We will refer to 2, (M ;7Z;) as the space of cycles. Flat chains over a finite
coefficient group were introduced by Fleming [9].

Given T € I;(M;Z,), we denote by |T'| and ||T || the integral varifold and
the Radon measure in M associated with |T'|, respectively; given V € ¥, (M),
|V || denotes the Radon measure in M associated with V. The space of n-
dimensional integral varifolds with support in M is denoted by % ,,(M).

The spaces above come with several relevant metrics. The mass of T €
I;(M;Z,) is denoted by M(T'), and the metric M(T7, T) = M(T1—T5) defines
the mass topology. The flat metric

F(T1,T») = infiM(Q) + M(R) : Ty — T» = Q + R}

induces the flat topology (we put .#(T) = #(T,0)). The F-metric is defined
in the book of Pitts [37, page 66] and induces the varifold weak topology on
Yu(M) NV ||V|(M) < a} for any a. It satisfies

VM) < [WII(M) + F(V, W)

for all V. W € ¥,(M). We denote by Eg(V) and Bg(V) the closed and open
metric balls, respectively, with radius § and center V € ¥, (M). Similarly,

we denote by E(}/ (T) and Bf (T) the corresponding balls with center 7' €
%1 (M ;7Z5) in the flat metric. Finally, the F-metric on 1;(M ;Z;) is defined
by

F(S,T)=%(S—-T)+F(S|,|T))-
Wehave F(| S|, |T|) < M(S,T)andhence F(S,T) <2M(S,T)forany S, T €
I, (M Z5).

We assume that I; (M ; Z,) and 2, (M ; Z,) have the topology induced by the
flat metric. When endowed with the topology of the F-metric or the mass norm,
these spaces will be denoted by I;(M;F;Z,), Z5(M;¥;Z>), I;(M;M; Z,),
Zn(M;M; Z,), respectively. The space 7, (M) is considered with the weak
topology of varifolds.

Our parameter space X will be a cubical complex of dimension k, meaning
a subcomplex of dimension k of I(m, j) for some m and ;.

Definition 6.1. Let ® : X — 2,(M"T1;F;Z>) be a continuous map. The homo-
topy class of ® is the class T1 of all continuous maps ® : X — 25,(M"T1;F;Z,)
such that ® and ®' are homotopic to each other in the flat topology.
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Remark 6.2. Notice that our definition of homotopy class is slightly unusual, as
we allow homotopies that are continuous in a weaker topology.

Definition 6.3. The width of I1 is defined by:

L(TT) = inf sup{M(®(x))}.
Pell xcx

Definition 6.4. A sequence {®;} C Il is called a minimizing sequence if

L(®;) := sup M(®;(x))

xeX

satisfies L({®;}) = limsup;_,, L(®;) = L(II). Any sequence {®;, (x;)}
with lim; oo M(®;; (xj)) = L(I1), where {i;} C {i} is a subsequence and
{xj} C X, is called a min-max sequence.

Definition 6.5. The image set of {®; } is defined by

C{®;}) ={V € ¥, (M) : Isequences {ij} >o00,x;€X
suchthat lim F(|®;; (x;)[, V) = 0}.
j—o0

Definition 6.6. If {®D;} is a minimizing sequence in T1, with L = L({®;}), the
critical set of {®; } is defined by

C({®;}) ={V e C({D:}) : |V (M) = L}.

Pull-tight 6.7. Following Pitts ([37] p.153), we can define for each ¢ > 0 a
continuous map

H: I x(Z,M"TVF;Z,) N {T : M(T) < 2L(I1)}H)
— Zu(M" 1 F: Zo) N {T - M(T) < 2L(T1)}

such that:

e HO,T)=T forall T;
e H(t,T) =T forallt € [0,1] if |T| is stationary;
e M(H(1,T)) < M(T) if |T| is not stationary;
oeF(T,H(t,T)) <eforallt and T.
Given a minimizing sequence {®}} C I1, we define ®;(x) = H(1, ®}(x))
forevery x € X. Then {®;} C Il is also a minimizing sequence. It follows from

the construction that C({®;}) C C({®]}) and that every element of C({®;}) is
stationary.

Definition 6.8. Any minimizing sequence {®;} C Il such that every element of
C({®;}) is stationary is called pulled-tight.
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The next result follows from the Almgren—Pitts ([2], [37]) min-max theory
together with the regularity theory of Schoen—Simon ([43]). See Sect. 3 of [30]
for the formulation presented below.

Definition 6.9 (Min-max Theorem). Suppose L(I1) > 0, and let {®;} be a
minimizing sequence in I1. Then there exists a stationary integral varifold V €
C{®;}) (hence ||V|(M) = L(IT)), with support a closed minimal hypersur-
face that is smooth and embedded outside a set of Hausdorff dimension less than
or equal to (n — 7).

If 3 < (n+ 1) <7, we conclude that there is a disjoint collection {X1,..., X}
of closed, smooth, embedded, minimal hypersurfaces in M and a set of integers
{my,...,my} CN, such that

Vi=mi|Sil 4+ my Sl
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