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1. Introduction

The universal Lie superalgebra associated to a vector superspace V is defined
as a Z-graded Lie superalgebra

W.V / D
M

j��1

Wj .V / ; with W�1.V / D V;

such that for any Z-graded Lie superalgebra g D L
j��1 gj , with g�1 D V ,

there is a unique grading preserving homomorphism g ! W.V / identical on
V . It is easy to see that

Wj .V / D Hom.SjC1.V /; V /;

for all j � �1. The Lie superalgebra bracket on W.V / is given by

ŒX; Y � D X�Y � .�1/p.X/p.Y /Y�X; (1.1)

were p is the parity on W.V /, and, for X 2 Wn.V /, Y 2 Wm.V /,

.X�Y /.v0 ˝ � � � ˝ vmCn/

D
X

i0<���<im
imC1<���<imCn

�v.i0; : : : ; imCn/X.Y.vi0
˝ � � � ˝ vim

/˝ vimC1
˝ � � � ˝ vimCn

/:

(1.2)

Here �v.i0; : : : ; imCn/ is non-zero only if i0; : : : ; imCn are distinct, and in this
case it is equal to .�1/N , where N is the number of interchanges of indices of
odd vi ’s in the permutation.

Clearly, W0.V / D EndV and W1.V / D Hom.S2V; V /, so that any even
element of the vector superspace W1.V / defines a commutative superalgebra
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structure on V , and this correspondence is bijective. On the other hand, any
odd element X of the vector superspace W1.…V / defines a skew-commutative
superalgebra structure on V by the formula

Œa; b� D .�1/p.a/X.a˝ b/; a; b 2 V: (1.3)

Here and further …V stands for the vector superspace V with reversed par-
ity. Moreover, (1.3) defines a Lie superalgebra structure on V if and only if
ŒX;X� D 0 in W.…V /. Thus, given a Lie superalgebra structure on V , consid-
ering the corresponding odd element X 2 W1.…V /, we obtain a cohomology
complex �

C � D
M
j�0

C j ; adX
�
; where C j D Wj�1.…V /; (1.4)

which coincides with the cohomology complex of the Lie superalgebra V with
the bracket defined by X , with coefficients in the adjoint representation. This
construction for V purely even goes back to the paper [NR67] on deformations
of Lie algebras; for a general superspace V it was explained in [DSK13]. Note
also that, more generally, given a module M over the Lie superalgebra V , one
considers instead of V the Lie superalgebra V �M with M an abelian ideal,
and by a simple reduction procedure constructs the cohomology complex of the
Lie superalgebra V with coefficients in M .

In the paper [DSK13], this point of view on cohomology has been also ap-
plied to several other algebraic structures. The most important for the present pa-
per is that of a Lie conformal (super)algebra and the corresponding cohomology
complex introduced in [BKV99]; see also [BDAK01], [DSK09]. The complex
is constructed in [DSK13] as follows. Assume that the vector superspace V car-
ries an even endomorphism @. For each integer k � 0, denote by F�Œ�1; : : : ; �k�

the space of polynomials in the k variables �1; : : : ; �k of even parity with co-
efficients in the field F, endowed with the structure of a left FŒ@�˝k-module by
letting P1.@/˝� � �˝Pk.@/ act as multiplication by P1.��1/ � � �Pk.��k/. This
space carries also a right FŒ@�-module structure, for which @ acts as multiplica-
tion by ��1 � � � � � �k . Then we let for k � 0:

P @
k .V / D HomFŒ@�˝k .V ˝k;F�Œ�1; : : : ; �k�˝FŒ@� V /: (1.5)

The symmetric group Sk acts on the vector superspace P @
k
.V / by simultaneous

permutation of the factors of the vector superspace V ˝k and of the �i ’s. We
denote by W @

k
.V / the subspace of fixed points in P @

kC1
.V /, k � �1. Then the

“conformal” analogue of W.V / is the vector superspace

W @.V / D
M

j��1

W @
j .V /;
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with a Z-graded Lie superalgebra structure similar to (1.1)–(1.2). Note that we
have:

W @�1.V / D V=@V; W @
0 .V / D EndFŒ@� V:

Moreover, the even elements in the vector superspace W @
1 .V / are identified,

letting �1 D � and �2 D �� � @, with maps

X W V ˝ V �! V Œ��; a˝ b 7�! X�.a˝ b/;

which satisfy certain sesquilinearity and commutativity conditions.
Proceeding in exactly the same way as in the Lie superalgebra case, consider

the Lie superalgebra W @.…V /. Then we get a bijection between odd elements
X 2 W @

1 .…V /, such that ŒX;X� D 0, and the Lie conformal superalgebra
structures on V , i.e., �-brackets on V satisfying sesquilinearity

Œ@a�b� D ��Œa�b�; Œa�@b� D .�C @/Œa�b�; (1.6)

skew-commutativity

Œb�a� D �.�1/p.a/p.b/Œa���@b�; (1.7)

and Jacobi identity

Œa�Œb�c�� � .�1/p.a/p.b/Œb�Œa�c�� D ŒŒa�b��C�c�: (1.8)

This bijection is similar to (1.3):

Œa�b� D .�1/p.a/X�.a˝ b/: (1.9)

Moreover, similarly to (1.4), we obtain the cohomology complex of the Lie con-
formal superalgebra V with �-bracket given by X� via (1.9), with coefficients
in the adjoint representation. One defines the cohomology of V with coefficients
in a V -module M in a similar way as well.

The most relevant to [DSK13] construction is obtained by endowing the
FŒ@�-module V with a structure of a (commutative associative) differential su-
peralgebra. In this case one considers the Z-graded subalgebra W @;as.V / DL

j��1W
@;as

j of W @.V /, where W @;as
j D W @

j for j D �1; 0, while W @;as
j

for j � 1 consists of the maps from W @
j satisfying the Leibniz rule. The odd

elements X 2 W
@;as

1 .…V /, such that ŒX;X� D 0, correspond bijectively to
Poisson vertex algebra (PVA) structures on V with the given differential alge-
bra structure, and using this, one constructs the variational Poisson cohomology
of the PVA V . Recall that a Poisson vertex (super)algebra is a differential (su-
per)algebra endowed with a Lie conformal (super)algebra �-bracket satisfying
the Leibniz rule

Œa�bc� D Œa�b�c C .�1/p.a/p.b/bŒa�c�: (1.10)
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A somewhat different point of view on cohomology complexes of algebraic
structures is provided by the theory of linear unital symmetric superoperads,
which we call operads in this paper for simplicity. (It covers the first two above
mentioned examples, but not the third one.) One of its equivalent definitions is
that it is a sequence of vector superspaces P.n/, n 2 Z�0, endowed with a
right action of Sn for n � 1, and bilinear parity preserving products

ıi W P.n/ � P.m/ �! P.nCm � 1/; i D 1; : : : ; n;

satisfying the associativity axioms given by formula (3.8) below and the equiv-
ariance axioms given by formula (3.9). (There is also a unity 1 2 P.1/, sat-
isfying the unity axiom, but this is irrelevant to our paper.) See, e.g. [MSS02],
[LV12]. The universal (to the operad P) Z-graded Lie superalgebra W.P/ DL

j��1Wj is defined by letting Wn D P.n C 1/SnC1 with the bracket (1.1),
where

X�Y D
X

�2SmC1;n

.X ı1 Y /
��1

:

Here Sm;n denotes the set of .m; n/-shuffles in SmCn; see Sect. 3 for details.
The earliest reference to this construction that we know of is [Tam02].

The most popular example of an operad is P D Hom , for which

Hom .n/ D Hom.V ˝n; V /;

for a vector superspace V . The action of Sn on P.n/ is defined via its natural
action on V ˝n (taking into account the parity of V ), and the i -th productX ıi Y

of X 2 Hom .n/ and Y 2 Hom .m/ is defined by (i D 1; : : : ; n)

.X ıi Y /.v1; : : : ; vnCm�1/

D X.v1; : : : ; vi�1; Y.vi ; : : : ; viCm�1/; viCm; : : : ; vnCm�1/:

It is easy to see that the Lie superalgebras W.V / and W.Hom / are identi-
cal. Likewise, for an FŒ@�-module V , one defines the operadChom , for which
Chom .n/ is the space P @

n .V / defined by (1.5), and recovers thereby the associ-
ated Lie superalgebra W @.V /.

Thus, the operads Hom and Chom “govern” the Lie superalgebras and
the Lie conformal superalgebras respectively. In their seminal book [BD04],
Beilinson and Drinfeld generalized the notion of a vertex algebra, introduced by
Borcherds [Bor86], by defining a chiral algebra in the language of D-modules
on any smooth algebraic curve, so that a vertex algebra is a weakly transla-
tion covariant chiral algebra on the affine line. They also constructed the corre-
sponding chiral operad and the cohomology theory of chiral algebras, and the
associated graded chiral operad.
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In the present paper, we translate the construction of the chiral operad from
[BD04] to the purely algebraic language of vertex algebras. The resulting op-
erad, which we denote by P ch, not surprisingly turns out to be an extension of
the operadChom in the same spirit asChom is an extension of the operad Hom .

In order to explain the construction of P ch (see Sect. 6.3), let us introduce
some notation. For k 2 Z��1, let OT

kC1
and O?T

kC1
be respectively the algebras

of polynomials and Laurent polynomials in zij D zi �zj , where 0 � i < j � k,
and let DT

kC1
D Pk

iD0 OT
kC1

@zi
be the algebra of translation invariant regular

differential operators. Let V be an FŒ@�-module. The space V ˝.kC1/ ˝ O?T
kC1

carries the structure of a right DT
kC1

-module by letting zij act by multiplication
on O?

kC1
, and letting @zi

act by

.v0 ˝ � � � ˝ vk ˝ f /@zi
D v0 ˝ � � � @vi � � � ˝ vk ˝ f � v0 ˝ � � � ˝ vk ˝ @f

@zi
:

The space F�Œ�0; : : : ; �k� considered above carries a structure of a DT
kC1

-module
as well, by letting zij act as � @

@�i
C @

@�j
and @zi

act as multiplication by ��i .

Then P ch.k C 1/ is defined as the space of all right DT
kC1

-module homomor-
phisms

V ˝.kC1/ ˝ O?T
kC1 �! F�Œ�0; : : : ; �k�˝FŒ@� V:

The right action of the symmetric group SkC1 on P ch.k C 1/ is defined by
simultaneous permutations in V ˝.kC1/ ˝ O?T

kC1
of factors of V ˝.kC1/ and the

corresponding variables z0; : : : ; zk in O?T
kC1

. The ı1 product in P ch is defined
by (6.20), and the general composition by (6.25).

We denote by W ch.V / D L
j��1W

ch
j .V / the Z-graded Lie superalgebra

associated to the operad P ch for the FŒ@�-module V . It is clear that W ch
j for

j D �1; 0 is the same as for the operadChom . However,W ch
1 .…V / is identified

not with the space of sesquilinear skew-symmetric �-brackets as forChom , but
with their integrals; see Proposition 6.8. Moreover, the set of odd elements X 2
W ch

1 .…V / such that ŒX;X� D 0 is identified with those integrals of �-brackets
satisfying the “integral” Jacobi identity; see Theorem 6.12. Thus, due to the
integral of �-bracket definition of a vertex algebra introduced in [DSK06], such
elementsX parametrize non-unital vertex algebra structures on the FŒ@�-module
V .

As explained above, we thus obtain a cohomology complex for any non-
unital vertex algebra V and its module M . The low cohomology is as expected
from any Lie-type cohomology. Namely, the 0-th cohomology parametrizes
Casimirs (i.e., invariants) of the V -module M , the 1-st cohomology is iden-
tified with the quotient of all derivations from V to M by the space of inner
derivations, and the 2-nd cohomology parametrizes the FŒ@�-split extensions of
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V by M with a trivial structure of a non-unital vertex algebra (see Theorem
7.6). The vertex algebra cohomology studied in [Bor98], [Hua14] and [Lib17]
is rather of Harrison type; for example, their 1-st cohomology is identified with
the space of all derivations from V to M .

The Z-graded Lie superalgebra associated to the operad P ch and its corre-
sponding differential complex associated to a non-unital vertex algebra structure
on V was defined in [Tam02] in the context of chiral algebras as the complex
governing deformations of the chiral algebra structure. It was later studied in
[Yan16] where the author introduces also a Lie algebra structure on the complex
governing deformations of Poisson vertex algebras. Both [Tam02] and [Yan16]
rely on the geometric language of [BD04] to construct these Lie algebras. In
particular, they associate a deformation complex to any smooth algebraic curve
X and any chiral (respectively, coisson) algebra on X . In this article we restrict
to the case when X is the affine line and the chiral (respectively, coisson) alge-
bra is translation equivariant, hence associated to a vertex algebra (respectively,
Poisson vertex algebra). In this restricted case, we are able to give a more ex-
plicit linear algebraic and combinatorial description of these complexes, provid-
ing a suitable framework to carry out computations of (Poisson) vertex algebra
cohomologies.

The algebras O?T
kC1

carry a natural increasing filtration by the number of
poles, which induces a decreasing filtration of the operad P ch. We study the as-
sociated graded operad, denoted by P cl. Its explicit description is quite involved
and uses the cooperad of graphs (see Theorem 10.6). One can show that the op-
erad P ch studied in our paper is (non-canonically) isomorphic to that in [BD04]
in the case of the curve being the affine line.

We also consider a refinement of the above filtration of P ch, associated to an
increasing filtration 0 � F1 V � F2 V � � � � of the FŒ@�-module V , and show
that the structures of a filtered vertex algebra on V are in bijective correspon-
dence with odd elementsX 2 F1W ch

1 .…V / such that ŒX;X� D 0 (see Theorem
8.10). Moreover, one has an injective morphism of complexes

.grW ch.…V /; gr.adX// ,�! .W cl.gr…V /; ad.grX//

(see Theorem 10.14), which is an isomorphism under certain conditions (see
Remark 10.15).

Next, we show that the structures of a Poisson vertex algebra on the FŒ@�-
module V are in bijection with the odd elements X 2 W cl

1 .…V / such that
ŒX;X� D 0 (see Theorem 10.7). Using this, we relate the cohomology of the
corresponding complex, called the PVA cohomology, to the variation Poisson
cohomology studied in [DSK13]. In particular, we show that the low vertex
algebra cohomology is majorized by the variational Poisson cohomology. Using
this and a computation of the variational Poisson cohomology in [DSK12]–
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[DSK13], we compute the Casimirs and derivations of the vertex algebra of N
bosons.

Throughout the paper, the base field F is a field of characteristic 0 and, unless
otherwise specified, all vector spaces, their tensor products and Hom’s are over
F.

2. Preliminaries on vector superspaces and the symmetric group

2.1. Vector superspaces, tensor products and linear maps

Recall that a vector superspace is a Z=2Z-graded vector space V D VN0 ˚ V N1.
We denote by p.v/ 2 Z=2Z D fN0; N1g the parity of a homogeneous element
v 2 V . Given two vector superspaces U; V , their tensor product U ˝ V and the
space of linear maps Hom.U; V / are naturally vector superspaces, with Z=2Z-
grading induced by those of U and V , i.e., we have p.u˝ v/ D p.u/C p.v/,
and p.f / D p.f .u// � p.u/, for u 2 U , v 2 V , f 2 Hom.U; V /. Let
gi W Ui ! Vi , i D 1; : : : ; n, be linear maps of vector superspaces. One defines
their tensor product g1 ˝ � � � ˝ gn W U1 ˝ � � � ˝ Un ! V1 ˝ � � � ˝ Vn, by

.g1 ˝ � � � ˝ gn/.u1 ˝ � � � ˝ un/ D .�1/
P

i<j p.gj /p.ui /g1.u1/˝ � � � ˝ gn.un/:

(2.1)
In other words, we follow the usual Koszul–Quillen rule: every time two odd
elements are switched, we change the sign.

2.2. The action of the symmetric group on tensor powers

The symmetric group Sn is, by definition, the group of bijections � W f1; : : : ; ng�! f1; : : : ; ng, mapping i 7! �.i/.
If V D V N0 ˚VN1 is a vector superspace, the symmetric group Sn acts linearly

on V ˝n:

�.v1 ˝ � � � ˝ vn/ WD �v.�/ v��1.1/ ˝ � � � ˝ v��1.n/; (2.2)

where
�v.�/ D

Y
i<j j�.i/>�.j /

.�1/p.vi /p.vj /: (2.3)

(Again, we follow the Koszul–Quillen rule for the sign factor.) Formula (2.2)
defines a left action of Sn on V ˝n, since the signs �v.�/ satisfy the relation

�v.��/ D ��.v/.�/�v.�/; (2.4)

which can be easily checked.
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We also have the corresponding right action of Sn on the space Hom.V ˝n; V /

of linear maps f .v1 ˝ � � � ˝ vn/, given by

f � .v1 ˝� � �˝vn/ D �v.�/f .v��1.1/ ˝� � �˝v��1.n// .D f .�.v1 ˝� � �˝vn///:

(2.5)
Note that the same formula (2.2) makes sense when applied to an element v1 ˝
� � � ˝ vn 2 W1 ˝ � � � ˝Wn, where W1; : : : ; Wn are different vector superspaces.
In this case, � 2 Sn defines an (even) linear map

� W W1 ˝ � � � ˝Wn
��! W��1.1/ ˝ � � � ˝W��1.n/: (2.6)

Lemma 2.1. Let gi W Ui ! Vi , i D 1; : : : ; n, be linear maps of vector super-
spaces, and let ui 2 Ui , i D 1; : : : ; n. For every � 2 Sn, we have

�..g1˝� � �˝gn/.u1˝� � �˝un// D .�.g1˝� � �˝gn//.�.u1˝� � �˝un//: (2.7)

Proof. Since Sn is generated by transpositions, it suffices to prove that equation
(2.7) holds for � D .s; sC1/, s D 1; : : : ; n�1. In this case it is straightforward.

ut
We also define the (left) action of the symmetric group Sn on an arbitrary

ordered n-tuple of objects .x1; : : : ; xn/ as follows:

�.x1; : : : ; xn/ D .x��1.1/; : : : ; x��1.n//: (2.8)

In other words, we put the object x1 in position �.1/, the object x2 in position
�.2/, and so on. (Note that, if the objects x1; : : : ; xn are the numbers 1; : : : ; n,
this action is obtained by applying not � to each of the entries of the list, but
��1.)

2.3. Composition of permutations

Let n � 1 and m1; : : : ; mn � 0. Given permutations � 2 Sn, �1 2 Sm1
; : : : ; �n

2 Smn
, we want to define their composition �.�1; : : : ; �n/ 2 Sm1C���Cmn

. To
describe it, it is easier to say how it acts on the tensor power V ˝.m1C���Cmn/ of
the vector superspace V , in analogy to (2.2). Let

Mi D
iX

jD1

mj ; i D 0; : : : ; n: (2.9)

To apply �.�1; : : : ; �n/ to v, we first apply each �i 2 Smi
to the vector wi D

vMi�1C1 ˝ � � � ˝ vMi
2 V ˝mi via (2.2), and then we apply � 2 Sn to w D

�1.w1/˝� � �˝�n.wn/, again by the same formula (2.2), where we view w as an
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element ofW1˝� � �˝Wn, withWi D V ˝mi , and we consider the generalization
of (2.2) defined in (2.6). Summarizing this in a formula, we have:

.�.�1; : : : ; �n//.v/ D �.�1.v1 ˝� � �˝vM1
/˝� � �˝ �n.vMn�1C1 ˝� � �˝vMn

//:

(2.10)

Remark 2.2. We can write explicitly how �.�1; : : : ; �n/ 2 Sm1C���Cmn
permutes

the integers 1; : : : ; m1 C � � � Cmn. An integer k 2 f1; : : : ; m1 C � � � Cmng can
be uniquely decomposed in the form

k D m1 C � � � Cmi�1 C j; (2.11)

with 1 � i � n and 1 � j � mi . Then, we have

.�.�1; : : : ; �n//.k/ D m��1.1/ C � � � Cm��1.�.i/�1/ C �i .j /: (2.12)

Proposition 2.3. The composition of permutations satisfies the following asso-
ciativity condition: given � 2 Sn, �i 2 Smi

for i D 1; : : : ; n, and �j 2 S
j̀

for
j D 1; : : : ;Mn, we have

.�.�1; : : : ; �`//.�1; : : : ; �Mn
/

D �.�1.�1; : : : ; �M1
/; : : : ; �n.�Mn�1C1; : : : ; �Mn

// 2 SP
j j̀

:
(2.13)

Proof. Take a monomial v1 ˝ � � � ˝ vLMn
, where we define Mi as in (2.9), and

let

Lj D
jX

kD1

`k; j D 0; : : : ;Mn: (2.14)

By (2.10), when we apply either side of (2.13) to such monomial, we get

�.�1.�1.v1 � � � � � vL1
/˝ � � � ˝ �M1

.vLM1�1C1 ˝ � � � ˝ vLM1
//˝ � � �

˝ �n.�Mn�1C1.vLMn�1
C1 ˝ � � � ˝ vLMn�1C1

/˝ � � �
˝ �Mn

.vLMn�1C1 ˝ � � � ˝ vLMn
///:

The claim follows. ut
Proposition 2.4. The composition of permutations satisfies the following equiv-
ariance condition:

.'�/. 1�1; : : : ;  n�n/ D '. ��1.1/; : : : ;  ��1.n// �.�1; : : : ; �n/; (2.15)

for every '; � 2 Sn,  1; �1 2 Sm1
, : : : ,  n; �n 2 Smn

.
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Proof. It suffices to show that both sides of (2.15) give the same result when
applied to a monomial in V ˝.m1C���Cmn/. When we apply the left-hand side of
(2.15) to v1 ˝ � � � ˝ vMn

, we get

..'�/. 1�1; : : : ;  n�n//.v1 ˝ � � � ˝ vMn
/

D .'�/.. 1�1/.v1 ˝ � � � ˝ vM1
/˝ � � � ˝ . n�n/.vMn�1C1 ˝ � � � ˝ vMn

//:

On the other hand, if we apply the right-hand side of (2.15) to the same mono-
mial, we get,

.'. ��1.1/; : : : ;  ��1.n///.�.�1; : : : ; �n//.v1 ˝ � � � ˝ vMn
/

D .'. ��1.1/; : : : ;  ��1.n///

� .�.�1.v1˝ � � � ˝vM1
/˝ � � � ˝ �n.vMn�1C1˝ � � � ˝vMn

///

D '.�. 1.�1.v1 ˝ � � � ˝ vM1
//˝ � � � ˝  n.�n.vMn�1C1 ˝ � � � ˝ vMn

////:

For the second equality we used (2.8) and Lemma 2.1. Equation (2.15) follows.
ut

2.4. ıi -products of permutations

For i D 1; : : : ; n, we define the ıi product of permutations ıi W Sn � Sm !
SnCm�1 as follows (ˇ 2 Sn, ˛ 2 Sm):

ˇ ıi ˛ WD ˇ.

i�1‚ …„ ƒ
1; : : : ; 1;

i

˛;

n�i‚ …„ ƒ
1; : : : ; 1/: (2.16)

In other words, its action on the tensor power V ˝mCn�1 of the vector super-
space V , is given by

.ˇ ıi ˛/.v1 ˝ � � � ˝ vnCm�1/ D ˇ.v1 ˝ � � � i
w � � � ˝ vnCm�1/;

w D ˛.vi ˝ � � � ˝ viCm�1/:
(2.17)

As a consequence of Proposition 2.3, the ıi -products satisfy the follow-
ing associativity conditions: (� 2 Sn; ˇ 2 Sm; ˛ 2 S`, i D 1; : : : ; n, j D
1; : : : ; nCm � 1):

.� ıi ˇ/ ıj ˛ D
(
.� ıj ˛/ ı`Ci�1 ˇ if 1 � j < i;

� ıi .ˇ ıj�iC1 ˛/ if i � j < i Cm;

.� ıj�mC1 ˛/ ıi ˇ if i Cm � j < nCm:

(2.18)

In particular, the ı1-product is associative. Moreover, as a consequence of
Proposition 2.4, the ıi -products satisfy the following equivariance condition
(ˇ; � 2 Sn, ˛; � 2 Sm, i D 1; : : : ; n):

.ˇ�/ ıi .˛�/ D .ˇ ı�.i/ ˛/.� ıi �/: (2.19)
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We shall denote the identity element of the symmetric group Sn by 1n. For
every m; n � 1 and i D 1; : : : ; n we have

1n ıi 1m D 1nCm�1: (2.20)

By (2.19), we have .1n ıi ˛/.1n ıi �/ D 1n ıi .˛�/. In other words, for each
n;m � 1, and each i D 1; : : : ; n, we have the injective group homomorphism

Sm ,�! SnCm�1; ˛ 7�! 1n ıi ˛: (2.21)

For ˛ 2 Sm and i D 1; : : : ; n, we can write explicitly the action of 1n ıi ˛ 2
SnCm�1 on V ˝.nCm�1/:

.1nıi ˛/.v1˝� � �˝vnCm�1/ D v1˝� � �˝˛.vi ˝� � �˝vm�1Ci /˝� � �˝vmCn�1:

In particular, for ˛ 2 Sm and ˇ 2 Sn, the actions of

1nC1 ı1 ˛ and 1mC1 ımC1 ˇ 2 SmCn commute.

In the special case i D 1 it is particularly easy to describe the image of the
map (2.21) as a permutation of the numbers f1; : : : ; n C m � 1g. We have, for
m; n � 1 and ˛ 2 Sm,

.1n ı1 ˛/.i/ D
�
˛.i/ if 1 � i � m;

i if mC 1 � i � mC n � 1: (2.22)

By (2.19), we also have

.ˇ ı�.i/ 1m/.� ıi 1m/ D .ˇ�/ ıi 1m: (2.23)

Hence, the injective map Sn ,! SnCm�1 mapping � 7! � ıi 1m is not a group
homomorphism. On the other hand, it becomes a group homomorphism when
we restrict to the stabilizer .Sn/i D f� 2 Sn j �.i/ D ig of i :

.Sn/i ,�! SnCm�1; � 7�! � ıi 1m: (2.24)

As special cases of (2.18) (with ˛ D 1`, � D 12, i D 2 and j D 1), we get the
following identity, which we shall need later (˛ 2 Sm):

1`C1 ı`C1 ˛ D .12 ı2 ˛/ ı1 1`: (2.25)

Note that we can write the cyclic permutation .1; : : : ; mC 1/ mapping 1 7!
2 7! � � � 7! mC 1 7! 1 in terms of the ıi -products as follows:

.1; : : : ; mC 1/ D .1; 2/ ı1 1m in SmC1: (2.26)

More generally, if we consider the cyclic permutation .1; : : : ; m C 1/ in the
permutation group SmCn, we have the identity

.1; : : : ; mC 1/ D 1n ı1 .1; 2/ ı1 1m in SmCn (2.27)

(there is no need to put parentheses in the right-hand side since the ı1-product
is associative). An equivalent way to write equation (2.27) is

.1; : : : ; mC 1/ D .1; 2/.1m; 11; 1n�1/ in SmCn; (2.28)

where, in this case, we consider the transposition .1; 2/ as an element of S3.
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2.5. Shuffles

A permutation � 2 SmCn is called an .m; n/-shuffle if

�.1/ < � � � < �.m/ ; �.mC 1/ < � � � < �.mC n/: (2.29)

In equivalent terms, when acting on the tensor power V ˝.mCn/ of the (purely
even) vector space V , a shuffle � maps the monomial v D v1 ˝ � � � ˝ vmCn to
a permuted monomial in which the factors v1; : : : ; vm appear in their order:

�.v/ D � � � ˝
�.1/

v1 ˝ � � � ˝
�.2/

v2 ˝ � � � ˝
�.m/

vm ˝ � � � ;
and the factors vmC1; : : : ; vmCn appear in order. We shall denote by Sm;n �
SmCn the subset (it is not a subgroup) of .m; n/-shuffles. By definition, Sn;0 D
S0;n D f1g for every n � 0 and, by convention, we let Sm;n D ; if either m or
n is negative.

Similarly, we shall denote by S`;m;n � S`CmCn the subset of .`;m; n/-
shuffles, i.e., permutations � 2 S`CmCn satisfying

�.1/ < � � � < �.`/; �.`C 1/ < � � � < �.`Cm/;

�.`CmC 1/ < � � � < �.`CmC n/;
(2.30)

and the same for .m1; : : : ; mk/-shuffles in Sm1C���Cmk
, for arbitrary k � 2.

Proposition 2.5. (a) We have a bijection Sm;n
�! Sn;m given by � 7! � �

.1; 2/.1n; 1m/.
(b) We have a bijection S`;m;n

�! Sm;`;n given by � 7! � � .1; 2/.1m; 1`; 1n/.

Proof. The permutation .1; 2/.1n; 1m/ switches the first n factors of V ˝.mCn/

with the last m factors, i.e., it maps

1 � � � n 1C n � � � mC n

# # # #
mC 1 � � � mC n 1 � � � m:

Hence, the product � � .1; 2/.1n; 1m/ maps

1 � � � n 1C n � � � mC n

# # # #
�.mC 1/< � � � <�.mC n/; �.1/ < � � � < �.m/;

so it lies in Sn;m, provided that � 2 Sm;n. Claim (a) follows. Similarly for claim
(b). ut
Proposition 2.6. For `;m; n � 1 we have the following bijections:
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(a) Sm;n � Sm � Sn
�! SmCn, mapping

�; ˛; ˇ 7�! � � .1nC1 ı1 ˛/ � .1mC1 ımC1 ˇ/;

where � denotes the product in the symmetric group SmCn.
(b) S`Cm;n � S`;m

�! S`;m;n, mapping

�; � 7�! � � .1nC1 ı1 �/:

(c) Sm;n � S`;mCn

�! S`;m;n, mapping

�; � 7�! � � .1`C1 ı`C1 �/:

Proof. First, the two sets Sm;n � Sm � Sn and SmCn have the same cardinality
.mC n/Š. Hence, to prove that the map (a) is a bijection it suffices to prove that
it is injective or surjective. On the other hand, we can see how

X D � � .1nC1 ı1 ˛/ � .1mC1 ımC1 ˇ/

acts on the tensor power V mCn�1, of a vector space V . First, we permute the
factors of v D v1 ˝ � � � ˝ vm by ˛ and the factors of vmC1 ˝ � � � ˝ vmCn

by ˇ. Then, we shuffle the resulting monomial, in such a way that the factors of
˛.v1˝ � � � ˝vm/ appear in the same order inX.v/, in positions �.1/; : : : ; �.m/,
and similarly the factors of ˇ.vmC1 ˝ � � � ˝ vmCn/ appear in the same order
in X.v/, in positions �.mC 1/; : : : ; �.mC n/. Now it is clear that the resulting
monomial X.v/ is uniquely determined by the choice of � 2 Sm;n, ˛ 2 Sm and
ˇ 2 Sn. In other words, the map (a) is injective.

Let us now prove that the map (b) is bijective. First note that two sets S`Cm;n

�S`;m and S`;m;n have the same cardinality .`CmCn/Š
`ŠmŠnŠ

. Next, we need to prove
that, for � 2 S`Cm;n and � 2 S`;m, the permutation �.1nC1ı1�/ is an .`;m; n/-
shuffle. Indeed, by (2.22),

1 � .1nC1 ı1 �/.i/ D �.i/ � `Cm for i D 1; : : : ; `Cm; (2.31)

and

.1`C1 ı1 �/.i/ D i for i D `CmC 1; : : : ; `CmC n: (2.32)

On the other hand, since � 2 S`;m, we have

1 � �.1/ < � � � < �.`/ � `Cm and 1 � �.`C 1/ < � � � < �.`Cm/ � `Cm;

(2.33)
and since � 2 S`Cm;n, we have

�.1/ < � � � < �.`Cm/ and �.`CmC 1/ < � � � < �.`CmC n/: (2.34)



Cohomology of vertex algebras via operads 263

Combining (2.31)–(2.34), we get

�.1nC1 ı1 �/.1/ D �.�.1// < � � � < �.1nC1 ı1 �/.`/ D �.�.`//;

�.1nC1 ı1 �/.`C 1/

D �.�.`C 1// < � � � < �.1nC1 ı1 �/.`Cm/ D �.�.`Cm//;

�.1nC1 ı1 �/.`CmC 1/

D �.`CmC 1/ < � � � < �.1nC1 ı1 �/.`CmC n/ D �.`CmC n/;
(2.35)

namely, �.1nC1 ı1 �/ 2 S`;m;n. To prove that the map (b) is injective, we
just observe that, by the third line in (2.35), the values of �.1nC1 ı1 �/ on
`CmC1; : : : ; `CmCn uniquely determine �.`CmC1/; : : : ; �.`CmCn/,
i.e., uniquely determine the shuffle � 2 S`Cm;n. Then, since � is uniquely
determined by �.1nC1 ı1 �/, it is clear that � is uniquely determined as well. A
similar proof works for (c). ut
Proposition 2.7. (a) The set of shuffles Sm;n decomposes as

Sm;n D f� 2 Sm;n j �.1/ D 1g t f� 2 Sm;n j �.mC 1/ D 1g:
(b) We have a bijection f� 2 SmC1;n�1 j �.1/ D 1g �! f� 2 Sm;n j �.mC1/ D

1g given by
� 7�! � � .1n ı1 .1; 2/ ı1 1m/; (2.36)

where � is the product in the symmetric group SmCn.
(c) We have a bijection Sm�1;n

�! f� 2 Sm;n j �.1/ D 1g given by

� 7�! 12 ı2 �: (2.37)

Proof. Claim (a) is obvious since, if � is an .m; n/-shuffle, then either 1 D
�.1/ or 1 D �.m C 1/. For (b), recall that, by (2.27), .1n ı1 .1; 2/ ı1 1m/

is the cyclic permutation 1 7! 2 7! � � � 7! m C 1 7! 1. Hence, the product
� � .1n ı1 .1; 2/ ı1 1m/ maps

1 � � � m mC 1 mC 2 � � � mC n

# # # # #
�.2/< � � � <�.mC 1/; �.1/ D 1 < �.mC 2/< � � � <�.mC n/:

It follows that � � .1n ı1 .1; 2/ ı1 1m/ lies in Sm;n, provided that � 2 SmC1;n�1,
and that it maps m C 1 7! 1. On the other hand, the map (2.36) is clearly
injective, hence it is bijective since the two sets f� 2 SmC1;n�1 j �.1/ D 1g and
f� 2 Sm;n j �.m C 1/ D 1g have the same cardinality .mCn�1/Š

mŠ.n�1/Š
. This proves

(b).
Next, let us prove claim (c). By the definition of the ıi -products, we have

.12 ı2 �/.1/ D 1; and
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.12 ı2 �/.1C i/ D 1C �.i/ for i D 1; : : : ; mC n � 1:
In particular, .12 ı2 �/ 2 Sm;n provided that � 2 Sm�1;n. On the other hand,
the map (2.37) is clearly injective, hence it is bijective since the two sets Sm�1;n

and f� 2 Sm;n j �.1/ D 1g have the same cardinality .mCn�1/Š
.m�1/ŠnŠ

. This proves (c).
Finally, claim (d) follows from (b) and (c). ut

3. Superoperads and the associated Z-graded Lie superalgebras

In this section, we review the definition and some basic properties of superoper-
ads, which will be needed throughout the rest of the paper. For extended reviews
on the theory of operads, see e.g. [LV12], [MSS02].

3.1. Definition of a superoperad

Recall that a (linear, unital, symmetric) superoperad P is a collection of vector
superspaces P.n/, n � 0, with parity p, endowed, for every f 2 P.n/ and
m1; : : : ; mn � 0, with the composition parity preserving linear map,

P.n/˝ P.m1/˝ � � � ˝ P.mn/ �! P.Mn/;

f ˝ g1 ˝ � � � ˝ gn 7�! f .g1 ˝ � � � ˝ gn/;
(3.1)

where Mn WD m1 C � � � C mn (cf. (2.9)), satisfying the following associativity
axiom:

f ..g1 ˝ � � � ˝ gn/.h1 ˝ � � � ˝ hMn
//

D .f .g1˝ � � � ˝gn//.h1 ˝ � � � ˝ hMn
/ 2 P

� MnX
jD1

j̀

�
;

(3.2)

for every f 2 P.n/, gi 2 P.mi / for i D 1; : : : ; n, and hj 2 P. j̀ / for
j D 1; : : : ;Mn. In the left-hand side of (3.2) the linear map

nO
iD1

gi W
MnO

jD1

P. j̀ / �!
nO

iD1

P
� MiX

jDMi�1C1

j̀

�
is the tensor product of composition maps, defined by (2.1), applied to

h1 ˝ � � � ˝ hMn

D .h1 ˝ � � � ˝ hM1
/˝ .hM1C1 ˝ � � � ˝ hM2

/˝ � � � ˝ .hMn�1C1 ˝ � � � ˝ hMn
/:

We assume that P is endowed with a unit element 1 2 P.1/ satisfying the
following unity axioms:

f .1˝ � � � ˝ 1/ D 1.f / D f ; for every f 2 P.n/: (3.3)
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Furthermore, we assume that, for each n � 1, P.n/ has a right action of the
symmetric group Sn, denoted f � , for f 2 P.n/ and � 2 Sn, satisfying the
following equivariance axiom (f 2 P.n/, g1 2 P.m1/; : : : ; gn 2 P.mn/,
� 2 Sn, �1 2 Sm1

; : : : ; �n 2 Smn
):

f � .g
�1

1 ˝ � � � ˝ g�n
n / D .f .�.g1 ˝ � � � ˝ gn///

�.�1;:::;�n/; (3.4)

where the composition �.�1; : : : ; �n/ 2 Sm1C���Cmn
of permutation was defined

in Sect. 2.3, and the left action of � 2 Sn on the tensor product of vector super-
spaces was defined in (2.6).

For simplicity, from now on, we will use the term operad in place of super-
operad.

Example 3.1. The symmetric group operad S is defined as the collection of
purely even superspaces S .n/ D FŒSn� for n � 1 and S .0/ D F, with the
composition maps obtained by extending linearly (2.10) to the group algebras,
the unity 1 2 S1, and the action of right multiplication of Sn on FŒSn�. This
is an operad, indeed the associativity axiom (3.2) follows from Proposition 2.3,
and the equivariance axiom (3.4) follows from Proposition 2.4.

Example 3.2. Given a vector superspace V D V N0 ˚ VN1, the operad Hom is
defined as the collection of superspaces Hom .n/ D Hom.V ˝n; V /, n � 0, en-
dowed with the composition maps (f 2 P.n/, gi 2 P.mi / for i D 1; : : : ; n,
vj 2 V for j D 1; : : : ;Mn WD m1 C � � � Cmn):

.f .g1˝� � �˝gn//.v1˝� � �˝vMn
/ WD f ..g1˝� � �˝gn/.v1˝� � �˝vMn

//; (3.5)

the unity 1 D �V 2 EndV , and the right action of Sn on Hom.V ˝n; V / given
by (2.5). The associativity and unit axioms, for this example, are obvious. Let us
prove the equivariance axiom (3.4). When applied to a monomial v1˝� � �˝vMn

,
the left-hand side of (3.4) gives (we use the notation (2.9))

.f � .g
�1

1 ˝ � � � ˝ g�n
n //.v1 ˝ � � � ˝ vMn

/

D f � ..g
�1

1 ˝ � � � ˝ g�n
n /.v1 ˝ � � � ˝ vMn

//

D f � ..g1˝� � �˝ gn/.�1.v1˝� � �˝ vM1
/˝ � � � ˝ �n.vMn�1C1 ˝� � �˝ vMn

///

D f ..�.g1 ˝ � � � ˝ gn//.�.�1; : : : ; �n/.v1 ˝ � � � ˝ vMn
///

D .f .�.g1 ˝ � � � ˝ gn///
�.�1;:::;�n/.v1 ˝ � � � ˝ vMn

/:

For the third equality, we used Lemma 2.1 and the definition (2.10) of �.�1;

: : : ; �n/.

Given an operad P , one defines, for each i D 1; : : : ; n, the ıi -product
ıi W P.n/ � P.m/ ! P.nCm � 1/ by insertion in position i , i.e.,

f ıi g D f .

i�1‚ …„ ƒ
1˝ � � � ˝ 1˝

i

g ˝
n�i‚ …„ ƒ

1˝ � � � ˝ 1/: (3.6)
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Of course, knowing all the ıi -products allows to reconstruct, thanks to the as-
sociativity axiom (3.2), the whole operad structure, by

f .g1; : : : ; gn/ D .� � � ..f ı1 g1/ ım1C1 g2/ � � � / ım1C���Cmn�1C1 gn: (3.7)

Then, the unity axiom (i) becomes 1ı1 f D f ıi 1 D f for every i D 1; : : : ; n,
and the associativity axiom (ii) is equivalent to the following identities for the
ıi -products, cf. (2.18) (f 2 P.n/; g 2 P.m/; h 2 P.`/):

.f ıi g/ ıj h D

8̂̂<̂
:̂
.�1/p.g/p.h/.f ıj h/ ı`Ci�1 g if 1 � j < i;

f ıi .g ıj�iC1 h/ if i � j < i Cm;

.�1/p.g/p.h/.f ıj�mC1 h/ ıi g if i Cm � j < nCm:

(3.8)
In particular, the ı1-product is associative. Note that the third identity in (3.8)
is equivalent to the first one by flipping the equality. Furthermore, the equivari-
ance condition (3.4) and the supersymmetric equivariance condition (3.4) both
become, in terms of the ıi -products, cf. (2.19)

f � ıi g
� D .f ı�.i/ g/

�ıi � ; (3.9)

for f 2 P.n/, g 2 P.m/, � 2 Sn, � 2 Sm, where � ıi � 2 SnCm�1 is defined
by (2.16).

By definition, an operad P is filtered if each vector superspace P.n/ is
endowed with a filtration Fr P.n/, which is preserved by the action of the sym-
metric group and is preserved by the composition maps, i.e.,

f � 2 Fr P.n/; f .g1 ˝� � �˝gn/ 2 FrCs1C���Csn P.m1 C� � �Cmn/ (3.10)

for all f 2 Fr P.n/, � 2 Sn and gi 2 Fsi P.mi /. In the case of a decreasing
filtration of P , the corresponding associated graded operad is

grr P.n/ D Fr P.n/=FrC1 P.n/; (3.11)

with the induced action of the symmetric groups and composition maps. This is
a graded operad, i.e., each superspace P.n/ is graded and the analog of (3.10)
holds degreewise.

A morphism ' from an operad P to an operad Q is a collection of linear
maps 'n W P.n/ ! Q.n/ commuting with the action of the symmetric groups
and compatible with the composition maps. When P and Q are filtered, the
map 'n is required to send Fr P.n/ to Fr Q.n/, and similarly for graded oper-
ads.
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3.2. Universal Lie superalgebra associated to an operad

Let P be an operad. We let W D W.P/ be the Z-graded vector superspace
W D L

n��1Wn, where

Wn D P.nC 1/SnC1 D ff 2 P.nC 1/ jf � D f; 8� 2 SnC1g: (3.12)

We define the �-product of f 2 Wn and g 2 Wm as follows:

f �g D
X

�2SmC1;n

.f ı1 g/
��1

: (3.13)

Note that SmC1;�1 D ;, hence f �g D 0 if f 2 W�1.

Example 3.3. For f; g 2 W1, we have

f �g D f ı1 g C .f ı1 g/
.23/ C .f ı1 g/

.132/

D f ı1 g C f ı2 g C .f ı2 g/
.12/:

(3.14)

The second equality follows from (3.9) and the fact that f and g are symmetric,
using .23/ D .132/.12/ and .132/ D .12/ ı2 .1/.

Theorem 3.4. (a) For f 2 Wn and g 2 Wm, we have f �g 2 WnCm.
(b) The associator of the �-product is right supersymmetric, i.e.,

.f �g/�h� f �.g�h/ D .�1/p.g/p.h/..f �h/�g� f �.h�g//: (3.15)

(c) Consequently, W is a Z-graded Lie superalgebra with Lie bracket given by
(f 2 Wn, g 2 Wm)

Œf; g� D f �g � .�1/p.f /p.g/g�f: (3.16)

Proof. For claim (a), we need to prove that f �g is fixed by the action of the
symmetric group SmCnC1. We haveX
�2SmCnC1

.f ı1 g/
��1 D

X
ˇ2SmC1;˛2Sn;

�2SmC1;n

.f ı1 g/
.� �.1nC1ı1ˇ/�.1mC2ımC2˛//�1

D
X

ˇ2SmC1;˛2Sn;
�2SmC1;n

.f ı1 g/
.1mC2ımC2˛�1/�.1nC1ı1ˇ�1/���1

D
X

ˇ2SmC1;˛2Sn;
�2SmC1;n

.f ı1 g/
..12ı2˛�1/ı11mC1/�.1nC1ı1ˇ�1/���1

D
X

ˇ2SmC1;˛2Sn;
�2SmC1;n

.f .12ı2˛�1/ ı1 g
ˇ�1

/�
�1
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D .mC 1/ŠnŠ
X

�2SmC1;n

.f ı1 g/
��1 D .mC 1/ŠnŠ f �g;

(3.17)

where we used Proposition 2.6 (a) for the first equality, the homomorphism
property of the maps (2.21) for the second equality, identity (2.25) for the third
equality, the equivariance conditions (3.9) and the obvious identities .12 ı2

˛�1/.1/ D 1 D 1nC1.1/ for the fourth equality, and the assumptions that
f 2 Wn and g 2 Wm for the fifth equality. Since the left-hand side of (3.17)
is manifestly invariant with respect to the action of SmCnC1, we conclude that
f �g is invariant as well, proving (a).

Next, let us prove claim (b). We have

f �.g�h/ D
X

�2S`CmC1;n

X
�2S`C1;m

.f ı1 .g ı1 h/
��1

/�
�1

D
X

�2S`CmC1;n

X
�2S`C1;m

.f ı1 .g ı1 h//
.1nC1ı1��1/���1

D
X

�2S`CmC1;n

X
�2S`C1;m

.f ı1 .g ı1 h//
.� �.1nC1ı1�//�1

D
X

�2S`C1;m;n

.f ı1 .g ı1 h//
��1

:

(3.18)

In the second equality we used the equivariance condition (3.9), in the third
equality we used the fact that the map (2.21) is a group homomorphism, and in
the fourth equality we used Proposition 2.6 (b). On the other hand, we have

.f �g/�h D
X

�2SmC1;n

X
�2S`C1;mCn

..f ı1 g/
��1 ı1 h/

��1

: (3.19)

By Proposition 2.7 (a), the sum in the right-hand side of (3.19) split as sum
of two terms, in the first one we sum over the shuffles � 2 SmC1;n such that
�.1/ D 1, and in the second one we sum over the shuffles � 2 SmC1;n such
that �.mC 2/ D 1. The first term isX

�2SmC1;n

s.t. �.1/D1

X
�2S`C1;mCn

..f ı1 g/
��1 ı1 h/

��1

D
X

�2SmC1;n

s.t. �.1/D1

X
�2S`C1;mCn

..f ı1 g/ ı1 h/
.��1ı11`C1/���1

D
X

�2SmC1;n

s.t. �.1/D1

X
�2S`C1;mCn

..f ı1 g/ ı1 h/
.� �.�ı11`C1//�1
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D
X

�2Sm;n

X
�2S`C1;mCn

..f ı1 g/ ı1 h/
.� �..12ı2�/ı11`C1//�1

D
X

�2Sm;n

X
�2S`C1;mCn

..f ı1 g/ ı1 h/
.� �.1`C2ı`C2�//�1

D
X

�2S`C1;m;n

..f ı1 g/ ı1 h/
��1

;

(3.20)

where we used the equivariance relation (3.9) for the first equality, the fact that
the map (2.24) is a homomorphism for the second equality, Proposition 2.7 (c)
for the third equality, equation (2.25) for the fourth equality, and Proposition
2.6 (c) for the fifth equality. Note that the right-hand side of (3.20) coincides
with the right-hand side of (3.18) since the ı1-product is associative. The second
term, where we take the sum over the shuffles � 2 SmC1;n such that �.mC2/ D
1 in (3.19), isX

�2SmC1;n

s.t. �.mC2/D1

X
�2S`C1;mCn

..f ı1 g/
��1 ı1 h/

��1

D
X

�2SmC1;n

s.t. �.mC2/D1

X
�2S`C1;mCn

..f ı1 g/ ı��1.1/ h/
.��1ı11`C1/���1

D
X

�2SmC1;n

s.t. �.mC2/D1

X
�2S`C1;mCn

..f ı1 g/ ımC2 h/
.�ımC21`C1/�1��1

D
X

�2SmC1;n

s.t. �.mC2/D1

X
�2S`C1;mCn

.f .g ˝ h˝
n�1‚ …„ ƒ

1˝ � � � ˝ 1//.� �.�ımC21`C1//�1

D
X

�2SmC1;n�1

X
�2S C̀1;mCn

.f .g˝h˝
n�1‚ …„ ƒ

1˝� � �˝1//.� �...12ı2�/�.1nı1.1;2/ı11mC1//ımC21`C1//�1

;

(3.21)

where we used the equivariance relation (3.9) for the first equality, equation
(2.23) for the second equality, the definition (3.6) of the ıi -products for the
third equality, and Proposition 2.7 (d) for the fourth equality. Equation (2.19),
with .12 ı2 �/ in place of ˇ, .1n ı1 .1; 2/ı1 1mC1/ in place of � , ˛ D � D 1`C1

and i D mC 2, gives
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..12 ı2 �/ � .1n ı1 .1; 2/ ı1 1mC1// ımC2 1`C1

D ..12 ı2 �/ ı1 1`C1/ � ..1n ı1 .1; 2/ ı1 1mC1/ ımC2 1`C1/

D .1`C2 ı`C2 �/ � .1; 2/.1mC1; 1`C1; 1n�1/;

where, for the second equality, we used equations (2.25) and (2.28). Hence, the
right-hand side of (3.21) becomesX
�2SmC1;n�1

X
�2S`C1;mCn

.f .g ˝ h˝ 1˝ � � � ˝ 1//.� �.1`C2ı`C2�/�.1;2/.1mC1;1`C1;1n�1//�1

D
X

�2S`C1;mC1;n�1

.f .g ˝ h˝ 1˝ � � � ˝ 1//.� �.1;2/.1mC1;1`C1;1n�1//�1

D
X

�2SmC1;`C1;n�1

.f .g ˝ h˝ 1˝ � � � ˝ 1//�
�1

;

(3.22)
where we used Proposition 2.6 (c) in the first equality and Proposition 2.5 (b)
for the second equality. Combining (3.18), (3.19), (3.20), (3.21) and (3.22), we
get

.f �g/�h�f �.g�h/ D
X

�2SmC1;`C1;n�1

.f .g˝h˝1˝� � �˝1//��1

: (3.23)

To conclude the proof of (b), we observe that the right-hand side of (3.23) is
manifestly supersymmetric with respect to the exchange of g and h. Indeed,
since f 2 Wn, we have f D f .1;2/. Hence, by the equivariance condition
(3.4), we haveX
�2SmC1;`C1;n�1

.f .g ˝ h˝ 1˝ � � � ˝ 1//�
�1

D
X

�2SmC1;`C1;n�1

.f .1;2/.g1mC1 ˝ h1`C1 ˝ 1˝ � � � ˝ 1//�
�1

D .�1/p.g/p.h/
X

�2SmC1;`C1;n�1

.f .h˝ g ˝ 1˝ � � � ˝ 1//.1;2/.1mC1;1`C1;1n�1/���1

D .�1/p.g/p.h/
X

�2SmC1;`C1;n�1

.f .h˝ g ˝ 1˝ � � � ˝ 1//.� �.1;2/.1`C1;1mC1;1n�1//�1

D .�1/p.g/p.h/
X

�2S`C1;mC1;n�1

.f .h˝ g ˝ 1˝ � � � ˝ 1//�
�1

;

again by Proposition 2.5 (b). Claim (c) is an obvious consequence of (b). ut
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Remark 3.5. For an arbitrary non-symmetric operad P (i.e., for which we do
not require the action of the symmetric groups and the equivariance axiom
(3.4)), we can also construct a Z-graded Lie superalgebra

G D
M

n��1

Gn; Gn�1 D P.n/; (3.24)

with Lie bracket (f 2 P.n/, g 2 P.m/)

Œf; g� D
nX

iD1

f ıi g � .�1/p.f /p.g/
mX

iD1

g ıi f: (3.25)

Indeed, letting f ı g D Pn
iD1 f ıi g, we have, by the associativity condition

(3.8),

.f ı g/ ı h � f ı .g ı h/ D
nX

iD1

mCn�1X
jD1

.f ıi g/ ıj h �
nX

iD1

mX
jD1

f ıi .g ıj h/

D .�1/p.g/p.h/
X

1�j <i�n

.f ıj h/ ı`Ci�1 g C
X

1�i<j�n

.f ıi g/ ımCj�1 h:

Since the expression in the right-hand side is supersymmetric with respect to
the exchange of g and h, it follows that (3.25) is a Lie superalgebra bracket. In
the special case when each P.n/ has the same parity as .n C 1/, the resulting
bracket (3.25) is known as the Gerstenhaber bracket [Ger63].

4. The operad governing Lie superalgebras

Given the vector superspace V , with parity p, we denote by…V the same vector
space with reversed parity Np D 1�p, and we consider the corresponding operad
Hom .…V / from Example 3.2, and the associated Z-graded Lie superalgebra
W.…V / WD W.Hom .…V // given by Theorem 3.4.

Proposition 4.1 ([NR67], [DSK13]). We have a bijective correspondence be-
tween the odd elements X 2 W1.…V / such that X�X D 0 and the Lie super-
algebra brackets Œ� ; �� W V � V ! V on V , given by

Œa; b� D .�1/p.a/X.a˝ b/: (4.1)

Proof. By definition, X 2 .Hom .…V //.2/ N1 is an odd linear map X W .…V /˝2

! …V , and it corresponds, via (4.1), to a parity preserving bilinear map Œ� ; �� W
V � V ! V . Moreover, to say that X lies in W1.…V / D .Hom .…V //.2/S2 is
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equivalent to say that the corresponding bracket Œ� ; �� satisfies skew-symmetry.
Finally, by the definition (3.13) of the �-product, we have (a; b; c 2 V )

.X�X/.a˝ b ˝ c/ D
X

�2S2;1

.X ı1 X/
��1

.a˝ b ˝ c/

D .�1/p.b/.ŒŒa; b�; c� � Œa; Œb; c��C .�1/p.a/p.b/Œb; Œa; c��/:

Hence, X�X D 0 if and only if the Jacobi identity holds. ut
Note that, if X 2 W1.…V / N1 satisfies X�X D 0, then it follows by the

Jacobi identity for the Lie superalgebraW.…V / that .adX/2 D 0, i.e., we have
a cohomology complex .W.…V /; adX/.

Definition 4.2. Let V be a Lie superalgebra. The corresponding Lie superalge-
bra cohomology complex is defined as

.W.…V /; adX/;

where X 2 W.…V / N1 is given by (4.1).

Obviously, the kernel of adX is a subalgebra of W.…V / and the image of
adX is its ideal. Hence, the cohomologyH.W.…V /; adX/ has the structure of
a Lie superalgebra.

Remark 4.3. One can define the Lie operad as follows: Lie .1/ D F1; Lie .2/ is
the non-trivial 1-dimensional representation of S2, with basis element denoted
by Œ� ; ��; for every n � 2, all the elements of Lie .n/ are obtained by composition
of Œ� ; �� 2 Lie .2/, and they are subject to the relation in Lie .3/ corresponding
to the Jacobi identity:

Œ� ; �� ı2 Œ� ; �� � �12.Œ� ; �� ı2 Œ� ; ��/ D Œ� ; �� ı1 Œ� ; ��:
Then, a Lie superalgebra structure on a vector superspace V is the same as a
morphism of (symmetric) operads Lie ! Hom .V /. Proposition 4.1 gives such
a morphism by sending Œ� ; �� to X .

In the following sections, we will repeat the same line of reasoning as the
one used in the present section for the cohomology theories of Lie conformal
algebras, Poisson algebras, Poisson vertex algebras and vertex algebras: after
reviewing their definition, we will construct, for each of them, an operad P ,
and we will describe their algebraic structures as an element X 2 W1 � W.P/

such that X�X D 0. In this way, we automatically get, for each algebraic
structure of interest, the corresponding cohomology complex .W.P/; adX/.
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5. The operad governing Lie conformal superalgebras

5.1. Lie conformal superalgebras

Recall that a Lie conformal superalgebra is a vector superspace V , endowed
with an even endomorphism @ 2 End.V / and a bilinear (over F) �-bracket
Œ� � �� W V � V ! V Œ�� satisfying sesquilinearity (a; b 2 V ):

Œ@a�b� D ��Œa�b�; Œa�@b� D .�C @/Œa�b�; (5.1)

skew-symmetry (a; b 2 V ):

Œa�b� D �.�1/p.a/p.b/Œb���@a�; (5.2)

and the Jacobi identity (a; b; c 2 V ):

Œa�Œb�c�� � .�1/p.a/p.b/Œb�Œa�b�� D ŒŒa�b��C�c�: (5.3)

5.2. TheChom operad

Let V D V N0 ˚ V N1 be a vector superspace endowed with an even endomorphism
@ 2 EndV . The operadChom is defined as the collection of superspaces

Chom .n/ D HomFŒ@�˝n.V ˝n;F�Œ�1; : : : ; �n�˝FŒ@� V /; n � 0: (5.4)

Here and further �1; : : : ; �k are commuting indeterminates of even parity and
F�Œ�1; : : : ; �k� denotes the space of polynomials in the variables �1; : : : ; �n.
This space is endowed with a structure of a left FŒ@�˝n-module by letting P1.@/

˝ � � � ˝ Pn.@/ act as multiplication by P1.��1/ � � �Pn.��n/, and a structure
of a right FŒ@�-module by letting @ act as multiplication by ��1 � � � � � �n.

Note thatChom .0/ D V=@V . Obviously, we can identify F�Œ��˝FŒ@� V '
V , so thatChom .1/ D EndFŒ@�.V /. For arbitrary n � 1,Chom .n/ consists of
all linear maps

f W V ˝n �! F�Œ�1; : : : ; �n�˝FŒ@� V;

v1 ˝ � � � ˝ vn 7�! f�1;:::;�n
.v1 ˝ � � � ˝ vn/;

satisfying the sesquilinearity conditions:

f�1;:::;�n
.v1 ˝ � � � @vi � � � ˝ vn/

D ��if�1;:::;�n
.v1 ˝ � � � ˝ vn/ for all i D 1; : : : ; n:

(5.5)

In particular,Chom .2/ is identified with the space of all �-brackets on V , satis-
fying (5.1).



274 B. Bakalov, A. De Sole, R. Heluani and V.G. Kac

The Z=2Z-structure ofChom .n/ is induced by that of V . The composition
of f 2 Chom .n/ and g1 2 Chom .m1/; : : : ; gn 2 Chom .mn/ is defined as
follows:

.f .g1 ˝ � � � ˝ gn//�1;:::;�Mn
.v1 ˝ � � � ˝ vMn

/

WD fƒ1;:::;ƒn
...g1/�1;:::;�M1

˝ � � � ˝ .gn/�Mn�1C1;:::;�Mn
/.v1 ˝ � � � ˝ vMn

//;

(5.6)
where we let (cf. (2.9))

Mi D
iX

jD1

mj ; i D 0; : : : ; n; and ƒi D
MiX

jDMi�1C1

�j ; i D 1; : : : ; n; (5.7)

and, recalling (2.1), we have

..g1/�1;:::;�M1
˝ � � � ˝ .gn/�Mn�1C1;:::;�Mn

/.v1 ˝ � � � ˝ vMn
/

D ˙ .g1/�1;:::;�M1
.v1 ˝ � � � ˝ vM1

/˝ � � �
˝ .gn/�Mn�1C1;:::;�Mn

.vMn�1C1 ˝ � � � ˝ vMn
/;

(5.8)

where
˙ D .�1/

P
i<j p.gj /.p.vMi�1C1/C���Cp.vMi

//: (5.9)

The unity in theChom -operad is 1 D �V 2 Chom .1/ D EndFŒ@� V , and the
right action of Sn onChom .n/ is given by (cf. (2.3), (2.5) and (2.8)):

.f � /�1;:::;�n
.v1 ˝ � � � ˝ vn/

D f�.�1;:::;�n/.�.v1 ˝ � � � ˝ vn//

D �v.�/f�
��1.1/

;:::;�
��1.n/

.v��1.1/ ˝ � � � ˝ v��1.n//;

(5.10)

for every � 2 Sn, where �v.�/ is given by (2.3).
Let us first check the associativity axiom for the operadChom , which reads

..f .g1 ˝ � � � ˝ gn//.h1 ˝ � � � ˝ hMn
//�1;:::;�LMn

.v1 ˝ � � � ˝ vLMn
/

D .f ..g1 ˝ � � � ˝ gn/.h1 ˝ � � � ˝ hMn
///�1;:::;�LMn

.v1 ˝ � � � ˝ vLMn
/;

(5.11)
for every f 2Chom .n/, gi 2Chom .mi /, i D 1; : : : ; n, hj 2Chom . j̀ /, j D
1; : : : ; m1 C� � �Cmn DW Mn, and vk 2 V , k D 1; : : : ; `1 C� � �C`Mn

DW LMn
.

Let us denote, in accordance to (5.7),

Mi D
iX

jD1

mj ; i D 0; : : : ; n; and Lj D
jX

kD1

`k : (5.12)
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Then, using the definition (5.6) of the composition map in the operadChom ,
one easily checks that both sides of (5.11) are equal to

fPLM1
iD1

�i ;:::;
PLMn

iDLMn�1
C1

�i

� ...g1/PL1
j D1

�j ;:::;
PLM1

j DLM1�1C1
�j̋

� � � ˝.gn/PLMn�1C2

j DLMn�1
C1

�j ;:::;
PLMn

j DLMn�1C1
�j

/

� ...h1/�1;:::;�L1
˝ � � � ˝ .hMn

/�LMn�1C1;:::;�LMn
/.v1 ˝ � � � ˝ vLMn

///;

proving associativity. The unity axiom is immediate to check. Next, we prove
the equivariance axiom (3.4). If we apply the left-hand side of (3.4) to a mono-
mial v1 ˝ � � � ˝ vMn

and we evaluate it on the variables �1; : : : ; �Mn
, we get

.f � .g
�1

1 ˝ � � � ˝ g�n
n //�1;:::;�Mn

.v1 ˝ � � � ˝ vMn
/

D .f � /ƒ1;:::;ƒn
...g

�1

1 /�1;:::;�M1
˝ � � � ˝ .g�n

n /�Mn�1C1;:::;�Mn
/

� .v1 ˝ � � � ˝ vMn
//

D f�.ƒ1;:::;ƒn/....g1/�1.�1;:::;�M1
/ ˝ � � � ˝ .gn/�n.�Mn�1C1;:::;�Mn //

� .�1.v1 ˝ � � � ˝ vM1
/˝ � � � ˝ �n.vMn�1C1 ˝ � � � ˝ vMn

////

D f�.ƒ1;:::;ƒn/..�..g1/�1.�1;:::;�M1
/ ˝ � � � ˝ .gn/�n.�Mn�1C1;:::;�Mn ///

� .�.�1; : : : ; �n/.v1 ˝ � � � ˝ vMn
///

D .f .�.g1 ˝ � � � ˝ gn///.�.�1;:::;�n//.�1;:::;�Mn /.�.�1; : : : ; �n/

� .v1 ˝ � � � ˝ vMn
//

D ..f .�.g1 ˝ � � � ˝ gn///
�.�1;:::;�n//�1;:::;�Mn

.v1 ˝ � � � ˝ vMn
/:

For the first equality we used the definition (5.6) of the composition maps in
Chom , for the second equality we used the definition (5.10) of the action of the
symmetric group onChom , for the third equality we used Lemma 2.1 and the
definition (2.10) of the composition map of permutations, for the fourth equality
we used again (2.10) and (5.6), and for the last equality we used again (5.10).
This proves the equivariance condition (3.4).

5.3. Lie conformal superalgebras and the operadChom

Given the vector superspace V , with parity p, and the even endomorphism @ 2
End.V /, we denote by …V the same vector space with reversed parity Np D
1 � p. Obviously, @ is also an even endomorphism of …V . We consider the
corresponding operadChom .…V / from Sect. 5.2 and the associated Z-graded
Lie superalgebra W @.…V / WD W.Chom .…V // given by Theorem 3.4.
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Proposition 5.1 ([DSK13]). We have a bijective correspondence between the
odd elements X 2 W @

1 .…V / such that X�X D 0 and the Lie conformal super-
algebra �-brackets Œ� � �� W V � V ! V Œ�� on V , given by

Œa�b� D .�1/p.a/X�;���@.a˝ b/: (5.13)

Proof. First,X 2 .Chom .…V //.2/ is, by definition, an odd FŒ@�˝2-module ho-
momorphism X�;� W .…V /˝2 ! F�Œ�; 	�˝FŒ@� …V ' V Œ�� (the last isomor-
phism being obtained by letting 	 D �� � @), and it corresponds, via (4.1), to
�-bracket Œ� ; �� W V � V ! V Œ�� satisfying the sesquilinearity conditions (5.1).
The condition that X 2 .Chom .…V //.2/ is odd (with respect to the parity Np
induced by that …V ), translates into saying that the corresponding �-bracket
Œ� ; �� is parity preserving. Moreover, the condition that X is fixed by the action
(5.10) of the symmetric group S2 translates into saying that the corresponding
�-bracket Œ� � �� satisfies the skew-symmetry axiom (5.2). To complete the proof,
we need to check that the equation X�X D 0 translates to the Jacobi identity
for the �-bracket Œ� � ��. By equation (3.14), we have

.X�X/�;�;�.a˝ b ˝ c/ D
X

�2S2;1

..X ı1 X/
��1

/�;�;�.a˝ b ˝ c/

D X�C�;�.X�;�.a˝ b/˝ c/C .�1/ Np.b/ Np.c/X�C�;�.X�;�.a˝ c/˝ b/

C .�1/ Np.a/. Np.b/C Np.c//X�C�;�.X�;�.b ˝ c/˝ a/

D X�C�;�.X�;�.a˝ b/˝ c/C .�1/ Np.b/.1C Np.a//X�;�C�.b ˝X�;�.a˝ c//

C .�1/ Np.a/X�;�C�.a˝X�;�.b ˝ c//

D .�1/p.b/.ŒŒa�b��C�c� � Œa�Œb�c��C .�1/p.a/p.b/Œb�Œa�c��/:

Hence, X�X D 0 if and only if the Jacobi identity (5.3) holds. ut
Definition 5.2 ([BKV99], [DSK09]). Let V be a Lie conformal superalgebra.
The corresponding Lie conformal superalgebra cohomology complex is defined
as

.W @.…V /; adX/;

where X 2 W @.…V / N1 is given by (5.13).

Remark 5.3. One can introduce a conformal version of the operadChom , which
is associated to the basic Lie conformal algebra complex (see [DSK13]). This
leads to the notion of a conformal operad, which will be developed in a forth-
coming publication. In the geometric context of chiral algebras, the correspond-
ing object was constructed by Tamarkin in [Tam02].
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6. The chiral operad

6.1. Vertex algebras

In this subsection, we recall the “fifth definition” of a vertex algebra, given in
[DSK06]. In a nutshell, this definition says that a vertex algebra is a Lie con-
formal algebra in which the �-bracket can be “integrated”. More precisely we
have:

Definition 6.1. A vertex algebra is a Z=2Z-graded FŒ@�-module V , endowed
with an even element j0i 2 VN0 and an integral of �-bracket, namely a linear
map V ˝ V ! FŒ��˝ V , denoted byZ �

d� Œu�v� D WuvW C
Z �

0

d� Œu�v�;

such that the following axioms hold:

(i)
Z �

d� Œj0i�v� D
Z �

d� Œv� j0i� D v,

(ii)
Z �

d� Œ@u�v� D �
Z �

d� � Œu�v�,
Z �

d� Œu�@v� D
Z �

d� .@C �/Œu�v�,

(iii)
Z �

d� Œv�u� D .�1/p.u/p.v/

Z ���@

d� Œu�v�,

(iv)
Z �

d�

Z �

d� .Œu� Œv�w�� � .�1/p.u/p.v/Œv� Œu�w�� � ŒŒu�v��C�w�/ D 0.

If we do not assume the existence of the unit element j0i 2 V and we drop axiom
(i), we call V a non-unital vertex algebra.

Paper [DSK06] contains a detailed discussion of this definition and the proof
of its equivalence to other definitions of vertex algebras. We shall call Œu�v�,
defined as the derivative by � of the polynomial

R �
d� Œu�v�, the �-bracket of

u and v. Their normally ordered product WuvW is defined as the constant term
of the polynomial

R �
d� Œu�v�. The polynomial

R �
d� Œu�v� will be called the

integral of the �-bracket of u and v.
Axioms (i)–(iv) are a concise way to write more complicated relations in-

volving the normally ordered products WuvW and the �-brackets Œu�v�. To ex-
plain this, let us describe the meaning of axiom (ii). Taking the derivative with
respect to � of both equations we get the sesquilinearity conditions of the �-
bracket: Œ@u�v� D ��Œu�v� and Œu�@v� D .@C �/Œu�v�, while putting � D 0

in axiom (ii) we get that @ is a derivation of the normally ordered product, plus
a new piece of notation: Z 0

d� �Œu�v� D �W.@u/vW: (6.1)
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Similarly, axiom (iii) gives two conditions: taking the derivative of both sides
with respect to � we get the skew-symmetry of the �-bracket:

Œv�u� D �.�1/p.u/p.v/Œu���@v�;

while taking the constant term in � we get the quasi-commutativity of the nor-
mally ordered product:

WuvW � .�1/p.u/p.v/WvuW D
Z 0

�@

d� Œu�v�:

Finally, to explain of axiom (iv) we expand all three summand in terms of nor-
mally ordered product and �-brackets. The first term is immediate to under-
stand:Z �

d�

Z �

d� Œu� Œv�w�� D Wu.WvwW/W C
Z �

0

d� WuŒv�w�W

C
Z �

0

d� Œu� WvwW�C
Z �

0

d�

Z �

0

d� Œu� Œv�w��:

Similarly for the second term. To correctly expand the third term, we first per-
form the change of variable � C � 7! � , we exchange the order of integration
in d� and d� , and we use the notation (6.1). As a result, we getZ �

d�

Z �

d� ŒŒu�v��C�w� D
Z �C�

d�
h� Z �

���@

d� Œu�v�
�

�
w
i

D W
� Z �

���@

d� Œu�v�
�
wW C

Z �C�

0

d�
h� Z �

���@

d� Œu�v�
�

�
w
i
:

Hence, by taking constant term or derivative with respect to � and/or 	, axiom
(iv) produces four different axioms on the normally ordered product and the
�-bracket.

Axiom (iv), i.e., Jacobi identity under integration, could be written in the
seemingly equivalent form:

(iv’)
Z �

d�

Z �

d� .Œu� Œv���w�� � .�1/p.u/p.v/Œv��� Œu�w�� � ŒŒu�v��w�/ D 0.

Not surprisingly, (iv) and (iv’) are equivalent, as a consequence of the following:

Lemma 6.2. Let
R �
d� Œ� � �� W V ˝ V ! V Œ�� be a linear map satisfying the

sesquilinearity and skew-symmetry conditions under integration, i.e., axioms
(ii) and (iii) of Definition 6.1. Let

J�;�.u; v; w/

D
Z �

d�

Z �

d� .Œu� Œv�w�� � .�1/p.u/p.v/Œv� Œu�w�� � ŒŒu�v��C�w�/;
(6.2)
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and leteJ�;�.u; v; w/

D
Z �

d�

Z �

d� .Œu� Œv���w�� � .�1/p.u/p.v/Œv��� Œu�w�� � ŒŒu�v��w�/:

(6.3)
Then, we have eJ�;�.u; v; w/ D .�1/p.v/p.w/J�;���@.u;w; v/: (6.4)

Proof. Applying the skew-symmetry condition under the sign of integral, we
haveeJ�;�.u; v; w/

D
Z �

d�

Z �

d� .Œu� Œv���w�� � .�1/p.u/p.v/Œv��� Œu�w�� � ŒŒu�v��w�/

D
Z �

d�

Z �

d� .�.�1/p.v/p.w/Œu� Œw��C��@v��C .�1/p.v/p.w/ŒŒu�w���C��@v�

C .�1/.p.u/Cp.v//p.w/Œw���@Œu�v��/:

Note that, by the sesquilinearity condition, � in the first term of the right-hand
side is the same as �@ acting on the first factor u. If we then perform the change
of variable �� � @ D �, the right-hand side becomes

.�1/p.v/p.w/

Z �

d�

Z ���@

d� .Œu� Œw�v�� � ŒŒu�w��C�v� � .�1/p.u/p.w/Œw�Œu�v��/

D .�1/p.v/p.w/J�;���@.u;w; v/:

This completes the proof. ut
Definition 6.3. A left module M over a non-unital vertex algebra V is a Z=2Z-
graded FŒ@�-module endowed with an integral �-action, V ˝M ! FŒ��˝M ,
denoted v ˝ m 7! R �

d� .v�m/, preserving the Z=2Z-grading, such that the
following axioms hold:

(i)
Z �

d� .@v�m/ D �
Z �

d� �.v�m/,
Z �

d� .v�@m/ D
Z �

d� .@C �/.v�m/,

(ii)
Z �

d�

Z �

d� .u� .v�m/ � .�1/p.u/p.v/v� .u�m/ � Œu�v��C�m/ D 0.

This is equivalent to say that the FŒ@�-module V ˚ M has a vertex algebra
structure

R �
d� Œ� � ��� such that

R �
d� Œu�v�

� 2 V Œ�� for all u; v 2 V , making
V a vertex subalgebra, and such that

R �
d� Œv�m�

� 2 MŒ�� for all v 2 V and
m 2 M , and

R �
d� Œm�n�

� D 0 for allm; n 2 M , makingM an abelian ideal.
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The left V -module structure on M induces a right V -module structure on
M given by Z �

d� m�v D .�1/p.v/p.m/

Z ���@

d� v�m: (6.5)

6.2. The spaces O?T
kC1

In the following subsection, we will introduce the chiral operad, which governs
vertex algebras. In order to do so, we need to define certain spaces of rational
functions. For k � �1, let O?

kC1
be the algebra of polynomials in the variables

z0; : : : ; zk localized on the diagonals zi D zj for i ¤ j . In other words, O?
0 D

F and

O?
kC1 D FŒz0; : : : ; zk�Œz

�1
ij �0�i<j�k; where zij D zi � zj ; k � 0:

We will denote by O?T
kC1

the subalgebra of translation invariant elements, i.e.,

O?T
kC1 D Ker

� kX
iD0

@zi

�
D FŒz˙1

ij �0�i<j�k:

Note that O?T
0 D O?T

1 D F.
Let DkC1 be the algebra of regular differential operators in z0; : : : ; zk , i.e.,

D0 D F and

DkC1 D FŒz0; : : : ; zk�Œ@z0
; : : : ; @zk

�; k � 0:

Let DT
kC1

be the subalgebra of translation invariant elements: DT
0 D F and

DT
kC1 D Ker ad

� kX
iD0

@zi

�
D .FŒzij �0�i<j�k/Œ@z0

; : : : ; @zk
�; k � 0:

Lemma 6.4. The function f .z0; : : : ; zk/ D Q
0�i<j�k z

�1
ij is a cyclic element

of the DkC1-module O?
kC1

. Consequently, f is a cyclic element of the DT
kC1

-
module O?T

kC1
.

Proof (P. Etingof). Consider the Bernstein–Sato polynomial b.s/ associated
to f �1, which admits a differential operator L.s/ (regular in zi and s) such
that L.s/f �s�1 D b.s/f �s . It is known that the roots of the function b.s/
are negative, and by [BW15, Corollary 1.3] we have that b.s/ D ˙b.�s �
2/. So �2;�3; : : : are not roots of b.s/. Hence, f 2 D 1

b.�2/
L.�2/f; f 3 D

1
b.�3/

L.�3/f 2; : : : , all lie in the DkC1-submodule of O?
kC1

generated by f .
The claim follows. ut
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6.3. The operad P ch

Let V D VN0 ˚ V N1 be a vector superspace endowed with an even endomorphism
@. For k � 0, the space V ˝.kC1/ ˝ O?

kC1
carries the structure of a right DkC1-

module defined by letting zi act by multiplication on O?
kC1

, and letting @zi
act

by
.v0 ˝ � � � ˝ vk ˝ f .z0; : : : ; zk// � @zi

D v0 ˝ � � � ˝ .@vi /˝ � � � ˝ vk ˝ f .z0; : : : ; zk/

� v0 ˝ � � � ˝ vk ˝ @f

@zi
.z0; : : : ; zk/:

(6.6)

By restriction, V ˝.kC1/ ˝ O?T
kC1

is a right DT
kC1

-module, where zij 2 DT
kC1

act by multiplication on O?T
kC1

. For k D �1, V ˝0 ˝ O?
0 Š F is also a module

over D0 D DT
0 D F.

Consider the space

V Œ�0; : : : ; �k�=h@C �0 C � � � C �ki: (6.7)

Here and further, hˆi denotes the image of an endomorphim ˆ. The space (6.7)
carries the structure of a right DkC1-module defined by letting zi act by

A.�0; : : : ; �k/ � zi D � @

@�i
A.�0; : : : ; �k/; (6.8)

and @zi
act by

A.�0; : : : ; �k/ � @zi
D ��iA.�0; : : : ; �k/: (6.9)

Indeed, it is straightforward to check that both the actions (6.6) and (6.8)–(6.9)
satisfy the defining relations A �@zi

�zj D A �zj �@zi
CıijA, and that the actions

(6.8)–(6.9) commute with the operator @ C �0 C � � � C �k . Note that formula
(6.8) can be generalized to an arbitrary polynomial P.z0; : : : ; zk/ as follows:

A.�0; : : : ; �k/ � P.z0; : : : ; zk/ D P
�

� @

@�0
; : : : ;� @

@�k

�
A.�0; : : : ; �k/:

(6.10)
A right DT

kC1
-module homomorphism from V ˝.kC1/ ˝O?T

kC1
to V Œ�0; : : : ;

�k�=h@C �0 C � � � C �ki is then a linear map

X W V ˝.kC1/ ˝ O?T
kC1 �! V Œ�0; : : : ; �k�=h@C �0 C � � � C �ki;

v0 ˝ � � � ˝ vk ˝ f .z0; : : : ; zk/ 7�! X�0;:::;�k
.v0; : : : ; vkIf /;

(6.11)
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satisfying the following two sesquilinearity conditions:

X�0;:::;�k
.v0; : : : ; .@C �i /vi ; : : : ; vkIf / D X�0;:::;�k

�
v0; : : : ; vkI @f

@zi

�
;

X�0;:::;�k
.v0; : : : ; vkI zijf / D

� @

@�j
� @

@�i

�
X�0;:::;�k

.v0; : : : ; vkIf /:
(6.12)

Remark 6.5. Consider the usual action of @ on V ˝.kC1/ as
Pk

iD0 @i , where @i

denotes the action of @ on the i -th factor. Then since
Pk

iD0
@f
@zi

D 0 for every
f 2 O?T

kC1
, the first sesquilinearity implies

X.@v ˝ f / D �
kX

iD0

�iX.v ˝ f / D @.X.v ˝ f //; v 2 V ˝.kC1/: (6.13)

We let P ch.k C 1/ be the space of all right DT
kC1

-homomorphisms (6.11),
i.e., all linear maps (6.11) satisfying the sesquilinearity conditions (6.12). Some-
times, in order to specify the variables of the function f 2 O?T

kC1
, we will denote

the image of the map X as

X
z0;:::;zk

�0;:::;�k
.v0; : : : ; vkIf .z0; : : : ; zk//: (6.14)

Note that, by definition,

P ch.0/ D HomF.F; V=h@i/ Š V=@V (6.15)

and
P ch.1/ D HomFŒ@�.V; V Œ�0�=h@C �0i/ Š EndFŒ@�.V /: (6.16)

We will denote by 1 2 P ch.1/ the identity endomorphism, so that

1�0
.v0If / D f v0 C h@C �0i; v0 2 V; f 2 O?T

1 D F: (6.17)

The symmetric group SkC1 has a right action on P ch.k C 1/ by permut-
ing simultaneously the inputs v0; : : : ; vk of X and the corresponding variables
z0; : : : ; zk in f . Explicitly, for X 2 P ch.k C 1/ and � 2 SkC1, we have

.X� /
z0;:::;zk

�0;:::;�k
.v0; : : : ; vkIf .z0; : : : ; zk//

D �v.�/X
z0;:::;zk

�i0
;:::;�ik

.vi0
; : : : ; vik

If .zi0
; : : : ; zik

//;
(6.18)

where is D ��1.s/ and �v.�/ is given by (2.3).
To define the structure of an operad, we need to specify how the maps from

P ch are composed. Let X 2 P ch.k C 1/, Y 2 P ch.mC 1/, and h 2 O?T
kCmC1

.
We can write h in the form

h.z0; : : : ; zkCm/ D f .z0; : : : ; zk/g.z0; : : : ; zkCm/; (6.19)
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where f 2 O?T
kC1

, g 2 O?T
kCmC1

, and g has no poles at zi D zj for 0 � i <

j � k. Then we define

.Y ı1 X/
z0;z1;:::;zkCm

�0;�1;:::;�kCm
.v0; v1; : : : ; vkCmIh.z0; : : : ; zkCm//

D Y
z0;zkC1;:::;zkCm

�0
0;�kC1;:::;�kCm

.X
z0;:::;zk

�0�@z0
;:::;�k�@zk

.v0; : : : ; vkIf .z0; : : : ; zk//!;

vkC1; : : : ; vkCmIg.z0; : : : ; zkCm/jz1D���DzkDz0
/;

(6.20)

where �00 D �0 C �1 C � � � C �k and the arrow ! means that we apply the
derivatives @zi

to g before setting zi D z0 .1 � i � k/.

Lemma 6.6. The product (6.20) is a well defined map fromP ch.kC1/�P ch.mC
1/ to P ch.k CmC 1/.

Proof. First, we will check that Y ı1 X is independent of the choice of fac-
torization (6.19). Let us denote the right-hand side of (6.20) by R.f; g/, and
consider R.f; zijg/ where 0 � i < j � k. Notice that for any polynomial P
and 0 � i � k, we have

P.�0 � @z0
; : : : ; �k � @zk

/.zig/jz1D���DzkDz0

D .z0 � @�i
/P.�0 � @z0

; : : : ; �k � @zk
/gjz1D���DzkDz0

:
(6.21)

In particular,

P.�0 � @z0
; : : : ; �k � @zk

/.zijg/jz1D���DzkDz0

D .@�j
� @�i

/P.�0 � @z0
; : : : ; �k � @zk

/gjz1D���DzkDz0
:

(6.22)

Hence, the sesquilinearity of X implies that R.zijf; g/ D R.f; zijg/. This
proves that Y ı1 X is well defined.

We will show that Y ı1 X satisfies the second sesquilinearity in (6.12).
First, if again 0 � i < j � k, then .@�j

� @�i
/�00 D 0, and (6.22) implies

R.f; zijg/ D .@�j
� @�i

/R.f; g/ as desired. On the other hand, if kC 1 � j �
k Cm, then using (6.21) and the sesquilinearity of Y , we obtain:

R.f; z0jg/

D Y
z0;zkC1;:::;zkCm

�0
0;�kC1;:::;�kCm

..z0j � @�0
/X

z0;:::;zk

�0�@z0
;:::;�k�@zk

.v0; : : : ; vkIf /!;
vkC1; : : : ; vkCmIgjz1D���DzkDz0

/

D .@�j
� @�0

0
/Y

z0;zkC1;:::;zkCm

�0
0;�kC1;:::;�kCm

.X
z0;:::;zk

�0�@z0
;:::;�k�@zk

.v0; : : : ; vkIf /!;
vkC1; : : : ; vkCmIgjz1D���DzkDz0

/

� Y z0;zkC1;:::;zkCm

�0
0;�kC1;:::;�kCm

.@�0
X

z0;:::;zk

�0�@z0
;:::;�k�@zk

.v0; : : : ; vkIf /!;
vkC1; : : : ; vkCmIgjz1D���DzkDz0

/

D .@�j
� @�0

/R.f; g/:
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All other cases for i; j can be obtained from the above, by using the identity
zlm D zlp C zpm. This proves that Y ı1 X satisfies the second sesquilinearity
in (6.12).

To prove the first sesquilinearity, consider @h=@zi instead of h. Then from
(6.19), we get

@h

@zi
.z0; : : : ; zkCm/ D @f

@zi
.z0; : : : ; zk/g.z0; : : : ; zkCm/

C f .z0; : : : ; zk/
@g

@zi
.z0; : : : ; zkCm/:

In the right-hand side, each of the two summands is factored as in (6.19). Thus,

.Y ı1 X/
z0;z1;:::;zkCm

�0;�1;:::;�kCm

�
v0; v1; : : : ; vkCmI @h

@zi

�
D R

� @f
@zi

; g
�

CR
�
f;
@g

@zi

�
:

We consider two cases: 0 � i � k and k C 1 � i � k Cm. In the first case, by
the sesquilinearity of X ,

R
� @f
@zi

; g
�

D Y
z0;zkC1;:::;zkCm

�0
0;�kC1;:::;�kCm

.X
z0;:::;zk

�0�@z0
;:::;�k�@zk

.v0; : : : ; @vi ; : : : ; vkIf /!;
vkC1; : : : ; vkCmIgjz1D���DzkDz0

/

C Y
z0;zkC1;:::;zkCm

�0
0;�kC1;:::;�kCm

.X
z0;:::;zk

�0�@z0
;:::;�k�@zk

.v0; : : : ; vkIf /!;
vkC1; : : : ; vkCmI ..�i � @zi

/g/jz1D���DzkDz0
/:

Combined with R.f; @g=@zi /, this gives exactly the first sesquilinearity (6.12)
for Y ı1 X . In the case k C 1 � i � k C m, we have @f=@zi D 0 and
R.f; @g=@zi / gives the sesquilinearity of Y ı1 X after applying the sesquilin-
earity of Y . ut

We will extend the definition of the ı1 product as follows. Fix n � 1 and
m1; : : : ; mn � 0, and again use the notation (5.7). Consider Y 2 P ch.n/, Xi 2
P ch.mi /, and vk 2 V for 1 � i � n, 1 � k � M D Mn. Let

wi D vMi�1C1 ˝ � � � ˝ vMi
2 V ˝mi ; i D 1; : : : ; n; (6.23)

where M0 D 0. For h 2 O?T
M , we can write

h.z1; : : : ; zM / D g.z1; : : : ; zM /

nY
iD1

fi .zMi�1C1; : : : ; zMi
/; (6.24)

so that fi 2 O?T
mi

and g 2 O?T
M has no poles at zk D zl for Mi�1 C 1 � k <

l � Mi (1 � i � n). Then the composition Y.X1 ˝ � � � ˝ Xn/ 2 P ch.M/ is
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defined as follows:

.Y.X1 ˝ � � � ˝Xn//
z1;:::;zM

�1;:::;�M
.v1 ˝ � � � ˝ vM Ih.z1; : : : ; zM //

D ˙Y zM1
;:::;zMn

ƒ1;:::;ƒn

� nO
iD1

.Xi /
zMi�1C1;:::;zMi

�Mi�1C1�@zMi�1C1
;:::;�Mi

�@zMi

.wi Ifi /!I

g.z1; : : : ; zM /jzkDzMi
.Mi�1C1�k�Mi ; 1�i�n/

�
;

(6.25)
where ƒi are given by (5.7) and the sign ˙ is

˙ D .�1/
P

i<j p.Xj /.p.vMi�1C1/C���Cp.vMi
// (6.26)

(cf. (5.9)). As in (6.20), we first take the partial derivatives of g indicated by the
arrows ! and then we make the substitutions zk D zMi

.
It is clear that the ı1-product is a special case of the composition (6.25),

namely Y ı1X D Y.X˝1˝� � �˝1/, where 1 2 P ch.1/ is the identity operator
(6.17).

Proposition 6.7. The collection of vector superspaces P ch.n/ .n � 0/, with the
action of Sn described above, the compositions (6.25), and unit 1 2 P ch.1/, is
an operad.

Proof. First, it is straightforward to generalize Lemma 6.6 for the composition
(6.25): the left-hand side of (6.25) is independent of the choice of factorization
(6.24), and it satisfies the sesquilinearity (6.12). Hence, (6.25) are well-defined
compositions in P ch.

The properties (3.3) of the unit 1 2 P ch.1/ are obvious. The equivariance of
the compositions (6.25) under the action of the symmetric group is also easy to
see. Its proof is identical to the proof for theChom operad from Sect. 5.2.

Finally, the associativity of the compositions is also similar to the case of
Chom . The only additional ingredient is that we have to take derivatives of
functions and make substitutions in them. We use that, by the chain rule from
calculus,

@z0
.f .z0; : : : ; zk/jz1D���DzkDz0

/ D
kX

iD0

@zi
f .z0; : : : ; zk/jz1D���DzkDz0

:

(6.27)
Then in both sides of the associativity axiom

.Y.X1 ˝� � �˝Xn//.Z1 ˝� � �˝ZMn
/ D Y..X1 ˝� � �˝Xn/.Z1 ˝� � �˝ZMn

//

the derivatives get spread in the same way over the different variables. ut
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6.4. Vertex (super) algebra structures

As before, let V be an FŒ@�-module with parity p, and …V be the same FŒ@�-
module with reversed parity Np D 1�p. Consider the Z-graded Lie superalgebra

W ch.…V / D
1M

kD�1

W ch
k .…V / D W.P ch.…V //;

defined in Sect. 3.2 for an arbitrary operad. Note that W�1 and W0 are given by
(6.15) and (6.16) with V replaced by …V . Hence, they are the same as for the
Chom operad.

By definition, an odd element X 2 W ch
1 .…V / is an odd DT

2 -module homo-
morphism:

X�0;�1
W …V ˝…V ˝ O?T

2 �! …V Œ�0; �1�=h@C �0 C �1i; (6.28)

satisfying the sesquilinearity axioms (6.12) and the symmetry condition (6.18).
Since O?T

2 D FŒz˙1
01 �, the DT

2 -module homomorphism (6.28) is uniquely deter-
mined, via the sesquilinearity axioms (6.12), by its values on .…V /˝2 ˝ z�1

01 .
We have

…V Œ�0; �1�=h@C �0 C �1i ' …V Œ��

by equating �0 D �; �1 D ��� @. Hence, an odd X 2 W ch
1 .…V / corresponds

bijectively to an even linear map V ˝ V ! V Œ��, which we shall denote as
follows

u˝ v 7�!
Z �

d� Œu�v� D Wuv W C
Z �

0

d� Œu�v�: (6.29)

Here and further, when passing from the “X”-notation to the “
R �
d� Œ� � ��”-

notation, we identify the vector spaces …V and V . The correspondence be-
tween X 2 W ch.…V / and the map (6.29) is as follows: the corresponding to X
integral of �-bracket isZ �

d� Œu�v� D .�1/p.u/X
z0;z1

�;���@
.u; vI z�1

10 /: (6.30)

Conversely, given the integral of �-bracket (6.29), we associate to it the map X
as in (6.28) by letting

X
z0;z1

�0;�1
.v0; v1I z�1

10 / D .�1/1C Np.v0/

Z �0

d� Œv0�v1�; (6.31)

and extending it to .…V /˝2 ˝ O?T
2 via the sesquilinearity axioms (6.12). In

particular, by sesquilinearity, we have

X
z0;z1

�0;�1
.v0; v1I 1/ D .�1/p.v0/Œv0�0

v1�: (6.32)
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We can translate the sesquilinearity and symmetry conditions for X to ax-
ioms on the corresponding integral of �-bracket (6.29). All the sesquilinearity
conditions (6.12) translate toZ �

d� Œ@u�v� D �
Z �

d� � Œu�v�;

Z �

d� Œu�@v� D
Z �

d� .@C �/Œu�v�:

(6.33)
while the symmetry conditions (6.18) on X translate, in the notation (6.29), toZ �

d� Œu�v� D .�1/p.u/p.v/

Z ���@

d� Œv�u�: (6.34)

As a result, we get the following:

Proposition 6.8. The space W ch
1 .…V / is identified via (6.30) with the space of

integrals of �-bracketsZ �

d� Œ� � �� W V ˝ V �! V Œ��;

satisfying axioms (ii) and (iii) in the Definition 6.1 of a vertex algebra.

Next, let X; Y 2 W ch
1 .…V / N1. We can rewrite their box-product (3.13) in

terms of the notation (6.30) with the integrals of �-brackets corresponding to X
and Y . By Lemma 6.4, the ring O?T

3 D FŒz˙1
21 ; z

˙1
20 ; z

˙1
10 � is generated as a DT

3 -
module by the cyclic element f D z�1

21 z
�1
20 z
�1
10 . Hence, to determineX�Y (and

to prove, for example, that X�Y D 0) it suffices to compute it for this function.
In the following three lemmas, we will compute the three summands con-

tributing to X�Y from (3.14). We will express them in terms of the notation
(6.30), with the above choice of f .

Lemma 6.9. For X; Y 2 W ch
1 .…V / N1, we have:

.X ı1 Y /
z0;z1;z2

�0;�1;�2

�
v0; v1; v2I 1

z21z20z10

�
D .�1/p.v1/

Z �0

d�0

Z �0C�1��0

�1

d�1 .�0 C �1 � �0 � �1/ŒŒv0�0
v1�

Y
�0C�1

v2�
X

C .�1/p.v1/

Z �0

d�0

Z �1

d�1 .�0 � �0/ŒŒv0�0
v1�

Y
�0C�1

v2�
X :

Proof. We have by (6.20):

.X ı1 Y /
z0;z1;z2

�0;�1;�2

�
v0; v1; v2I 1

z21z20z10

�
D X

z0;z2

�0C�1;�2

�
Y

z0;z1

�0�@z0
;�1�@z1

�
v0; v1I 1

z10

�
!; v2I 1

z21z20

ˇ̌̌
z1Dz0

�
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D .�1/p.v0/X
z0;z2

�0C�1;�2

�Z �0�@z0

d� Œv0�v1�
Y ; v2I 1

z21z20

ˇ̌̌
z1Dz0

�
:

Now we use Taylor’s formula for a polynomial F :

F.�0 � @z0
/

1

z21z20

ˇ̌̌
z1Dz0

D e�@z0
@�0

F.�0/

z21z20

ˇ̌̌
z1Dz0

D 1

z20.z20 C @�0
/
F.�0/

D 1 � e�@z0
@�0

@�0

F.�0/

z20
D
Z @z0

0

d� e��@�0
F.�0/

z20

D
Z @z0

0

d�F.�0 � �/ 1
z20

:

Applying this to the previous expression, we obtain:

.X ı1 Y /
z0;z1;z2

�0;�1;�2

�
v0; v1; v2I 1

z21z20z10

�
D .�1/p.v0/X

z0;z2

�0C�1;�2

�Z @z0

0

d�

Z �0��

d� Œv0�v1�
Y ; v2I 1

z20

�
D .�1/p.v0/X

z0;z2

�0C�1;�2

�Z @C�0C�1

0

d�

Z �0��

d� Œv0�v1�
Y ; v2I 1

z20

�
;

where for the second equality we used the sesquilinearity (6.12). After that, we
can write the result in terms of notation (6.30):

.�1/p.v1/

Z �0C�1

d�1

h�Z @C�0C�1

0

d�

Z �0��

d� Œv0�v1�
Y
�

�1

v2

iX
:

Then using sesquilinearity (ii) from Definition 6.1, we replace @ by ��1 in the
second integral. Now we change the order of integration with respect to � and
� :Z �0C�1��1

0

d�

Z �0��

d� F.�; �1/

D
Z �1��1

d�

Z �0C�1��1

0

d� F.�; �1/C
Z �0

�1��1

d�

Z �0��

0

d� F.�; �1/

D
Z �1��1

d� .�0 C �1 � �1/F.�; �1/C
Z �0

�1��1

d� .�0 � �/F.�; �1/:

After that, we change the order of integration with respect to �1 and �0 D �

and make the change of variables �1 7! �0 C �1:Z �0C�1

d�1

Z �1��1

d� .�0 C �1 � �1/F.�; �1/
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C
Z �0C�1

d�1

Z �0

�1��1

d� .�0 � �/F.�; �1/

D
Z �0

d�0

Z �0C�1��0

�1

d�1 .�0 C �1 � �0 � �1/F.�0; �0 C �1/

C
Z �0

d�0

Z �1

d�1 .�0 � �0/F.�0; �0 C �1/:

Combining these equations completes the proof of Lemma 6.9. ut
Lemma 6.10. For X; Y 2 W ch

1 .…V / N1, we have:

.X ı2 Y /
z0;z1;z2

�0;�1;�2

�
v0; v1; v2I 1

z21z20z10

�
D .�1/1Cp.v1/

Z �0

d�0

Z �1

d�1 .�0 � �0/Œv0�0
Œv1�1

v2�
Y �X

C .�1/1Cp.v1/

�
Z �0

d�0

Z �0C�1��0

�1

d�1 .�0 C �1 � �0 � �1/Œv0�0
Œv1�1

v2�
Y �X :

Proof. Since X ı2 Y D X.1˝ Y /, we have by (6.25):

.X ı2 Y /
z0;z1;z2

�0;�1;�2

�
v0; v1; v2I 1

z21z20z10

�
D .�1/ Np.v0/X

z0;z2

�0;�1C�2

�
v0; Y

z1;z2

�1�@z1
;�2�@z2

�
v1; v2I 1

z21

�
!I 1

z20z10

ˇ̌̌
z1Dz2

�
:

The rest of the proof is similar to that of Lemma 6.9. ut
Lemma 6.11. For X; Y 2 W ch

1 .…V / N1, we have:

..X ı2 Y /
.12//

z0;z1;z2

�0;�1;�2

�
v0; v1; v2I 1

z21z20z10

�
D .�1/p.v1/Cp.v0/p.v1/

Z �0

d�0

Z �1

d�1 .�0 � �0/Œv1�1
Œv0�0

v2�
Y �X

C .�1/p.v1/Cp.v0/p.v1/

�
Z �0

d�0

Z �0C�1��0

�1

d�1 .�0 C �1 � �0 � �1/Œv1�1
Œv0�0

v2�
Y �X :

Proof. Recall that .X ı2 Y /
.12/ is obtained from X ı2 Y by switching the roles

of z0 and z1, v0 and v1, �0 and �1, and �0 and �1. Then we perform a change of
order of integration. Note that there is a double sign change: one is coming from
the change of sign of the function f D z�1

21 z
�1
20 z
�1
10 when we exchange z0 and

z1, and the other sign change pops out when we change the order of integration
in d�0 and d�1. ut
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As a result of the above three lemmas, the box-product X�Y can be written
as follows

.�1/p.v1/C1.X�Y /z0;z1;z2

�0;�1;�2

�
v0; v1; v2I 1

z21z20z10

�
D
Z �0

d�0

Z �1

d�1 .�0 � �0/j
X;Y
�0;�1

.v0; v1; v2/

C
Z �0

d�0

Z �0C�1��0

�1

d�1 .�0 C �1 � �0 � �1/j
X;Y
�0;�1

.v0; v1; v2/;

(6.35)
where

jX;Y
�0;�1

.v0; v1; v2/ D Œv0�0
Œv1�1

v2�
Y �X � .�1/p.v0/p.v1/Œv1�1

Œv0�0
v2�

Y �X

� ŒŒv0�0
v1�

Y
�0C�1

v2�
X :

(6.36)
From this we can derive the main result of the present section.

Theorem 6.12. An odd element X 2 W ch
1 .…V / satisfies X�X D 0 if and

only if the corresponding integral of �-bracket (6.30) satisfies axiom (iv) of
Definition 6.1. Consequently, such elements X are in bijective correspondence
with the structures of non-unital vertex algebra on the FŒ@�-module V .

Proof. The symmetry condition X D X .12/ on the element X 2 W ch
1 .…V /

translates to the symmetry axiom (iii) in Definition 6.1. In the notation (6.2),
axiom (iv) of the Definition 6.1 of a vertex algebra reads

J�0;�1
.v0; v1; v2/ D 0; (6.37)

while, by (6.35), the condition that X�X D 0 can be written as follows:Z �0

d�0

Z �1

d�1 .�0 � �0/j�0;�1
.v0; v1; v2/

C
Z �0

d�0

Z �0C�1��0

�1

d�1 .�0 C �1 � �0 � �1/j�0;�1
.v0; v1; v2/ D 0;

(6.38)
where

j�0;�1
.v0; v1; v2/ D @2

@�0@�1
J�0;�1

.v0; v1; v2/

D Œv0�0
Œv1�1

v2�� � .�1/p.v0/p.v1/Œv1�1
Œv0�0

v2�� � ŒŒv0�0
v1��0C�1

v2�;

which is the same as (6.36) for Y D X .
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By the sesquilinearity axiom (ii) and the change of variable of integration
Q�1 D �0 C �1, we can rewrite the left-hand side of (6.38), using the notation
(6.3), aseJ�0;�0C�1

..�0 C @/v0; v1; v2/C eJ�0;�0C�1
.v0; .�1 C @/v1; v2/

� J�0;�1
.v0; .�1 C @/v1; v2/:

Hence, due to Lemma 6.2, we get that (6.37) implies (6.38). Conversely, if we
take the derivative with respect to �0 of the left-hand side of (6.38), we geteJ�0;�0C�1

.v0; v1; v2/:

Hence, (6.38) implies (6.37), again due to Lemma 6.2. ut

7. Vertex algebra modules and cohomology complexes

7.1. Cohomology of vertex algebras

As a consequence of Theorems 3.4 and 6.12, we obtain a cohomology complex
associated to a vertex algebra V .

Definition 7.1. Let V be a (non-unital) vertex algebra. The corresponding ver-
tex algebra cohomology complex is defined as

.W ch.…V /; adX/;

where X 2 W ch.…V / N1 is associated to the vertex algebra structure of V via
(6.31).

As in Sect. 4, the cohomology

H ch.V / D Ker.adX/= Im.adX/

is a Z-graded Lie superalgebra. However, in order to stick to the tradition, we
shift the index by 1, namely for k � 0 we let

Hk.V / D Ker.adX jW ch
kC1

.…V //=ŒX;W
ch

k .…V /�:

We will generalize the above cohomological construction for an arbitrary
module M over a vertex algebra V . To this end, we first need to generalize the
construction of the Lie superalgebra W ch.…V /.
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7.2. The space W ch.…V;…M/

Let V and M be vector superspaces with parity p, endowed with a structure
of FŒ@�-modules. As usual we denote by …V and …M the same spaces with
reversed parity Np D 1 � p. We define the Z-graded vector superspace (with
parity still denoted by Np)

W ch.…V;…M/ D
M

k��1

W ch
k .…V;…M/; (7.1)

where W ch
k
.…V;…M/ is the space of linear maps

.…V /˝.kC1/ ˝ O?T
kC1 �! …MŒ�0; : : : ; �k�=h@C �0 C � � � C �ki

satisfying the sesquilinearity conditions (6.12), invariant with respect to the ac-
tion of the symmetric group (6.18), i.e.,

W ch
k .…V;…M/

D HomDT
kC1

..…V /˝.kC1/ ˝ O?T
kC1;…MŒ�0; : : : ; �k�=h@C �0 C � � � C �ki/SkC1 :

Of course, the Lie superalgebraW ch.…V / is a special case of (7.1) forM D V .
The space W ch.…V;…M/ is obtained as a subquotient of the universal Lie

superalgebra W ch.…V ˚…M/, via the canonical isomorphism of superspaces

U =K
��! W ch.…V;…M/; (7.2)

where U D L
k��1 Uk and K D L

k��1 Kk , and Uk , Kk are the following
subspaces of W ch

k
.…V ˚…M/:

Uk D HomDT
kC1
..…V ˚…M/˝.kC1/

˝ O?T
kC1;…MŒ�0; : : : ; �k�=h@C�0C� � �C�ki/SkC1 ;

Kk D fY 2 Uk jY..…V /˝.kC1/ ˝ O?T
kC1/ D 0g;

and (7.2) is the restriction map. For example, we have the canonical isomor-
phisms

W ch�1.…V;…M/ ' …M=@…M; W ch
0 .…V;…M/ ' HomFŒ@�.…V;…M/:

(7.3)
The proof of the following proposition is obvious.

Proposition 7.2. Let X 2 W ch
h
.…V ˚…M/. Then the adjoint action of X on

W ch.…V ˚…M/ leaves the subspaces U and K invariant provided that the
following two conditions hold:
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(i) Xz0;:::;zh

�0;:::;�h
.v0; : : : ; vhIf / 2 …MŒ�0; : : : ; �h�=h@ C �0 C � � � C �hi if one

of the arguments vi lies in …M ,
(ii) Xz0;:::;zh

�0;:::;�h
.v0; : : : ; vhIf / 2 …V Œ�0; : : : ; �h�=h@C�0 C � � � C�hi if all the

arguments vi lie in …V .

In this case, adX induces a well-defined linear map on the space W ch.…V;…M/,
via the isomorphism (7.2).

7.3. Cohomology of a vertex algebra with coefficients in a module

As before, let V andM be vector superspaces with parity p, endowed with FŒ@�-
module structures. Consider the reduced superspaceW ch.…V;…M/ introduced
in Sect. 7.2, with parity denoted by Np.

According to Definition 6.3, to say that V is a non-unital vertex algebra and
M is a V -module is equivalent to say that we have a vertex algebra structureR �
Œ� � ��eon the FŒ@�-module V ˚M extending that of V , such that the integral

of the �-bracket restricted to V ˝M is given by the vertex algebra action of V
on M , and restricted to M ˝M vanishes. Hence, such a structure corresponds,
bijectively, to an element X of the following set:˚

X 2 W ch
1 .…V ˚…M/ N1 j ŒX;X� D 0; X�0;�1

.M ˝M ˝ O?T
2 / D 0;

X�0;�1
.V ˝ V ˝ O?T

2 / � V Œ�0; �1�=h@C �0 C �1i;
X�0;�1

.V ˝M ˝ O?T
2 / � MŒ�0; �1�=h@C �0 C �1i� :

(7.4)
Explicitly, to X in (7.4) we associate the corresponding integral �-bracket on V
given by (6.30) and the corresponding integral of �-action of V on M given byZ �

d� v�m D .�1/p.v/X
z0;z1

�;���@

�
v;mI 1

z10

�
; v 2 V; m 2 M: (7.5)

Note that every element X in the set (7.4) satisfies conditions (i) and (ii)
in Proposition 7.2. Hence, adX induces a well-defined endomorphism dX of
W ch.…V; …M/ such that d2

X D 0, thus making .W ch.…V;…M/; dX / a coho-
mology complex.

Definition 7.3. Let V be a (non-unital) vertex algebra and M be a V -module.
The corresponding cohomology complex of V with coefficients in M is defined
as

.W ch.…V;…M/; dX /;

where X is the element of the set (7.4) associated to the integral �-bracket
of V by (6.31) and to the V -module structure of M by (7.5). We denote by
H ch.V;M/ D L

k2ZC
Hk.V;M/ the corresponding vertex algebra cohomol-

ogy. In the special case of the adjoint representation M D V we recover the
vertex algebra cohomology H ch.V / from Definition 7.1.
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The explicit formula for the differential dX can be obtained from (6.20). In
order to write such a formula, we need to split h 2 O?T

kC1
as in (6.19). For every

i D 0; : : : ; k, we let

h.z0; : : : ; zk/ D fi .z0;
i

L: : :; zk/gi .z0; : : : ; zk/;

where gi has no poles at zj D z` for j; ` ¤ i , and for every 0 � i < j � k, we
let

h.z0; : : : ; zk/ D fij .zi ; zj /gij .z0; : : : ; zk/;

where gij has no poles at zi D zj . As a result, for Y 2 W ch
k�1

.…V;…M/, we
have

.dXY /
z0;:::;zk

�0;:::;�k
.v0; : : : ; vkIh.z0; : : : ; zk//

D
kX

iD0

.�1/.1Cp.vi //.siC1;kCk�i/

�Xw;zi

�0C
i

L:::C�k ;�i

.Y
z0;

i

L:::;zk

�0�@z0
;

i

L:::;�k�@zk

.v0;
i

L: : :; vkIfi /!; vi Igi j
z0D

i

L���DzkDw
/

� .�1/ Np.Y /
X

0�i<j�k

.�1/.1Cp.vi //.s0;i�1Ci/C.1Cp.vj //.s0;i�1CsiC1;j �1Cj�1/

� Y
w;z0;

i

L:::
j

L:::;zk

�iC�j ;�0;
i

L:::
j

L:::;�k

.X
zi ;zj

�i�@zi
;�j�@zj

.vi ; vj Ifij /!; v0;
i

L: : :
j

L: : :; vkIgij jziDzjDw/;

(7.6)
where si;j is given by

sij D p.vi /C � � � C p.vj / if i � j and sij D 0 if i > j: (7.7)

As in (7.3), we have the isomorphism W ch�1.…V;…M/ ' M=@M obtained
by identifying the map Y W F ! M=h@i with the element

Y D Y.1/ 2 M=@M ; of parity p.Y / D 1C Np.Y /: (7.8)

We have the isomorphism W ch
0 .…V;…M/ ' HomFŒ@�.V;M/, obtained by

identifying the map Y z
�
.vIf .z// W V ' V ˝ O?T

1 ! MŒ�0�=h@ C �0i with
the FŒ@�-module homomorphism Y W V ! M given by

Y.v/ D Y z
� .vI 1/; of parity Np.Y /: (7.9)

Finally, we identify an element

Y
z0;z1

�0;�1
.v0; v1If .z0; z1// W V ˝ V ˝ O?T

2 �! MŒ�0; �1�=h@C �0 C �1i
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ofW ch
1 .…V;…M/ with the integral �-bracket

R �
d� Œ� � ��Y W V ˝V ! MŒ��,

given by (cf. (6.30))Z �

d� Œu�v�
Y D .�1/p.u/Y

z0;z1

�;���@

�
u; vI 1

z10

�
; of parity 1C Np.Y /: (7.10)

As in Proposition 6.8, the sesquilinearity and symmetry conditions for Y trans-
late to the corresponding sesquilinearity and symmetry conditions for the inte-
gral �-bracket, as in axioms (ii) and (iii) of Definition 6.1.

We next write an explicit formula for the differential dX W W ch
k�1

.…V;…M/

! W ch
k
.…V;…M/ in the special cases k D 0; 1 and 2, under the above identi-

fications. For k D 0 we have Y 2 M=@M ' W ch�1.…V;…M/ and, by equation
(7.6), dXY corresponds to the following FŒ@�-module homomorphism from V

to M :

.dXY /.v/ D X
w;z0

0;�0
.Y; vI 1/ D �.�1/.1Cp.v//p.Y /v�@Y: (7.11)

Next, for k D 1, let Y 2 HomFŒ@�.V;M/ ' W ch
0 .…V;…M/. Then dXY , given

by equation (7.6), corresponds to the following integral �-bracket of u; v 2 V :

.�1/ Np.Y /

Z �

d� Œu�v�
dX Y

D
Z �

d� ŒY.u/�v�C .�1/ Np.Y /p.u/

Z �

d� Œu�Y.v/� � Y
� Z �

d� Œu�v�
�
:

(7.12)
Finally, for k D 2 we have X 2 W ch

1 .…V / N1 and Y 2 W ch
1 .…V;…M/. In

this case dX .Y / D X�Y � .�1/ Np.Y /Y�X 2 W ch
2 .…V;…M/, where X�Y is

given by the same formula as in (6.35).

7.4. Casimirs, derivations and extensions

Let V be a non-unital vertex algebra and let M be a V -module.

Definition 7.4. A Casimir element is an element
R
m 2 M=@M such that V�@m

D 0. Denote by Cas.V;M/ the space of Casimirs. Note that, due to skew-
symmetry of the �-bracket, Cas.V / WD Cas.V; V / D fR v 2 V=@V j Œv�V �j�D0

D 0g.

Definition 7.5. A derivation from V to M is an FŒ@�-module homomorphism
D W V ! M such that

D
� Z �

d� Œu�v�
�

D
Z �

d� .D.u/�v/C .�1/p.D/p.u/

Z �

d� .u�D.v//:

(7.13)
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We say that a derivation is inner if it has the following form:

DY .v/ D Y�v j�D0 for some Y 2 M=@M: (7.14)

In the special case when V D M we have the usual definition of a derivation
of the vertex algebra V . Denote by Der.V;M/ the space of derivations from V

to M , and by Inder.V;M/ the subspace of inner derivations. We also denote
Der.V / D Der.V; V / and Inder.V / D Inder.V; V /.

We can now describe more explicitly the low degree cohomology.

Theorem 7.6. Let V be a (non-unital) vertex algebra and letM be a V -module.
Then:

(a) H0.V;M/ D Cas.V;M/. In particular, H 0.V / D Cas.V /.
(b) H 1.V;M/ D Der.V;M/= Inder.V;M/. In particular, H 1.V / equals the

factor of the Lie algebra Der.V / of all derivations of V by the ideal of all
inner derivations.

(c) H 2.V;M/ is the space of isomorphism classes of FŒ@�-split extensions of
the vertex algebra V by the V -module M , viewed as a (non-unital) vertex
algebra with trivial integral �-bracket.

Proof. Straightforward, using the explicit formulas (7.11), (7.12) and (6.35) for
the differential. (cf. [BKV99], [DSK09] for a proof in the case of Lie conformal
algebras.) ut

8. The associated graded of the chiral operad

8.1. Filtration on P ch

We introduce an increasing filtration on the space of translation invariant ratio-
nal functions O?T

kC1
D FŒz˙1

ij �0�i<j�k , given by the number of divisors:

F�1 O?T
kC1 D f0g � F0 O?T

kC1 D OT
kC1 D FŒzij � � F1 O?T

kC1 D
X
i<j

OT
kC1Œz

�1
ij �

� � � � � Fr O?T
kC1 D

X
OT

kC1Œz
�1
i1;j1

� � � z�1
ir ;jr

� � � � � � O?T
kC1:

(8.1)
In other words, the elements of Fr O?T

kC1
are sums of rational functions with at

most r divisors each (not counting multiplicities). For example,

1

z01z12z02
D 1

z01z
2
02

C 1

z12z
2
02

2 F2 O?T
3 (8.2)
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has three divisors, but it lies in F2 O?T
3 . In fact, by using relations similar to

(8.2), it is not hard to prove (cf. Lemma 8.4 below) that the filtration (8.1) stabi-
lizes:

Fk O?T
kC1 D O?T

kC1:

This filtration is invariant under the actions of DT
kC1

and of the symmetric group
SkC1. It is compatible with the multiplication:

.Fr O?T
kC1/ � .Fs O?T

kC1/ � FrCs O?T
kC1: (8.3)

Furthermore, if g 2 Fs O?T
kC1

has no pole at zi D zj , then gjziDzj
2 Fs O?T

k
.

Now we define a decreasing filtration of P ch.k C 1/ by

Fr P ch.k C 1/ D fX 2 P ch.k C 1/ jX.V ˝.kC1/ ˝ Fr�1 O?T
kC1/ D 0g: (8.4)

We have: F0 P ch.k C 1/ D P ch.k C 1/ and FkC1 P ch.k C 1/ D f0g.

Proposition 8.1. With the above filtration, P ch is a filtered operad (cf. (3.10)).

Proof. The filtration (8.4) is invariant under the action of the symmetric group
because the filtration (8.1) is. In any operad, the compositions can be obtained
from the ı1-product and the action of the symmetric group (see (3.6), (3.7)).
Thus, it is enough to prove that

Y ı1X 2 FrCs P ch.kCmC1/ for X 2 Fr P ch.kC1/; Y 2 Fs P ch.mC1/:
To this end, we want to show that the left-hand side of (6.20) vanishes for all
h 2 FrCs�1 O?T

kCmC1
. By linearity, we can suppose that h D fg as in (6.19)

and the number of divisors of h is � rC s�1. Since the divisors of f and g are
disjoint, the number of divisors of h is the sum of the number of divisors of f
and g. Hence, f 2 Fr�1 O?T

kC1
or g 2 Fs�1 O?T

kCmC1
. Then we apply formula

(6.20) to compute Y ı1 X . In the first case, we have X.f / D 0. In the second
case, applying some derivatives and setting z1 D � � � D zk D z0 in g, we will
obtain an element of Fs�1 O?T

mC1, which is annihilated by Y . ut
As a consequence of Proposition 8.1, the associated graded spaces

grr P ch.n/ D Fr P ch.n/=FrC1 P ch.n/ (8.5)

form a graded operad (see the end of Sect. 3.1).
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8.2. n-graphs

For n � 1, we define an n-graph as a graph 
 with the set of vertices f1; : : : ; ng
and an arbitrary collection of oriented edges, denotedE.
/. We denote by G .n/
the collection of all n-graphs without tadpoles, and by G0.n/ the collection of
all acyclic n-graphs, i.e., n-graphs that have no cycles (including tadpoles and
multiple edges).

For example, the set G0.1/ consists of the graph with a single vertex labeled
1 and no edges, the set G0.2/ consists of three graphs:

1 2
,

1 2
,

1 2
,

E.
/ D ;; E.
/Df1�!2g; E.
/Df2�!1g
(8.6)

and G0.3/ consists of the following graphs, with arbitrary orientation of all
edges:

1 2 3
,

1 2 3
,

1 2 3
,

1 2 3
,

1 2 3
,

1 2 3
,

1 2 3
.

(8.7)
By convention, we also let G0.0/ D G .0/ be the set consisting of a single
element (the empty graph, with 0 vertices).

An oriented cycle C of an n-graph 
 2 G .n/ is, by definition, a collection
of edges of 
 forming a closed sequence (possibly with self intersections):

C D fi1 �! i2; i2 �! i3; : : : ; is�1 �! is; is �! i1g � E.
/: (8.8)

8.3. The maps X	

For an oriented graph 
 2 G .n/, we define

p	 D p	.z1; : : : ; zn/ D
Y

.i!j /2E.	/

z�1
ij 2 Fr O?T

n ; zij D zi � zj ; (8.9)

where the product is over all edges of 
 and r is the number of edges. Note that
if we change the orientation of a single edge of 
 , then p	 will change sign. For
any graph G with a set of vertices labeled by an index set I , we introduce the
notation

�G D
X
i2I

�i ; @zG
D
X
i2I

@zi
; @G D

X
i2I

@i ; (8.10)
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where @i D 1˝ � � � ˝ @˝ � � � ˝ 1 denotes the action of @ on the i -th factor in a
tensor product V ˝n. Note that, by translation covariance, we have @zG

pG D 0.

Lemma 8.2. For an acyclic graph 
 2 G0.n/, we have

FŒ@z1
; : : : ; @zn

�p	 D FŒz�1
ij j .i ! j / 2 E.
/�p	 :

Proof. Clearly, applying derivatives to the function p	 , we get an element of the
space FŒz�1

ij j .i ! j / 2 E.
/�p	 . Hence, we only need to show the opposite
inclusion, i.e., that for arbitrary exponents mij � 1, we haveY

.i!j /2E.	/

z
�mij

ij 2 FŒ@z1
; : : : ; @zn

�p	 : (8.11)

Assuming, by induction, that (8.11) holds, we show how to apply derivatives in
order to increase arbitrarily the exponents of the function

Q
.i!j /2E.	/ z

�mij

ij .
Fix an edge e D .˛ ! ˇ/ of the graph 
 , and let 
 n e be the graph obtained
by deleting the edge e from 
 . Since by assumption 
 is acyclic, the connected
components 
˛ and 
ˇ of ˛ and ˇ in 
 n e are disjoint. Then it is easy to check
that

� 1

m˛ˇ

@z�˛

Y
.i!j /2E.	/

z
�mij

ij D 1

m˛ˇ

@z�ˇ

Y
.i!j /2E.	/

z
�mij

ij

D z�1
˛ˇ

Y
.i!j /2E.	/

z
�mij

ij :

The claim follows. ut
Lemma 8.3. The space Fr O?T

n is generated as a DT
n -module by the functions

p	 , with 
 2 G0.n/ acyclic graphs with at most r edges.

Proof. Clearly, every function in Fr O?T
n can be written as a linear combination

of functions of the form

f z
�mi1j1

i1j1
� � � z�mir jr

ir jr
; (8.12)

with mi`j`
� 0 and f polynomial. We need to show that the function (8.12)

can be obtained starting from some p	 and acting with DT
n . Let 
 2 G .n/

be the graph with edges .i1 ! j1/; : : : ; .ir ! jr/. By a computation similar
to (8.2) (cf. (8.15) below), if the graph is not acyclic, then the function (8.12)
lies in Fr�1 O?T

n and the claim holds by induction. For an acyclic graph 
 , as
an immediate consequence of Lemma 8.2, we have that the function (8.12) is
generated by p	 . ut
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By restriction, for every X 2 P ch.n/, we have maps

X	
�1;:::;�n

W V ˝n �! V Œ�1; : : : ; �n�=h@C �1 C � � � C �ni;
v1 ˝ � � � ˝ vn 7�! X

z1;:::;zn

�1;:::;�n
.v1; : : : ; vnIp	/:

(8.13)

By (8.4), if X 2 Fr P ch.n/, we have X	 D 0 for graphs 
 with fewer than r
edges. Furthermore, relations among the p	 ’s lead to the following relations for
the maps X	 .

Lemma 8.4. Let 
 2 G .n/ be a graph with r edges containing an oriented
cycle C � E.
/. Then we have the following cycle relations:

(a) X	 D 0 for all X 2 Fr P ch.n/I
(b)

P
e2C Y

	ne D 0 for all Y 2 Fr�1 P ch.n/, where 
ne is the graph obtained
from 
 by removing the edge e.

Proof. After relabeling the vertices, we can assume that

C D f1 �! 2; 2 �! 3; : : : ; s � 1 �! s; s �! 1g:
Then p	 has a factor

pC D 1

z12z23 � � � zs�1;szs1
:

Since C has s edges, we expect pC 2 Fs O?T
n ; however, we claim that in fact

pC 2 Fs�1 O?T
n . Indeed, using the relationX

e2C

ze D z12 C z23 C � � � C zs�1;s C zs1 D 0; (8.14)

we have as in (8.2),

� pC

D �z12

z2
12z23 � � � zs�1;szs1

D z23

z2
12z23 � � � zs�1;szs1

C � � � C zs�1;s

z2
12z23 � � � zs�1;szs1

C zs1

z2
12z23 � � � zs�1;szs1

:

(8.15)
In particular, p	 2 Fr�1 O?T

n , which implies claim (a). Claim (b) follows from
the equation

0 D
X
e2C

zep	 D
X
e2C

p	ne:

ut
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Example 8.5. Let Y 2 Fr�1 P ch.n/ and 
 0 2 G0.n/ be a graph with .r � 1/

edges. For a fixed edge e D .i ! j / of 
 0, we denote by 
 the graph obtained
by adding the opposite edge e0 D .j ! i/. Then 
 has a 2-cycle C D fe; e0g,
and 
 00 D 
 n e is obtained from 
 0 D 
 n e0 by reversing the orientation of e.
In this case, (10.5) implies Y 	 0 D �Y 	 00

:

We will derive additional relations from the sesquilinearity conditions (6.12)
for X 2 Fr P ch.n/.

Lemma 8.6. LetX 2 Fr P ch.n/ and 
 2 G .n/ be a graph with r edges. Denote
the connected components of 
 by 
˛ . Then we have the following sesquilin-
earity relations:

(a) .@�i
� @�j

/X	
�1;:::;�n

D 0 for any .i ! j / 2 E.
/, which means that
X	 is a polynomial of the sums �	˛

I
(b) X	

�1;:::;�n
.@	˛

.v1 ˝ � � � ˝ vn// D ��	˛
X	

�1;:::;�n
.v1 ˝ � � � ˝ vn/.

Proof. If .i ! j / is an edge of a graph 
 with r edges, then zijp	 2 Fr�1 O?T
n .

Hence,
X

z1;:::;zn

�1;:::;�n
.v1; : : : ; vnI zijp	/ D 0:

Claim (a) then follows from the sesquilinearity condition (6.12). Next, let us
prove claim (b). Since 
 is a disjoint union of the 
˛’s, the function p	 is the
product of the corresponding p	˛

’s. By the translation covariance of p	˛
, we

have @z�˛
p	˛

D 0, and hence @z�˛
p	 D 0. Claim (b) then follows again from

(6.12). ut

8.4. Compositions of the maps X	

Now we will investigate how the maps (8.13) compose. For X 2 P ch.k C 1/

and Y 2 P ch.mC 1/, their ı1-product Y ı1 X 2 P ch.k CmC 1/ is given by
(6.20). We want to find .Y ı1 X/

	 , where 
 2 G .k CmC 1/ is a graph whose
vertices are labeled by 0; 1; : : : ; k C m. In order to apply (6.20) for h D p	 ,
according to (6.19), we factor

p	 D f .z0; : : : ; zk/g.z0; : : : ; zkCm/; f D p	 0 ; g D p	 00 : (8.16)

Here 
 0 is the subgraph of 
 with vertices 0; 1; : : : ; k and all edges from 


among these vertices; 
 00 is the subgraph of 
 that includes all edges of 
 not in

 0. The factorization (8.16) holds because E.
/ is the disjoint union of E.
 0/
and E.
 00/.

Setting z1 D � � � D zk D z0 in p	 00 corresponds to contracting the vertices
0; 1; : : : ; k to a single vertex labeled 0. We let N
 00 be the graph with vertices
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labeled 0; kC1; : : : ; kCm and edges obtained from the edges of 
 00 by replacing
any vertex 0 � i � k with 0, keeping the same orientation. Then

p	 00 jz1D���DzkDz0
D p N	 00 : (8.17)

Finally, introduce graphs Gi .0 � i � k/ as follows. Take the connected
component of the vertex i in 
 00 and remove from it the vertex i and all edges
connected to i . Then Gi is the resulting subgraph of 
 00. Note that, by con-
struction, the vertices of Gi form a subset of fk C 1; : : : ; k C mg. For another
description of the graphs 
 0, N
 00 and Gi , see Examples 9.1 and 9.5 below.

Proposition 8.7. With the above notation, suppose that the graph N
 00 is acyclic.
Then

.Y ı1 X/
	
�0;�1;:::;�kCm

.v0; v1; : : : ; vkCm/

D Y
N	 00

��0 ;�kC1;:::;�kCm

.X	 0

�0C�G0
C@G0

;:::;�kC�Gk
C@Gk

.v0; : : : ; vk/; vkC1; : : : ; vkCm/

(8.18)

for X 2 P ch.kC 1/ and Y 2 P ch.mC 1/. Here we also use the notation (8.10)
with @i representing the action of @ on vi .

Assume, in addition, that X 2 Fr P ch.kC 1/, Y 2 Fs P ch.mC 1/, 
 0 has r
edges and N
 00 has s edges. Then equation (8.18) holds without the assumption
that N
 00 is acyclic.

Proof. In order to apply (6.20), we need to compute @zi
p	 00 . After possibly

changing a sign, we will assume that all edges of 
 00 are oriented as .i ! j /

with i < j . The assumption that N
 00 has no cycles implies that Gi and Gl are
disconnected for 0 � i; l � k. Let Ei be the set of all edges of 
 00 starting from
the vertex i . Then we can write

E.
 00/ D
kG

iD0

.Ei tE.Gi // t F

for some subset F of edges among vertices k C 1; : : : ; k Cm. Thus

p	 00 D pF

kY
iD0

pEi
pGi

;

where pF D Q
e2F z

�1
e , and similarly for pEi

.
For every edge .i ! j / 2 Ei , we have �@zi

z�1
ij D @zj

z�1
ij . Hence

�@zi
pEi

D
X

.i!j /2Ei

@zj
pEi

D @zGi
pEi

:
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Using that @zGi
pGi

D 0 and @zGi
pF D 0, this implies

�@zi
p	 00 D @zGi

p	 00 :

The statement then follows from (6.20), by applying equation (8.17) and the
sesqui-linearity (6.12), after observing that �	 0 D �00 D �0 C �1 C � � � C �k .

For the last assertion of the proposition, if N
 00 has a cycle, then by Lemma 8.4
(a) the right-hand side of (8.18) vanishes. Hence, we need to check that, in this
case, the left-hand side of (8.18) vanishes as well. This follows from formula
(6.20) and the fact that, after differentiating p	 00 and setting z1 D � � � D zk D
z0, the resulting function is in Fr�1 O?T

mC1. ut
We can summarize all the previous results as follows:

Corollary 8.8. (a) For everyX 2 Fr P ch.kC1/ and every graph 
 2 G .kC1/
with at most r edges, the map

X	 W V ˝.kC1/ �! V Œ�0; : : : ; �k�=h@C �0 C � � � C �ki
defined by (8.13), satisfies the cycle relations (a) and (b) from Lemma 8.4
and the sesquilinearity relations (a) and (b) from Lemma 8.6.

(b) For X 2 Fr P ch.k C 1/, Y 2 Fs P ch.mC 1/, and for 
 2 G .k C mC 1/

such that 
 0 has at most r edges and N
 00 has at most s edges, equation (8.18)
holds.

(c) If X 2 Fr P ch.k C 1/ is such that X	 D 0 for all graphs 
 2 G .k C 1/

with r edges, then X 2 FrC1 P ch.k C 1/.
Hence, we have an induced injective map defined on the associated graded
space grr P ch.k C 1/, such that

NX 7�! QX D fX	 j
 2 G .k C 1/ with r edgesg:
Proof. Claim (a) is given by Lemmas 8.4, 8.6. Claim (b) is given by Proposition
8.7. Claim (c) follows from Lemma 8.3 and the sesquilinearity conditions. ut

Using this corollary, in Sect. 10 below, we will provide a more detailed de-
scription of the associated graded operad grP ch.

8.5. Refinement of the filtration on P ch

We refine the filtration of the chiral operad P ch introduced in Sect. 8.1 as fol-
lows. Let V be a vector superspace with an increasing filtration

F�1 V D f0g � F0 V � F1 V � F2 V � � � � � V: (8.19)

This induces an increasing filtration on the tensor products

Fs.V ˝.kC1/ ˝ O?T
kC1/ D

X
r0Cr1C���CrkC1Ds

Fr0 V ˝ � � � ˝ Frk V ˝ FrkC1 O?T
kC1;
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if s � 0, and Fs D 0 if s < 0. For example, for k D 1, we have

Fs.V ˝2 ˝ O?T
2 / D .Fs.V ˝2/˝ OT

2 /C .Fs�1.V ˝2/˝ O?T
2 /: (8.20)

The corresponding refined filtered space Fr P ch.k C 1/ is defined as the set of
elements X 2 P ch.k C 1/ such that

X.Fs.V ˝.kC1/˝O?T
kC1// � .Fs�r V /Œ�0; : : : ; �k�=h@C�0C� � �C�ki; (8.21)

for every s. This is a decreasing filtration, possibly infinite in both directions.

Proposition 8.9. With the above refined filtration, P ch.V / is a filtered operad
(cf. (3.10)). Hence, we have the corresponding Lie superalgebra filtration Fr W ch.V /

of W ch.V /.

Proof. The proof of the first statement is the same as for Proposition 8.1. The
last assertion follows from Theorem 3.4 (c). ut

Recall that a filtered vertex algebra is a vertex algebra V with an increasing
filtration (8.19) such that

W.Fp V /.Fq V /W � FpCq V and ŒFp V � Fq V � � FpCq�1 V Œ��; (8.22)

for all p; q.

Theorem 8.10. Let V be a filtered vector superspace. Under the correspon-
dence from Theorem 6.12, the structures of filtered non-unital vertex algebra
on V are in bijection with the odd elements X 2 F1W ch

1 .…V / satisfying
X�X D 0.

Proof. If V is a filtered vertex algebra, then, due to (8.22), the corresponding X
satisfies

X
z0;z1

�0;�1
.Fp V ˝ Fq V ˝ 1/ D ŒFp V�0

Fq V � � FpCq�1 V Œ�0�

and
X

z0;z1

�0;�1

�
Fp V ˝ Fq V ˝ 1

z10

�
D W.Fp V /.Fq V /W � FpCq V:

By (8.20), this means that X 2 F1W ch
1 .…V /. ut
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9. The cooperad of n-graphs

9.1. Cocomposition of n-graphs

As in Sect. 8.2, let G .n/ be the collection of all n-graphs which have no tadpoles,
and G0.n/ be the collection of all acyclic n-graphs. Fix an n-tuple .m1; : : : ; mn/

of positive integers, and let M1; : : : ;Mn as in (2.9). We define the cocomposi-
tion map

�m1���mn W G .Mn/ �! G .n/ � G .m1/ � � � � � G .mn/; (9.1)

denoted

 7�! �

m1���mn

0 .
/;�
m1���mn

1 .
/; : : : ; �m1���mn
n .
/; (9.2)

as follows.�m1���mn

1 .
/ is the subgraph of 
 associated to the vertices f1; : : : ;M1g,
�

m1���mn

2 .
/ is the subgraph of 
 associated to the vertices fM1 C 1; : : : ;M2g
(which we relabel f1; : : : ; m2g), and so on up to �m1���mn

n .
/, which is the sub-
graph of 
 associated to the last mn vertices fMn�1 C 1; : : : ;Mng (which we
relabel f1; : : : ; mng), and finally �m1���mn

0 .
/ is the graph obtained by collaps-
ing the first m1 vertices of 
 (and all edges among them) into a single vertex
(which we label 1), the second m2 vertices of 
 into a single vertex (which we
label 2), and so on up to the lastmn vertices of 
 into a single vertex (which we
label n).

For example, consider the list of integers .3; 3; 1; 2/, and the 9-graph


 D
1 2 3 4 5 6 7 8 9

2 G0.9/:

(9.3)
Then, the cocomposition �3312.
/ 2 G .4/ � G0.3/ � G0.3/ � G0.1/ � G0.2/

consists of the following graphs: the subgraph of 
 associated to the first three
vertices, is

�3312
1 .
/ D

1 2 3
2 G0.3/;

the subgraph 
 associated to the second three vertices (and relabeling the ver-
tices), is

�3312
2 .
/ D

1 2 3
2 G0.3/;
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the subgraph associated to the seventh vertex is just�3312
3 .
/ D ı

1 2 G0.1/, the
subgraph of 
 associated to the last two vertices is

�3312
4 .
/ D

1 2
2 G0.2/;

and finally, collapsing all these subgraphs into single vertices, we get

�3312
0 .
/ D

1 2 3 4
2 G .4/:

Note that if 
 is acyclic, then all the subgraphs �m1���mn

i .
/, for i D 1; : : : ; n,
are acyclic as well, while, in general, this is not the case for �m1���mn

0 .
/.

Example 9.1. A special case is when m1 D k C 1 and m2 D � � � D mn D
1. With the notation of Sect. 8.4, we have in this case �.kC1/1���1

1 .
/ D 
 0,
�

.kC1/1���1
2 .
/ D � � � D �

.kC1/1���1
n .
/ D ı, and �.kC1/1���1

0 .
/ D N
 00.
Lemma 9.2. For every m1; : : : ; mn, there is a natural bijective correspondence

� W E.
/ ��! E.�
m1���mn

0 .
// tE.�m1���mn

1 .
// t � � � tE.�m1���mn
n .
//:

(9.4)

Proof. An edge e 2 E.
/ has either both tail and head contained in one of the
subsets fMi�1 C 1; : : : ;Mig, for some i D 1; : : : ; n, in which case it corre-
sponds to an edge of �m1���mn

i .
/, or it does not, in which case it corresponds
to an edge of �m1���mn

0 .
/. ut
It follows from Lemma 9.2 that the cooperad of graphs G is graded by the

number of edges.

Lemma 9.3. Let C � E.
/ be an oriented cycle of an n-graph 
 2 G .n/.
Then,

(a) either �.C/ � E.�
m1���mn

i .
//, in which case �.C/ is an oriented cycle
of �m1���mn

i .
/ 2 G .mi /;
(b) or, �.C/ \E.�m1���mn

0 .
// is an oriented cycle of �m1���mn

0 .
/ 2 G .n/.

Proof. Obvious. ut
Let, as above,m1; : : : ; mn be positive integers, and let 
 2 G .Mn/. We now

introduce an important notion, which will be essential in Sect. 10.
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Definition 9.4. Let k 2 f1; : : : ;Mng and j 2 f1; : : : ; ng. We say that j is ex-
ternally connected to k (via the graph 
 and its cocomposition �m1���mn.
/) if
there is an unoriented path (without repeating edges) of �m1���mn

0 .
/ joining j
to i , where i 2 f1; : : : ; ng is such that k 2 fMi�1 C 1; : : : ;Mig, and the edge
out of i is the image, via the map � in (9.4), of an edge which has its head or
tail in k. We denote by

E .k/ D E .
;m1; : : : ; mnI k/ � f1; : : : ; ng;
the set of all j 2 f1; : : : ; ng which are externally connected to k. Moreover,
given a set of variables x1; : : : ; xn, we denote

X.k/ D X.
;m1; : : : ; mnI k/ D
X

j2E .k/

xj : (9.5)

For example, for the graph in (9.3), we have

X.1/ D x1 C x2 C x4; X.2/ D 0; X.3/ D x1 C x2 C x4;

X.4/ D x1 C x2 C x4; X.5/ D 0; X.6/ D x1 C x2 C x4; X.7/ D 0;

X.8/ D 0; X.9/ D x1 C x2:

Note that, if k 2 fMi�1 C 1; : : : ;Mig, then i 62 E .k/ unless �m1���mn

0 .
/ is not
acyclic.

Example 9.5. In the setting of Example 9.1, let m1 D k C 1 and m2 D � � � D
mn D 1. Assuming that N
 00 is acyclic, for every ` D 0; : : : ; k, the set E .`/
coincides with the set of vertices of the graph G` defined in Sect. 8.4.

9.2. Coassociativity of the cocomposition map of n-graphs

The collection of sets G .n/, n � 0, together with the cocomposition maps (9.1),
defines a cooperad [LV12], or, equivalently, the dual G � is naturally an operad.

We will not give a formal definition of what a cooperad is (since we will
never use it), but we will prove here the main conditions: coassociativity, in
Proposition 9.6 below, and coequivariance with respect to the action of the sym-
metric group, in the next Sect. 9.3, see Proposition 9.7.

Fix a list m1; : : : ; mn of n positive integers, denote Mi D Pi
jD1mj , i D

0; : : : ; n, as in (2.9), then fix a list `1; : : : ; `Mn
of Mn positive integers, and

denote Lj D Pj

kD1
`k , j D 0; : : : ;Mn, as in (2.14). Given a graph 
 2

G0.LMn
/, we can apply to it the cocomposition �`1���`Mn , to get

�
`1���`Mn

0 .
/ 2 G .Mn/;

�
`1���`Mn

1 .
/ 2 G .`1/; : : : ; �
`1���`Mn

Mn
.
/ 2 G .`Mn

/;
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and, to the first graph above, we can further apply the cocomposition map
�m1���mn (9.1), to get

�
m1���mn

0 .�
`1���`Mn

0 .
// 2 G .n/;

�
m1���mn

1 .�
`1���`Mn

0 .
// 2 G .m1/; : : : ; �
m1���mn
n .�

`1���`Mn

0 .
// 2 G .mn/:

Alternatively, we can consider the n integers (summing to LMn
)

K1 WD LM1
D

M1X
jD1

j̀ ; K2 WD LM2
� LM1

D
M2X

jDM1C1

j̀ ; : : : ;

Kn WD LMn
� LMn�1

D
MnX

jDMn�1C1

j̀ ;

we can apply the corresponding cocomposition map �K1���Kn to 
 , to get

�
K1���Kn

0 .
/ 2 G .n/;

�
K1���Kn

1 .
/ 2 G .K1/; : : : ; �
K1���Kn
n .
/ 2 G .Kn/;

and, to each of the graph in the second line, we can apply the corresponding
cocomposition map �`Mi�1C1���`Mi , i D 1; : : : ; n to get

�
`Mi�1C1���`Mi

0 .�
K1���Kn

i .
// 2 G .mi /;

�
`Mi�1C1���`Mi

1 .�
K1���Kn

i .
// 2 G .`Mi�1C1/; : : : ;

�
`Mi�1C1���`Mi
mi

.�
K1���Kn

i .
// 2 G .`Mi
/:

Proposition 9.6. The cocomposition maps (9.1) of graphs satisfy the following
coassociativity conditions:

(i) �m1���mn

0 .�
`1���`Mn

0 .
// D �
K1���Kn

0 .
/ in G .n/;

(ii) �m1���mn

i .�
`1���`Mn

0 .
// D �
`Mi�1C1���`Mi

0 .�
K1���Kn

i .
// in G .mi /, for ev-
ery i D 1; : : : ; n;

(iii) �`1���`Mn

Mi�1Cj .
/ D �
`Mi�1C1���`Mi

j .�
K1���Kn

i .
// in G .`ij /, for every i D
1; : : : ; n and j D 1; : : : ; mi .

Proof. All claims become obvious if they are explained “pictorially”. Consider
an arbitrary graph, which we can depict as follows:
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D : : : : : :: : : : : : : : : : : :

L

K1 Ki Kn
`1

`m1

`Mi 1Cj
`Mn 1C1

`Mn

,

where each of the intermediate ovals surround subgraphs ofK1; : : : ; Kn vertices
respectively, and, inside the i -th oval, the inner circles surround subgraphs of
`Mi�1C1,: : : ; `Mi

vertices respectively.
In condition (i), the graph �K1���Kn

0 .
/ in the right-hand side is obtained
starting from 
 and collapsing all intermediate subgraphs (= intermediate ovals)
to single vertices. On the other hand, the graph �m1���mn

0 .�
`1���`Mn

0 .
// in the
left-hand side is obtained by first collapsing all the inner subgraphs (= inner
circles) to single vertices and then, in the resulting graph, by further collapsing
the intermediate subgraphs (= intermediate ovals) to single vertices. The result
is obviously the same.

In condition (ii), the graph �m1���mn

i .�
`1���`Mn

0 .
// in the left-hand side is
obtained starting from 
 by collapsing all inner subgraphs (= inner circles) to
single vertices, and then, in the resulting graph, by taking the i -th intermedi-

ate subgraph. On the other hand, the graph �
`Mi�1C1���`Mi

0 .�
K1���Kn

i .
// in the
right-hand side is obtained by first taking the i -th intermediate subgraph (= inter-
mediate oval) of 
 , and then, inside it, by collapsing all inner subgraphs (=inner
circles) to single vertices. The result is obviously the same.

Finally, in condition (iii), the graph �`1���`Mn

Mi�1Cj .
/ in the left-hand side is
obtained by looking at the .Mi�1 C j /-th inner subgraph (= inner circle) of

 , which is the j -th circle inside the i -th intermediated oval, while the graph

�
`Mi�1C1���`Mi

j .�
K1���Kn

i .
// in the right-hand side is obtained by first taking
the i -th intermediate subgraph (= intermediate oval) of 
 , and then, inside it,
by taking the j -th inner subgraph (= inner circle). The result is obviously the
same. ut

9.3. Coequivariance of the cocomposition map of n-graphs

For every n � 1, there is a natural (left) action of the symmetric group Sn on the
set G0.n/ of acyclic n-graphs, and on the set G .n/ of all n-graphs. It is defined
as follows: given the n-graph 
 and the permutation � 2 Sn, we define �.
/
to be the same graph as 
 , but with the vertex which was labeled 1 relabeled
as �.1/, and so on up to the vertex which was labeled n, which is relabeled as
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�.n/. For example, if 
 2 G0.4/ is the following 4-graph:


 D
1 2 3 4

2 G .4/;

and � 2 S4 is the permutation � D .1 3 4/ (in the standard cycle decomposi-
tion), then

�.
/ D
3 2 4 1

D
1 2 3 4

.

Proposition 9.7. For every positive integers n;m1; : : : ; mn, every permutations
� 2 Sn, �1 2 Sm1

, : : : , �n 2 Smn
, and every graph 
 2 G0.m1 C � � � C mn/,

we have

�
m

��1.1/
���m

��1.n/..�.�1; : : : ; �n//.
//

D .�.�
m1���mn

0 .
//; ���1.1/.�
m1���mn

��1.1/
.
//; : : : ; ���1.n/.�

m1���mn

��1.n/
.
///;

(9.6)

where the composition of permutations �.�1; : : : ; �n/ is defined by (2.10).

Proof. Also for this proposition we provide a “pictorial” proof. Consider an
arbitrary acyclic .m1C� � �Cmn/-graph 
 , which we depict as:

D : : : : : :: : : : : : : : : : : :

1 m1

m1 mi 1 C j m1 mn

,

(9.7)
where we represented only the vertices (not the edges), labeled from 1 to m1 C
� � �Cmn, grouped (by the inner ovals) in groups ofm1; : : : ; mn vertices. Hence,
as indicated, the vertex in the i -th oval (i D 1; : : : ; n), in the j -th position within
that oval (j D 1; : : : ; mi ) is labeled m1 C � � � Cmi�1 C j .

When we apply the permutation �.�1; : : : ; �n/ 2 Sm1C���Cmn
to the graph


 , we get, by the way the symmetric group acts on G0.m1 C � � � C mn/, the
exact same picture, but with the vertices labeled according to the action of the
permutation �.�1; : : : ; �n/, given by formula (2.12). Hence, we have
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.�.�1; : : : ; �n//.
/

D : : : : : :: : : : : : : : : : : : :

vertex labeled:
m��1.1/ C � � � Cm��1.�.i/�1/ C �i .j /

Then, to get the picture of .�.�1; : : : ; �n//.
/, with the vertices in the correct
order, we should rearrange the vertices of picture (9.8) by moving the vertex
labeled by 1 (which, in the picture (9.8), is in the i D ��1.1/-th oval, in
��1

��1.1/
.1/-th position) in first position, the vertex labeled 2 in second position,

and so on. Hence, in this rearrangement, the i -th oval of picture (9.7) will be
moved to position �.i/, and, within that oval, the j -th vertex will be moved to
position �i .j /.

Note that, while, in picture (9.7) the ovals contain, in the order they
are depicted, m1; : : : ; mn vertices respectively, in the rearranged graph
.�.�1; : : : ; �n//.
/, where the vertex labeled 1 come first, the vertex labeled
2 comes second, and so on, the vertices will be grouped in ovals containing
m��1.1/; : : : ; m��1.n/ vertices respectively. Hence, we should apply the cocom-
position map �m

��1.1/
���m

��1.n/ to it.
According to the definition, the graph

�
m

��1.1/
���m

��1.n/

0 ..�.�1; : : : ; �n//.
//

is obtained by collapsing all the ovals in picture (9.8) to single vertices:

: : : : : : .

(9.8)

Obviously, this is the same graph as

�.�m1���mn.
//;

where we first collapse all the inner ovals of 
 in picture (9.7) to single vertices,
and then we apply the permutation � 2 Sn, i.e., we relabel the vertices according
to � .
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Next, according to the definition, the graph

�
m

��1.1/
���m

��1.n/

�.i/
..�.�1; : : : ; �n//.
//

is the subgraph corresponding to the �.i/-th oval of the graph .�.�1; : : : ; �n//.
/

(rearranged), i.e., the i -th oval of picture (9.8):

: : : : : :: : : : : : : : : : : : :

�i .j /

Obviously, this is the same as the graph

�i .�
m1���mn

i .
//;

where we first take the subgraph of 
 corresponding to the i -th oval of picture
(9.7), and then we apply the permutation �i 2 Smi

, i.e., we relabel the vertices
according to �i . ut

10. The operad governing Poisson vertex superalgebras

10.1. Definition of a Poisson vertex superalgebra

Recall that a Poisson vertex superalgebra (abbreviated PVA) is a commutative
associative superalgebra V endowed with an even derivation @ and a Lie con-
formal superalgebra �-bracket f� � �g satisfying the left Leibniz rule:

fa�bcg D fa�bgc C .�1/p.b/p.c/fa�cgb: (10.1)

10.2. Definition of the operad P cl

Let V D VN0 ˚ V N1 be a vector superspace endowed with an even endomorphism
@ 2 EndV . The operad P cl is the collection of superspaces P cl.n/ defined as
follows. As a vector superspace, P cl.n/ is the space of all maps

f W G .n/ � V ˝n �! V Œ�1; : : : ; �n�=h@C �1 C � � � C �ni; (10.2)

which are linear in the second factor, mapping the n-graph 
 2 G .n/ and the
monomial v1 ˝ � � � ˝ vn 2 V ˝n to the polynomial

f 	
�1;:::;�n

.v1 ˝ � � � ˝ vn/; (10.3)
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satisfying the cycle relations and the sesquilinearity conditions described below.
The cycle relations state that

f 	 D 0 unless 
 2 G0.n/; (10.4)

and if C � E.
/ is an oriented cycle of 
 , thenX
e2C

f 	ne D 0; (10.5)

where 
 n e is the graph obtained from 
 by removing the edge e. Note that
these are the same relations as in Lemma 8.4. Condition (10.5) follows from
(10.4) unless 
 contains a unique oriented cycle. In the special case of oriented
cycles of length 2, the cycle relation (10.5) means that changing orientation of
a single edge of the n-graph 
 2 G .n/ amounts to a change of sign of f 	 .

To write the sesquilinearity conditions, let 
 D 
1t� � �t
s be the decompo-
sition of 
 as disjoint union of its connected components, and let I1; : : : ; Is �
f1; : : : ; ng be the sets of vertices associated to these connected components.
For example, for the graph 
 in (9.3), we have 
 D 
1 t 
2, with I1 D
f1; 2; 3; 4; 5; 6; 8; 9g and I2 D f7g. Then for every ˛ D 1; : : : ; s, we have two
sesquilinearity conditions. The first one states

@

@�i
f 	

�1;:::;�n
.v1 ˝ � � � ˝ vn/ is the same for all i 2 I˛: (10.6)

In other words, the polynomial f 	
�1;:::;�n

.v1 ˝ � � � ˝ vn/ is a function of the
variables �	˛

D P
i2I˛

�i , ˛ D 1; : : : ; s (cf. (8.10)), and not of the variables
�1; : : : ; �n separately. The second sesquilinearity condition is, again in the no-
tation (8.10),

f 	
�1;:::;�n

.@	˛
.v1 ˝ � � � ˝ vn// D ��	˛

f 	
�1;:::;�n

.v1 ˝ � � � ˝ vn/: (10.7)

These are the same relations as in Lemma 8.6.

Remark 10.1. Since 
 is a disjoint union of its connected components 
˛ , the
second sesquilinearity condition (10.7) implies

f 	
�1;:::;�n

.@	v/ D �
nX

iD1

�i f
	

�1;:::;�n
.v/ D @.f 	

�1;:::;�n
.v//; v 2 V ˝n

(10.8)
(cf. Remark 6.5).

The space P cl.n/ decomposes as a direct sum

P cl.n/ D
M
r�0

grr P cl.n/; (10.9)

where grr P cl.n/ is the subspace of all maps (10.2) vanishing on graphs 
 with
number of edges not equal to r .
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Remark 10.2. Let V D L
r grr V be a graded vector space, and consider the

induced grading of the tensor powers V ˝k . Then the classical operad P cl.V /

has a refined grading defined as follows: f 2 grr P cl.k/.V / if, for every graph

 2 G .k/ with s edges, we have

f 	
�1;:::;�k

.grt V ˝k/ � .grsCt�r V /Œ�1; : : : ; �k�=h@C �1 C � � � C �ki:

The grading (10.9) corresponds to the special case when V D gr0 V .

The Z=2Z-grading of the superspace P cl.n/ is induced by that of the vector
superspace V (as before, the variables �i are even and commute). We also have
a natural right action of the symmetric group Sn on P cl.n/ by (parity preserv-
ing) linear maps, defined by the following formula (f 2 P cl.n/, 
 2 G .n/,
v1; : : : ; vn 2 V ):

.f � /	�1;:::;�n
.v1 ˝ � � � ˝ vn/ D f

�.	/

�.�1;:::;�n/
.�.v1 ˝ � � � ˝ vn//; (10.10)

where �.�1; : : : ; �n/ is defined by (2.8), �.v1 ˝ � � � ˝ vn/ is defined by (2.2),
and �.
/ is defined in Sect. 9.3.

Next, we define the composition maps of the operadP cl. Let f 2 P cl.n/ and
g1 2 P cl.m1/; : : : ; gn 2 P cl.mn/. Let Mi , i D 0; : : : ; n, and ƒi , i D 1; : : : ; n,
be as in (5.7). Let 
 2 G .Mn/ and consider its cocomposition �m1���mn.
/

defined in Sect. 9.1. We let

.f .g1; : : : ; gn//
	 W V ˝Mn �! V Œ�1; : : : ; �Mn

�=h@C �1 C � � � C �Mn
i

be defined by the following formula:

.f .g1; : : : ; gn//
	
�1;:::;�Mn

.v1 ˝ � � � ˝ vMn
/

D f



m1���mn

0
.	/

ƒ1;:::;ƒn
...jx1Dƒ1C@.g1/



m1���mn

1
.	/

�1CX.1/;:::;�M1
CX.M1/

/˝ � � �

˝ .jxnDƒnC@.gn/



m1���mn
n .	/

�Mn�1C1CX.Mn�1C1/;:::;�MnCX.Mn/
//.v1 ˝ � � � ˝ vMn

//:

(10.11)
In formula (10.11) we are using the following notation. Given the graphs 
1 2
G .m1/; : : : ; 
n 2 G .mn/, we let, recalling (5.8),

..g1/
	1

�1;:::;�M1

˝ � � � ˝ .gn/
	n

�Mn�1C1;:::;�Mn
/.v1 ˝ � � � ˝ vMn

/

WD ˙ .g1/
	1

�1;:::;�M1

.v1 ˝ � � � ˝ vM1
/˝ � � � ˝

.gn/
	n

�Mn�1C1;:::;�Mn
.vMn�1C1 ˝ � � � ˝ vMn

/;

(10.12)

with ˙ the same as (5.9). We are using the notation (9.5) for the variables
X.1/; : : : ; X.Mn/ appearing in (10.11). Finally, for polynomials P.�/ D P

m pm�
m
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and Q.	/ D P
n qn	

n with coefficients in V , we denote

.jxD@P.�C y//˝ .jyD@Q.	C x// D
X
m;n

..	C @/npm/˝ ..�C @/mqn/;

(10.13)
and by @g�.w1 ˝ � � � ˝ wm/ we mean @.g�.w1 ˝ � � � ˝ wm//.

Remark 10.3. In view of Examples 9.1 and 9.5, in the special case m1 D k C
1;m2 D � � � D mn D 1 and letting n D k CmC 1, formula (10.11) reduces to
(8.18).

Lemma 10.4. With the above notation, the right-hand side of (10.11) is a well-
defined element of V Œ�1; : : : ; �Mn

�=h@C�1 C� � �C�Mn
i, for every f 2 P cl.n/

and g1 2 P cl.m1/; : : : ; gn 2 P cl.mn/.

Proof. First observe that, if �m1���mn

0 .
/ is not acyclic, then the right-hand side
of (10.11) is 0, since by assumption f satisfies (10.4). On the other hand, if
�

m1���mn

0 .
/ is acyclic, then by the observation at the end of Sect. 9.1, the vari-
able xi does not appear in X.k/ when k 2 fMi�1 C1; : : : ;Mig. This makes the
right-hand side of (10.11) a well-defined polynomial for given polynomials

.gi /
	i

�Mi�1C1;:::;�Mi

.vMi�1C1 ˝ � � � ˝ vMi
/: (10.14)

However, (10.14) are only determined up to adding elements of

h@C �Mi�1C1 C � � � C �Mi
i D hƒi C @i;

and we need to check that the right-hand side of (10.11) will remain the same
after that. Fix 1 � i � n, and replace in (10.11) the polynomial (10.14) with

.ƒi C @/.hi /
	i

�Mi�1C1;:::;�Mi

.vMi�1C1 ˝ � � � ˝ vMi
/

for some map

hi W G .mi / � V ˝mi �! V Œ�Mi�1C1; : : : ; �Mi
�:

Let us introduce the shorthand notation

QgG
i D .jxiDƒiC@.gi /

G
�Mi�1C1CX.Mi�1C1/;:::;�Mi

CX.Mi //; (10.15)

for an arbitrary graph G. Then in (10.11), we need to replace Qg

m1���mn

i
.	/

i with

jxiDƒiC@.ƒi C @CX.Mi�1 C 1/C � � � CX.Mi // Qh

m1���mn

i
.	/

i : (10.16)

It follows from the definition (9.5) of X.k/, that

X.Mi�1 C 1/C � � � CX.Mi / D
X

j

xj ;
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where the sum is over all 1 � j � n such that j is connected by an unoriented
path with i in the graph �m1���mn

0 .
/. Together with xi , this gives the sum of
all xj where j is a vertex of the connected component 
0

i of i in �m1���mn

0 .
/.
Then after setting all xj D ƒj C @, we obtainX

j2	0
i

.ƒj C @j / D ƒ	0
i

C @	0
i
;

using again the notation (8.10). Then after applying f



m1���mn

0
.	/

ƒ1;:::;ƒn
we get 0, be-

cause f satisfies the second sesquilinearity condition (10.7). ut
Lemma 10.5. For every f 2 P cl.n/ and g1 2 P cl.m1/; : : : ; gn 2 P cl.mn/,
the composition f .g1; : : : ; gn/, defined by (10.11), is an element of P cl.Mn/.

Proof. We need to check that f .g1; : : : ; gn/ satisfies the cycle relations (10.4),
(10.5) and the sesquilinearity conditions (10.6), (10.7). Observe that if 
 2
G .Mn/ contains a cycle, then one of the graphs �m1���mn

i .
/, i D 0; 1; : : : ; n,
must contain a cycle as well. Evaluating f for i D 0 or gi for 1 � i � n, we
obtain 0, because f and gi satisfy (10.4). Therefore, f .g1; : : : ; gn/ satisfies the
first cycle relation (10.4).

To prove the second cycle relation (10.5), consider an oriented cycle C �
E.
/ of 
 2 G .n/. Recalling (10.11), we need to show thatX

e2C

f



m1���mn

0 .	ne/

ƒ1;:::;ƒn
. Qg


m1���mn

i
.	ne/

1 ˝ � � � ˝ Qg

m1���mn
n .	ne/

n / D 0; (10.17)

where we use the notation (10.15). Given an edge e 2 C , consider its image
�.e/ under the map (9.4). Clearly, we have

�
m1���mn

i .
 n e/ D
(
�

m1���mn

i .
/ n�.e/; if �.e/ 2 E.�m1���mn

i .
//;

�
m1���mn

i .
/; otherwise.

Hence, by Lemma 9.2, the left-hand side of (10.17) is equal toX
e02
.C /\E.


m1���mn

0 .	//

f



m1���mn

0 .	/ne0

ƒ1;:::;ƒn
. Qg


m1���mn

i
.	ne/

1 ˝ � � � ˝ Qg

m1���mn
n .	ne/

n /

C
nX

iD1

X
e02
.C /\E.


m1���mn

i
.	//

f



m1���mn

0 .	/

ƒ1;:::;ƒn
. Qg


m1���mn

1 .	/

1 ˝ � � � ˝ (10.18)

Qg

m1���mn

i
.	/ne0

i ˝ � � � ˝ Qg

m1���mn
n .	/

n /:
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If �.C/ � E.�
m1���mn

i .
//, then (10.18) reduces to

X
e02
.C /

f



m1���mn

0 .	/

ƒ1;:::;ƒn
. Qg


m1���mn

1 .	/

1 ˝� � �˝ Qg

m1���mn

i
.	/ne0

i ˝� � �˝ Qg

m1���mn
n .	/

n /:

(10.19)
In this case, by Lemma 9.3 (a),�.C/ is an oriented cycle of�m1���mn

i .
/, hence
(10.19) vanishes by the second cycle condition (10.5) for gi . On the other hand,
if �.C/ is not contained in E.�m1���mn

i .
// for any i D 1; : : : ; n, then by
Lemma 9.3, �.C/ \ E.�

m1���mn

0 .
// is an oriented cycle of �m1���mn

0 .
/. In
this case, the first sum of (10.18) vanishes since f satisfies (10.5). Moreover,
each term in the second sum of (10.18) vanishes as well, since �m1���mn

0 .
/ is
not acyclic and f satisfies (10.4). We conclude that f .g1; : : : ; gn/ satisfies the
second cycle condition (10.5) as claimed.

Next, we will prove that f .g1; : : : ; gn/ satisfies the first sesquilinearity re-
lation (10.6). Let .h ! k/ be an edge in the graph 
 . We need to prove that the
right-hand side of (10.11) is a polynomial of .�h C �k/ and not of �h and �k

separately. First, suppose that for some i D 1; : : : ; n, we have

h; k 2 fMi�1 C 1; : : : ;Mig; i.e., h D Mi�1 C r; k D Mi�1 C q;

for some r; q 2 f1; : : : ; mig. In this case, �h and �k are both summands of ƒi ;
hence fƒ1;:::;ƒn

has the required property (of being polynomial of .�h C �k/

and not of �h and �k separately). The image of .h ! k/ under the map (9.4) is

an edge .r ! q/ in �m1���mn

i .
/. Thus, .gi /



m1���mn

i
.	/

�Mi�1C1;:::;�Mi

is a polynomial of
.�h C �k/ by the first sesquilinearity property of gi .

Now suppose that

h 2 fMi�1 C 1; : : : ;Mig; k 2 fMj�1 C 1; : : : ;Mj g;
for different i; j 2 f1; : : : ; ng. In this case, .i ! j / is an edge in the graph

�
m1���mn

0 .
/. Therefore, f



m1���mn

0 .	/

ƒ1;:::;ƒn
is a polynomial of .ƒi Cƒj /, and hence

of .�h C �k/. Furthermore, by the assumption (10.6) on gt .t D 1; : : : ; n/

and by the definition (9.5) of the variables X.1/; : : : ; X.Mn/, all the �l ’s of the
same connected component of �h and �k appear as summed in the polynomial

Qg

m1���mn
t .	/

t . We conclude that (10.6) holds for f .g1; : : : ; gn/, as claimed.
Finally, we will show that f .g1; : : : ; gn/ satisfies the second sesquilinearity

relation (10.7). Let G be one of the connected components of 
 , and consider
the imageGi D �

m1���mn

i .G/ .0 � i � n/ ofG under the map (9.4). Note that if
G0 contains a cycle, then�m1���mn

0 .
/ does, which implies .f .g1; : : : ; gn//
	 D

0. Hence, we can suppose that G0 is acyclic. Then it is easy to see that all Gi

.0 � i � n/ are connected. Furthermore, the set of vertices of G is the disjoint
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union of the sets of vertices of Gi .1 � i � n/. Thus, using again the notation
(8.10), we have

�G C @G D
nX

iD1

.�Gi
C @Gi

/;

and to prove (10.7) for f .g1; : : : ; gn/, it is enough to show that

.f .g1; : : : ; gn//
	
�1;:::;�Mn

..�Gi
C @Gi

/v/ D 0; v 2 V ˝Mn ; 1 � i � n:

(10.20)
Since gi itself satisfies (10.7), we have from (10.11):

f



m1���mn

0
.	/

ƒ1;:::;ƒn
. Qg


m1���mn

i
.	/

1 ˝ � � � ˝ Qg

m1���mn
n .	/

n /
��
�Gi

C @Gi
C
X

k2Gi

X.k/
�
v
�

D 0:

As in the proof of Lemma 10.4 (cf. (10.16)), we see from the definition (9.5) of
X.k/, that X

k2Gi

X.k/ D
X

j2G0nfig
xj :

After setting all xj D ƒj C @, we can add xi to the above sum, because gi is
defined only up to adding elements of hƒi C @i. We obtainX

j2G0

xj jxjDƒjC@ D ƒG0
C @G0

:

After applying f



m1���mn

0 .	/

ƒ1;:::;ƒn
to this we get 0, since f satisfies (10.7). This

proves (10.20) and finishes the proof of the lemma. ut
Theorem 10.6. The vector superspaces P cl.n/, n � 0, together with the actions
of the symmetric groups Sn given by (10.10) and the composition maps defined
by (10.11), form an operad, which is graded by (10.9).

Proof. First, let us check that f � 2 P cl.n/ for every f 2 P cl.n/ and � 2 Sn.
The cycle relations (10.4) and (10.5) for f � are obvious, using the fact that
if C � E.
/ is an oriented cycle of 
 , then �.C / (obtained by applying �
to the tails and heads of all edges in C ) is an oriented cycle of �.
/. Next, if

 D 
1 t � � � t 
s is a disjoint union of connected components, then �.
/ is
a disjoint union of connected components �.
1/ t � � � t �.
s/. From here, it
is easy to derive the sesquilinearity conditions (10.6) and (10.7) for f � . Thus,
f � 2 P cl.n/.

We have already shown in Lemma 10.5 that the composition f .g1; : : : ; gn/ 2
P cl.Mn/ for f 2 P cl.n/ and gi 2 P cl.mi /. It is clear by construction that the
action of the symmetric group (10.10) and the composition maps (10.11) are
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parity preserving linear maps P cl.n/ ! P cl.n/ and P cl.n/˝ P cl.m1/˝ � � � ˝
P cl.mn/ ! P cl.Mn/, respectively. The unity axioms (3.3) are obvious, where
the unit 1 2 P cl.1/ is the identity operator

1��.v/ D v C h@C �i 2 V Œ��=h@C �i Š V;

and � represents the graph with one vertex. The fact that P cl is a graded operad
follows from Lemma 9.2 and the definition (10.10), (10.11) of the operad struc-
ture. To finish the proof of the theorem, we need to verify the associativity (3.2)
of the composition and the equivariance (3.4) of the symmetric group action.

To prove the associativity axiom, given f 2 P cl.n/, gi 2 P cl.mi / and
hij 2 P cl.`ij /, we need to show that ' D  , where

' D f .g1.h11; : : : ; h1m1
/; : : : ; gn.hn1; : : : ; hnmn

//;

 D .f .g1; : : : ; gn//.h11; : : : ; h1m1
; : : : ; hn1; : : : ; hnmn

/:

Let us introduce the lexicographically ordered index sets

J D f.ij / j 1 � i � n; 1 � j � mig;
K D f.ijk/ j 1 � i � n; 1 � j � mi ; 1 � k � `ij g;

and the notation

ƒi D
miX

jD1

`ijX
kD1

�ijk; ƒij D
`ijX

kD1

�ijk; 1 � i � n; .ij / 2 J ;

Li D
miX

jD1

`ij ; L D
nX

iD1

Li D
nX

iD1

miX
jD1

`ij :

Then for any graph 
 2 G0.L/ and vectors vijk 2 V , we find from the definition
of composition (10.11):

'	
.�ijk/.ijk/2K

� O
.ijk/2K

vijk

�

D f



L1���Ln

0
.	/

ƒ1;:::;ƒn

� nO
iD1

.gi /



`i1���`imi
0 .


L1���Ln

i
.	//

ƒi1;:::;ƒimi

� miO
jD1

.hij /



`i1���`imi
j

.

L1���Ln

i
.	//

�ij1;:::;�ij`ij

� `ijO
kD1

vijk

���
;

 	
.�ijk/.ijk/2K

� O
.ijk/2K

vijk

�
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D f



m1���mn

0 .

`11���`nmn
0

.	//

ƒ1;:::;ƒn

� nO
iD1

.gi /



m1���mn

i
.


`11���`nmn
0

.	//

ƒi1;:::;ƒimi

� miO
jD1

.hij /



`11���`nmn
m1C���Cmi�1Cj

.	/

�ij1;:::;�ij`ij

� `ijO
kD1

vijk

���
:

The above right-hand sides are equal by Proposition 9.6, thus proving the asso-
ciativity axiom (3.2).

Now we will prove the supersymmetric equivariance (3.4). Let f 2 P cl.n/,
gi 2 P cl.mi / as before, and � 2 Sn, �i 2 Smi

for 1 � i � n. Then for a graph

 2 G0.m1 C � � � Cmn/ and vectors vij 2 V , we compute:

.f � .g
�1

1 ; : : : ; g
�n
n //

	
�11;:::;�nmn

� O
.ij /2J

vij

�

D .f � /



m1���mn

0
.	/

ƒ1;:::;ƒn

� nO
iD1

.g
�i

i /



m1���mn

i
.	/

�i1;:::;�imi

� miO
jD1

vij

��

D f
�.


m1���mn

0
.	//

ƒ
��1.1/

;:::;ƒ
��1.n/

�
�
� nO

iD1

.gi /
�i .


m1���mn

i
.	//

�
i��1

i
.1/

;:::;�
i��1

i
.mi /

�
�i

� miO
jD1

vij

����
D �g.�/�Nn

iD1 �i .
Nm1

j D1
vij /

.�/ f
�.


m1���mn

0 .	//

ƒ
��1.1/

;:::;ƒ
��1.n/� nO

iD1

.g��1.i//
�

��1.i/
.


m1���mn

��1.i/
.	//

�
��1.i/��1

��1.i/
.1/

;:::;�
��1.i/��1

��1.i/
.m

��1.i/
/

�
���1.i/

�m
��1.i/O
jD1

v��1.i/j

���
D �g.�/�Nn

iD1 �i .
Nm1

j D1
vij /

.�/ f



m
��1.1/

���m
��1.n/

0 ..�.�1;:::;�n//.	//

ƒ
��1.1/

;:::;ƒ
��1.n/� nO

iD1

.g��1.i//



m
��1.1/

���m
��1.n/

i
..�.�1;:::;�n//.	//

�
��1.i/��1

��1.i/
.1/

;:::;�
��1.i/��1

��1.i/
.m

��1.i/
/

�
���1.i/

�m
��1.i/O
jD1

v��1.i/j

���
D �g.�/.f .g��1.1/; : : : ; g��1.n///

.�.�1;:::;�n//.	/

�
��1.1/��1

��1.1/
.1/

;:::;�
��1.n/��1

��1.n/
.m

��1.n/
/�

.�.�1; : : : ; �n//
� O

.ij /2J
vij

��
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D �g.�/..f .g��1.1/; : : : ; g��1.n///
�.�1;:::;�n//	�11;:::;�nmn

� O
.ij /2J

vij

�
:

For the first equality above, we used the definition (10.11) of the composition;
for the second equality, the definition (10.10) of the action of the symmetric
group on P cl.n/; for the third equality, the definition (2.2)–(2.3) of the action of
Sn on a tensor product of n vector superspaces; for the fourth equality, Propo-
sition 9.7; for the fifth equality, we used again (10.11), (2.2) and the definition
of the composition of permutations; and for the last equality, we used again
(10.10).

This completes the proof of the theorem. ut

10.3. Poisson vertex algebras and the operad P cl

As in Sect. 7.4, given the vector superspace V , with parity p, and the even endo-
morphism @ 2 End.V /, we denote by …V the same vector space with reversed
parity Np D 1 � p. Consider the corresponding operad P cl.…V / from Sect.
10.2 and the associated Z-graded Lie superalgebra W cl.…V / WD W.P cl.…V //

given by Theorem 3.4.

Theorem 10.7. We have a bijective correspondence between the odd elements
X 2 W cl

1 .…V / such that X�X D 0 and the Poisson vertex superalgebra
structures on V , defined as follows. The commutative associative product and
the �-bracket of the Poisson vertex superalgebra V corresponding to X are
given by

ab D .�1/p.a/X��!�.a˝ b/; Œa�b� D .�1/p.a/X� ��;���@.a˝ b/: (10.21)

Proof. Note that, by the first sesquilinearity condition (10.6), the polynomial
X��!�

�1;�2
depends only on �1 C �2 	 �@. Hence, it is independent of �1; �2. For

this reason, in the first equation of (10.21) we omitted the subscripts �1; �2.
First, we check that the symmetry of X translates to the commutativity of

the product ab and the skew-symmetry of the �-bracket Œa�b�. We have

X��!�.v1 ˝ v2/ D .X .12//��!�.v1 ˝ v2/ D .�1/ Np.v1/ Np.v2/X� ��.v2 ˝ v1/

D .�1/p.v1/Cp.v2/Cp.v1/p.v2/X��!�.v2 ˝ v1/;

which, by the first equation in (10.21), is equivalent to the symmetry condition
of the product: v1v2 D .�1/p.v1/p.v2/v2v1. Similarly, evaluating the identity
X D X .12/ on the disconnected graph � �, we get

X� ��;���@.v1 ˝ v2/ D .X .12//� ��;���@.v1 ˝ v2/

D .�1/ Np.v1/ Np.v2/X� ����@;�.v2 ˝ v1/;



322 B. Bakalov, A. De Sole, R. Heluani and V.G. Kac

which, by the second equation in (10.21), is equivalent to the skew-symmetry
condition (5.3) of the �-bracket.

Next, we need to prove that the condition X�X D 0 translates to three
conditions: the associativity of the product ab, the Jacobi identity (5.3) for the
�-bracket Œa�b�, and the Leibniz rule (10.1). Recall that, by (3.14),

X�X D X ı1 X CX ı2 X C .X ı2 X/
.12/:

Since, by construction, X�X is invariant by the action of the symmetric group,
to impose the condition X�X D 0 is the same as to impose .X�X/	 D 0 for
each of the three graphs:

1 2 3
,

1 2 3
,

1 2 3
. (10.22)

Evaluating all three summands of X�X on the disconnected graph � � �, we
get, by the definition (10.11) of the composition maps,

.X ı1 X/
� � �
�1;�2;�3

.v1 ˝ v2 ˝ v3/

D X� ��1C�2;�3
.X� ��1;�2

.v1 ˝ v2/ ˝ v3/

D .�1/p.v2/ŒŒv1�1
v2��1C�2

v3�;

.X ı2 X/
� � �
�1;�2;�3

.v1 ˝ v2 ˝ v3/

D .�1/ Np.v1/X� ��1;�2C�3
.v1 ˝X� ��2;�3

.v2 ˝ v3//

D .�1/1Cp.v2/Œv1�1
Œv2�2

v3��;

..X ı2 X/
.12//� � ��1;�2;�3

.v1 ˝ v2 ˝ v3/

D .�1/ Np.v1/ Np.v2/.X ı2 X/
� � �
�2;�1;�3

.v2 ˝ v1 ˝ v3/

D .�1/p.v2/Cp.v1/p.v2/Œv2�2
Œv1�1

v3��:

Hence, the condition .X�X/� � � D 0 is equivalent to the Jacobi identity (5.3)
for the �-bracket.

Evaluating all three summands of X�X on the second graph in (10.22), we
get, by the definition (10.11) of the composition maps,

.X ı1 X/
� ��!�
�1;�2;�3

.v1 ˝ v2 ˝ v3/

D X��!�.X� ��1;�2Cx3
.v1 ˝ v2/ ˝ .jx3D�3C@v3//

D .�1/p.v2/Œv1�1
v2�v3;

.X ı2 X/
� ��!�
�1;�2;�3

.v1 ˝ v2 ˝ v3/

D .�1/ Np.v1/X� ��1;�2C�3
.v1 ˝X��!�.v2 ˝ v3//

D .�1/1Cp.v2/Œv1�1
v2v3�;
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..X ı2 X/
.12//� ��!��1;�2;�3

.v1 ˝ v2 ˝ v3/

D .�1/ Np.v1/ Np.v2/.X ı2 X/�2;�1;�3
.v2 ˝ v1 ˝ v3/

D .�1/ Np.v2/C Np.v1/ Np.v2/X��!�..jx2D�2C@v2/˝X� ��1;�3Cx2
.v1 ˝ v3//

D .�1/p.v2/Cp.v1/p.v2/v2Œv1�1
v3�:

Hence, the condition .X�X/� ��!� D 0 is equivalent to the Leibniz rule (10.1).
Finally, we evaluate all three summands of X�X on the third graph in

(10.22). We get

.X ı1 X/
��!��!�
�1;�2;�3

.v1 ˝ v2 ˝ v3/ D X��!�.X��!�.v1 ˝ v2/ ˝ v3/

D .�1/p.v2/.v1v2/v3;

.X ı2 X/
��!��!�
�1;�2;�3

.v1 ˝ v2 ˝ v3/ D .�1/ Np.v1/X��!�.v1 ˝X��!�.v2 ˝ v3//

D .�1/1Cp.v2/v1.v2v3/;

..X ı2 X/
.12//��!��!��1;�2;�3

.v1 ˝ v2 ˝ v3/

D .�1/ Np.v1/ Np.v2/.X ı2 X/�2;�1;�3
.v2 ˝ v1 ˝ v3/

D .�1/ Np.v2/C Np.v1/ Np.v2/X .� � � / D 0:

The last equality holds because X evaluated on a graph containing a cycle is,
by definition, zero. Hence, the condition .X�X/��!��!� D 0 is equivalent to the
associativity of the product. This completes the proof. ut

In view of Theorem 10.7, we have the definition of the corresponding coho-
mology complex.

Definition 10.8. Let V be a Poisson vertex superalgebra. The corresponding
PVA cohomology complex is defined as

.W cl.…V /; adX/;

where X 2 W1.…V / N1 is given by (10.21).

Remark 10.9. Let V D L
r grr V be a graded vector superspace. Recall from

Remark 10.2 that we have the corresponding grading of the operad P cl.…V /,
and hence of the Lie superalgebra W cl.…V /. It is easy to check, as for Theo-
rem 8.10, that under the correspondence from Theorem 10.7, the structures of
graded Poisson vertex algebra on V are in bijection with the odd elements X 2
gr1W cl

1 .…V / satisfying X�X D 0. (Recall that V is a graded Poisson vertex
algebra if .grp V /.grq V / � grpCq V and Œgrp V� grq V � � grpCq�1 V Œ��.)
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10.4. Relation between grP ch and P cl

Recall from Corollary 8.8 that for every NX 2 grr P ch.kC1/ (with a representa-
tive X 2 Fr P ch.k C 1/) and every graph 
 2 G .k C 1/ with r edges, we have
the map

X	.D X.p	// W V ˝.kC1/ �! V Œ�0; : : : ; �k�=h@C �0 C � � � C �ki:
Theorem 10.10. For every vector superspace V with an FŒ@�-module structure,
there is a canonical injective morphism of graded operads

grP ch.V / ,�!P cl.V /; (10.23)

mapping NX 2 grr P ch.k C 1/ to:

fX	 j
 2 G .k C 1/ with r edgesg 2 grr P cl.k C 1/: (10.24)

This morphism is a bijection grP ch.k C 1/
�! P cl.k C 1/ for k D �1; 0; 1.

Proof. As a consequence of Corollary 8.8 (a)–(b) and the definition of the
graded operad P cl, the map (10.24) is a well-defined morphism of operads,
and by Corollary 8.8 (c) this morphism is injective. Surjectivity of the mor-
phism for k D �1; 0 is immediate. Let us prove it for k D 1. Recall that
grP cl.2/ D gr0 P cl.2/˚ gr1 P cl.2/. By definition, gr0 P cl.2/ consists of maps

X� � W V ˝2 �! V Œ��;

satisfying the sesquilinearity conditions

X� �� ..@v0/˝ v1/ D ��X� �� .v0 ˝ v1/;

X� �� .v0 ˝ .@v1// D .�C @/X� �� .v0 ˝ v1/:

A preimage QX 2 F 0P ch.2/ D P ch.2/ can be constructed by letting

QX.v0; v1I zn
01/

D

8̂<̂
:
�

� @

@�

�n
X� �� .v0 ˝ v1/ if n � 0;

.�1/m
Z �

0

d	1� � �
Z �m�1

0

d	mX
� �
�m
.v0 ˝ v1/ if n D �m � �1:

It is not hard to check that, indeed, QX is a well-defined element of P ch.2/ and
the image of its coset Œ QX� 2 gr0 P ch.2/ D F 0P ch.2/=F 1P ch.2/ via the mor-
phism (10.23) coincides with X� �. Next, gr1 P cl.2/ consists of FŒ@�-module
homomorphisms

X�!� W V ˝2 �! V:
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A preimage QX 2 F 1P ch.2/ can be constructed by letting

QX.v0; v1I zn
01/ D

(
0 if n � 0;
.�1/m
mŠ

X�!�..@C �/mv0 ˝ v1/ if n D �m � 1 � �1:

Again, it is not hard to check that QX is a well-defined element of F 1P ch.2/ D
gr1 P ch.2/ and its image via the morphism (10.23) coincides with X�!�. ut
Example 10.11. Let V be a non-unital vertex algebra. By Theorem 6.12, the
vertex algebra structure of V corresponds to an odd element X 2 W ch

1 .…V / D
P ch.2/.…V / such that X�X D 0. The filtration (8.4) of P ch.2/ is

F0 P ch.2/ D P ch.2/; F1 P ch.2/ D ff jf .OT
2 / D 0g; F2 P ch.2/ D 0:

Hence, the image X0 of gr0X in P cl.2/ via the map defined in Theorem 10.10,
is the element

X0
� � D X.1/; X0

��!� D 0:

Thus we obtain a PVA structure on V , where the �-bracket is the same as for
the vertex algebra V , and the commutative associative product is zero.

Recall that if V is a filtered vector space, then P ch.V / is a filtered operad
with respect to the refined filtration introduced in Sect. 8.5, and P cl.grV / is a
graded operad with respect to the refined grading introduced in Remark 10.2.
Then Theorem 10.10 still holds:

Theorem 10.12. We have a canonical injective morphism of graded operads
from

grP ch.V / ,�! P cl.grV /: (10.25)

Explicitly, Nf 2 grr P ch
k
.V /, with a representative f 2 Fr P ch.V /, is mapped to

the element Qf 2 grr P cl
k
.grV / defined as follows. If 
 2 G .k/ has s edges and

Nv1 ˝ � � � ˝ Nvk 2 grt .V ˝k/ D L
r1C���CrkDt grr1 V ˝ � � � ˝ grrk V , we let

Qf 	
�1;:::;�k

. Nv1 ˝ � � � ˝ Nvk/ D f
z1;:::;zk

�1;:::;�k
.v1; : : : ; vkIp	/C FsCt�r�1 V (10.26)

in .grsCt�r V /Œ�1; : : : ; �k�=h@C �1 C � � � C �ki.
Proof. Straightforward. ut

Let V be a filtered vertex algebra and let grV be the associated graded Pois-
son vertex algebra. By Theorem 8.10, the vertex algebra structure of V cor-
responds to an odd element X 2 F1W ch

1 .…V / D F1 P ch.2/.…V / such that
X�X D 0. Moreover, by Remark 10.9, the Poisson vertex algebra structure of
grV corresponds to an odd element QX 2 gr1W cl

1 .… grV / D gr1 P cl.2/.… grV /
such that QX� QX D 0.
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Theorem 10.13. The image of NX 2 gr1W ch
1 .…V / via the morphism defined by

Theorem 10.12 is QX .

Proof. The proof follows by construction. ut
Obviously, the morphism of operads defined in Theorem 10.12 induces a Lie

superalgebra injective homomorphism

grW ch.…V / ,�! W cl.gr…V /: (10.27)

Moreover, by Theorem 10.13, NX D grX , where X 2 W ch
1 .…V / is associated

to the vertex algebra structure of V , is mapped by the homomorphism (10.27)
to QX 2 W cl

1 .gr…V /, associated to the PVA structure of grV . Summarizing, we
have:

Theorem 10.14. Let V be a filtered vertex algebra and let grV be the associ-
ated graded Poisson vertex algebra. Denote by X 2 F1W ch

1 .…V / the element
corresponding to the vertex algebra structure of V by (6.31) (cf. Theorem 8.10),
and denote by QX 2 gr1W cl

1 .gr…V / the element corresponding to the Poisson
vertex algebra structure of grV by (10.21) (cf. Remark 10.9).

(a) There is a canonical injective homomorphism of graded Lie superalgebras

grW ch.…V / ,�! W cl.gr…V /; (10.28)

mapping NX 2 gr1W ch.…V / to QX 2 gr1W cl
1 .gr…V /.

(b) Hence, we have an injective morphism of complexes

.grW ch.…V /; d NX D gr adX/ �! .W cl.gr…V /; d QX D ad QX/: (10.29)

(c) As a consequence, we have the corresponding Lie superalgebra homomor-
phism of cohomologies:

H.grW ch.…V /; d NX / �! H.W cl.…V /; d QX /: (10.30)

Remark 10.15. It is interesting to understand whether the morphism (10.25) is
in fact an isomorphism. In the recent paper [BDSHK18], we prove this un-
der the assumption that the filtration of V is induced from a grading such that
V Š grV as FŒ@�-modules. In this case, (10.28) and (10.30) are Lie superalge-
bra isomorphisms and, since the cohomology of a complex is majorized by the
cohomology of the associated graded complex, we get the inequalities

dimHk.W ch.…V /; dX / � dimHk.W cl.gr…V /; d QX / (10.31)

for every k � 0.
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10.5. A finite analog of the operad P cl

For a vector superspace V , we can define a finite analog P fn of the operad P cl

introduced in Sect. 10.2 as follows (cf. [Mar96]). We let P fn.n/ be the space of
all maps

f W G .n/ � V ˝n �! V; (10.32)

which are linear in the second factor, mapping the n-graph 
 2 G .n/ and the
monomial v1 ˝ � � � ˝ vn 2 V ˝n to the vector f 	.v1 ˝ � � � ˝ vn/, satisfying
the cycle relations (10.4) and (10.5). The action of the symmetric groups Sn is
given by

.f � /	.v1 ˝ � � � ˝ vn/ D f �.	/.�.v1 ˝ � � � ˝ vn//; (10.33)

where �.v1 ˝ � � � ˝ vn/ is defined by (2.2), and �.
/ is defined in Sect. 9.3. As
for the composition maps, using the cocomposition maps on graphs defined in
(9.2), we let

.f .g1; : : : ; gn//
	 D f 


m1���mn

0
.	/.g1



m1���mn

1
.	/ ˝ � � � ˝ gn



m1���mn
n .	//;

(10.34)
for f 2 P fn.n/, g1 2 P fn.m1/; : : : ; gn 2 P fn.mn/, and 
 2 G .Mn/.

The same proof as for Theorem 10.7 leads to:

Theorem 10.16. We have a bijective correspondence between the odd elements
X 2 W fn

1 .…V / such that X�X D 0 and the Poisson superalgebra structures
on V , given by

ab D .�1/p.a/X��!�.a˝ b/; fa; bg D .�1/p.a/X� �.a˝ b/: (10.35)

11. The variational Poisson cohomology and the PVA cohomology

11.1. The Lie superalgebra W @;as.…V /

In this section, we review the construction of the cohomology complex associ-
ated to a Poisson vertex algebra introduced in [DSK13]. Let V be a commutative
associative superalgebra with an even derivation @. As usual, we denote by p the
parity of V and by …V the space V with reversed parity Np. For k � �1, we let
W

@;as
k

.…V / be the subspace of W @
k
.…V / (cf. Sect. 5.3) consisting of all linear

maps

f W V ˝n �! F�Œ�1; : : : ; �n�˝FŒ@� V;

v1 ˝ � � � ˝ vn 7�! f�1;:::;�n
.v1 ˝ � � � ˝ vn/;
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satisfying the sesquilinearity conditions (5.5) and the following Leibniz rules:

f�1;:::;�n
.v1; : : : ; uiwi ; : : : ; vn/

D .�1/p.wi /.siC1;kCk�i/f�1;:::;�iC@;:::;�n
.v1; : : : ; ui ; : : : ; vn/!wi

C .�1/p.ui /.p.wi /CsiC1;kCk�i/f�1;:::;�iC@;:::;�n
.v1; : : : ; wi ; : : : ; vn/!ui ;

(11.1)
where the arrow means that @ is moved to the right and sij is as in (7.7).

Proposition 11.1 ([DSK13, Proposition 5.1–5.2]). The space

W @;as.…V / D
M

k��1

W
@;as

k
.…V /

is a subalgebra of the Lie superalgebraW @.…V /. Moreover, there is a bijective
correspondence between the odd elements NX 2 W @;as

1 .…V / such that Œ NX; NX� D
0 and the Poisson vertex algebra �-brackets on V , given by

Œa�b� D .�1/p.a/ NX�;���@.a˝ b/: (11.2)

As a consequence, given a Poisson vertex algebra �-bracket on V , we have the
corresponding cohomology complex .W @;as.…V /; d NX / with differential d NX D
ad NX .

11.2. Relation between W cl.…V / and W @;as.…V /

Let V be a Poisson vertex algebra. Recall that, by Theorem 10.7, associated
to the PVA structure of V there is an odd element X 2 W cl

1 .…V / such that
ŒX;X� D 2X�X D 0, and we thus have the corresponding cohomology com-
plex

.W cl.…V /; adX/: (11.3)

Moreover, by Proposition 11.1, we also have an odd element NX 2 W
@;as

1 .…V /

such that Œ NX; NX� D 0, and we thus have the corresponding cohomology complex

.W @;as.…V /; ad NX/: (11.4)

By (10.21) and (11.2), we have

NX D X� �: (11.5)

It is natural to ask what is the relation between the two cohomology theories
(11.3) and (11.4).

Recall that the operad P cl.…V /, hence the Lie superalgebra W cl.…V /, has
a grading grr defined in (10.9): an element f 2 grr W cl

k
.…V / vanishes on all
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graphs 
 with .kC1/ vertices and number of edges not equal to r . Hence, every
f 2 W cl

k
.…V / decomposes as a finite sum

f D
X
r�0

fr ; (11.6)

where fr
	 D f 	 if 
 has r edges, and fr

	 D 0 otherwise. In particular, the
element X decomposes as

X D X0 CX1;

and the condition ŒX;X� D 0 is equivalent to

ŒX0; X0� D ŒX1; X1� D ŒX0; X1� D 0:

Hence, we have two anticommuting differentials dX0
D adX0 and dX1

D adX1

on W cl.…V /, which are homogeneous of degree 0 and 1 respectively.

Lemma 11.2. We have a natural Lie algebra isomorphism

W @.…V /
��! gr0W cl.…V /; (11.7)

mapping Nf 2 W @.…V / to the element f 2 gr0W cl.…V / such that

f � ��� � D Nf and f 	 D 0 if jE.
/j ¤ ;:
Proof. It follows from the definitions, that we have an isomorphism between
the operadsChom and gr0 P cl. The statement of the lemma is an obvious con-
sequence of this fact. ut
Lemma 11.3. Let Nf 2 W @

k
.…V / and let f0 be its image in gr0W cl

k
.…V / via

the isomorphism (11.7). We have:

(a) dXf0 D 0 () dX0
f0 D dX1

f0 D 0I
(b) dX0

f0 D 0 () d NX Nf D 0I
(c) dX1

f0 D 0 () Nf 2 W @;as
k

.…V /.

Hence,
f0 2 Ker.dX / () Nf 2 Ker.d NX jW @;as.…V //:

Proof. Claim (a) is obvious, by looking at the various degrees separately. Claim
(b) follows from Lemma 11.2. Let us prove claim (c). Note that dX1

f0 D
ŒX1; f0� 2 gr1WkC1.…V /. Hence, to impose the condition ŒX1; f0� D 0 it
is enough to evaluate it on graphs with 1 edge, and, by symmetry, on the graph


 D � � � � � � ��!�:
By definition, ŒX1; f0� D X1�f0 � .�1/ Np.f0/f0�X1, and we will compute the
two summands separately. By (3.13) and (10.10), we have

.X1�f0/
	
�1;:::;�kC2

.v1 ˝ � � � ˝ vkC2/
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D
X

�2SkC1;1

..X1 ı1 f0/
��1

/	�1;:::;�kC2
.v1 ˝ � � � ˝ vkC2/

D
X

�2SkC1;1

.X1 ı1 f0/
��1.	/

��1.�1;:::;�kC2/
.��1.v1 ˝ � � � ˝ vkC2//:

Observe that, since f0 has zero degree, .X1 ı1 f0/
��1.	/ D 0 if the subgraph

obtained from ��1.
/ by deleting the vertex labeled .k C 2/ has an edge. This
leaves only two shuffles in the above sum: � D the identity and � D the trans-
position of .kC 1/ and .kC 2/. In the latter case, ��1.
/ is the same as 
 with
reversed orientation of the edge, which leads to a minus sign. Hence, by (10.11)
and (10.21), we get

.X1�f0/
	
�1;:::;�kC2

.v1 ˝ � � � ˝ vkC2/

D .X1 ı1 f0/
	
�1;:::;�kC2

.v1 ˝ � � � ˝ vkC2/

� .�1/ Np.vkC1/ Np.vkC2/.X1 ı1 f0/
	
�1;:::;�kC2;�kC1

.v1 ˝ � � � ˝ vkC2 ˝ vkC1/

D X��!�1 . Nf�1;:::;�kC1CxkC2
.v1 ˝ � � � ˝ vkC1/˝ .jxkC2D�kC2C@vkC2//

� .�1/ Np.vkC1/ Np.vkC2/X��!�1 . Nf�1;:::;�k ;�kC2CxkC1
.v1 ˝ � � � ˝ vk ˝ vkC2/

˝ .jxkC1D�kC1C@vkC1//

D .�1/1C Np. Nf /C Np.v1/C���C Np.vkC1/. Nf�1;:::;�kC1C�kC2C@.v1 ˝ � � � ˝ vkC1/!vkC2

C .�1/p.vkC1/p.vkC2/ Nf�1;:::;�kC1C�kC2C@.v1 ˝ � � � ˝ vkC2/!vkC1/:

As for the second summand in the bracket ŒX1; f0�, we have, by (3.13) and
(10.10),

.f0�X1/
	
�1;:::;�kC2

.v1 ˝ � � � ˝ vkC2/

D
X

�2S2;k

..f0 ı1 X1/
��1

/	�1;:::;�kC2
.v1 ˝ � � � ˝ vkC2/

D
X

�2S2;k

.f0 ı1 X1/
��1.	/

��1.�1;:::;�kC2/
.��1.v1 ˝ � � � ˝ vkC2//:

Since f0 has zero degree, .f0 ı1 X1/
��1.	/ D 0 unless the only edge of the

graph ��1.
/ connect the vertices labeled 1 and 2. This happens for only one
shuffle, given by

�.1/ D k C 1; �.2/ D k C 2; �.i/ D i � 2 for i D 3; : : : ; k C 2:

Hence, by (10.11) and (10.21), we have

.f0�X1/
	
�1;:::;�kC2

.v1 ˝ � � � ˝ vkC2/
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D N�� .v/ Nf�kC1C�kC2;�1;:::;�k
.X��!�.vkC1 ˝ vkC2/˝ v1 ˝ � � � ˝ vk/

D .�1/p.vkC1/ N�� .v/ Nf�kC1C�kC2;�1;:::;�k
.vkC1vkC2 ˝ v1 ˝ � � � ˝ vk/

D .�1/1C Np.v1/C���C Np.vkC1/ Nf�1;:::;�k ;�kC1C�kC2
.v1 ˝ � � � ˝ vk ˝ vkC1vkC2/;

where
N�� .v/ D .�1/. Np.vkC1/C Np.vkC2//

Pk
iD1 Np.vi /:

In the last equality we used the symmetry condition on Nf 2 W @.…V /, and the
fact that

Np.vkC1vkC2/ D 1C Np.vkC1/C Np.vkC2/:

Combining the above results, we conclude that the condition ŒX1; f0� D 0 is
equivalent to the equation

Nf�1;:::;�kC1C�kC2C@.v1 ˝ � � � ˝ vkC1/!vkC2

C .�1/p.vkC1/p.vkC2/ Nf�1;:::;�kC1C�kC2C@.v1 ˝ � � � ˝ vkC2/!vkC1

D Nf�1;:::;�k ;�kC1C�kC2
.v1 ˝ � � � ˝ vk ˝ vkC1vkC2/;

i.e., Nf satisfies the Leibniz rule (11.1). This proves claim (c). The last assertion
of the lemma is an obvious consequence of the previous claims. ut
Theorem 11.4. We have a canonical injective homomorphism of Lie superalge-
bras

H.W @;as.…V /; d NX / ,�! H.W cl.…V /; dX / (11.8)

induced by the map (11.7).

Proof. By Lemmas 11.2 and 11.3, the map (11.7) restricts to a Lie superalgebra
isomorphism

Ker.d NX jW @;as.…V //
��! Ker.dX / \ gr0W cl.…V /: (11.9)

Note that, by degree considerations, we have

dX .W
cl.…V // \ gr0W cl.…V / D fŒX0; g0� jg0 2 gr0W cl.…V / ; ŒX1; g0� D 0g:

It follows that, under the isomorphism (11.9), d NX .W @;as.…V //maps bijectively
to dX .W

cl.…V // \ gr0W cl.…V /. Hence, (11.9) induces an isomorphism

H.W @;as.…V /; d NX /
��! Ker.dX / \ gr0W cl.…V /

dX .W cl.…V // \ gr0W cl.…V /
: (11.10)

The claim follows since the RHS of (11.10) is a subalgebra ofH.W cl.…V /; dX /.
ut
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Remark 11.5. The map (11.8) is an isomorphism for the 0-th and 1-st cohomolo-
gies. Therefore, by Remark 10.15 we have the following inequality

dimHk.W ch.…V /; dX / � dimHk.W @;as.gr…V /; d QX / (11.11)

for k D 0; 1 provided that V and grV are isomorphic as FŒ@�-modules. In
[BDSHKV19], we prove that (11.8) is an isomorphism, provided that, as a dif-
ferential algebra, V is an algebra of differential polynomials in finitely many
variables.

11.3. Application to the free boson

Let F be a differential field with the derivation @. Consider the Lie conformal
algebra of N free bosons

R D F Œ@�u1 ˚ � � � ˚ F Œ@�uN ˚ FK;

with the �-brackets on the generators u1; : : : ; uN given by

Œui �uj � D �ıijK; i; j D 1; : : : ; N;

where K is central and @K D 0. Its universal enveloping vertex algebra is

eB D F ŒK; u
.n/
i j i D 1; : : : ; N; n 2 ZC�; @u

.n/
i D u

.nC1/
i ;

with the increasing filtration defined by letting the degrees of u.n/
i and K equal

1. The associated graded of the vertex algebra eB is the Poisson vertex algebra

eB WD gr eB D F ŒK; u
.n/
i j i D 1; : : : ; N; n 2 ZC�; @u

.n/
i D u

.nC1/
i ;

@K D 0;

with the �-bracket on generators given by fui �uj g D �ıijK for i; j D 1; : : : ; N ,
where again K is central. By (11.11) we have

dimHk.eB/ � dimHk. eB/; (11.12)

for k D 0; 1, where on the left we have the cohomology of the vertex algebraeB while on the right we have the variational Poisson cohomology of the PVAeB. In fact, due to Remarks 10.15 and 11.5, the inequality (11.12) holds for all
k � 0.

We are interested in the quotients B D eB=hK � 1i and B D eB=hK � 1i by
the ideals generated by .K � 1/. Then B is the vertex algebra of N free bosons

B D F Œu
.n/
i j i D 1; : : : ; N; n 2 ZC�;
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while B is the Poisson vertex algebra

B D F Œu
.n/
i j i D 1; : : : ; N; n 2 ZC�;

with the �-bracket on generators given by fui �uj g D �ıij for i; j D 1; : : : ; N .
It is not hard to relate the cohomologies of B and B to those of eB and eB,
respectively, and to show that

dimHk.B/ � dimHk.B/; k � 0 (11.13)

(see [BDSK19] for details).
It was proved in [DSK12] and [DSK13], respectively, that dimHk.B/ D�

NC1
kC1

�
if F D F with @F D 0, and dimHk.B/ D �

N
kC1

�
if F is linearly

closed. The representatives of cohomology classes were explicitly computed.
Using those results, it is easy to find representatives of a basis of the space of
Casimirs for B, and of the space of derivations of B modulo inner derivations.
For F D F, representatives of a basis of H 0.B/ � B=@B are the Casimir
elements

1; u1; : : : ; uN ; (11.14)

and representatives of a basis of H 1.B/ D Der.B/= Inder.B/ are the follow-
ing derivations,

@

@ui
; i D 1; : : : ; N; and

Dij D
X

n2ZC

�
u

.n/
i

@

@u
.n/
j

� u.n/
j

@

@u
.n/
i

�
; 1 � i < j � N:

(11.15)

If the field F is linearly closed, it contains x such that @x D 1, hence we have
1 D @x 	 0 in B=@B, and @

@ui
D fxui � �gj�D0, i D 1; : : : ; N , are inner

derivations, while the remaining elements in (11.14) and (11.15) are linearly
independent representatives.

Note that, in the case when F D F, the elements (11.14) are Casimirs of
B , linearly independent over F. Hence, dim.Cas.B// � N C 1. On the other
hand, by Theorem 7.6 and the inequality (11.13) the opposite inequality holds.
It follows that

dim.Cas.B// D N C 1;

and the elements (11.14) form a basis of Cas.B/.
Next, still in the case F D F, derivations (11.15) are actually derivations of

the Lie conformal algebra R. Hence, they uniquely extend to derivations of its
universal enveloping vertex algebra B , and it is easy to see that they are linearly
independent modulo inner derivations of B . Hence, dim.Der.B/= Inder.B// �
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1
2
N.N C 1/. On the other hand, by Theorem 7.6 and the inequality (11.13), the

opposite inclusion holds. It follows that

dim.Der.B/= Inder.B// D
 
N C 1

2

!
;

and the derivations (11.15) are representatives of a basis of Der.B/= Inder.B/.
Similarly, in the case when F is linearly closed, we obtain

dim.Cas.B// D N and dim.Der.B/= Inder.B// D
 
N

2

!
;

with the same representatives as for B, described above.

A. Relation to chiral algebras

In [BD04] the authors introduced an algebro-geometric rendition of the theory
of vertex algebras, which they called chiral algebras. In this section we outline
the relation of the above results with their definitions.

A.1. Chiral operations

Consider a smooth algebraic curve X over F. For any right DX -module A ,
Beilinson and Drinfeld construct an operad Pch

A whose .k C 1/-ary operations
are

Pch
A .k C 1/ D HomD

XkC1 -mod.j�j �A �.kC1/; ��A /;

where j is the inclusion of the open complement of the diagonal divisor on
XkC1 (union of hypersurfaces xi D xj for i ¤ j ), and � W A1 ! A

kC1 is the
diagonal embedding x 7! .x; : : : ; x/. A non-unital chiral algebra on X is by
definition a morphism of operads

Lie �! Pch
A :

In particular it is defined by a binary operation

Pch
A .2/ 3 	 W j�j �A � A �! ��A ; (A.1)

satisfying skew-symmetry and Jacobi identity.
The dualizing sheaf !X of X carries a canonical chiral algebra structure

given by the residue map. For this we define 	 as the cokernel of the inclusion

0 �! !X � !X �! j�j �!X � !X

��! ��!X �! 0:
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Skewsymmetry follows from the isomorphism !X �!X ' !X2 , which is skew-
equivariant for the action of Z=2Z by permutation of the two factors. The Jacobi
identity is a little subtler to prove and is a consequence of the Cousin resolution
of !X3 with respect to the diagonal stratification (see [BD04] or [FBZ04]). A
non-unital chiral algebra A is called unital or simply a chiral algebra if there is
a morphism !X ! A of DX -modules such that the restriction of the multipli-
cation 	A of A to j�j �!X � A ! j�j �A � A coincides with the cokernel
of the sequence

0 �! !X � A �! j�j �!X � A �! ��A �! 0: (A.2)

A.2. D-modules on the line

In the particular case whenX D A
1 is the affine line over F, any DX -module A

is determined by the 
.A1;DA1/-module A WD 
.A1;A / of global sections.
The same is true for the DXkC1-modules

j�j �A �.kC1/ and ��A :

Let DkC1 be the algebra of regular differential operators on .kC1/ variables
z0; : : : ; zk as in Sect. 6.2, and let I be the left ideal generated by fz0 � zigk

iD1.
Let OkC1 D FŒz0; : : : ; zk� and recall the algebra O?

kC1
of functions defined in

Sect. 6.2. It is naturally an OkC1-module, as is DkC1. Notice that A˝.kC1/ is
naturally a DkC1-module. We have


.AkC1; j�j �A �.kC1// D O?
kC1 ˝OkC1

A˝.kC1/;

and the DkC1-module structure is by the action on the right factor.
Consider InDkC1, which is a .D1–DkC1/ bimodule as follows. The action

of DkC1 is by multiplication on the right. The action of D1 D FŒz�Œ@z� on the
left is defined by letting z act as multiplication on the left by z0 and @z act as
multiplication on the left by

Pk
iD0 @zi

. We have


.AkC1; ��A / D A˝D1
.InDkC1/; (A.3)

with its natural right DkC1-module structure by right multiplication on the right
factor. We have

Pch
A .k C 1/ D HomDkC1

.O?
kC1 ˝OkC1

A˝.kC1/; A˝D1
.InDkC1//: (A.4)
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A.3. Equivariant D-modules

Let X be a smooth scheme, G an algebraic group acting on X , and F a quasi-
coherent sheaf of OX -modules. Denote by a W G �X ! X the G-action and by
�2 W G�X ! X the projection to the second factor. We say F isG-equivariant
if there exists an isomorphism of OG	X -modules

˛ W a�F �! ��2 F (A.5)

such that:

(1) the diagram
.1G a/ 2 F 3 F

.1G a/ a F .m 1X / a F

(A.6)

commutes in the category of OG	G	X -modules1;
(2) the pullback

.e � 1X /�˛ W F �! F ;

where e 2 G is the unit, is the identity map.

A DX -module F is called strongly equivariant if a given ˛ as in (A.5) is an
isomorphism of DG	X -modules and the diagram (A.6) is in the category of
DG	G	X -modules. The module F is said to be weakly equivariant if ˛ is an
isomorphism of OG ˝ DX -modules.

A.4. Equivariant D-modules on the line

Consider the affine line A
1 over a field F, with its natural action of the additive

group Ga by translations. Let F be a translation equivariant OA1-module. Let
0 2 A

1 be the origin. The functor 0� of taking the fiber at 0 defines an equiv-
alence of categories between translation equivariant quasi-coherent sheaves on
the line and vector spaces. The inverse functor associates to the vector space V
the sheaf associated to the FŒx�-module V Œx� and the action of t 2 Ga is given
by v.x/ 7! v.x C t/. The isomorphism ˛ as in (A.5) is given by

˛ W V Œt; x� �! V Œt; x�; v.t; x/ 7�! v.t; x C t/: (A.7)

Notice that V Œx� has a canonical right D1-module structure with @x acting
by �d=dx. Similarly, V Œt; x� has right action of D2 D 
.Ga � A

1;DGa	A1/.
The map (A.7) is a morphism of D2-modules. In fact, we have an equivalence
of categories between strongly equivariant D-modules on A

1 and vector spaces.

1 Here �3 W G �G �X ! X is the projection map.
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Now let @ 2 End.V /. As in Sect. 6.3, we have a D1-module structure on
V Œx� defined by letting x act as multiplication by x and @x act by @�d=dx. The
map (A.7) no longer commutes with the action of @t ; hence, it defines a weakly
equivariant D-module structure on the sheaf associated to the D1-module V Œx�.
In other words, differentiating the Ga action on V Œx�, we obtain that @x acts by
�d=dx, which does not coincide with the action obtained from the D1-module
structure. The assignment .V; @/ 7! V Œx� defines an equivalence of categories
between weakly equivariant D-modules on A

1 and pairs .V; @/ of a vector space
and an endomorphism.

A.5. Equivariant operads

Let P be a symmetric operad and G be a group. We say that P is G-equivariant
if every space P.n/ carries an action of G and the composition maps (3.1) are
morphisms of G-modules. In particular, this implies that the action of G com-
mutes with the symmetric group action on each P.n/. It is clear that the spaces
of invariants P.n/G (respectively, coinvariants P.n/G) form a suboperad (re-
spectively, quotient operad) of P .

A.6. Equivariant chiral operations

Consider a weakly equivariant D-module A on the line corresponding to the
pair .V; @/. The DkC1-module (A.3) is in this case given by

V ˝FŒ@� FŒx�Œ@0; : : : ; @k�; (A.8)

where we view FŒx�Œ@0; : : : ; @k� as a .FŒ@� � DkC1/-bimodule as follows. The
left action of @ is given by

Pk
iD0 @i . The right action of @i is by multiplication

by @i , and the right action of zi is given by

f .x; @0; : : : ; @k/ � zi D xf .x; @0; : : : ; @k/C @

@@i

f .x; @0; : : : ; @k/: (A.9)

In this case, (A.4) reads

Pch
A .k C 1/ D HomDkC1

.O?
kC1 ˝ V ˝.kC1/; V ˝FŒ@� FŒx�Œ@0; : : : ; @k�/:

The group Ga acts on these operations as follows. Given t 2 Ga and ' 2
Pch

A .k C 1/, we obtain a new operation 't by letting

't .f .z0; : : : ; zk/˝ v0 ˝ � � � ˝ vk/

WD '.f .z0 � t; : : : ; zk � t/˝ v0 ˝ � � � ˝ vk/jxDxCt :
(A.10)
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The set of translation invariant operations PT;ch
A � Pch

A defines a suboperad. A
weakly translation equivariant D-module A on A

1 is called a non-unital weakly
translation equivariant chiral algebra if the multiplication (A.1) is translation
invariant. For instance, the unital chiral algebra !A1 is weakly translation equiv-
ariant. A unital chiral algebra is called translation equivariant if the morphism
!A1 ! A is equivariant for the Ga-action.

Lemma A.1. Let V be an FŒ@�-module, and A be its associated weakly equiv-
ariant D-module on A

1. Let P ch be the operad from Proposition 6.7 associated
to V . Then we have an isomorphism of operads PT;ch

A ' P ch.

Proof. Recall the algebra of translation invariant differential operators DT
kC1

of
Sect. 6.2. The action of Ga on A

1 induces an action on ��A and consequently
on its global sections (A.8), which is given simply by x 7! x C t . The space
of invariant sections is a DT

kC1
-module isomorphic to (6.7). Indeed, we have an

isomorphism

V ˝FŒ@� FŒ@0; : : : ; @k�
��! V Œ�0; : : : ; �k�=h@C �0 C � � � C �ki;

v ˝ f .@0; : : : ; @k/ 7�! f .��0; : : : ;��k/v;
(A.11)

which is compatible with the action of DT
1 D FŒ@�. Similarly, the space of Ga-

invariant sections of O?
kC1

˝ V ˝.kC1/ is given by O?T
kC1

˝ V ˝.kC1/ and is a
DT

kC1
-module as in Sect. 6.3.

For ' 2 PT;ch
A .k C 1/, restricting ' to O?T

kC1
˝ V ˝.kC1/, we see that by

(A.10)
f ˝ v0 ˝ � � � ˝ vk

does not depend on x; therefore, by (A.11) it defines a vector in

V Œ�0; : : : ; �k�=h@C �0 C � � � C �ki:
Hence, ' defines an element of P ch.k C 1/.

Conversely, given X as in (6.11) satisfying the sesquilinearity conditions
(6.12), we extend X to a morphism ' 2 PT;ch

A .k C 1/ as follows. By a Taylor
expansion, we can express any function f .z0; : : : ; zk/ 2 O?

kC1
as a finite sumX

gi .z0; z1; : : : ; zk/z
ni

0 ;

for some gi 2 O?T
kC1

and some nonnegative integers ni . We define

' .f ˝ v0 ˝ � � � ˝ vk/ WD
X

xni X.gi ˝ v0 ˝ � � � ˝ vk/;

where we identified X.gi ˝ v0 ˝ � � � ˝ vk/ with a translation invariant vector in
(A.8) by (A.11). It is clear that ' is translation invariant and it is a morphism of
DkC1-modules. ut
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Corollary A.2 ([BD04, 0.15]). There is an equivalence of categories between
weakly translation equivariant chiral algebras on A

1 and vertex algebras.

Proof. We first prove the analogous statement for non-unital algebras. The non-
unital weakly translation equivariant chiral algebras are given by morphisms of
operads Lie ! PT;ch

A for a weakly equivariant D-module A . By Lemma A.1,
we have an FŒ@�-module V and a morphism of operads Lie ! P ch. In a similar
way as in Remark 4.3, these correspond to an odd element X 2 W ch

1 .…V /

satisfying X�X D 0. The result then follows from Theorem 6.12. Under this
equivalence, the unit vertex algebra F corresponds to the chiral algebra !A1 .

Consider now a translation equivariant unital chiral algebra V on A
1. Then

the morphism !A1 ! A corresponds to a morphism of vertex algebras F ! V .
The image of 1 2 F is the vacuum vector j0i of V . Indeed, since !A1 ! A
is a morphism of D-modules, we have @j0i D 0. If X 2 W ch

1 .…V / is the
corresponding operation, it follows from (A.2) that

X
�
j0i ˝ v ˝ 1

z1 � z0

�
D v; v 2 V;

from where the vacuum axioms follow. ut

A.7. Lie conformal operad

In addition to the operad P ch
A associated to any DX -module A , Beilinson and

Drinfeld define an operad P �A by letting

P�A .k C 1/ D HomD
XkC1 -mod.A

�.kC1/; ��A /:

In the case of X D A
1 and A a weakly equivariant D-module, we let PT;�

A be
the suboperad of Ga-invariant operations. We have in the same way as Lemma
A.1 the following:

Lemma A.3. Let V be an FŒ@�-module, and A be its associated weakly equiv-
ariant D-module on A

1. LetChom be the operad from Sect. 5.2 associated to
V . Then we have an isomorphism of operads PT;�

A 'Chom .

A.8. Classical operations

For any smooth algebraic curve X over F and any right DX -module A on it,
in [BD04, 1.4.27] the authors define an operad of classical operations Pc

A as
follows. Let Lie be the Lie operad, that is, Lie .k C 1/ is the vector space with
a basis consisting of all formal symbols

Œx�.0/; Œx�.1/; � � � Œx�.k�1/; x�.k/� � � � ��; � 2 SkC1; �.0/ D 0:
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The composition in Lie is defined by replacing the corresponding variables and
expanding using the Jacobi and skew-symmetry identities. For each k � 0 and
each .m0; : : : ; mk/-shuffle � as in Sect. 2.5, we let

Lie � WD Lie .m0/˝ � � � ˝ Lie .mk/;

and
P�A .�/ D HomD

XkC1 -mod.A
˝m0 � � � � � A ˝mk ; ��A /;

where � W X ,! XkC1 is the small diagonal embedding. Finally, put

Pc
A .nC 1/ D

nM
kD0

M
�

P�A .�/˝ Lie � ;

where the inner sum is over .m0; : : : ; mk/-shuffles � such that
Pk

iD0mi D nC
1. The composition in Pc

A is defined as the tensor product of the compositions
in the operad P�A defined in A.7 and the compositions in the Lie operad (see
[BD04, 1.4.27] for details). The operad Pc

A defined this way is graded, with
the grading given by k in the above sum.

Remark A.4. In [BD04] the authors work with unordered sets and equivalence
relations on these sets, namely, instead of defining the n-ary operations P.n/

for an operad, they define the I -ary operations P.I / for any finite nonempty set
I . Similarly, composition is defined for any equivalence relation S in I instead
of a shuffle � . For the equivalence of these two approaches, see [GK94].

In the case when X D A1 and A is a weakly Ga-equivariant DX -module,
we consider the translation equivariant suboperad PT;c

A , and in the same way
as in A.6, we have the following:

Theorem A.5. Let V be an FŒ@�-module, and A be its associated weakly equiv-
ariant D-module on A

1. Let P cl be the operad from Theorem 10.6 associated
to V . Then we have an isomorphism of graded operads PT;c

A ' P cl.

Sketch of the proof. The proof relies on a theorem by Chapoton and Livernet
[CL01], which states that the operad of pre-Lie algebras2 is isomorphic to the
operad of rooted trees. Using this theorem, one can associate to any n-ary op-
eration in the operad Lie a connected graph 
 2 G .n/ as in Sect. 8.2. More
generally, given an .m0; : : : ; mk/-shuffle � and

�0 ˝ � � � ˝ �k 2 Lie � ;

we obtain a graph 
 2 G .
P
mi / with .k C 1/ connected components, the i -

th component of which being a connected graph in G .mi /. By Lemma A.3, to

2 That is algebras satisfying an even version of (3.15).
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any element of PT;�
A .�/ we associate an operation f 	 satisfying the sesquilin-

earity conditions (10.6), (10.7). The operation f 	 satisfies in addition the cy-
cle relations (10.4), (10.5), since the graph 
 comes from an operation in Lie
and therefore satisfies skew-symmetry (as opposed to the general graph that by
Chapoton–Livernet’s theorem defines only a pre-Lie algebra operation). This
defines an isomorphism of graded vector spaces PT;c

A .n/ ' P cl.n/ for all n.
One readily checks that this isomorphism is compatible with compositions in
both operads. ut

The operad Pch
A carries a natural filtration given by the diagonal stratifica-

tion of Xn for each n. It gives rise to the associated graded operad gr Pch
A . In

[BD04, 3.2.5] the authors produce a canonical embedding of graded operads

gr Pch
A ,�! Pc

A ;

and claim that it is an isomorphism if A is a projective DX -module. In the case
ofX D A

1 and considering the translation invariant suboperads, this embedding
is the geometric counterpart to Theorem 10.10.

Acknowledgements. We are grateful to Pavel Etingof for providing a proof of Lemma 6.4. We
would like to acknowledge discussions with him as well as with Corrado De Concini, Andrea
Maffei and Alexander Voronov. We also thank the referee for thoughtful comments. The research
was partially conducted during the authors’ visits to IHES, MIT, SISSA and the University of
Rome La Sapienza. We are grateful to these institutions for their kind hospitality. The first au-
thor was supported in part by a Simons Foundation grant 279074. The second author was par-
tially supported by the national PRIN fund n. 2015ZWST2C_001 and the University funds n.
RM116154CB35DFD3 and RM11715C7FB74D63. The third author was partially supported by
the Bert and Ann Kostant fund.

References

[BDAK01] B. Bakalov, A. D’Andrea and V.G. Kac, Theory of finite pseudoalgebras, Adv.
Math., 162 (2001), 1–140.

[BDSHK18] B. Bakalov, A. De Sole, R. Heluani and V.G. Kac, Chiral vs classical operad,
preprint, arXiv:1812.05972.

[BDSHKV19] B. Bakalov, A. De Sole, R. Heluani, V.G. Kac and V. Vignoli, Classical and vari-
ational Poisson cohomology, in preparation.

[BDSK19] B. Bakalov, A. De Sole and V.G. Kac, Computation of cohomology of Lie con-
formal and Poisson vertex algebras, preprint, arXiv:1903.12059.

[BKV99] B. Bakalov, V.G. Kac and A.A. Voronov, Cohomology of conformal algebras,
Comm. Math. Phys., 200 (1999), 561–598.

[BW15] A. Bapat and R. Walters, The Bernstein–Sato b-function of the Vandermonde
determinant, preprint, arXiv:1503.01055.

[BDSK09] A. Barakat, A. De Sole and V.G. Kac, Poisson vertex algebras in the theory of
Hamiltonian equations, Jpn. J. Math., 4 (2009), 141–252.



342 B. Bakalov, A. De Sole, R. Heluani and V.G. Kac

[BD04] A. Beilinson and V. Drinfeld, Chiral Algebras, Amer. Math. Soc. Colloq. Publ.,
51, Amer. Math. Soc., Providence, RI, 2004.

[Bor86] R.E. Borcherds, Vertex algebras, Kac–Moody algebras, and the Monster, Proc.
Nat. Acad. Sci. U.S.A., 83 (1986), 3068–3071.

[Bor98] R.E. Borcherds, Vertex algebras, In: Topological Field Theory, Primitive Forms
and Related Topics, Kyoto, 1996, Progr. Math., 160, Birkhäuser Boston, Boston,
MA, 1998, pp. 35–77.

[CL01] F. Chapoton and M. Livernet, Pre-Lie algebras and the rooted trees operad, Inter-
nat. Math. Res. Notices, 2001 (2001), 395–408.

[DSK06] A. De Sole and V.G. Kac, Finite vs affine W -algebras, Jpn. J. Math., 1 (2006),
137–261.

[DSK09] A. De Sole and V.G. Kac, Lie conformal algebra cohomology and the variational
complex, Comm. Math. Phys., 292 (2009), 667–719.

[DSK12] A. De Sole and V.G. Kac, Essential variational Poisson cohomology, Comm.
Math. Phys., 313 (2012), 837–864.

[DSK13] A. De Sole and V.G. Kac, The variational Poisson cohomology, Jpn. J. Math., 8
(2013), 1–145.

[FBZ04] E. Frenkel and D. Ben-Zvi, Vertex Algebras and Algebraic Curves. Second ed.,
Math. Surveys Monogr., 88, Amer. Math. Soc., Providence, RI, 2004.

[Ger63] M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math.
(2), 78 (1963), 267–288.

[GK94] V. Ginzburg and M. Kapranov, Koszul duality for operads, Duke Math. J., 76
(1994), 203–272.

[Hua14] Y.-Z. Huang, A cohomology theory of grading-restricted vertex algebras, Comm.
Math. Phys., 327 (2014), 279–307.

[Kac98] V.G. Kac, Vertex Algebras for Beginners. Second ed., Univ. Lecture Ser., 10,
Amer. Math. Soc., Providence, RI, 1998.

[Lib17] J.I. Liberati, Cohomology of vertex algebras, J. Algebra, 472 (2017), 259–272.
[LV12] J.-L. Loday and B. Vallette, Algebraic Operads, Grundlehren Math. Wiss., 346,

Springer-Verlag, 2012.
[Mar96] M. Markl, Distributive laws and Koszulness, Ann. Inst. Fourier (Grenoble), 46

(1996), 307–323.
[MSS02] M. Markl, S. Shnider and J. Stasheff, Operads in Algebra, Topology and Physics,

Math. Surveys Monogr., 96, Amer. Math. Soc., Providence, RI, 2002.
[NR67] A. Nijenhuis and R.W. Richardson, Jr., Deformations of Lie algebra structures, J.

Math. Mech., 17 (1967), 89–105.
[Tam02] D. Tamarkin, Deformations of chiral algebras, In: Proc. of the International

Congress of Mathematicians. Vol. II, Beijing, 2002, Higher Ed. Press, Beijing,
pp. 105–116.

[Yan16] S. Yanagida, Deformation quantization of vertex Poisson algebras, preprint,
arxiv:1607.02068.


	Introduction
	Preliminaries on vector superspaces and the symmetric group
	Superoperads and the associated Z-graded Lie superalgebras
	The operad governing Lie superalgebras
	The operad governing Lie conformal superalgebras
	The chiral operad
	Vertex algebra modules and cohomology complexes
	The associated graded of the chiral operad
	The cooperad of n-graphs
	The operad governing Poisson vertex superalgebras
	The variational Poisson cohomology and the PVA cohomology
	Relation to chiral algebras

