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1. Introduction

The universal Lie superalgebra associated to a vector superspace V is defined
as a Z-graded Lie superalgebra

W)= w;(V). with W_(V)=V.
j=—1

such that for any Z-graded Lie superalgebra ¢ = € i>—18j, withg—1 =V,

there is a unique grading preserving homomorphism g — W(V') identical on
V. It is easy to see that

W; (V) = Hom(S/*1(V), V),
for all j > —1. The Lie superalgebra bracket on W (V) is given by
[X,Y] = x0OY — (-)?P@OrOyny, (1.1)
were p is the parity on W(V'), and, for X € W,(V), Y € W, (V),

(XOY)(vo ® -+ @ Uim+n)
= ) elion . imin) XY (i ® +++ ® iy,) ® Vi) ® - ® Vi y)-

io<-<im
Im+1<<lm+n

(1.2)

Here €, (ig, . . ., im+n) is non-zero only if iy, ..., i;,+n are distinct, and in this
case it is equal to (—1)", where N is the number of interchanges of indices of
odd v;’s in the permutation.

Clearly, Wo(V) = End V and Wy (V) = Hom(S2V, V), so that any even
element of the vector superspace Wp(V') defines a commutative superalgebra
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structure on V', and this correspondence is bijective. On the other hand, any
odd element X of the vector superspace Wj(IT1V') defines a skew-commutative
superalgebra structure on V' by the formula

[a.b] = (=)PD X (@@ ®b), a,beV. (1.3)

Here and further ITV stands for the vector superspace V' with reversed par-
ity. Moreover, (1.3) defines a Lie superalgebra structure on V if and only if
[X, X] = 0in W(ITV). Thus, given a Lie superalgebra structure on V', consid-
ering the corresponding odd element X € Wj(I1V'), we obtain a cohomology
complex

(C’ = @Cj,adX), where C/ = W;_(IIV), (1.4)
Jj=0

which coincides with the cohomology complex of the Lie superalgebra V' with
the bracket defined by X, with coefficients in the adjoint representation. This
construction for V' purely even goes back to the paper [NR67] on deformations
of Lie algebras; for a general superspace V it was explained in [DSK13]. Note
also that, more generally, given a module M over the Lie superalgebra V', one
considers instead of V' the Lie superalgebra V' x M with M an abelian ideal,
and by a simple reduction procedure constructs the cohomology complex of the
Lie superalgebra V' with coefficients in M.

In the paper [DSK13], this point of view on cohomology has been also ap-
plied to several other algebraic structures. The most important for the present pa-
per is that of a Lie conformal (super)algebra and the corresponding cohomology
complex introduced in [BKV99]; see also [BDAKO1], [DSK09]. The complex
is constructed in [DSK13] as follows. Assume that the vector superspace V' car-
ries an even endomorphism 9. For each integer k > 0, denote by F_[A1, ..., Ax]
the space of polynomials in the k variables Ay, ..., A; of even parity with co-
efficients in the field F, endowed with the structure of a left F[3]®¥-module by
letting P1(0) ® - - - ® Py () act as multiplication by Py(—Aq1)--- Pr(—Ag). This
space carries also a right IF[d]-module structure, for which d acts as multiplica-
tion by —A; —--- — Ag. Then we let for k > 0:

P{(V) = Homgpzec (VE* F_[A1,.... Ax] ®rpay V). (1.5)

The symmetric group Sy acts on the vector superspace Pk8 (V') by simultaneous

permutation of the factors of the vector superspace V'®k and of the A;’s. We
denote by Wka(V) the subspace of fixed points in P,? +1(V), k = —1. Then the
“conformal” analogue of W(V) is the vector superspace

Wiy = @ wm),

j=—1
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with a Z-graded Lie superalgebra structure similar to (1.1)—(1.2). Note that we
have:
wo vy =v/av, W(V) = Endgy V.

Moreover, the even elements in the vector superspace Wla(V) are identified,
letting A1 = A and A, = —A — 0, with maps

X:VV-—V[A, a®b+— X;(a®Db),

which satisfy certain sesquilinearity and commutativity conditions.

Proceeding in exactly the same way as in the Lie superalgebra case, consider
the Lie superalgebra Wa(l'[ V). Then we get a bijection between odd elements
X € Wla(l_[ V), such that [X, X] = 0, and the Lie conformal superalgebra
structures on V, i.e., A-brackets on V satisfying sesquilinearity

[0a;b] = —Alayb], [ap0b] = (A + 9)[ayb], (1.6)
skew-commutativity
[bral = —(=D)?@Pa_;_ab], (1.7)

and Jacobi identity

[as[bucl] — (=1)P@PO b, [a; ]l = [[arblisc- (1.8)

This bijection is similar to (1.3):
[a;0] = (=)@ X, (a ® b). (1.9)

Moreover, similarly to (1.4), we obtain the cohomology complex of the Lie con-
formal superalgebra V' with A-bracket given by X via (1.9), with coefficients
in the adjoint representation. One defines the cohomology of V' with coefficients
in a V-module M in a similar way as well.

The most relevant to [DSK13] construction is obtained by endowing the
F[d]-module V' with a structure of a (commutative associative) differential su-
peralgebra. In this case one considers the Z-graded subalgebra Wo(V) =

Doy W of WI(V), where W™ = W for j = —1,0, while W

for j > 1 consists of the maps from Wj3 satisfying the Leibniz rule. The odd

elements X € Wla’as(l'[ V), such that [X, X] = 0, correspond bijectively to
Poisson vertex algebra (PVA) structures on V' with the given differential alge-
bra structure, and using this, one constructs the variational Poisson cohomology
of the PVA V. Recall that a Poisson vertex (super)algebra is a differential (su-
per)algebra endowed with a Lie conformal (super)algebra A-bracket satisfying
the Leibniz rule

[a,bc] = [ayblc + (—1)P@POpig, c]. (1.10)
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A somewhat different point of view on cohomology complexes of algebraic
structures is provided by the theory of linear unital symmetric superoperads,
which we call operads in this paper for simplicity. (It covers the first two above
mentioned examples, but not the third one.) One of its equivalent definitions is
that it is a sequence of vector superspaces & (n), n € Zs¢, endowed with a
right action of S, for n > 1, and bilinear parity preserving products

oj: P(n)x P(m) — Pm+m—1), i=1,...,n,

satisfying the associativity axioms given by formula (3.8) below and the equiv-
ariance axioms given by formula (3.9). (There is also a unity 1 € (1), sat-
i1sfying the unity axiom, but this is irrelevant to our paper.) See, e.g. [MSS02],
[LV12]. The universal (to the operad &?) Z-graded Lie superalgebra W(Z?) =
D;>_1 W; is defined by letting W, = & (n + 1)S#+1 with the bracket (1.1),
where

XO0Y = Y (Xo Y) .

UGSm—l-l,n

Here S;, » denotes the set of (m,n)-shuffles in Sy,4,; see Sect. 3 for details.
The earliest reference to this construction that we know of is [TamO02].
The most popular example of an operad is &2 = %, for which

e (n) = Hom(V®" V),

for a vector superspace V. The action of S, on &?(n) is defined via its natural
action on V' ®” (taking into account the parity of V), and the i-th product X o; Y
of X € Zom(n)and Y € Fare(m)isdefinedby (i = 1,...,n)

(X oi Y)(v1,.-., Untm—1)
= X(Ul, ceey Vi1, Y(vi, ey Ui—|—m—1)a Vid+ms---» Un—|—m—1)-

It is easy to see that the Lie superalgebras W (V') and W(#») are identi-
cal. Likewise, for an IF[0]-module V', one defines the operad “#.-, for which
“#em2(n) is the space P,? (V') defined by (1.5), and recovers thereby the associ-
ated Lie superalgebra W2 (V).

Thus, the operads #» and “#... “govern” the Lie superalgebras and
the Lie conformal superalgebras respectively. In their seminal book [BD04],
Beilinson and Drinfeld generalized the notion of a vertex algebra, introduced by
Borcherds [Bor86], by defining a chiral algebra in the language of Z-modules
on any smooth algebraic curve, so that a vertex algebra is a weakly transla-
tion covariant chiral algebra on the affine line. They also constructed the corre-
sponding chiral operad and the cohomology theory of chiral algebras, and the
associated graded chiral operad.
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In the present paper, we translate the construction of the chiral operad from
[BD04] to the purely algebraic language of vertex algebras. The resulting op-
erad, which we denote by P, not surprisingly turns out to be an extension of
the operad ##.. in the same spirit as “#, is an extension of the operad #..

In order to explain the construction of P h (see Sect. 6.3), let us introduce
some notation. For k € Zx_1, let 0T, . and 0} T be respectively the algebras

k+1 k+1
of polynomials and Laurent polynomials in z;; = z; —z;, where 0 <i < j <k,
and let .@,Z 41 = Zf:o 0 kT 410z be the algebra of translation invariant regular

differential operators. Let V be an F[8]-module. The space V®&+D g ﬁ’,:_{l

carries the structure of a right 27

1 -module by letting z;; act by multiplication

on Oy, and letting -, act by
of
(Vo ® -+ ® Vg ®f)82i =00 Q® -0 QU R f —vog R+ ® v ®£.
l
The space F_[Ag, ..., Ax] considered above carries a structure of a .@kT 41-module

as well, by letting z;; act as _a%- + % and 0z, act as multiplication by —A;.

Then P"(k + 1) is defined as the space of all right 2]

i _H—module homomor-
phisms

yek+D) o @:L —> F_[Ao,.... Ak] ®r[g; V.

The right action of the symmetric group Si4; on P"(k + 1) is defined by
simultaneous permutations in yek+D) ﬁ,:{l of factors of V®*+1) and the

corresponding variables zg, ..., z; in ﬁ;_{l. The o; product in P ch is defined
by (6.20), and the general composition by (6.25).

We denote by W (V) = P i>—1 WJ.Ch(V) the Z-graded Lie superalgebra
associated to the operad P! for the F[0]-module V. It is clear that WJ-Ch for

j = —1,0is the same as for the operad 7#,.».. However, th(H V) is identified
not with the space of sesquilinear skew-symmetric A-brackets as for 7., but
with their integrals; see Proposition 6.8. Moreover, the set of odd elements X €
th(l'[ V) such that [ X, X] = 0 is identified with those integrals of A-brackets
satisfying the “integral” Jacobi identity; see Theorem 6.12. Thus, due to the
integral of A-bracket definition of a vertex algebra introduced in [DSKO06], such
elements X parametrize non-unital vertex algebra structures on the F[d]-module
V.

As explained above, we thus obtain a cohomology complex for any non-
unital vertex algebra V' and its module M. The low cohomology is as expected
from any Lie-type cohomology. Namely, the 0-th cohomology parametrizes
Casimirs (i.e., invariants) of the V-module M, the 1-st cohomology is iden-
tified with the quotient of all derivations from V to M by the space of inner
derivations, and the 2-nd cohomology parametrizes the F[d]-split extensions of
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V by M with a trivial structure of a non-unital vertex algebra (see Theorem
7.6). The vertex algebra cohomology studied in [Bor98], [Hual4] and [Lib17]
is rather of Harrison type; for example, their 1-st cohomology is identified with
the space of all derivations from V to M.

The Z-graded Lie superalgebra associated to the operad P and its corre-
sponding differential complex associated to a non-unital vertex algebra structure
on V' was defined in [Tam02] in the context of chiral algebras as the complex
governing deformations of the chiral algebra structure. It was later studied in
[Yan16] where the author introduces also a Lie algebra structure on the complex
governing deformations of Poisson vertex algebras. Both [Tam02] and [Yan16]
rely on the geometric language of [BD04] to construct these Lie algebras. In
particular, they associate a deformation complex to any smooth algebraic curve
X and any chiral (respectively, coisson) algebra on X . In this article we restrict
to the case when X is the affine line and the chiral (respectively, coisson) alge-
bra is translation equivariant, hence associated to a vertex algebra (respectively,
Poisson vertex algebra). In this restricted case, we are able to give a more ex-
plicit linear algebraic and combinatorial description of these complexes, provid-
ing a suitable framework to carry out computations of (Poisson) vertex algebra
cohomologies.

The algebras ﬁlﬁ_l carry a natural increasing filtration by the number of

poles, which induces a decreasing filtration of the operad P". We study the as-
sociated graded operad, denoted by P!, Its explicit description is quite involved
and uses the cooperad of graphs (see Theorem 10.6). One can show that the op-
erad P°" studied in our paper is (non-canonically) isomorphic to that in [BD04]
in the case of the curve being the affine line.

We also consider a refinement of the above filtration of P!, associated to an
increasing filtration 0 C F1 V C F?V C --- of the F[d]-module V, and show
that the structures of a filtered vertex algebra on V' are in bijective correspon-
dence with odd elements X € F! W(T1V) such that [X, X] = 0 (see Theorem
8.10). Moreover, one has an injective morphism of complexes

(gr WIIV), gr(ad X)) —> (W (grI1V), ad(gr X))

(see Theorem 10.14), which is an isomorphism under certain conditions (see
Remark 10.15).

Next, we show that the structures of a Poisson vertex algebra on the [F[d]-
module V' are in bijection with the odd elements X € Wfl(l'[ V') such that
[X, X] = 0 (see Theorem 10.7). Using this, we relate the cohomology of the
corresponding complex, called the PVA cohomology, to the variation Poisson
cohomology studied in [DSK13]. In particular, we show that the low vertex
algebra cohomology is majorized by the variational Poisson cohomology. Using
this and a computation of the variational Poisson cohomology in [DSK12]-
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[DSK13], we compute the Casimirs and derivations of the vertex algebra of N
bosons.

Throughout the paper, the base field [F is a field of characteristic O and, unless
otherwise specified, all vector spaces, their tensor products and Hom’s are over
F.

2. Preliminaries on vector superspaces and the symmetric group
2.1. Vector superspaces, tensor products and linear maps

Recall that a vector superspace is a Z/2Z-graded vector space V = V5 @ Vj.
We denote by p(v) € Z/27Z = {0, 1} the parity of a homogeneous element
v € V. Given two vector superspaces U, V, their tensor product U ® V and the
space of linear maps Hom(U, V') are naturally vector superspaces, with Z/27Z.-
grading induced by those of U and V, i.e., we have p(u ® v) = p(u) + p(v),
and p(f) = p(f(uw) — p(u), foru € U,v € V, f € Hom(U, V). Let
gi: U — V;,i =1,...,n,be linear maps of vector superspaces. One defines
their tensor product g1 ® -+ R gn: U1 @ - QU, - V1 ® - ® V,, by

E1® - QgnUI R - Quy) = (—I)Zi<j p(gj)p(ui)gl(ul) R @ gn(up).

(2.1)
In other words, we follow the usual Koszul—Quillen rule: every time two odd
elements are switched, we change the sign.

2.2. The action of the symmetric group on tensor powers

The symmetric group S, is, by definition, the group of bijections o : {1,...,n}
= {1,...,n}, mapping i — o (i).

If V= V5 ® Vj is a vector superspace, the symmetric group S, acts linearly
on V&®":

oV ® -+ @ vy) = €(0) Vo—1(1) ® @ Vg—1(n), (2.2)

where
ey(0) = 1_[ (_Dp(vi)p(vj). (2.3)
i<jlo@)>o(j)
(Again, we follow the Koszul-Quillen rule for the sign factor.) Formula (2.2)
defines a left action of S,, on V®” since the signs €, (o) satisfy the relation

€v(0T) = €7 (v) (0)ey(T), (2.4)

which can be easily checked.
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We also have the corresponding right action of S, on the space Hom(V ®"*, V)
of linear maps f(v; ® --- ® v,), given by

f1® - ®vn) = €(0) f(Vg-1(1) B+ ®Vg-1(y)) (= [(0(V1®- - B vp))).

(2.5)
Note that the same formula (2.2) makes sense when applied to an element v| ®
QU e W Q- W, where Wy, ..., W, are different vector superspaces.
In this case, o € S, defines an (even) linear map

TWI® - ® Wy —> Wyt () @ -+ ® Wymi (). (2.6)

Lemma 2.1. Let g;: U; — V;, i = 1,...,n, be linear maps of vector super-
spaces, and let u; € U;, i = 1,...,n. For every o € Sy, we have

0((g1® - ®gn)(U1®---Qup)) = (0(g1R--®gn)) (0 (U1 Q- Ruy)). (2.7)

Proof. Since S, is generated by transpositions, it suffices to prove that equation
(2.7) holds foro = (s,s+1),s = 1,...,n—1. In this case it is straightforward.
O

We also define the (left) action of the symmetric group S, on an arbitrary
ordered n-tuple of objects (x1, ..., x,) as follows:

(X155 Xn) = (Xg=1(1)» - -+ » Xg=1(n))- (2.8)

In other words, we put the object x1 in position o (1), the object x, in position

0(2), and so on. (Note that, if the objects xp, ..., x, are the numbers 1,...,n,

this action is obtained by applying not o to each of the entries of the list, but
—1

o)

2.3. Composition of permutations

Letn > 1 and my,...,my > 0. Given permutations o € Sy, 71 € Spmys..-. Tn
€ Sm,, we want to define their composition o(t1,...,t) € Sm,+-4m,. T
describe it, it is easier to say how it acts on the tensor power Y ®mit-=tmn) of
the vector superspace V', in analogy to (2.2). Let

i
M=) mj, i=0,...n. (2.9)
j=1
To apply o (1, ..., 1,) to v, we first apply each t; € S, to the vector w; =

UM;_+1 @ - QUM € V@M via (2.2), and then we apply 0 € S, to w =
71(w1) ®- - ® 7, (wy,), again by the same formula (2.2), where we view w as an
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element of W; ®---® W,,, with W; = V®™i and we consider the generalization
of (2.2) defined in (2.6). Summarizing this in a formula, we have:

(0(t1,. )W) =0(T1(V1 @ Rupr, ) R+ @ Tn(Vps, | +1 Q- QUpm,)).

(2.10)

Remark 2.2. We can write explicitly how o (z1, ..., ty) € Sm,+--+m, permutes

the integers 1,...,my 4+ --- + my,. Aninteger k € {1,...,my 4+ ---+ my,} can
be uniquely decomposed in the form

k=my+-+mj_1+ ], (2.11)

with1 <i <mand 1 < j < m;. Then, we have

(O’(‘L’l, ceey ‘L'n))(k) = ma—l(l) + -+ m0_1(0(i)_1) + T (]) (212)

Proposition 2.3. The composition of permutations satisfies the following asso-
ciativity condition: given 0 € Sy, T € Sy, fori =1,...,n, and p; € Sg]. for
j=1,..., M,, we have

(o(t1,.--, ) (P15 - -, PM,,)

(2.13)
= U(Tl(pl,...,,OMl),...,Tn(pMn_1+1,...,pMn)) € Szjgj.

Proof. Take a monomial vy ® --- ® vr,, , where we define M; as in (2.9), and
let

J
Li=Y tk. j=0.....M,. (2.14)
k=1

By (2.10), when we apply either side of (2.13) to such monomial, we get

O'(Tl(pl(l)l XX vL]) DR ®PM1 (ULM1_1+1 K& ULMl)) Q.-
® Tn (M1 +1(VLpy, 41 @ ® ULy 1) @
b3y /OMn(vLMn_1+1 K- Q® ULMn)))'

The claim follows. O

Proposition 2.4. The composition of permutations satisfies the following equiv-
ariance condition:

(‘PU)(WITI» ceey ann) = @(Wo—l(l)’ et WO'_l(n)) O(Tl’ ceey Tl’l)’ (215)

forevery p,0 € Sy, ¥1,11 € Smys oo, Yn, Tn € Sy,
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Proof. 1t suffices to show that both sides of (2.15) give the same result when
applied to a monomial in y®@mittmn) When we apply the left-hand side of
(2.15)tov; ® --- @ vpy,,, We get

((@U)(wlfl, ce ey wnfn))(vl ® e ® an)

= (po)(Y11) (V1 ® - @ upr) @+ Q@ (VnTn) (WM, _ 1 +1 @ - ® Unp,,))-

On the other hand, if we apply the right-hand side of (2.15) to the same mono-
mial, we get,
(e(Wo-11)s - Vo1 (O (T1, ..., ) (V1 ® - R Upg,,)
= (@Wo-111): -+ -+ Vo—1(n)))
(ot ® - Qumy) ® - Q@ T (VM +1Q -+ ®VM,,)))
=Wt (V1 ® - ®upy)) @+ ® Vn(tn (UM, +1 ® -+ @ Upm,)))).

For the second equality we used (2.8) and Lemma 2.1. Equation (2.15) follows.

O
2.4. o;-products of permutations
Fori = 1,...,n, we define the o; product of permutations o;: S, x S,;, —
Syn+m—1 as follows (B € S, @ € Spy):
e N e N
Boija:=p,...,1,a,1,...,1). (2.16)

In other words, its action on the tensor power V& T7~1 of the vector super-
space V, is given by

i
(Boi)(V1 @ @ Untm—1) = U1 @+ W ®Vnym-1). (97
w=a® - QVitm—1).
As a consequence of Proposition 2.3, the o;-products satisfy the follow-

ing associativity conditions: (y € S, 8 € Sy, a € Sy, i = 1,...,n, ] =
I,....n4+m—1):
(yoja)opr—1 B ifl <j <i,
(yoiB)oja={yoi (Boj_itr1a) ifi <j<i+m, (2.18)
()/Oj—m-i—la)oiﬂ lfl+m§] <n-+m.

In particular, the oq-product is associative. Moreover, as a consequence of
Proposition 2.4, the o;-products satisfy the following equivariance condition
(B,o€Sy,a,t€Sy,i=1,...,n):

(Bo) oi (at) = (B og(i) @) (0 i T). (2.19)
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We shall denote the identity element of the symmetric group S, by 1,. For

everym,n > landi = 1,...,n we have
lnoi 1m = lntm—1. (2.20)
By (2.19), we have (1, o; a)(1, o; ) = 1, o; («t). In other words, for each
n,m > 1l,andeachi = 1,...,n, we have the injective group homomorphism
Sm —> Sn+m—1, o+ 1,0 a. (2.21)
Fora € S;, andi = 1,...,n, we can write explicitly the action of 1, o; o €
Sn4+m—1 on y @nt+m—1).

(1n0ia)(V1® - ®Vptm—1) = V1 Q@ ®(V;® QVUm—14i) B ®VUmtn—1.
In particular, for @ € S, and B € Sy, the actions of

lp+101 @ and 1,41 om+1 B € Sm+n commute.

In the special case i = 1 it is particularly easy to describe the image of the
map (2.21) as a permutation of the numbers {1,...,n + m — 1}. We have, for
m,n>1landa € S,,,
N Ja@) if 1 <i=<m,
(Inor)@) =" T <i<ma4n—1 (222)
By (2.19), we also have
(B o6 (i) lm)(0 0i 1) = (B0) 0i 1. (2.23)

Hence, the injective map S, — S, +m—1 mapping o — o o; 1,, is not a group
homomorphism. On the other hand, it becomes a group homomorphism when
we restrict to the stabilizer (S,); = {0 € S, |o(i) =i} of i:

(Sn)i = Sn4m-1, 0 F>00; Ly, (2.24)
As special cases of (2.18) (witha = 1y, y = 15,1 =2 and j = 1), we get the
following identity, which we shall need later (« € Sy,):

lgp1 00410 = (1202 ) 01 1. (2.25)
Note that we can write the cyclic permutation (1,...,m + 1) mapping 1 —
2+ -+ m + 1+ 1interms of the o;-products as follows:
(1,....m+1)=(1,2) 01 1, in Spy+1. (2.26)
More generally, if we consider the cyclic permutation (1,...,m + 1) in the
permutation group Sy,+5, we have the identity
(1,....m+1)=1,01(1,2) 01 1, in Spy4n (2.27)

(there is no need to put parentheses in the right-hand side since the o;-product
is associative). An equivalent way to write equation (2.27) is

(1,....m+1) = (1,2)(Inn, 11, 1p—1) in Smn, (2.28)

where, in this case, we consider the transposition (1, 2) as an element of S3.
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2.5. Shuffles
A permutation o € Sy, is called an (m, n)-shuffle if
oc)<--<om), om+1)<---<o(m+n). (2.29)

In equivalent terms, when acting on the tensor power Y ®0n+n) of the (purely
even) vector space V', a shuffle 0 maps the monomial v = v; ® -+ ® Vyy+n to

a permuted monomial in which the factors vy, ..., v, appear in their order:
a(1) o(2) o(m)
o) =RV Q12 - Q Uy Q-+,
and the factors v +1, ..., Um+n appear in order. We shall denote by Sy, » C

Sm+n the subset (it is not a subgroup) of (m, n)-shuffles. By definition, S, 0 =
So.n = {1} for every n > 0 and, by convention, we let S,, , = @ if either m or
n is negative.

Similarly, we shall denote by Sy ,,, » C S¢4m+n the subset of (£,m,n)-
shuffles, i.e., permutations o € Sy, satisfying

o(l)<---<o), ol+1)<---<o(+m),

2.30
ocl+m+1)<---<o(l+m+n), (2.30)

and the same for (m1, ..., my)-shuffles in Sy, +...4-m, , for arbitrary k > 2.

Proposition 2.5. (a) We have a bijection Sy, = Sn,m given by o — o -
(1.2) (L. 1m). )
(b) We have a bijection Sg p 5 —> S 0.0 given by o +— o - (1,2)(1,n, 14, 15).

Proof. The permutation (1,2)(1,, 1,,) switches the first n factors of V®m+n)
with the last m factors, i.e., it maps

I -+ n 14n---m+n
\ Vool \
m+1l---m+4+n 1 m
Hence, the product o - (1, 2)(1,, 1,,) maps

1 n l4+n -+ m+4n
i ¥ \ ¥

om+1)<.--<om+n), o(l) <---<o(m),

soitlies in Sy s, provided that o € Sy, . Claim (a) follows. Similarly for claim
(b). O

Proposition 2.6. For £,m,n > 1 we have the following bijections:
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(a) Smp X Sm X Sn = Sm+n, mapping

o0, >0 - (Ip+1 01 @) (Imt1 om+1 B),

where - denotes the product in the symmetric group Sy +n.
(b) Stt+mn X St,m —> St,m,n, Mapping

0, T+ 0 - (14101 7).

(c) Smn X Sﬁ,m+n - Sﬂ,m,n’ mapping
0, T+ T-(lg41 0041 0).

Proof. First, the two sets Sy n X Sy X Sy and Sy 4, have the same cardinality
(m + n)!. Hence, to prove that the map (a) is a bijection it suffices to prove that
it is injective or surjective. On the other hand, we can see how

X =o0-: (1n+1 01 Ol) . (1m+1 Om+1 ,3)

acts on the tensor power V" +"~1 of a vector space V. First, we permute the
factors of v = v1 ® -+ ® v, by « and the factors of V41 ® -+ ® Viy+n
by B. Then, we shuffle the resulting monomial, in such a way that the factors of
a2 (V1 ® - -+ ®vy,) appear in the same order in X (v), in positions o (1), ..., o (m),
and similarly the factors of B(v;+1 ® -+ ® Um+n) appear in the same order
in X(v), in positions o(m + 1),...,0(m + n). Now it is clear that the resulting
monomial X (v) is uniquely determined by the choice of 0 € Sy, 4, @ € Siy and
B € S;. In other words, the map (a) is injective.

Let us now prove that the map (b) is bijective. First note that two sets Sy, ,

. . !
xS¢.m and Sy ,, , have the same cardinality %—,‘;’7) Next, we need to prove

that, foro € Sy, , and v € Sy p,, the permutation o (1,41017) isan (£, m, n)-
shuffle. Indeed, by (2.22),

l1<(pt1o01)i@)=1t@(@)<L€+m fori=1,...,L+m, (2.31)
and
(Igg1o10)(@) =i fori=L+m+1,....4+m+n. (2.32)
On the other hand, since T € Sy ,,, we have

I<t(l)<---<tl)<f+mand 1 <t(l+1)<---<t(l+m)<L+m,
(2.33)
and since 0 € Sy, », We have

o(l)<---<ol+m)and ol +m+1)<---<ol+m+n). (2.34)
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Combining (2.31)—(2.34), we get

o(lpr101 1)(1) =0(z(1)) <--- <0 (lpg1 01 1)) = 0 (z(¢)),

o(lpr101 )€+ 1)

=o(t(l+1)) < <o(lpt101 )l +m) =0zl +m)),

U(1n+1 01 T)(E +m + 1)

=ol+m+1)<---<o(lpr1o01t)l+m+n)=0cl +m—+n),

(2.35)

namely, 0 (1,41 01 T) € S¢ . To prove that the map (b) is injective, we
just observe that, by the third line in (2.35), the values of o (1,41 o1 ) on
£+m+1,...,£+m+nuniquely determine c({ +m +1),...,0({ +m +n),
i.e., uniquely determine the shuffle 0 € Sy4,, ,. Then, since o is uniquely

determined by o (1,41 o1 7), it is clear that t is uniquely determined as well. A
similar proof works for (c). O

Proposition 2.7. (a) The set of shuffles Sy n decomposes as

(b) We have a bijection{o € Spm41,n—1|0(1) =1} = {o€Sunlom+1) =
1} given by
or—>0-(1p01(1,2) 01 1), (2.36)

where - is the product in the symmetric group Sy +n.
(c) We have a bijection Sy—1,n — {0 € Sp,n|0(1) = 1} given by

o+ 1,050. (2.37)

Proof. Claim (a) is obvious since, if o is an (m, n)-shuffle, then either 1 =
o(l) or 1 = o(m + 1). For (b), recall that, by (2.27), (1, o1 (1,2) o1 1)
is the cyclic permutation 1 + 2 + --- — m + 1 — 1. Hence, the product
o-(1,01(1,2) 01 1,,) maps

1 m m—+1 m 2 m+n

\ \ \ \ \
o)<+ <om+1), o()=1<o(m+2)<---<o(m+ n).

It follows that o - (1,, o1 (1,2) 01 1,,) lies in Sy, provided that o € Sy41,n—1,
and that it maps m + 1 +— 1. On the other hand, the map (2.36) is clearly
injective, hence it is bijective since the two sets {o € Sy +1,n—1|0(1) = 1} and

(m+n—1)!

{o € Smn|o(m + 1) = 1} have the same cardinality I

(b).

Next, let us prove claim (c). By the definition of the o;-products, we have

. This proves

(12 0o O')(l) = 1, and



264 B. Bakalov, A. De Sole, R. Heluani and V.G. Kac

(l00)(1+i)=14+0(G) for i=1,....m+n—1.

In particular, (12 02 0) € Sy, provided that 0 € S;,—1,,. On the other hand,
the map (2.37) is clearly injective, hence it is bijective since the two sets Sy, —1,,
and {o € Sy, » | 0(1) = 1} have the same cardinality %&3' This proves (c).

Finally, claim (d) follows from (b) and (c). O

3. Superoperads and the associated Z-graded Lie superalgebras

In this section, we review the definition and some basic properties of superoper-
ads, which will be needed throughout the rest of the paper. For extended reviews
on the theory of operads, see e.g. [LV12], [MSSO02].

3.1. Definition of a superoperad

Recall that a (linear, unital, symmetric) superoperad &7 is a collection of vector
superspaces #(n), n > 0, with parity p, endowed, for every f € Z(n) and
mi,...,my > 0, with the composition parity preserving linear map,

Pn) @ P(m1) - P(my) — P (Mp),
RV ®gn > f(g1 Q- ® gn),

where My, := m1 + --- + my (cf. (2.9)), satisfying the following associativity
axiom:

(3.1)

flg1®-®@gn)(h ®---® hp,,))
M,

(3.2)
= (f@1® g &+ & hy,) € 2( Y1),
j=1

for every f € HY(n), gi € P(m;)fori = 1,...,n, and h; € P ;) for
j =1,..., M,. In the left-hand side of (3.2) the linear map

M;

n M, n
Re: Q7N —Q2( Y. b
j=1

i=1 i=1 J=M;_1+1
is the tensor product of composition maps, defined by (2.1), applied to
h ® - ®hy,
=M ® - @hy)® (hyy+1®- Qhp,) @+ ® (hpyg,_+1 ® -+ ® hy,,).

We assume that & is endowed with a unit element 1 € Z7(1) satisfying the
following unity axioms:

fA®---®1)=1(f) = f, forevery f € Z(n). (3.3)
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Furthermore, we assume that, for each n > 1, &?(n) has a right action of the
symmetric group S,, denoted 19, for f € H(n) and o € S,, satisfying the
following equivariance axiom (f € Z(n), g1 € P (my1),...,8n € L (my),
0€SH, T1 €ESmy,---rTn € Smy,):

fOET @ ®gi) = (f(0(g1 ® - ® gn))) ™, (3.4)

where the composition o (71, ..., Ty) € Sm,+--+m, Of permutation was defined
in Sect. 2.3, and the left action of o € S, on the tensor product of vector super-
spaces was defined in (2.6).

For simplicity, from now on, we will use the term operad in place of super-
operad.

Example 3.1. The symmetric group operad .7 is defined as the collection of
purely even superspaces . (n) = F[S,] forn > 1 and .(0) = F, with the
composition maps obtained by extending linearly (2.10) to the group algebras,
the unity 1 € S;, and the action of right multiplication of S, on F[S,]. This
1s an operad, indeed the associativity axiom (3.2) follows from Proposition 2.3,
and the equivariance axiom (3.4) follows from Proposition 2.4.

Example 3.2. Given a vector superspace V = V5 @ Vi, the operad 4 is
defined as the collection of superspaces #»(n) = Hom(V®"*, V), n > 0, en-
dowed with the composition maps (f € £ (n), gi € &L (m;) fori =1,...,n,
vieViorj=1...,My:=my+--+my):
(f(g1®--®gn))(V1Q---®vpm,) = f((g1®--®&n)(V1®---®VpM,)), (3.5)

the unity 1 = 1y € End V, and the right action of S,, on Hom(V®", V) given
by (2.5). The associativity and unit axioms, for this example, are obvious. Let us
prove the equivariance axiom (3.4). When applied to a monomial v ®---Quvyy,,,
the left-hand side of (3.4) gives (we use the notation (2.9))

(f(g)' ® - ®gy)(v1 ® @ vm,)

= f7((g]' ® - ®gy")(v1 ® - @ vp,))

= f7((g1® @ gn) (1 (V1 ® @ Vp) ® ® Tn(VM,_ 111 ® - ® Vpr,)))
= f((0(g1® - ®gn))(0(T1,...., n)(V1 ® -+ ® Up,)))

= (f(0(g1® - ® )" (01 ® - @ upy,).
For the third equality, we used Lemma 2.1 and the definition (2.10) of o(ty,
ey Tn).

Given an operad &, one defines, for each i = 1,...,n, the o;-product
0j: P(n)x X(m) - F(n + m — 1) by insertion in position i, i.e.,
i—1 i n—i

foig=/1®--R®1®E&ERIR--R1). (3.6)
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Of course, knowing all the o;-products allows to reconstruct, thanks to the as-
sociativity axiom (3.2), the whole operad structure, by

(&1 gn) = (- ((f o181) omy+1 82)*+*) Omy+-tmu_y+1 &n-  (3.7)

Then, the unity axiom (i) becomes 1oy f = fo;1 = f foreveryi = 1,...,n,
and the associativity axiom (ii) is equivalent to the following identities for the

oj-products, cf. (2.18) (f € H(n), g € P (m), h € Z{)):
(~DP@PB(fo;h)ogyioy g if 1<) <i,
(foig)ojh=1 foi(goj—it1h) ifi <j<i+m,
(—)PEOPD(f o; pirh)oig ifi+m=<j<n+m.
(3.8)
In particular, the o;-product is associative. Note that the third identity in (3.8)
is equivalent to the first one by flipping the equality. Furthermore, the equivari-

ance condition (3.4) and the supersymmetric equivariance condition (3.4) both
become, in terms of the o;-products, cf. (2.19)

f70ig" = (f o5q)8)°"T, (3.9)

for f € #(n),g € P(m),o € Sy, t € Sy, whereo o; T € Sy, 4,—1 is defined
by (2.16).

By definition, an operad &7 is filtered if each vector superspace &?(n) is
endowed with a filtration F” &?(n), which is preserved by the action of the sym-
metric group and is preserved by the composition maps, i.e.,

fOeF Pm), f(g1Q--Qgy) € FTS1TtSn G 4.4+ m,) (3.10)

forall f € FF #(n),o € S, and g; € F¥ &(m;). In the case of a decreasing
filtration of Z2, the corresponding associated graded operad is

gr” P(n) =F Pn)/F 1t 2®0), (3.11)

with the induced action of the symmetric groups and composition maps. This is
a graded operad, i.e., each superspace &?(n) is graded and the analog of (3.10)
holds degreewise.

A morphism ¢ from an operad & to an operad 2 is a collection of linear
maps ¢, : #(n) —> 2(n) commuting with the action of the symmetric groups
and compatible with the composition maps. When & and 2 are filtered, the
map ¢, is required to send F* & (n) to F 2(n), and similarly for graded oper-
ads.
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3.2. Universal Lie superalgebra associated to an operad

Let & be an operad. We let W = W(Z?) be the Z-graded vector superspace
W =@, >_1 Wa, where

Wy =P+ 1)+ ={fePn+1)|f°=fVoecS} (312
We define the [l-product of f € W, and g € W, as follows:
-1
fOg= Y (fo19) . (3.13)

CESm+1.n
Note that Sy, +1,—1 = 9, hence flg =0if f € W_;.
Example 3.3. For f, g € Wy, we have

fOg=forg+(for8® +(f o)1
= foirg+ forg+(fo2)!"?.

The second equality follows from (3.9) and the fact that f and g are symmetric,
using (23) = (132)(12) and (132) = (12) o5 (1).

(3.14)

Theorem 3.4. (a) For f € Wy, and g € Wy, we have fg € Wy4m,.
(b) The associator of the U-product is right supersymmetric, i.e.,

(fOg)Th— fO(g0h) = (~1)PEOPW((fOnOg — fO(hOg)). (3.15)

(c) Consequently, W is a Z-graded Lie superalgebra with Lie bracket given by
(f € Wy, g € Wy)

[f.g] = fOg — ()PP & 0. (3.16)

Proof. For claim (a), we need to prove that f[lg is fixed by the action of the
symmetric group Sy, +,+1. We have

Yo (forg = Y (for @@t Wmpaomaa) ™

OESm+n+1 BESH+1,0ESy,
OESm+1.n

— Z (f o g)(lrn+20m+206_1)-(1n+1°1/3_1)'0_1
ﬂesm—l—l:aesna
OESm+1.n

= 3 (forg) e Dortmi) (lugrerfTH0™

ﬁesm—}-l 5a€S}’ls
O‘GSm+1!n

ora—1 —1_4s—1
= ) (e ey

ﬂesm+laaesna
CESm+1.n



268 B. Bakalov, A. De Sole, R. Heluani and V.G. Kac

=m+Di! Y (forg)  =(m+ D! fOg

OESm+1.n

(3.17)

where we used Proposition 2.6 (a) for the first equality, the homomorphism
property of the maps (2.21) for the second equality, identity (2.25) for the third
equality, the equivariance conditions (3.9) and the obvious identities (1, o;
o 1)(1) = 1 = 1,41(1) for the fourth equality, and the assumptions that
f € W, and g € W, for the fifth equality. Since the left-hand side of (3.17)
is manifestly invariant with respect to the action of Sy, 4,41, we conclude that
fUg is invariant as well, proving (a).
Next, let us prove claim (b). We have

OO = Y (for(gorh)T )

OESt+m+1.n TESe+1.m

- Z Z (f o1 (g o1 h))(ln-i-loll’_l)-o‘_]

OESt+m+1.n TESe+1.m

- Z Z (f o1 (g o1 h))@Unrroro)™

OESttm+1.n TESe+1,m

= Y (for(gorh)” .

UGSK—i—I,m,n

(3.18)

In the second equality we used the equivariance condition (3.9), in the third
equality we used the fact that the map (2.21) is a group homomorphism, and in
the fourth equality we used Proposition 2.6 (b). On the other hand, we have

(fOpTh= Y Y ((fe18)’ oah™ . (319

OESm+1.n TESt+1.m+n

By Proposition 2.7 (a), the sum in the right-hand side of (3.19) split as sum
of two terms, in the first one we sum over the shuffles 0 € S;,41,, such that
o(1) = 1, and in the second one we sum over the shuffles 0 € Sy, 41, such
that o (m + 2) = 1. The first term is

oY e e

OESm+1.n TE€ESe+1.m+n
st.o(1)=1

- Z Z ((f o1 g) oy B "erlerD e

OESm+1.n TE€ESe+1.m+n
st.o(1)=1

- Z Z ((f o1 g) o1 h)T@erler )™

OESm+1.n TE€ESe+1.m+n
st.o(1)=1
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- Z Z ((f o1 g) o1 h)(F (12020001 Loyt

0E€ESm.n TE€ESe+1.,m4n

- Z Z ((f o1 g) o h)TTe20e420)7"

OESm.n TESe41.m+n

= Y ((forgah) .

0€S€+1,m,n

(3.20)

where we used the equivariance relation (3.9) for the first equality, the fact that
the map (2.24) is a homomorphism for the second equality, Proposition 2.7 (c)
for the third equality, equation (2.25) for the fourth equality, and Proposition
2.6 (c) for the fifth equality. Note that the right-hand side of (3.20) coincides
with the right-hand side of (3.18) since the o -product is associative. The second
term, where we take the sum over the shuffles 0 € S;,41,, suchthato(m+2) =
1 in (3.19), is

Z Z (fo19)" o1h)™

0E€ESm+1.n TESL+1,m4n
st.o(m+2)=1

- Z Z ((fe1g) Og—1(1) h)(0_1°11£+1)~1’_1

0E€ESm+1.n TESe+1.m4n
st.o(m+2)=1

- Y. (for®) oms h)y©@omt2ler) e

0E€ESm+1.n TESe+1,m4n

st.o(m+2)=1
n—1
= ) Y (fe®h®T®- @ 1) Feemele)™
0€ESm+1n TESL41.m+n
s.t.o(m+2)=1

n—1

- Z Z (f(g®h®1®--'®1))(?(((12020)'(1”01(1’2)°11m+1))°m+2lz+1))_1,

Oesm+1,n—1 T€S£+l,m+n

(3.21)

where we used the equivariance relation (3.9) for the first equality, equation
(2.23) for the second equality, the definition (3.6) of the o;-products for the
third equality, and Proposition 2.7 (d) for the fourth equality. Equation (2.19),
with (12 05 0) inplace of 8, (1,01 (1,2) 01 Iy41) inplaceof o, o0 = 7 = 1y4q
andi = m + 2, gives
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((I020)-(1n01 (1,2) o1 Lint1)) om+2 Lot
= ((lz020) 01 lg41) - ((1n o1 (1,2) o1 1ymg1) Oma2 Lg41)
= (g2 00420) - (1,2)(Lt1, Lgg1, 1n—1),

where, for the second equality, we used equations (2.25) and (2.28). Hence, the
right-hand side of (3.21) becomes

Z Z (feR®h®1® - ® 1))(f'(1£~|—2°Z~|—20)‘(1»2)(1m+1Jl—l—laln—l))_l

OESm+1.n—1 TE€ESt+1.m+n

= Z (flg®@h®1®---® 1)) LDUntilerrIn-1))!

0ESe+1,m+1.n—1

= Y (fgehele--®1)7 .
OESm+1.64+1.n—1
(3.22)
where we used Proposition 2.6 (c) in the first equality and Proposition 2.5 (b)
for the second equality. Combining (3.18), (3.19), (3.20), (3.21) and (3.22), we
get

(fOg)0h— fO(g0h) = Y (fe®h®1®--®1)° . (3.23)
OESm+1.041.n—1

To conclude the proof of (b), we observe that the right-hand side of (3.23) is
manifestly supersymmetric with respect to the exchange of g and h. Indeed,

since f € Wy, we have f = f12) Hence, by the equivariance condition
(3.4), we have

Y (feeh®lg--®1)°

OESm+1.,64+1.n—1

= Y et gle @)

OESm+1.64+1.n—1

= (=1)P&)r®) Z fhReg®1®- @ 1))1DUntrlernln-)o™!

OESm+1.64+1.n—1

= (=1)P&)r®) Z (fhR®e@I® @ 1))(0'(1,2)(le+1,1m+1,1n—1))_l

OESm+1.64+1.n—1

= (-1)P@PB N (fheg®l®-® )7,

0ES+1,m+1.n—1

again by Proposition 2.5 (b). Claim (c) is an obvious consequence of (b). O
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Remark 3.5. For an arbitrary non-symmetric operad & (i.e., for which we do
not require the action of the symmetric groups and the equivariance axiom
(3.4)), we can also construct a Z-graded Lie superalgebra

G=P G G1=Pn), (3.24)

n>—1

with Lie bracket (f € #(n), g € #(m))

[fgl=) foig—(—)PP&N g0, f (3.25)

i=1 i=1

Indeed, letting f o g = >.7_; f o; g, we have, by the associativity condition
(3.8),

n m+n—1

(fogloh—fo(goh)y=>" > (foig)ojh- ZZfoz(go h)
i=1 j=1 i=1j=1

= (-)P@OP® S (fophyopiig+ Y (foig)omj-1h

1<j<i<n 1<i<j=<n

Since the expression in the right-hand side is supersymmetric with respect to
the exchange of g and #4, it follows that (3.25) is a Lie superalgebra bracket. In
the special case when each &?(n) has the same parity as (n + 1), the resulting
bracket (3.25) is known as the Gerstenhaber bracket [Ger63].

4. The operad governing Lie superalgebras

Given the vector superspace V', with parity p, we denote by I1V the same vector
space with reversed parity p = 1— p, and we consider the corresponding operad
Hzr(I1V) from Example 3.2, and the associated Z-graded Lie superalgebra
W(T1V') := W( Az (I1V)) given by Theorem 3.4.

Proposition 4.1 ([NR67], [DSK13]). We have a bijective correspondence be-
tween the odd elements X € Wi (I1V) such that XU1X = 0 and the Lie super-
algebra brackets [-, -|: V. xV — V on V, given by

[a.b] = (—-1)?D X(a ® b). 4.1)
Proof. By definition, X € (#z».(I1V))(2)7 is an odd linear map X : (IT V)®2

— I1V, and it corresponds, via (4.1), to a parity preserving bilinear map [-, -] :
V x V — V. Moreover, to say that X lies in Wy (I1V) = (#-(I1V))(2)52 is
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equivalent to say that the corresponding bracket [-, -] satisfies skew-symmetry.
Finally, by the definition (3.13) of the [l-product, we have (a,b,c € V)

XOX)@®b®c)= Y (Xo1X)° (@®b®c)

O‘GSZJ
= (=) ([[a, b], c] — [a, [b, c]] + (=1)PDPO[p [a, c])).
Hence, XUX = 0 if and only if the Jacobi identity holds. O

Note that, if X € Wi (ITV)j satisfies XX = 0, then it follows by the
Jacobi identity for the Lie superalgebra W(ITV) that (ad X)? = 0, i.e., we have
a cohomology complex (W(IT1V'), ad X).

Definition 4.2. Let V be a Lie superalgebra. The corresponding Lie superalge-
bra cohomology complex is defined as

(W({I1V),ad X),
where X € W(I1V)j is given by (4.1).

Obviously, the kernel of ad X is a subalgebra of W(ITV') and the image of
ad X is its ideal. Hence, the cohomology H (W (I1V'), ad X) has the structure of
a Lie superalgebra.

Remark 4.3. One can define the .~ operad as follows: “z(1) = F1; 22(2) is
the non-trivial 1-dimensional representation of S,, with basis element denoted
by [-, -]; for every n > 2, all the elements of .~z (n) are obtained by composition
of [, -] € “(2), and they are subject to the relation in %z(3) corresponding
to the Jacobi identity:

[°’ ] 02 [°’ ']_012(['v ']OZ [" ]): [" ']Ol ['9 ]

Then, a Lie superalgebra structure on a vector superspace V is the same as a
morphism of (symmetric) operads .~z — #z»-(V'). Proposition 4.1 gives such
a morphism by sending |-, -] to X.

In the following sections, we will repeat the same line of reasoning as the
one used in the present section for the cohomology theories of Lie conformal
algebras, Poisson algebras, Poisson vertex algebras and vertex algebras: after
reviewing their definition, we will construct, for each of them, an operad &,
and we will describe their algebraic structures as an element X € W; C W(Z?)
such that XX = 0. In this way, we automatically get, for each algebraic
structure of interest, the corresponding cohomology complex (W (<), ad X).
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5. The operad governing Lie conformal superalgebras
5.1. Lie conformal superalgebras

Recall that a Lie conformal superalgebra is a vector superspace V', endowed
with an even endomorphism d € End(}) and a bilinear (over ) A-bracket
[1°]: V xV — V[A] satisfying sesquilinearity (a,b € V):

[0a;b] = —Alayb], [apob] = (A + d)[ayb], (5.1)
skew-symmetry (a,b € V):
(azb] = ~(=1)?@?O[b_; _sa). (5:2)

and the Jacobi identity (a,b,c € V):

[a[bucl] — (=1)P@P®O b, [a; b]] = [[azb]5+c]- (5.3)

5.2. The %%+ operad

Let V = V5 @ V7 be a vector superspace endowed with an even endomorphism
d € End V. The operad #%#.+ is defined as the collection of superspaces

oo (n) = Hompgren (V" F_[A1...., An] ®pp1 V), n>0. (54)

Here and further Ay, ..., A are commuting indeterminates of even parity and
F_[A1,...,Ar] denotes the space of polynomials in the variables Aq,...,A,.
This space is endowed with a structure of a left F[9]®”-module by letting P ()
® -+ ® Pp(0) act as multiplication by Py(—A1):-- P,(—A,), and a structure
of a right IF[0]-module by letting d act as multiplication by —A; — -+ — A,.

Note that %%2,.(0) = V/3dV . Obviously, we can identify F_[A] Qppg; V =~
V, so that “%» (1) = Endgps (V). For arbitrary n > 1, “#z»(n) consists of
all linear maps

fiVE —TF_[A1,..., ] ®pg V.
V1® - ®uyp > fa,,..4,V1® -+ @),

satisfying the sesquilinearity conditions:

Srtoir, V1 ® - 0V; - ® vp)

5.5
:_)Lifkl ,,,,, ;Ln(v1®---®vn) foralli =1,...,n. (5-5)

In particular, ##,,».(2) is identified with the space of all A-brackets on V, satis-
fying (5.1).
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The Z/27Z-structure of Z#z+(n) is induced by that of V. The composition
of f € “om(n) and g1 € “Hom(m1),...,8n € “Hor(my) is defined as
follows:

(f(81® - ®&n)ay,....Ap, (V1 ® -+ QUp,)

= fAl ..... An(((gl)ﬁ.l ..... A‘Ml Q& (gn)/an_l_H ..... AMn)(vl ®"'®an))a
(5.6)
where we let (cf. (2.9))

i M;
M=) mj, i=0..n ad Aj= Y Aj.i=1...n (57
j=1 J=M;_1+1

and, recalling (2.1), we have

((gl)ll ..... )\,Ml ®-..®(gn))LMn_]+1 ..... A.Mn)(vl ®®an)
= :t(gl)/ll,...,/{Ml(vl ®®UM1)® (58)

X (gn)AAJ,1_1+1 ..... AMn(an—H'l K- an)a

where
4 — (_1)2i<j p(&))(pm;_+1)+++pr;)) (5.9)

The unity in the Z#s.-operad is 1 = 1y € “#%n.(1) = Endgps V, and the
right action of S, on Z#2»(n) is given by (cf. (2.3), (2.5) and (2.8)):

(S Dapry (V1 ® -+ @ vp)
= fo(r1,hn)(0(V1 ® - ® vy)) (5.10)
= €0 (0) S _11yetomt g (Vo=1(1) B -+ ® Vo1 (),

o)

for every o € S, where €, (0) is given by (2.3).
Let us first check the associativity axiom for the operad 77, which reads

(f(&1® - ®gn))(h & @ hm,))ay,.hp,, V1@ - ®vLy,)

=(f(g1®--®gn)(h1 ® - ® hag,)is,.odr,,, (V1 ® - @ VLy,),
(5.11)
for every f € “#one(n), gi € “Horn(mi), i = 1,...,0n, hj € Gorm(L)), j =
L....omi+-4+my =My,andvy e V.k=1,....41+---+4€p, = Ly,
Let us denote, in accordance to (5.7),

i J
M=) mj, i=0..n and Lj=>) f. (5.12)
j=1 k=1



Cohomology of vertex algebras via operads 275

Then, using the definition (5.6) of the composition map in the operad Z#..,
one easily checks that both sides of (5.11) are equal to

f Ly Lag
Z,‘:llxi ----- Zi=LnMn_l+lki
(((g1) 2 Ly ® - ®(gn) Lag, 42 Lag )
Zji]kj ----- Zj:£M1_1+1A‘j Zj:ZA;n_l—‘rl ENLE Zj:LnMn_l-H)U

'(((hl)l] ..... ALI ®.“®(hM”)ALMn—1‘H ..... )LLMn)(vl ®®ULMH)))’

proving associativity. The unity axiom is immediate to check. Next, we prove
the equivariance axiom (3.4). If we apply the left-hand side of (3.4) to a mono-
mial v; ® --- ® vy, and we evaluate it on the variables A1, ..., Ay, , We get

.....

(11 ® - ®vm,))

= JoA 1, A) (€D A seosdar) @ - ® (&1 7 hns, 15 Aa)
(T ® - ®um,) @ Q@ Ta(VM,_ 1 +1 ® -+ ® Un,))))

= Jo(A1,A) ((OUE D1 A sediar) B ® (&1) 1 Gorryy_ 410Aa))
(0T, ) (V1 ® - B upy,)))

= (f(0(g1® " ®&n)))(a(tr,etn)A1seshng,) (O (T1s o Th)
(11 ® - ®up,))

= ((fo(g1®® &))" ") s, (V1 ® - ® vag,).

For the first equality we used the definition (5.6) of the composition maps in

#2072, for the second equality we used the definition (5.10) of the action of the
symmetric group on “#., for the third equality we used Lemma 2.1 and the
definition (2.10) of the composition map of permutations, for the fourth equality
we used again (2.10) and (5.6), and for the last equality we used again (5.10).
This proves the equivariance condition (3.4).

5.3. Lie conformal superalgebras and the operad “#om

Given the vector superspace V', with parity p, and the even endomorphism 9 €
End(V), we denote by [TV the same vector space with reversed parity p =
1 — p. Obviously, d is also an even endomorphism of T1V. We consider the
corresponding operad ##...(I1V) from Sect. 5.2 and the associated Z-graded

Lie superalgebra W(I1V) := W(%#.»-(I1V)) given by Theorem 3.4.
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Proposition 5.1 ([DSK13]). We have a bijective correspondence between the
odd elements X € Wla(l'[ V') such that XX = 0 and the Lie conformal super-
algebra A-brackets [- 5 ]: V xV — V[A] on V, given by

laxb] = (=1)?D X, 1 _a(a @ b). (5.13)

Proof. First, X € (“#2»(I1V))(2) is, by definition, an odd F[3]®?-module ho-
momorphism X3 ,,: (I1 V)82 5 F_[A, u] ®rpa) IV 2~ V[A] (the last isomor-
phism being obtained by letting © = —A — d), and it corresponds, via (4.1), to
A-bracket [-, -]: V x V — V|[A] satisfying the sesquilinearity conditions (5.1).
The condition that X € (%% (I1V))(2) is odd (with respect to the parity p
induced by that ITV), translates into saying that the corresponding A-bracket
[, -] is parity preserving. Moreover, the condition that X is fixed by the action
(5.10) of the symmetric group S» translates into saying that the corresponding
A-bracket [- ; -] satisfies the skew-symmetry axiom (5.2). To complete the proof,
we need to check that the equation X[ 1X = O translates to the Jacobi identity
for the A-bracket [-  -]. By equation (3.14), we have

(XOX)j,m@®b®c)= > (Xo1 X)” )i um@®b®c)

0gE€S2 1
= XotpuwXau@®b) ®c) + (—1)POPOX;  (X) (@ ®c) ®b)
+ (—l)p(a)(ﬁ(b)+p(c))XM+v,;L(XM,,,(b ® ) ® a)
= Xatuw (X u@®b) ®¢) + (~1)POUHP@y ;1 (b ® X;,(a ® ¢))
+ (DPDX; (@ ® Xy (b @ 0))
= (DD ([[arblrspuc] — lanlbucl] + ()P @PO b, [asc])).
Hence, XX = 0 if and only if the Jacobi identity (5.3) holds. O

Definition 5.2 ([BKV99], [DSKO09]). Let V be a Lie conformal superalgebra.
The corresponding Lie conformal superalgebra cohomology complex is defined
as

(WTIV), ad X),
where X € W9(I1 V)1 is given by (5.13).

Remark 5.3. One can introduce a conformal version of the operad ##2,»., which
is associated to the basic Lie conformal algebra complex (see [DSK13]). This
leads to the notion of a conformal operad, which will be developed in a forth-
coming publication. In the geometric context of chiral algebras, the correspond-
ing object was constructed by Tamarkin in [Tam02].
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6. The chiral operad
6.1. Vertex algebras

In this subsection, we recall the “fifth definition” of a vertex algebra, given in
[DSKO6]. In a nutshell, this definition says that a vertex algebra is a Lie con-
formal algebra in which the A-bracket can be “integrated”. More precisely we
have:

Definition 6.1. A vertex algebra is a 7./27-graded F[0]-module V, endowed
with an even element |0) € V5 and an integral of A-bracket, namely a linear
map V ® V. — F[A] ® V, denoted by

A A
/ do [ugv] = mv: +/ do [ugv],
0

such that the following axioms hold:
A A
i) [ dotioor = [ doloelo) =
A A A A
(ii)/ do [dugv] = —/ dao[ugv],/ do [ugdv] :/ do (0 + o)[ugv],

A
(iii) / do [vgu] = (—1)P@WPrE) / do [ugv],

A "
(iv) / do | dt ([ug[vew]] — (=1)PWPO [ [ugw]] — [[uev]et+cw]) = 0.

If we do not assume the existence of the unit element |0) € V and we drop axiom
(i), we call V' a non-unital vertex algebra.

Paper [DSKO06] contains a detailed discussion of this definition and the proof
of its equivalence to other definitions of vertex algebras. We shall call [uv],

defined as the derivative by A of the polynomial [ *do [ugv], the A-bracket of
u and v. Their normally ordered product :uv: is defined as the constant term
of the polynomial [ *do [usv]. The polynomial | *do [ugv] will be called the
integral of the A-bracket of u and v.

Axioms (i)—(iv) are a concise way to write more complicated relations in-
volving the normally ordered products :uv: and the A-brackets [u;v]. To ex-
plain this, let us describe the meaning of axiom (ii). Taking the derivative with
respect to A of both equations we get the sesquilinearity conditions of the A-
bracket: [0u v] = —A[u v] and [udv] = (0 4+ A)[uyv], while putting A = 0
in axiom (ii) we get that d is a derivation of the normally ordered product, plus
a new piece of notation:

/Odo olugv] = —:(du)v:. (6.1)
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Similarly, axiom (iii) gives two conditions: taking the derivative of both sides
with respect to A we get the skew-symmetry of the A-bracket:

[au] = —(=1)PPO_; 0],

while taking the constant term in A we get the quasi-commutativity of the nor-
mally ordered product:

0
uv: — (—1)PWPW)yy. =/ dA [uyv].
—a

Finally, to explain of axiom (iv) we expand all three summand in terms of nor-
mally ordered product and A-brackets. The first term is immediate to under-
stand:

A " "
/ dof drtlug[vew]] = u(CGow:): —i—/ dt ulvewl:
0

+ /(;Ado [ug:vw:] + /OAdU/OMdT g [vw]].

Similarly for the second term. To correctly expand the third term, we first per-
form the change of variable 0 + v — t, we exchange the order of integration
in do and d t, and we use the notation (6.1). As a result, we get

/Ada Mdr[[ugv]g_Hw] = /)L—HLalt[(/)L do [ugv])rw]

—pu—a
A Atu A
= (/ do [u(,v])w: —|—/ dt[(/ do [u(,v]) w].
—u—0 0 —u—0 T
Hence, by taking constant term or derivative with respect to A and/or ., axiom
(iv) produces four different axioms on the normally ordered product and the
A-bracket.

Axiom (iv), i.e., Jacobi identity under integration, could be written in the
seemingly equivalent form:

A w
i) / do | dv (buelve—ow]] — (—1)PPPO [y ugw]] - [[ugv]sw]) = 0.

Not surprisingly, (iv) and (iv’) are equivalent, as a consequence of the following:

Lemma 6.2. Let fAdO' [o°]: V&V — V[A] be a linear map satisfying the
sesquilinearity and skew-symmetry conditions under integration, i.e., axioms
(ii) and (iii) of Definition 6.1. Let

J)L,M(u,v,w)

A 6.
:/ do Mdf([ua[vzw]]—(—1)p(“)”(”)[vr[uow]]—[[uav]a+rw]), @2
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and let

’Jlu(u,v,w)

A M
= / do | dt ([ug[ve—ew]] — (~1DPWPO [y ugw]] — [[ue vl w]).

(6.3)
Then, we have

Ti v, w) = (=1)P@OP@ 1o, w, ). (6.4)

Proof. Applying the skew-symmetry condition under the sign of integral, we
have

Zx’M(u,v,w)

A w
— / do | dt ([ugve—ow]] — (=1)P@WPO [y _ usw]] — [[ugv]:w])

A W
- / do / dv (1?02 g w0 o] + (~1)POPO o]y o_g0]
+ (_1)(P(u)+P(v))p(W) [w_r_glucv]]).

Note that, by the sesquilinearity condition, o in the first term of the right-hand
side is the same as —d acting on the first factor u. If we then perform the change
of variable —t — d = p, the right-hand side becomes

A —u—0a
(—1)P@P() / do / dp (o Twpvl] — [tewlprov] — (—1)POPO [ uou]])
= (=)P@P@ s, w,v).
This completes the proof. O

Definition 6.3. A left module M over a non-unital vertex algebra V is a 7./ 27.-
graded F[0]-module endowed with an integral A-action, V @ M — F[A] ® M,

denoted v @ m +— fAdO (vom), preserving the 7./27-grading, such that the
following axioms hold:

A A A A
(i)/ do (dvgm) :—/ doa(vgm),/ do (vy0m) :/ do (0 + o)(vgm),

A M
(ii) / do / dt (ug(em) — (=1)PPOy (uym) — [ugv]gtom) = 0.

This is equivalent to say that the F[d]-module V & M has a vertex algebra
structure fkdo [ ] such that f’ldo [ugv]™ € VI[A] forallu,v € V, making
V' a vertex subalgebra, and such that fAdJ [Vom]™ € M[A] forallv € V and
m € M, and fkda [men]™ = 0forallm,n € M, making M an abelian ideal.
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The left V-module structure on M induces a right V -module structure on
M given by

A —A—0
/ domgv = (—l)p(v)p(m)/ do vem. (6.5)

6.2. The spaces ﬁ,:_{l

In the following subsection, we will introduce the chiral operad, which governs
vertex algebras. In order to do so, we need to define certain spaces of rational
functions. For k > —1, let & , | be the algebra of polynomials in the variables

k+1
20, - - ., Zk localized on the diagonals z; = z; for i # j. In other words, ﬁg =
I and
-1
ﬁgﬂ = F|zo,.. .,Zk][Zij lo<i<j<k, Where zj; =z; —zj, k>0.

We will denote by ﬁ,’gil the subalgebra of translation invariant elements, i.e.,

k
0, = Ker(302,) = Flzdozi< =
i=0

Note that ﬁ’(’)‘T = ﬁfT =TF.
Let Yk 41 be the algebra of regular differential operators in zo, . . ., z, i.e.,
9o = F and

D1 =Flzo. ... zk)[0z0. ... 9z, ). Kk = 0.

Let 2T be the subalgebra of translation invariant elements: 2] = F and

k+1

k
D1 = Kerad(D 0z, ) = (Flzijlozi<j=k)zgo - 0z ) Kk = 0.
i=0

Lemma 6.4. The function f(zo,...,2k) = [lo<i<j<k Zi;l is a cyclic element
of the Dy y1-module ﬁ,:_i_l. Consequently, f is a cyclic element of the @£+1—
module ﬁgil.

Proof (P. Etingof). Consider the Bernstein—Sato polynomial b(s) associated
to !, which admits a differential operator L(s) (regular in z; and s) such
that L(s) f 5! = b(s) f 5. It is known that the roots of the function b(s)
are negative, and by [BW15, Corollary 1.3] we have that b(s) = +b(—s —
2). So —2,—3,... are not roots of b(s). Hence, f? = ﬁL(—ﬂf, f3 =

ﬁL(—@fz, ..., all lie in the P4 1-submodule of ﬁl:+1 generated by f.
The claim follows. O
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6.3. The operad P

Let V = V5 @ V7 be a vector superspace endowed with an even endomorphism
d. For k > 0, the space yek+l) g ﬁ,:_H carries the structure of a right Z 4 1-
module defined by letting z; act by multiplication on &7 ., and letting d,; act

k+1°
by
(Vo ® -+ vk ® f(20,....2k)) - 0z
:U0®---®(avl‘)®"'®vk®f(Z(),...,Zk) (66)
of
— VR QU ® —(20,...,2k).
3Zi
By restriction, yek+l) & ﬁI:L is a right 95+1-module, where z;; € 9,?4_1
act by multiplication on ﬁ,:f_l. Fork = —1, V® ® 0F =~ F is also a module
over Yy = @OT =T.
Consider the space
VAo, ..., Ak]/(0 + Ao + -+ + Ag). (6.7)

Here and further, (®) denotes the image of an endomorphim ®. The space (6.7)
carries the structure of a right Z -module defined by letting z; act by

0
A(Ao,...,lk)-zi = ——A(Ao,...,lk), (6.8)
oA;
and 0, act by
A(Ao, ..., Ag) - 0z, = —A;A(Ao, ..., Ag). (6.9)

Indeed, it is straightforward to check that both the actions (6.6) and (6.8)—(6.9)
satisfy the defining relations A-9;; -z; = A-zj-05; 4+ J;;j A, and that the actions
(6.8)—(6.9) commute with the operator d + Ag + --- + A. Note that formula

9 ¢ o o g M Z 9 e e oy Z 9 s e oy 9 e e oy .

A right .@kT_H-module homomorphism from V®*+1) g ﬁ,ﬁ_l to V[Ao,...,
Akl/(0 + Ao + --- + Ag) is then a linear map

X:VO*tD @ T — VAo, ... Akl/(9 + Ao + -+ + Ag),

Vo R - QU ® f(zo,...,2zx) —> XAO,__.’Ak(UQ,...,Uk;f)’
(6.11)
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satisfying the following two sesquilinearity conditions:

of
Xoorore Wos oo (0 + A)Vis o 0k ) = Xpg,odk (vo, e VS 5)

1

Ko 1= (5 = o) Ko /)

V0,5V Zij f) = =— — Vo, .-, Vs f).

A. ..... A.k 0 k 17} a)"j 3)&, },0 ..... A,k 0 k

(6.12)
Remark 6.5. Consider the usual action of d on V®&+1D aq Z _o 0i, wWhere 0;
denotes the action of d on the i-th factor. Then since Zl —0 gzl = 0 for every

feo ,:_7;1, the first sesquilinearity implies

k
X0v® f)=—Y LX(0® f)=30X0ve® f). veVeEtD (613)

i=0

We let P"(k + 1) be the space of all right _@kT 1 -homomorphisms (6.11),
i.e., all linear maps (6.11) satisfying the sesquilinearity conditions (6.12). Some-

times, in order to specify the variables of the function f € &*T | we will denote

k+1°
the image of the map X as
X3k ookl f(z0s -+ Zk)). (6.14)
Note that, by definition,
PN(0) = Homp(F, V/(d)) = V/oV (6.15)
and
PN (1) = Homppg(V, V[A0)/(d + Xo)) = Endppg (V). (6.16)
We will denote by 1 € P°"(1) the identity endomorphism, so that
13, (o; f) = fvo+ (3 +X), voeV, feoiT =F. (6.17)
The symmetric group Sy has a right action on P"(k 4 1) by permut-
ing simultaneously the inputs vy, ..., v of X and the corresponding variables

20, ...,z in f. Explicitly, for X € P"(k + 1) and 0 € Sy, we have

(XG)ZO’W”Z" (o, ..., vk f(zo,. .., 2k))
(6.18)

= ev(a)XZOO’W’.’Zk Wiy - -+ Vigs f(Zigs oo s Zig))s

where iy = 0~ 1(s) and €, (o) is given by (2.3).
To define the structure of an operad, we need to specify how the maps from
h h h *T
P are composed. Let X € PNk + 1), Y € P (m + 1),and h € OF ., ..
We can write /4 in the form

h(zo,...,Zk+m) = f(Zo, .-, 2k)€(Z0, - -+, Zk+m)s (6.19)
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where f € ﬁ,:_iT_l, ﬁl:-ji:m+1’ and g hasnopolesat z; = z; for 0 <i <
Jj < k. Then we define
20,21 5-- 5Zk+ .
(Y o1 X)AOAI .... Ak+m (UO’UI’---’Uk—i-mah(ZOa---aZk—l—m))
- ZO;Zk—l—l 5555 Zk+m ----- .
= ng,xk+1,...,xk+m( Ao” azo, gtz 0s - Ve [ (Zos - Zk)) . (6.20)

Uk+1, e e ey vk_l_m; g(ZO, e e ey Zk+m)|Zl=‘"=Zk=ZO)’

where Ay, = Ao + A1 + -+ + Ax and the arrow — means that we apply the
derivatives 0, to g before setting z; = zo (1 <i < k).

Lemma 6.6. The product (6.20) is a well defined map from P"(k+1)x P"(m+
1) to PNk +m + 1).

Proof. First, we will check that Y o; X is independent of the choice of fac-
torization (6.19). Let us denote the right-hand side of (6.20) by R(f, g), and
consider R(f,z;jg) where 0 < i < j < k. Notice that for any polynomial P
and 0 <i < k, we have

P()k() — 820, Ce ey Ak — 8Zk)(zig)|21=...=zk:ZO

(6.21)
= (20— 03,)P(Ao — 0z, ..., Ak — 02, )8lz) ==21 =20 -
In particular,
P()&() — 320, ey Ak — 8Zk)(z,-jg)|21=..:zk220 (6,22)

= (82, — 03,)P(Ro — Bzgs -+ Ak — 82) 82y =20

Hence, the sesquilinearity of X implies that R(z;; f,g) = R(f, zijg). This
proves that Y o7 X is well defined.

We will show that ¥ oy X satisfies the second sesquilinearity in (6.12).
First, if again 0 < i < j < k, then (33, — 03,)A; = 0, and (6.22) implies
R(f.zijg) = (95, —9x;)R(f, g) as desired. On the other hand, if k + 1 < j <
k + m, then using (6.21) and the sesquilinearity of Y, we obtain:

R(f. 20j8)

Z0sZk+1s+3Z2k+m Z(QyeeesZ .
A Akt 1 )Lk+m((ZOJ 020) X5~ aZ ..... Ak—0:, (o, ... Vk: ),
Vk41s-- s vk+m;g|21=...zzk—zo)
— _ Z0sZk+1s+3Zk+m [y Z0Qse-e» .
= (a/lj a/lg))Y 6,Ak+]"__’xk+m( )Lo 320, WAk—0z, (UO,---,Uk’f)—n
Vk+1>--+5Vk4+m> g|Zl= =Zk—Zo)
Z0sZk 415025 Zk4+m ;9  vVZ0sees Zk .
AE)JLk—i—la---;Ak—i-m( AO Ao 320, ,)Lk—azk (UO’ cees Uk f)—>9
Vk+1>-+-5 Vk+m> g|21=---=2k=20)

= (0, = 99)R(S. 8)-
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All other cases for i, j can be obtained from the above, by using the identity
Zlm = ZIp + Zpm. This proves that ¥ oy X satisfies the second sesquilinearity
in (6.12).

To prove the first sesquilinearity, consider d4/dz; instead of /4. Then from
(6.19), we get

oh 0
oG Feam) = 3G 208G )

0z;
g
+ f(zo,..., Zk)a—(Z(), ey Zhtm)-
Zj
In the right-hand side, each of the two summands is factored as in (6.19). Thus,

5 9
(ai g) +R(f azgi)‘

We consider two cases: 0 <i <k and k + 1 <i < k + m. In the first case, by
the sesquilinearity of X,

oh
205215452k .
(Y 01 X)A,() )Ll o (U07U1,~--,Uk+m, 87)

i

af Z0,Zk
_ E] +15:e Zk+m ..... . .
<3zl ) = ng,xk+1,...,xk+m( Ao azo, gtz (V05 Vi VR )
Vk+15--- vk+m;g|21= =Zk—Zo)
Z0sZk 415025 Zk4m [V Z0seees .
+ Y/V Ak 1 seees )Lk—i—m( }.0 320, ,),k—azk (UO,...,Uk, f)—h

V4155 Vk+m> ((Al - azi)g)|zl="'=2k=20)'

Combined with R( f,dg/dz;), this gives exactly the first sesquilinearity (6.12)
for Y o X.Inthecase k + 1 < i < k + m, we have df/dz; = 0 and
R(f,0g/0z;) gives the sesquilinearity of Y oy X after applying the sesquilin-
earity of Y. O

We will extend the definition of the oy product as follows. Fix n > 1 and
my,...,my > 0, and again use the notation (5.7). Consider ¥ € PCh(n), X; €
P%P(m;),and vy € Vforl <i <n, 1<k <M =M, Let

Wi =y 41 @ Qupy, €V i=1,...,n, (6.23)
where My = 0. For h € 0*T , we can write
n
h(zi,....zm) = g(21, ..., Zm) l_[ fiem;_i+1. - 2m;), (6.24)
i=1

so that f; € ﬁ,;lT and g € ﬁj’(f hasnopolesatzy = z; for M;_1 + 1 <k <
[ < M; (1 <i < n). Then the composition Y(X1 ® -+ ® X,) € P"(M) is
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defined as follows:

(Y (Xq ®"-®Xn))zl """ ZM W1 ® - ®@uyih(zy, ... 2m)

.....

R IM; g+ N
_:l:Y 5555 (@i(X) _1+1— aZM RS ER A'Mi_aZMl- (wl’ﬁ)%?
i=
g(Zl""’ZM)|Zk=ZMi (Mi—l+1§k§Mi;1§i§n)>’
(6.25)

where A; are given by (5.7) and the sign = is
4 — (_I)Zi<j pP(X;)(p(op;_+1)++p(nm;)) (6.26)

(cf. (5.9)). As in (6.20), we first take the partial derivatives of g indicated by the
arrows — and then we make the substitutions zx = zpy, .

It is clear that the oq-product is a special case of the composition (6.25),
namely Yo X = Y(X®1®---®1), where 1 € P"(1) is the identity operator
(6.17).

Proposition 6.7. The collection of vector superspaces P"(n) (n > 0), with the
action of Sy, described above, the compositions (6.25), and unit 1 € P(1), is
an operad.

Proof. First, it is straightforward to generalize Lemma 6.6 for the composition
(6.25): the left-hand side of (6.25) is independent of the choice of factorization
(6.24), and it satisfies the sesquilinearity (6.12). Hence, (6.25) are well-defined
compositions in P,

The properties (3.3) of the unit 1 € P"(1) are obvious. The equivariance of
the compositions (6.25) under the action of the symmetric group is also easy to
see. Its proof is identical to the proof for the “7#». operad from Sect. 5.2.

Finally, the associativity of the compositions is also similar to the case of

“#z. The only additional ingredient is that we have to take derivatives of
functions and make substitutions in them. We use that, by the chain rule from
calculus,

k
020(f (20,2 20 mmzy—)) = D0z S (00 2 s —
i=0

(6.27)
Then in both sides of the associativity axiom

Y(X1® - @Xu))(Z1®--®Zpy,) =Y(X1® - ®Xy)(Z1®-®Zp,))

the derivatives get spread in the same way over the different variables. O
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6.4. Vertex (super) algebra structures

As before, let V' be an F[0]-module with parity p, and ITV be the same [F[0]-
module with reversed parity p = 1— p. Consider the Z-graded Lie superalgebra

wmy) = € whmv) = w(pehIvy)),
k=-1

defined in Sect. 3.2 for an arbitrary operad. Note that W_; and Wy are given by
(6.15) and (6.16) with V replaced by I1V. Hence, they are the same as for the
Hesr operad.

By definition, an odd element X € th(H V') is an odd QZT -module homo-
morphism:

Xoga, : MV RTIV @ 037 — TIV([Ao, A1]/(d + Ao + A1),  (6.28)

satisfying the sesquilinearity axioms (6.12) and the symmetry condition (6.18).
Since O} T — IF[zgzll], the .@2T -module homomorphism (6.28) is uniquely deter-
mined, via the sesquilinearity axioms (6.12), by its values on (ITV)®? ® 2511.
We have

VAo, A1]/(0 + Ao + A1) =~ TTV[A]

by equating A9 = A, A; = —A — 0. Hence, anodd X € WICh(H V') corresponds
bijectively to an even linear map V' ® V' — V[A], which we shall denote as
follows

A A
URV > / do [ugv] = :uv: —l—/ do [ugv]. (6.29)
0

Here and further, when passing from the “X”-notation to the “/ *do [o]”-
notation, we identify the vector spaces IV and V. The correspondence be-
tween X € WN(ITV) and the map (6.29) is as follows: the corresponding to X
integral of A-bracket is

A
/ do [ugv] = (—1)1’(”)Xi?’_z/\1_8(u, v:Z7g)- (6.30)
Conversely, given the integral of A-bracket (6.29), we associate to it the map X

as in (6.28) by letting

_ Ao
Xigjll (vo, vl;zl_ol) — (_1)1+p(v0) / do [vosv1], 6.31)

and extending it to (ITV)%®? ® (729 T via the sesquilinearity axioms (6.12). In
particular, by sesquilinearity, we have

Yo o v 1) = (=1)PC[yg 5, v1]. (6.32)
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We can translate the sesquilinearity and symmetry conditions for X to ax-
ioms on the corresponding integral of A-bracket (6.29). All the sesquilinearity
conditions (6.12) translate to

A A A A
/ do [dugv] = —/ do o [ugv], / do [ugdv] = f do (0 4 o)[ugv].
(6.33)
while the symmetry conditions (6.18) on X translate, in the notation (6.29), to

A —A—0
/ do [ugv] = (—=1)P®r®) / do [vgul. (6.34)

As aresult, we get the following:

Proposition 6.8. The space th(l'[ V) is identified via (6.30) with the space of
integrals of A-brackets

A
/ do[ ¢ ]: V&V — VI[A],

satisfying axioms (ii) and (iii) in the Definition 6.1 of a vertex algebra.

Next, let X,Y € th(H V')7. We can rewrite their box-product (3.13) in
terms of the notation (6.30) with the integrals of A-brackets corresponding to X

and Y. By Lemma 6.4, the ring ﬁ;T = F[z;:ll, zgf)l , 2101] is generated as a ,@T

module by the cyclic element f = z5 11 2201210 Hence, to determine X 1Y (and
to prove, for example, that X[]Y = 0) it suffices to compute it for this function.

In the following three lemmas, we will compute the three summands con-
tributing to XY from (3.14). We will express them in terms of the notation

(6.30), with the above choice of f.
Lemma 6.9. For X,Y € WICh(H V)1, we have:

1
20521522 .
o —_—
(X o1 Y);L Al Az(UO,Ul,UZ, 221220210)

Ao Ao+A1—00 ¥ ¥
= (- 1)p(v')/ dUOA doy (Ao + A1 — 00 — 01)[[VogyV1]" oo+0 V2]

Al
(1P / doo [ dor (o = 00)[vosgvi]” ogsesval®

Proof. We have by (6.20):

1
(X 01 Y)5230% (vo, v1, v2s ———— )
b 221220210

1 1
— XZ() sZ2 (Y209Z] (v R v ; —) , v ;
AotA1,A2 " Ao—0zg,A1 -0z, 0-"1 Z10/ — 2 221220

ZI=ZO)
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p(vo) y 20,22 A0=0z y .. 1
- (_1) X/\0+/\1J2 (/ do [UOGUI] 2 Z21220 ZIZZ()).
Now we use Taylor’s formula for a polynomial F':
1 F(A 1
F(Ao— dz,) — ¢ 02002 F(Ao) — F(Xo)
221220 121=z0 z21220 1z1=20  Z20(220 + 03,)
_ _az 3,’L az
_ 1 — e %0%0 F(Ag) :/ Odfe—fakoF(AO)
3/\0 220 0 220
0z 1
:/ dtF(Ag — 1)—.
0 220
Applying this to the previous expression, we obtain:
1
X o1 Y)50-21-22 (v , V1,V ;—)
(X ot Y0 a, (V- v1-v2 221220210
(v0) y 70.2 o [P y .1
= (—1)?Wo ng’_‘_il’h(/(; d‘[/ do [vogv1]” , v2; a)
(%) v 20,2 0+Ao+A1 Ao—t v 1
= (—1)Po ng;il’kz(/(; dr/ do [vogv1]” , v2; a),

where for the second equality we used the sesquilinearity (6.12). After that, we
can write the result in terms of notation (6.30):

Ao+A1 0+Ao+A1 Ao—T X
(—1)1)(”1)/ dOl[(/ dl’/ do [UOUUI]Y) vz] .
0 o1

Then using sesquilinearity (ii) from Definition 6.1, we replace d by —o in the
second integral. Now we change the order of integration with respect to T and
o:

Ao+A1—0q Ao—T
/ dt/ do F(o,01)
0

o1—A1 Ao+A1—0q Ao Ao—0O
=/ da/ th(G,Gl)—i—/ da/ dt F(o,01)
0 01—\ 0

o1 —ll AO
= / do (Ao + A1 —Ul)F(U,01)+/ do (Ao —0)F(o,01).
o1—A1
After that, we change the order of integration with respect to o; and 09 = o
and make the change of variables o1 — 0¢ + 071:

Ao+A1 o1—A1
/ d0'1/ do (Ao + Ay —01)F(0,01)
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Ao+Aq Ao
—l—/ dal/ do (Ao —0)F(0,01)
o1—A1

Ao Ao+A1—00
=/ dUo/ doi (Ao + A1 — 09 —01) F (00,00 + 01)
Al
Ao Al
+ / dog doy (Ao — 09) F (00,00 + 01).

Combining these equations completes the proof of Lemma 6.9. O

Lemma 6.10. For X, Y € WN(ITV)5, we have:

1
X o, Y)20:21522 (v , VU1,V ;—)
(X 02 V)i (Vo v v2 221220210
Ao M Y1X
= (—1)1+p(v‘)/ doy doy (Ao — 00)[Vooy[Vie, V2] |

+ (_1)1+p(v1)

Ao Ao+A1—00 Yix
/ dog A do1 (Ao + A1 — 00 — 01)[vogy[Vie V2] 17
1

Proof. Since X oo Y = X(1 ® Y'), we have by (6.25):

1
X 0p Y)3050% (Uo, V1, V2; —)
( Jhari Az 221220210
= 1 1
— (_1\PWo) yZ0,22 Z1,22 . .
=D XAO,M—HQ (UO’ YA1—821,/12—822 (vl’ v2, 751 )_>’ 220210 Zl=22).
The rest of the proof is similar to that of Lemma 6.9. O

Lemma 6.11. For X,Y € th(l'[ V)1, we have:

1
X 02 Y (12) Z0,21,22 (UO’ vl’ Uz; —)
(( ) )Ao,kl,kz 221220210
Al

Ao
= (—l)p(me(vO)p(vl)/ dog doy (Ao — 00)[V16, [Voov2] T ¥

+ (_1)p(v1)+p(v0)l)(v1)

Ao Ao+A1—00
f doyg A doy (Ao + A1 — 00 — 01) V14, [Vooov2] Y 1.
1
Proof. Recall that (X o, Y)(1? is obtained from X o, Y by switching the roles
of zg and z1, vg and vy, Ag and A1, and 0 and o1. Then we perform a change of
order of integration. Note that there is a double sign change: one is coming from
the change of sign of the function f = 22_11 22_0121_01 when we exchange zo and
z1, and the other sign change pops out when we change the order of integration

in dog and doj. O
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As a result of the above three lemmas, the box-product XY can be written
as follows

1
( l)p(vl)—l-l(ley)ZO Zl V4 (UO’ V1, U2 —)
221220210
A() Al

:/ doog | doi (Lo —Uo)j(,XO’}:1 (vo, V1, v2)

Ao Ao+A1—00
/ doy /)L do1 (Ao + A1 —o00 — 01)]00 (vo, V1, v2),
(6.35)
where
J&T (00, v1,v2) = Voo [v10, V2] ¥ — (=1)PCOPOD [y, - [nggova]Y ¥

— oo v1]¥ ootoyv2]X
(6.36)

From this we can derive the main result of the present section.

Theorem 6.12. An odd element X € WICh(H V) satisfies XUX = 0 if and
only if the corresponding integral of A-bracket (6.30) satisfies axiom (iv) of
Definition 6.1. Consequently, such elements X are in bijective correspondence
with the structures of non-unital vertex algebra on the F[0]-module V.

Proof. The symmetry condition X = X2 on the element X € th(H V)
translates to the symmetry axiom (iii) in Definition 6.1. In the notation (6.2),
axiom (iv) of the Definition 6.1 of a vertex algebra reads

JA(),)L] (UO? V1, 1)2) = 0’ (637)

while, by (6.35), the condition that X[ JX = 0 can be written as follows:

A0 Aq
/ doo | dor (ko = 00) jog.o; (V0. 1, v2)

Ao Ao+A1—00
/ dog A doy (Ao + A1 — 00 — 01) jog,00 (V0. V1, V2) =0,

(6.38)
where

82
jAO,Al (UO’ U1, vz) = axﬂaxl JA«O;A-I (UO, U1, U2)

= [vos,[v14,v2]] = (=1)PCIPOD 5 Tvo2,v2]] = [[Vorev1lagsi, V2l

which is the same as (6.36) for Y = X.
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By the sesquilinearity axiom (ii) and the change of variable of integration
01 = 09 + 01, we can rewrite the left-hand side of (6.38), using the notation
(6.3), as

:];.(),A()—I—Al((ko + a)UO, V1, U2) + *Eo,lo—l—)&l(voa (Al + 8)1}1, UZ)
- JAO,AI(UO, (Al + 3)1)1, UZ)-

Hence, due to Lemma 6.2, we get that (6.37) implies (6.38). Conversely, if we
take the derivative with respect to A¢ of the left-hand side of (6.38), we get

Jro.20+2; (V0, V1, V2).

Hence, (6.38) implies (6.37), again due to Lemma 6.2. O

7. Vertex algebra modules and cohomology complexes
7.1. Cohomology of vertex algebras

As a consequence of Theorems 3.4 and 6.12, we obtain a cohomology complex
associated to a vertex algebra V.

Definition 7.1. Let V' be a (non-unital) vertex algebra. The corresponding ver-
tex algebra cohomology complex is defined as

(WIIV), ad X),

where X € W(I1 V)1 is associated to the vertex algebra structure of V via
(6.31).

As in Sect. 4, the cohomology
H(V) = Ker(ad X)/ Im(ad X)

is a Z-graded Lie superalgebra. However, in order to stick to the tradition, we
shift the index by 1, namely for k > 0 we let

H*(V) = Ker(adX|Wl§13rl(HV))/[X, chh(HV)].

We will generalize the above cohomological construction for an arbitrary
module M over a vertex algebra V. To this end, we first need to generalize the
construction of the Lie superalgebra W (ITV).
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7.2. The space W (I1V, TIM)

Let V and M be vector superspaces with parity p, endowed with a structure
of F[0]-modules. As usual we denote by I1V and ITM the same spaces with
reversed parity p = 1 — p. We define the Z-graded vector superspace (with
parity still denoted by p)

WMy, M) = @ WV, IIM), (7.1)
k>—1

where chh(l'[ V, I1M) is the space of linear maps

@)®ED @ T — TIM Ao, ..., Ak]/ (D + Ao + -+ + Ag)

satisfying the sesquilinearity conditions (6.12), invariant with respect to the ac-
tion of the symmetric group (6.18), i.e.,

WV, TIM)
= Homgr ((MV)®€V @ o7 TIM Ao, Ag]/ (@ + Ao+ A)) Ht1.

Of course, the Lie superalgebra W (ITV) is a special case of (7.1) for M = V.
The space WM (ITV, TIM) is obtained as a subquotient of the universal Lie
superalgebra W (ITV @ T1M), via the canonical isomorphism of superspaces

U H — WV, TIM), (7.2)

where % = @y»_1 % and X = Dy~_; Hk, and %, K}, are the following
subspaces of WkCh(HV @ IIM):

= ®k+1)
e = Homgr ((TIV & IIM)
® ﬁ/:il’ [MM[Ao, ..., Ax]/{(0+Ag+-- ._|_/\k>)Sk+1’
S =Y € % | Y(MV)®*FD @ op L)) = 0},

and (7.2) is the restriction map. For example, we have the canonical isomor-
phisms

WMV, IM) ~ TIM/dTIM, WgN(T1V, TIM) ~ Homgps (TTV, TIM).
(7.3)
The proof of the following proposition is obvious.

Proposition 7.2. Let X € WhCh(HV & I1M). Then the adjoint action of X on
WV @ TIM) leaves the subspaces % and K invariant provided that the
following two conditions hold:
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(i) ng""j’;l(vo, covp f) € IM[Ag, ..., Ap]/{(d + Ao + --- + Ap) if one

.....

of the arguments v; lies in I1M,
(if) ng’:::’i’}’l(vo, v f) eIV Ao, ... AR]/(0+ Ao+ -+ Ap) if all the
arguments v; lie in I1V.

In this case, ad X induces a well-defined linear map on the space W (I1V, IIM),
via the isomorphism (7.2).

7.3. Cohomology of a vertex algebra with coefficients in a module

As before, let V and M be vector superspaces with parity p, endowed with F[0]-
module structures. Consider the reduced superspace W< (ITV, I1M) introduced
in Sect. 7.2, with parity denoted by p.

According to Definition 6.3, to say that V' is a non-unital vertex algebra and
M is a V-module is equivalent to say that we have a vertex algebra structure

1A A[- 3 -] on the F[8]-module V & M extending that of V', such that the integral
of the A-bracket restricted to V' ® M is given by the vertex algebra action of V'
on M, and restricted to M ® M vanishes. Hence, such a structure corresponds,
bijectively, to an element X of the following set:

(X e WMV @ IM); | [X.X] =0, X3,0, (M @M @ 037) =0,
Xoo, (VR V ®03T) C VI[ho, A11/{0 + Ao + A1),

Xooay VOM®037) C M[Ao. M1]/(D + Ao + A1)} .
(7.4)
Explicitly, to X in (7.4) we associate the corresponding integral A-bracket on V/
given by (6.30) and the corresponding integral of A-action of V' on M given by

A
1
/ do vgm = (—l)p(”)Xi?fi_a(v,m; a), veV,meM. (7.5)
Note that every element X in the set (7.4) satisfies conditions (i) and (i)
in Proposition 7.2. Hence, ad X induces a well-defined endomorphism dy of
W1V, IIM) such that df = 0, thus making (W"(ITV, TIM), dx) a coho-
mology complex.

Definition 7.3. Let V' be a (non-unital) vertex algebra and M be a V -module.
The corresponding cohomology complex of V' with coefficients in M is defined
as

(WNTIV, TIM), dx),

where X is the element of the set (7.4) associated to the integral A-bracket
of V by (6.31) and to the V-module structure of M by (7.5). We denote by
HMV, M) = keZ H*(V, M) the corresponding vertex algebra cohomol-
0gy. In the special case of the adjoint representation M = V we recover the
vertex algebra cohomology H™(V') from Definition 7.1.
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The explicit formula for the differential dy can be obtained from (6.20). In
order to write such a formula, we need to split & € ﬁl:L as in (6.19). For every
i =0,...,k, welet

i
h(zo,...,zr) = fi(zo,. ., z)gi(zos - -, Zk),
where g; has no poles at z; = zy for j, £ #i,andforevery 0 <i < j <k, we
let
h(Z(), ey Zk) = fij(Z,',Zj)gij(Z(), ey Zk),

where g;; has no poles at z; = z;. As aresult, for Y € chil (MV,IIM), we
have

(dx Y)i?)’“"i"k (vo, ..., Vg h(zo, ..., zK))

.....

k
— Z(_1)(1+p(vi))(si+1,k+k_i)

i=0
s i
w,zZ; Z()geeesZ v . .
x X (Y=Omoh (vo, .7 . Vs fi)—, Vi &i i )
Ao+ HALLA; lo—aZO,.\.’.,Ak—azk Zo==Zg =W
— (=12 Z (—1) 1P 0. -1+ +A+p )0 -1 FSi41. -1+ =1)

o<i<j<k

2
W, Z(Qgenreens z Zj,Zj . Voo .
<Y 0 ikj (Xl;—ézi,lj—azj(vi’vj’fij)_)’vo’ ...... ,Uk,gij|zl.=zj=w),

(7.6)
where s; ; 1s given by

sij = pi) +-+p(uy) if i <j and 555 =0 if i>j. (1.7

As in (7.3), we have the isomorphism W_Cli (TTV,TIM) >~ M/oM obtained
by identifying the map Y : F — M /(d) with the element

Y =Y(1)e M/oM , ofparity p(Y) =1+ p(Y). (7.8)

We have the isomorphism WOCh(H V,IIM) ~ Homg[(V, M), obtained by
identifying the map Y7 (v f(2)) : V =~ V ® OFT — M[Ao]/(d + Ao) with
the F[0]-module homomorphism Y : V' — M given by

Y(v) =Y/ (v;1), of parity p(Y). (7.9)
Finally, we identify an element

Yf(?”fi (vo,v1; f(20,21)): VRV ﬁ;T — M[Xo, A1]/(0 + Ao + A1)
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of th(H V, I1 M) with the integral A-bracket fkdo [ : VOV = M[A],
given by (cf. (6.30))
1

A
/ do [ugv]¥ :(—1)P(“)Y50_’jl_a(u,v;—), of parity 1+ p(Y). (7.10)
’ Z10

As in Proposition 6.8, the sesquilinearity and symmetry conditions for Y trans-
late to the corresponding sesquilinearity and symmetry conditions for the inte-
gral A-bracket, as in axioms (ii) and (iii) of Definition 6.1.

We next write an explicit formula for the differential dy : WkCEl (Iv, 1IM)

— WkCh(H V, I1M) in the special cases k = 0, 1 and 2, under the above identi-

fications. For k = O we have Y € M/0M ~ W_C}i (ITV, IIM) and, by equation
(7.6), dx Y corresponds to the following F[d]-module homomorphism from V'
to M:

(dxY)(v) = Xo'520(Y, v; 1) = —(=1)IHPOIPT)y . (7.11)

Next, fork = 1,let Y € Hompg) (V. M) ~ WgN(TIV,TIM). Then dx Y, given
by equation (7.6), corresponds to the following integral A-bracket of u, v € V:

_ A
(—l)p(Y)/ do [ugv]xY
A ) A A
= / do [Y (u)4v] + (—1)PT)P@) / do [ugY(v)]—Y( / do [ugv]>.
(7.12)
Finally, for k = 2 we have X € W(T1V); and Y € WMV, IM). In

this case dy (Y) = XOY — (-=)?MyYOX e WSNTIV, TIM), where XY is
given by the same formula as in (6.35).

7.4. Casimirs, derivations and extensions

Let V be a non-unital vertex algebra and let M be a V-module.

Definition 7.4. A Casimir element is an element [ m € M/OM such that V_ym
= 0. Denote by Cas(V, M) the space of Casimirs. Note that, due to skew-
symmetry of the A-bracket, Cas(V') := Cas(V, V) = {[v € V/aV | [vaAV]|r=0
= 0}.

Definition 7.5. A derivation from V to M is an F[0]-module homomorphism
D : V. — M such that

A A A
D do [ugv]) = | do (Du),v) + (~1)PPPW | g5 (uy D(v)).
(/ ) / / (7.13)
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We say that a derivation is inner if it has the following form:
Dy () = Y v |p=¢ forsome Y € M/oM. (7.14)

In the special case when V. = M we have the usual definition of a derivation
of the vertex algebra V. Denote by Der(V, M) the space of derivations from V
to M, and by Inder(V, M) the subspace of inner derivations. We also denote
Der(V) = Der(V, V) and Inder(V') = Inder(V, V).

We can now describe more explicitly the low degree cohomology.

Theorem 7.6. Let V' be a (non-unital) vertex algebra and let M be a V -module.
Then:

(a) HO(V, M) = Cas(V, M). In particular, H°(V) = Cas(V).

(b) HY(V,M) = Der(V,M)/Inder(V, M). In particular, H (V) equals the
factor of the Lie algebra Der(V') of all derivations of V by the ideal of all
inner derivations.

(c) H>(V, M) is the space of isomorphism classes of F[0]-split extensions of
the vertex algebra V by the V-module M, viewed as a (non-unital) vertex
algebra with trivial integral A-bracket.

Proof. Straightforward, using the explicit formulas (7.11), (7.12) and (6.35) for
the differential. (cf. [BKV99], [DSKO09] for a proof in the case of Lie conformal
algebras.) O

8. The associated graded of the chiral operad
8.1. Filtration on P

We introduce an increasing filtration on the space of translation invariant ratio-

nal functions 6",:_{1 = IF[Z No<i< j<k» given by the number of divisors:

Flopl, =0 cF o, =6, =Flzj] CF 6, = Zﬁk—l—l[z

i<j
r —1
c---CF 0 k+1 Zﬁkﬂ Ziy, 11 Zij ) C ﬁk+1
(8.1)
In other words, the elements of F" ﬁ,:il are sums of rational functions with at

most r divisors each (not counting multiplicities). For example,

1 1 1
= — + —eFo3T (8.2)
201212202 201202 212202
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has three divisors, but it lies in F? ﬁ; T 1In fact, by using relations similar to
(8.2), it is not hard to prove (cf. Lemma 8.4 below) that the filtration (8.1) stabi-
lizes:

k T _ T
F ﬁl:+1 4 +1°
This filtration is invariant under the actions of _@g 1 and of the symmetric group
Sk+1. It is compatible with the multiplication:
F opl) - F ol cFs ol (8.3)

Furthermore, if g € F* 6",:_{1 has no pole at z; = z;, then g|;;=;; € F* ﬁ,:T.

Now we define a decreasing filtration of P"(k + 1) by

F POk +1)={X e PPk + )| X(VEFD@F 1 ;T ) = 0}. (84

We have: FO P(k + 1) = P"(k + 1) and F*T1 Ph(k + 1) = {0}.
Proposition 8.1. With the above filtration, P" is a filtered operad (cf. (3.10)).

Proof. The filtration (8.4) is invariant under the action of the symmetric group
because the filtration (8.1) is. In any operad, the compositions can be obtained
from the o;-product and the action of the symmetric group (see (3.6), (3.7)).
Thus, it is enough to prove that

Yo X e FFPS Phk4+m+1) for X e F PMk+1), Y e F¥ PP(m+1).

To this end, we want to show that the left-hand side of (6.20) vanishes for all
h e Frs—l1 ﬁ,ﬁ;mﬂ. By linearity, we can suppose that 7 = fg as in (6.19)
and the number of divisors of /1 is < r + s — 1. Since the divisors of f and g are
disjoint, the number of divisors of 4 is the sum of the number of divisors of f
and g. Hence, f € F'~! 6‘}:_{1 org € F¥~! ﬁ]:T ;- Then we apply formula

+m+
(6.20) to compute Y o; X. In the first case, we have X(f) = 0. In the second

case, applying some derivatives and setting zy = -+ = zx = zg In g, we will
obtain an element of FS~1 ﬁ;ﬂl , which is annihilated by Y. O

As a consequence of Proposition 8.1, the associated graded spaces
gt PP(n) = F PNm)/F T Phn) (8.5)

form a graded operad (see the end of Sect. 3.1).
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8.2. n-graphs

For n > 1, we define an n-graph as a graph I" with the set of vertices {1,...,n}
and an arbitrary collection of oriented edges, denoted £ (I"). We denote by ¥ (n)
the collection of all n-graphs without tadpoles, and by % (n) the collection of
all acyclic n-graphs, i.e., n-graphs that have no cycles (including tadpoles and
multiple edges).

For example, the set %(1) consists of the graph with a single vertex labeled
1 and no edges, the set ¢4(2) consists of three graphs:

O ©) o0——0 Oo—0O

T 2 1 2 1 2

ET) =0, E@)={1—2), E@)={2—1}

2

(8.6)

and % (3) consists of the following graphs, with arbitrary orientation of all
edges:

1 2 1 2 3 1 2 3
oo Lo & o
1 2 3 1 2 3 1 2 3

(8.7)
By convention, we also let % (0) = %(0) be the set consisting of a single
element (the empty graph, with O vertices).
An oriented cycle C of an n-graph I' € ¢ (n) is, by definition, a collection
of edges of I" forming a closed sequence (possibly with self intersections):

C = {i] —> i, 0 —> 13,..., lg—1 —> Ig, Ig —> i]} C E(F) (8.8)

8.3. The maps X©
For an oriented graph I € ¥ (n), we define
pr = pr(zi,...,zy) = l_[ Zijl eF ﬁ,fT, zij =zi —zj, (8.9)
(i—j)eET)

where the product is over all edges of I' and r is the number of edges. Note that
if we change the orientation of a single edge of I', then pr will change sign. For
any graph G with a set of vertices labeled by an index set /, we introduce the

notation
A =) hi. 0zp=) 0. 0g=) 0. (8.10)

iel iel iel
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where 9; = 1 ® --- ® 0 ® --- ® 1 denotes the action of 0 on the i -th factor in a
tensor product V®" . Note that, by translation covariance, we have 9, pg = 0.

Lemma 8.2. For an acyclic graph I" € 4y(n), we have
Fldz,,...,0z,)pr = Flz;;' | (i — j) € E(D)]pr.

Proof. Clearly, applying derivatives to the function pr, we get an element of the
space F[Zl-;l | i — j) € E(I')]pr. Hence, we only need to show the opposite
inclusion, i.e., that for arbitrary exponents m;; > 1, we have

[ =™ eFis.....on1r 8.11)
(i—j)eE)

Assuming, by induction, that (8.11) holds, we show how to apply derivatives in
order to increase arbitrarily the exponents of the function [[;_, /yeg () Zi;mij

Fix an edge ¢ = (¢ — B) of the graph I', and let " \ e be the graph obtained
by deleting the edge e from I'. Since by assumption I is acyclic, the connected
components I'y and I'g of  and B in I" \ e are disjoint. Then it is easy to check

that

1 —m .. 1 _m ..
j __ Ly
- Ozr, l_[ Zy = dzr, H Zij

Maf i j)eEm) Map " ) eEM)
-1 —m;;
= ZaB 1_[ Zij
(i—j)eE(T)
The claim follows. O

Lemma 8.3. The space F" O T is generated as a .@,{ -module by the functions
pr, with T € 9y(n) acyclic graphs with at most r edges.

Proof. Clearly, every function in F” &) T can be written as a linear combination
of functions of the form

[z J Ve (8.12)
with m;,j, > 0 and f polynomial. We need to show that the function (8.12)
can be obtained starting from some pr and acting with .@nT .Let " € 9(n)
be the graph with edges (i; — ji),..., (i — Jr). By a computation similar
to (8.2) (cf. (8.15) below), if the graph is not acyclic, then the function (8.12)
lies in F"~1 oy T and the claim holds by induction. For an acyclic graph T, as
an immediate consequence of Lemma 8.2, we have that the function (8.12) is
generated by pr. O
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By restriction, for every X € P"(n), we have maps

XL iV S VA Al (04 A e ),

(8.13)
VI ® - @ Uy —> Xﬁ:::j’;(vl,---,Unipl“)-

By (8.4), if X € F" P"(n), we have XU = 0 for graphs I'" with fewer than r
edges. Furthermore, relations among the pr’s lead to the following relations for
the maps X'.

Lemma 8.4. Let I' € ¥ (n) be a graph with r edges containing an oriented
cycle C C E(I'). Then we have the following cycle relations:

(a) XU =0 forall X € F" PN (n);

(b) Y ecc YT\e — 0forallY € F"=1 PN (n), where I"\ e is the graph obtained
from I by removing the edge e.

Proof. After relabeling the vertices, we can assume that
C={1—2,2—3,...,5s—1—1s,5s — 1}

Then pr has a factor
1

212223 Zsg—1,5Zs1

Since C has s edges, we expect pc € F* 0} T however, we claim that in fact
pc e B! oy T Indeed, using the relation

Y ze=zia+zas 4+ Zeo1s + Za =0, (8.14)
ecC
we have as in (8.2),

—PC
—Z12

2
212223 """ Zs—1,5Zs1

223 Zs—1,s Zs1
— 2 Tt 3 + 3 .
212223 """ Zs—1,5Zs1 212223 """ Zs—1,5Zs1 Z12223 " " Zs—1,52s1
(8.15)

In particular, pr € F'~! oy T which implies claim (a). Claim (b) follows from

the equation
0= Z ZePT' = Z PI'\e-
ecC ecC
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Example 8.5. Let Y € F'~!1 PM(n) and TV € %(n) be a graph with (r — 1)
edges. For a fixed edge ¢ = (i — j) of I/, we denote by I" the graph obtained
by adding the opposite edge ¢/ = (j — i). Then I' has a 2-cycle C = {e,e'},
and I'” = T\ e is obtained from I’ = T" \ ¢’ by reversing the orientation of e.
In this case, (10.5) implies YU = -y,

We will derive additional relations from the sesquilinearity conditions (6.12)
for X € F" P"(n).

Lemma 8.6. Let X € F” P"(n) and ' € ¥ (n) be a graph with r edges. Denote
the connected components of I by I'y. Then we have the following sesquilin-
earity relations:

(a) (03, — 8;LJ.)X{1 iy =0 forany (i — j)e€ E(T), which means that
XY is a polynomial of the sums ATy:

..........

Proof. If (i — j)is anedge of a graph I" with r edges, then z;; pr € F “Lox T
Hence,
Xy (i, ... uns zig pr) = 0.

Claim (a) then follows from the sesquilinearity condition (6.12). Next, let us
prove claim (b). Since I' is a disjoint union of the I'y’s, the function pr is the
product of the corresponding pr,’s. By the translation covariance of pr,, we
have .. pr, = 0, and hence d;, pr = 0. Claim (b) then follows again from
(6.12). O

8.4. Compositions of the maps X

Now we will investigate how the maps (8.13) compose. For X € P"(k + 1)
and Y € P"(m + 1), their o;-product Y o; X € P"(k + m + 1) is given by
(6.20). We want to find (Y oy X)U', where I € ¥(k + m + 1) is a graph whose
vertices are labeled by 0, 1,...,k 4+ m. In order to apply (6.20) for h = pr,
according to (6.19), we factor

pr = f(zo,--.,zk)8(Z0s - - - Zktm), | = pr’, & = pr7. (8.16)

Here T is the subgraph of I' with vertices 0, 1,...,k and all edges from T’
among these vertices; I'” is the subgraph of T" that includes all edges of " not in
I'’. The factorization (8.16) holds because E(I") is the disjoint union of E(I")
and E(T").

Setting z; = -+ = z} = zg in pr» corresponds to contracting the vertices
0,1,...,k to a single vertex labeled 0. We let I/ be the graph with vertices
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labeled 0, k+1, ..., k+m and edges obtained from the edges of I'”” by replacing
any vertex 0 < i < k with 0, keeping the same orientation. Then

pF’/|Zl='"=Zk=Z() = Ppr- (817)

Finally, introduce graphs G; (0 < i < k) as follows. Take the connected
component of the vertex i in I'” and remove from it the vertex i and all edges
connected to i. Then Gj is the resulting subgraph of I'”. Note that, by con-
struction, the vertices of G; form a subset of {k + 1, ...,k + m}. For another
description of the graphs I'”, I and G;, see Examples 9.1 and 9.5 below.

Proposition 8.7. With the above notation, suppose that the graph T is acyclic.

Then
T
(Y 01 X)AO:AI,---:Ak—i—m (l)(), U1, e e ey Uk+m)
fw
= er/,lk+1,malk+m (8.18)
F/
(Xlo+lGO+3GO ,,,,, A+, +ic, (V0,+ -+ V), Vk415 - -+ » Vk+m)

for X € PPk +1)and Y € P"(m + 1). Here we also use the notation (8.10)
with 0; representing the action of d on v;.

Assume, in addition, that X € F’ PCh(k +1),Y €F° PCh(m + 1), T hasr
edges and T has s edges. Then equation (8.18) holds without the assumption
that T is acyclic.

Proof. In order to apply (6.20), we need to compute 9, pr~. After possibly
changing a sign, we will assume that all edges of I'” are oriented as (i — j)
with i < j. The assumption that '/ has no cycles implies that G; and G; are
disconnected for 0 < i,/ < k. Let E; be the set of all edges of I'” starting from
the vertex 7. Then we can write

k
ET”)y=| |(EiUEG))UF
i=0
for some subset F' of edges among vertices kK + 1, ...,k + m. Thus
k
pro = pr | | PE: PG; -
i=0

where pp = [[,cF 2, !, and similarly for pg;, .
For every edge (i — j) € E;, we have —0;; Zi;l = 0y, Zi;l. Hence
_azi PE; = Z aZj PE; = aZ(;l. PE;-
(i—j)eE;
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Using that 8ZG1, pG; = 0and 32Gi pF = 0, this implies

0z, pr = Dz, prv.

The statement then follows from (6.20), by applying equation (8.17) and the
sesqui-linearity (6.12), after observing that Apy = Ay = Ao + A1 + -+ + Ax.

For the last assertion of the proposition, if I'” has a cycle, then by Lemma 8.4

(a) the right-hand side of (8.18) vanishes. Hence, we need to check that, in this

case, the left-hand side of (8.18) vanishes as well. This follows from formula

(6.20) and the fact that, after differentiating pr~ and setting z; = -+ = z} =

zo, the resulting function is in F" 1 ﬁ;ﬁ_l. O

We can summarize all the previous results as follows:

Corollary 8.8. (a) For every X € F* PN (k 4 1) and every graph T' € 9 (k +1)
with at most r edges, the map

XU y®&+tD s yidg, Akl 04 Ao+ -+ Ag)

defined by (8.13), satisfies the cycle relations (a) and (b) from Lemma 8.4
and the sesquilinearity relations (a) and (b) from Lemma 8.6.

(b) For X ¢ F" PNk +1),Y e FS P"(m + 1), andforT € 9(k +m + 1)
such that T has at most r edges and T has at most s edges, equation (8.18)
holds.

(c)If X € F' P"(k + 1) is such that X¥ = 0 for all graphs T € G(k + 1)
with r edges, then X € F'T1 PN (k +1).

Hence, we have an induced injective map defined on the associated graded

space gr” PN (k + 1), such that

X — X:{XFH’E%(k—I—l) with r edges}.

Proof. Claim (a) is given by Lemmas 8.4, 8.6. Claim (b) is given by Proposition
8.7. Claim (c) follows from Lemma 8.3 and the sesquilinearity conditions. O

Using this corollary, in Sect. 10 below, we will provide a more detailed de-
scription of the associated graded operad gr P<.

8.5. Refinement of the filtration on P

We refine the filtration of the chiral operad P! introduced in Sect. 8.1 as fol-
lows. Let V' be a vector superspace with an increasing filtration

Flv={0 cFV cFVCcFVCc...cV (8.19)
This induces an increasing filtration on the tensor products

F(VektD @ ool ) — 3 FOV®- - @F*V @F«+ g1 |
ro+ritetrg41=5
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if s >0, and F¥ = 0if s < 0. For example, for k = 1, we have
F®e o) =FVe)e o) +F (V) ea’). (820

The corresponding refined filtered space F” P"(k + 1) is defined as the set of
elements X € P°"(k + 1) such that

XEWEEDRGT ) C (B V)[hoo. ... Ael/(9+Ao+--+Ak), (821)
for every s. This is a decreasing filtration, possibly infinite in both directions.

Proposition 8.9. With the above refined filtration, P*(V) is a filtered operad
(cf (3.10)). Hence, we have the corresponding Lie superalgebra filtration F* W(V)
of Weh(V).

Proof. The proof of the first statement is the same as for Proposition 8.1. The
last assertion follows from Theorem 3.4 (c). O

Recall that a filtered vertex algebra is a vertex algebra V' with an increasing
filtration (8.19) such that

((FPV)YFIV): c FPT9V and [FPV , F1V] c FPTI7LY[A],  (8.22)
for all p,q.

Theorem 8.10. Let V' be a filtered vector superspace. Under the correspon-
dence from Theorem 6.12, the structures of filtered non-unital vertex algebra
on V are in bijection with the odd elements X € F! WICh(HV) satisfying
XX =0.

Proof. 1f V is a filtered vertex algebra, then, due to (8.22), the corresponding X
satisfies

X0 FEPV @FV @ 1) = [FP V), F V] C FPH71 V[
and 1
X oo (Fl’ VRFIV® —) = (FPV)(F?V): CFPT Y.
Ao, Z10

By (8.20), this means that X € F! W (ITV). O
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9. The cooperad of n-graphs
9.1. Cocomposition of n-graphs

Asin Sect. 8.2, let 4 (n) be the collection of all n-graphs which have no tadpoles,

and % (n) be the collection of all acyclic n-graphs. Fix an n-tuple (mq, ..., my)
of positive integers, and let M1, ..., My as in (2.9). We define the cocomposi-
tion map

AN G(M) —> G(n) x G(my) X -+ X G(my), 9.1)
denoted

F s Agzll...mn (F), A}inl--.mn (F), ol AZ/ZI...mn (F), (9.2)

as follows. AT (T") is the subgraph of I associated to the vertices {1, ..., M1},
AZ'T(T) is the subgraph of T associated to the vertices {My + 1,..., M2}
(which we relabel {1, ...,m5}), and so on up to Aj'' """ (T"), which is the sub-
graph of I' associated to the last m,, vertices {M,—1 + 1,..., M,} (which we
relabel {1,...,my}), and finally Ay"' ™" (T) is the graph obtained by collaps-
ing the first m vertices of I' (and all edges among them) into a single vertex
(which we label 1), the second m, vertices of I' into a single vertex (which we
label 2), and so on up to the last m,, vertices of I" into a single vertex (which we
label n).
For example, consider the list of integers (3, 3, 1, 2), and the 9-graph

(9.3)
Then, the cocomposition A3312(T") € Z(4) x % (3) x % (3) x %(1) x % (2)
consists of the following graphs: the subgraph of I" associated to the first three

VCI’tiCCS, is
ﬁ3312 T = Q; ;) G%(?)),

1

the subgraph I" associated to the second three vertices (and relabeling the ver-
tices), is

AP() = o—0 ge%@),
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the subgraph associated to the seventh vertex is just Ag“z(F) =1 € %(1), the
subgraph of I" associated to the last two vertices is

APR) = o9 € %),

and finally, collapsing all these subgraphs into single vertices, we get

AP2() = <33 € 9(4).

Note that if I is acyclic, then all the subgraphs AY*'™"(T), fori = 1,...,n,
are acyclic as well, while, in general, this is not the case for A’gl"'m” (I').

Example 9.1. A special case is when my = k + 1land my = --- = m, =
1. With the notation of Sect. 8.4, we have in this case Agkﬂ)l'"l(f‘) = I,
AFFOIA @y = = ARTOIN() = o and A®TVTN(r) = T,

Lemma 9.2. For every my, ..., my, there is a natural bijective correspondence

A: E(T) — E(AF™ () u E(AT (D)) U--- U E(A™™Mn(T)),
(9.4)

Proof. An edge e € E(T") has either both tail and head contained in one of the
subsets {M;_; + 1,...,M;}, for some i = 1,...,n, in which case it corre-
sponds to an edge of A}*!'""(T), or it does not, in which case it corresponds
to an edge of Ay (). O

It follows from Lemma 9.2 that the cooperad of graphs ¢ is graded by the
number of edges.

Lemma 9.3. Let C C E(T") be an oriented cycle of an n-graph I' € 4 (n).
Then,

(a) either A(C) C E(A}*"""™"(T)), in which case A(C) is an oriented cycle
of AT € G (m;);
(b) or, A(C) N E(Ay" "™ (T)) is an oriented cycle of Ay’ (') € 4(n).

Proof. Obvious. O

Let, as above, m1, ..., m, be positive integers, and let I' € ¥ (M,,). We now
introduce an important notion, which will be essential in Sect. 10.
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Definition 9.4. Let k € {1,...,M,} and j € {1,...,n}. We say that j is ex-
ternally connected fo k (via the graph I" and its cocomposition A" (T")) if
there is an unoriented path (without repeating edges) of Ay ™™™ (T') joining j
toi, wherei € {1,...,n}is suchthatk € {M;—1 + 1,..., M;}, and the edge
out of i is the image, via the map A in (9.4), of an edge which has its head or
tail in k. We denote by

Ek)y=ET,mq,...,myuk) C{1,...,n},

the set of all j € {1,...,n} which are externally connected to k. Moreover,
given a set of variables x1, . .., Xp, we denote
X(k) =XT.my.....mpk)= Y xj. (9.5)
je& (k)

For example, for the graph in (9.3), we have

X(l) = X1 +x2 +.X4, X(2) = 0, X(3) = X1 _|_X2 +X4,
X(@4) =x1+x2 4 x1. X(5) =0, X(6) = x1 +x2 + x4, X(7) =0,
X(B) =0, X(9) =x1 +x2.

Note that, if k € {M;_1 +1,..., M;},theni & &(k) unless Ay """ (I') is not
acyclic.

Example 9.5. In the setting of Example 9.1, let m; = k + landmy = --- =
my, = 1. Assuming that I'” is acyclic, for every £ = 0, ..., k, the set &({)
coincides with the set of vertices of the graph G, defined in Sect. 8.4.

9.2. Coassociativity of the cocomposition map of n-graphs

The collection of sets ¢ (n), n > 0, together with the cocomposition maps (9.1),
defines a cooperad [LLV12], or, equivalently, the dual ¢* is naturally an operad.

We will not give a formal definition of what a cooperad is (since we will
never use it), but we will prove here the main conditions: coassociativity, in
Proposition 9.6 below, and coequivariance with respect to the action of the sym-
metric group, in the next Sect. 9.3, see Proposition 9.7. .

Fix a list my, ..., my, of n positive integers, denote M; = Z}=1 mj,i =
0,...,n, as in (2.9), then fix a list £y, ..., £y, of M, positive integers, and
denote L; = Zi=1 by, ] = 0,..., My, as in (2.14). Given a graph " €
%% (L, ), we can apply to it the cocomposition Al 1o get

£1d
Aol Mn(T) e 9(M,,),
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and, to the first graph above, we can further apply the cocomposition map
A1 (91), to get

AT (AT (D)) € F ).
AT (AL (DY) € G my), L AT (AGT MY (T)) € G (my).

Alternatively, we can consider the n integers (summing to Ly, )

M1 2
Ki:=Ly, = Zﬁj, Ky =Ly, — Ly, = Z 4, ..,
j=1 J=Mi+1
M,
Kni=Lu, —Lyy, = > 4.
J=M;_1+1

we can apply the corresponding cocomposition map AXK1Kn to T, to get
AKX En(ry e 9(n),
AKvEnry e (k). ..., AK KTy € 9(K,),

and, to each of the graph in the second line, we can apply the corresponding
cocomposition map A1l ,i =1,...,ntoget

AT (AR K (D)) € 9 (my).
AKMi—l‘i'lmeMi (A.Kl'"Kn () € %(KM,' 1+1)’ el
A=t 1 0; (AK VK (D)) € 4 (0y,).

Proposition 9.6. The cocomposition maps (9.1) of graphs satisfy the following
coassociativity conditions:

(i) AT (AL M (1)) = AK K (1Y i g (n);
(ii) AT ’”n(Aﬁ1 i (r)) — eMl i1t (MK Kn(T)) in G (my), for ev-

eryi =1,.
Z 4
(iii) Aﬁ,}i_ef‘i”] (F) M’ M (AK1 Kn(1)) in G(L;j), for every i =
Lnand j = 1 mi.

Proof. All claims become obvious if they are explained “pictorially”. Consider
an arbitrary graph, which we can depict as follows:
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where each of the intermediate ovals surround subgraphs of K, ..., K vertices
respectively, and, inside the i-th oval, the inner circles surround subgraphs of
Cpm;_ +1.- .., Ly, vertices respectively.

In condition (i), the graph A§ 1Kn (I") in the right-hand side is obtained
starting from I" and collapsing all intermediate subgraphs (= intermediate ovals)

to single vertices. On the other hand, the graph Ag'' """ (AﬁlmﬁM" (T")) in the
left-hand side is obtained by first collapsing all the inner subgraphs (= inner
circles) to single vertices and then, in the resulting graph, by further collapsing
the intermediate subgraphs (= intermediate ovals) to single vertices. The result
is obviously the same.

In condition (ii), the graph AJ"'™"" (AglmeM" (T")) in the left-hand side is
obtained starting from I" by collapsing all inner subgraphs (= inner circles) to
single vertices, and then, in the resulting graph, by taking the i-th intermedi-

Lar; s
ate subgraph. On the other hand, the graph AOM’_1+1 M’ (AiK 1Kn (1)) in the
right-hand side is obtained by first taking the i -th intermediate subgraph (= inter-
mediate oval) of I', and then, inside it, by collapsing all inner subgraphs (=inner

circles) to single vertices. The result is obviously the same.

Finally, in condition (iii), the graph Aﬁ}fl"fj (T') in the left-hand side is

obtained by looking at the (M;_; + j)-th inner subgraph (= inner circle) of
I', which is the j-th circle inside the i-th intermediated oval, while the graph

Las; g
A jM’_1+l Mi (AiK 1"Kn (1)) in the right-hand side is obtained by first taking
the i-th intermediate subgraph (= intermediate oval) of I', and then, inside it,
by taking the j-th inner subgraph (= inner circle). The result is obviously the
same. O

9.3. Coequivariance of the cocomposition map of n-graphs

For every n > 1, there is a natural (left) action of the symmetric group S, on the
set 9o (n) of acyclic n-graphs, and on the set ¢ (n) of all n-graphs. It is defined
as follows: given the n-graph I' and the permutation o € S,, we define o (I")
to be the same graph as I', but with the vertex which was labeled 1 relabeled
as o(1), and so on up to the vertex which was labeled n, which is relabeled as
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o(n). For example, if I' € %,(4) is the following 4-graph:
I = & €94 s
1 2 3 4 )

and o0 € Sy is the permutation 0 = (1 3 4) (in the standard cycle decomposi-
tion), then

Proposition 9.7. For every positive integers n,muy, ..., My, every permutations
0€Su 11 €Smy,.-., tn € Sm,, and every graph T € Go(my + -+ + my),
we have

Aot Mo ) (o (11, . .., 1) )(T))

ity - iy (9.6)
= (@ (AR (D)), 21 (1 (ATLT (D)), .. Tyt (AT 7 (T))).
where the composition of permutations o (11, ..., T,) is defined by (2.10).

Proof. Also for this proposition we provide a “pictorial” proof. Consider an
arbitrary acyclic (m+---+my)-graph I, which we depict as:

my Ao+ mi-g + my -+ my

(9.7)
where we represented only the vertices (not the edges), labeled from 1 to m +
- -+ 4+ my, grouped (by the inner ovals) in groups of m1, ..., m, vertices. Hence,
as indicated, the vertex inthe i-thoval (i = 1, ..., n), in the j-th position within
thatoval (j = 1,...,m;)islabeled my + -+ +m;—_1 + j.
When we apply the permutation o (7y,...,7:) € Sm+-+m, to the graph
I', we get, by the way the symmetric group acts on ¥y(m; + --- + my), the
exact same picture, but with the vertices labeled according to the action of the
permutation o (zq, ..., Ty), given by formula (2.12). Hence, we have
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(0(t1, ..., T))(I)

vertex labeled:
mes—1(1) Tt Ms—1(g@i)-1) + 7 ()

Then, to get the picture of (o (ty,...,1,))(I"), with the vertices in the correct
order, we should rearrange the vertices of picture (9.8) by moving the vertex
labeled by 1 (which, in the picture (9.8), is in the i = o~ !(1)-th oval, in
‘L’(:_l ! (1)(1)—th position) in first position, the vertex labeled 2 in second position,
and so on. Hence, in this rearrangement, the i-th oval of picture (9.7) will be
moved to position o (i), and, within that oval, the j-th vertex will be moved to
position ; ().

Note that, while, in picture (9.7) the ovals contain, in the order they
are depicted, my,...,m, vertices respectively, in the rearranged graph
(o(t1,...,10))(I"), where the vertex labeled 1 come first, the vertex labeled
2 comes second, and so on, the vertices will be grouped in ovals containing
Mg—1(1y, - - - » Mg—1(y) Vvertices respectively. Hence, we should apply the cocom-
position map A"l o1 1o it.

According to the definition, the graph

Mg T (0(n. . ))(D))

is obtained by collapsing all the ovals in picture (9.8) to single vertices:

(9.8)
Obviously, this is the same graph as
o (A™(),

where we first collapse all the inner ovals of I" in picture (9.7) to single vertices,
and then we apply the permutation o € S, i.e., we relabel the vertices according
too.
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Next, according to the definition, the graph

AP (g (1, 7)) (D))

is the subgraph corresponding to the o (i)-th oval of the graph (o (z1, ..., 7))(I")
(rearranged), i.e., the i -th oval of picture (9.8):

Obviously, this is the same as the graph
7 (A7),

where we first take the subgraph of I' corresponding to the i-th oval of picture
(9.7), and then we apply the permutation 7; € Sy;, 1.e., we relabel the vertices
according to t;. O

10. The operad governing Poisson vertex superalgebras
10.1. Definition of a Poisson vertex superalgebra

Recall that a Poisson vertex superalgebra (abbreviated PVA) is a commutative
associative superalgebra V' endowed with an even derivation d and a Lie con-
formal superalgebra A-bracket {- -} satisfying the left Leibniz rule:

{aybe} = {abie + (=1)POP©O g, c1b. (10.1)

10.2. Definition of the operad P°!

Let V = V5 & V7 be a vector superspace endowed with an even endomorphism
d € End V. The operad P is the collection of superspaces P (n) defined as
follows. As a vector superspace, P¢'(n) is the space of all maps

F:9m)xV® — VA, ..., A/ 04+ A1 + -+ L), (10.2)

which are linear in the second factor, mapping the n-graph I' € ¢(n) and the
monomial v; ® -+ ® v, € V" to the polynomial

fxrl,...,xn (V1 ® -+ @ vn), (10.3)
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satisfying the cycle relations and the sesquilinearity conditions described below.
The cycle relations state that

fT'=0 unless T € %(n), (10.4)
and if C C E(I") is an oriented cycle of I', then
Yo fMe=o, (10.5)
ecC

where I' \ e is the graph obtained from I" by removing the edge e. Note that
these are the same relations as in Lemma 8.4. Condition (10.5) follows from
(10.4) unless I' contains a unique oriented cycle. In the special case of oriented
cycles of length 2, the cycle relation (10.5) means that changing orientation of
a single edge of the n-graph I' € ¢ (n) amounts to a change of sign of fT.

To write the sesquilinearity conditions, let I' = I'1 L. - -UT's be the decompo-
sition of I" as disjoint union of its connected components, and let /1, ..., Iy C
{1,...,n} be the sets of vertices associated to these connected components.
For example, for the graph I'" in (9.3), we have I' = I'y U I'p, with I} =
{1,2,3,4,5,6,8,9} and I, = {7}. Then for every « = 1,...,s, we have two
sesquilinearity conditions. The first one states

A, (v1 ® -+ ® vy) is the same for all i € I,. (10.6)

.....

In other words, the polynomial fAI; 5. (V1 ® --- ® vy) is a function of the

variables Ar, = Ziela Ai,a = 1,...,s5 (cf. (8.10)), and not of the variables
A1, ..., Ay separately. The second sesquilinearity condition is, again in the no-
tation (8.10),

S Or, (1 ® - ®vp)) = —Ap, fi. (1 ®-®uvy).  (10.7)

..........

These are the same relations as in Lemma 8.6.

Remark 10.1. Since I' is a disjoint union of its connected components 'y, the
second sesquilinearity condition (10.7) implies

n
S, @ro)y ==Y "X fif o ) =d(fr, 5, @) veV®

i=1
(10.8)
(cf. Remark 6.5).
The space P¢!(n) decomposes as a direct sum
PYn) = e Pn). (10.9)

r=>0

where gr’” P¢(n) is the subspace of all maps (10.2) vanishing on graphs I' with
number of edges not equal to r.
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Remark 10.2. Let V. = P, gr” V be a graded vector space, and consider the
induced grading of the tensor powers V®% Then the classical operad P!(V)
has a refined grading defined as follows: f € gr” P°(k)(V) if, for every graph
I' € 4 (k) with s edges, we have

.....

The grading (10.9) corresponds to the special case when V = grf V.

The Z/27-grading of the superspace P (n) is induced by that of the vector
superspace V (as before, the variables A; are even and commute). We also have
a natural right action of the symmetric group S, on P (n) by (parity preserv-
ing) linear maps, defined by the following formula (f € P (n), I' € ¥4(n),
Vi,...,0 € V):

a1 ® - ®va) = £550  (o(v1 @+ @ vp)).  (10.10)

.....

where 0(A1,...,Ay,) is defined by (2.8), 0 (v; ® - -+ ® v,) is defined by (2.2),
and o (T") is defined in Sect. 9.3.

Next, we define the composition maps of the operad P°.. Let € P¢(n) and
g1 € PCl(ml),...,gn € PCl(mn).Let M;,i =0,....,n,and A;,i =1,...,n,
be as in (5.7). Let ' € ¥(M,) and consider its cocomposition A”177n(T")
defined in Sect. 9.1. We let

(f(gr,.. . gDt VM S VA, A, /@ + Ar -+ Aur,,)

be defined by the following formula:

(f&1s s &5y iy (01 @ - @ UM,)

.....

NG ) NG )

- fAlo,...,An (((|X1=A1+8(g1)xll+X(1) ..... AM1+X(M1)) ®--
® ( (g " ® NI @ ® vpy,))
xn=An+3\8n) 30 XMy 1), Ay + X (M) (V1 My))-

(10.11)
In formula (10.11) we are using the following notation. Given the graphs I'y €
G4(my), ..., I'y € 9(my), we let, recalling (5.8),

dong, V1B B Uy,
aag (V1@ @) @ ® (10.12)

.....

Ty
@)y rridag, (VM1 ® - @ Ug,,),

with + the same as (5.9). We are using the notation (9.5) for the variables
X(1),..., X(Mp) appearing in (10.11). Finally, for polynomials P(1) = )_, pmA™
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and Q(n) = Y, qn " with coefficients in V', we denote

(lx=aP Q4+ ) ® (y=aQ (1 + X)) = Y (1 + )" pm) ® (A + )" ),

m,n

(10.13)
and by dg; (w; ® --- ® wy,) we mean 0(g (W) ® -+ Q@ Wy)).

Remark 10.3. In view of Examples 9.1 and 9.5, in the special case m; = k +
I,my =---=my = 1andlettingn = k +m + 1, formula (10.11) reduces to
(8.18).

Lemma 10.4. With the above notation, the right-hand side of (10.11) is a well-
defined element of VA1, ..., Ap,1/{0+A1+---+Ap, ), forevery f € P(n)
and g1 € PY(my), ..., gn € P (my,).

Proof. First observe that, if Ag'' ™™ (T") is not acyclic, then the right-hand side
of (10.11) is 0, since by assumption f satisfies (10.4). On the other hand, if
Ay (T) is acyclic, then by the observation at the end of Sect. 9.1, the vari-
able x; does not appear in X (k) when k € {M;_1+1,..., M;}. This makes the
right-hand side of (10.11) a well-defined polynomial for given polynomials

r;

()3 11y (VM1 ® 7 @ Vb)), (10.14)

However, (10.14) are only determined up to adding elements of
(0+AM_ 41+ -+ An;) = (A +0),

and we need to check that the right-hand side of (10.11) will remain the same
after that. Fix 1 <i < n, and replace in (10.11) the polynomial (10.14) with

I
(Ai + a)(hi)lMi—lJrl,...,)LM,-(vMi—l-i‘l ®- ®vy;)
for some map
hi: G(m;) x VO™ — VIApr_ 415> A, ]

Let us introduce the shorthand notation

=G G
8i" = (b= +9(8) 2y, 1+ XMy 41, har, X (M) (10.15)
. : AT
for an arbitrary graph G. Then in (10.11), we need to replace g; with
A
lx;=A;+9(Ai + 0+ X(Mj—1 + 1) +--- + X(M;))h; . (10.16)

It follows from the definition (9.5) of X(k), that

X(Mi—1+ D)+ + X(My) = ) x;,
J
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where the sum is over all 1 < j < n such that j is connected by an unoriented
path with i in the graph Ay """ (T"). Together with x;, this gives the sum of
all x; where j is a vertex of the connected component Fio of i in Ay ().
Then after setting all x; = A; 4 9, we obtain

> (A +8)) = Ao + dpo.

jer?
Ag (T
using again the notation (8.10). Then after applying 1, © A A, | Weget, be-
cause f satisfies the second sesquilinearity condition (10.7). O

Lemma 10.5. For every f € P%(n) and g1 € P%(my),....gn € P%(my),
the composition f(g1., ..., gn), defined by (10.11), is an element of P (M,).

Proof. We need to check that f(gy,..., gn) satisfies the cycle relations (10.4),
(10.5) and the sesquilinearity conditions (10.6), (10.7). Observe that if I' €
(M) contains a cycle, then one of the graphs Alml'"m” (),i =0,1,....n
must contain a cycle as well. Evaluating f fori = Oor g; for1 <i < n, we
obtain 0, because f and g; satisfy (10.4). Therefore, f(g1, ..., gn) satisfies the
first cycle relation (10.4).

To prove the second cycle relation (10.5), consider an oriented cycle C C
E(T) of I' € ¥ (n). Recalling (10.11), we need to show that

m1 }’nn(F ) ml mn(l_,\) ~ my-mn
ZfAl, An gy T@-.@ght M)y —0  (10.17)
ecC

where we use the notation (10.15). Given an edge e € C, consider its image
A(e) under the map (9.4). Clearly, we have
ATT)\ Ade). i Ale) € E(AT(T)),

AT, otherwise.

AP 6) =

Hence, by Lemma 9.2, the left-hand side of (10.17) 1s equal to

Ag T MNe AT (T \e) -
Z fAI ..... A, e( 81 ® @ Fh”
e’e A(C)NE (A" ()

n
Ayt ’””(F) SATTTID)
+> > e (&) ®---®  (10.18)

i=lere A(C)NE(A]T ()

AT D)\ AL
g; C®..@gh D),

mi--mnp

(F\e))
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If A(C) C E(A]"""(T)), then (10.18) reduces to

AL ml -mp miy-mp my-mp

Yo e Vewgt D e D),
e’eA(C)

(10.19)

In this case, by Lemma 9.3 (a), A(C) is an oriented cycle of A7"'"""(I"), hence
(10.19) vanishes by the second cycle condition (10.5) for g;. On the other hand,
if A(C) is not contained in E(A""™™"(T)) for any i = 1,...,n, then by
Lemma 9.3, A(C) N E(Ay'"™"(I")) is an oriented cycle of Ag'' ™™ (T"). In
this case, the first sum of (10.18) vanishes since f satisfies (10.5). Moreover,
each term in the second sum of (10.18) vanishes as well, since Ay’ ™" (T) is
not acyclic and f satisfies (10.4). We conclude that f(g1,..., gn) satisfies the
second cycle condition (10.5) as claimed.

Next, we will prove that f(g1,..., gn) satisfies the first sesquilinearity re-
lation (10.6). Let (h — k) be an edge in the graph I". We need to prove that the
right-hand side of (10.11) is a polynomial of (A5 4+ Ax) and not of A;, and Ay

separately. First, suppose that for somei = 1,...,n, we have
h9k€{Mi—1+1’--'5Mi}’ i-e'9 h_ l 1+r k_ l 1+Q7
for some r,q € {1,...,m;}. In this case, Aj and A; are both summands of A;;

hence fA,,..a, has the required property (of being polynomial of (A5, + Ag)

and not of A3, and Ay separately). The image of (2 — k) under the map (9.4) is

S
an edge (r — ¢) in A}"'"7""(T). Thus, (gi)le_lJrl(,l?,

(An + Ax) by the first sesquilinearity property of g;.
Now suppose that

A, is a polynomial of

for different i, j € {1,...,n}. In this case, (i — J) is an edge in the graph

ml -mn
Ay (T). Therefore, f A A D s a polynomial of (A; + A;), and hence
of (Ap + Ap). Furthermore by the assumption (10.6) on g; (t = 1,...,n)
and by the definition (9.5) of the variables X(1),..., X(My), all the A;’s of the

same connected component of A5 and Aj appear as summed in the polynomial

gA L ). We conclude that (10.6) holds for f(g1,...,gn), as claimed.
Finally, we will show that f (g1, ..., gn) satisfies the second sesquilinearity
relation (10.7). Let G be one of the connected components of I', and consider
the image G; = A" (G) (0 < i < n) of G under the map (9.4). Note that if
Gy contains a cycle, then Ay’ ™™ (T") does, which implies (f (g1, - - ., g ) =
0. Hence, we can suppose that Gy is acyclic. Then it is easy to see that all G;
(0 <i < n) are connected. Furthermore, the set of vertices of G is the disjoint
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union of the sets of vertices of G; (1 < i < n). Thus, using again the notation
(8.10), we have

n
A6 + 06 =) _(Ag; +96,),
i=1
and to prove (10.7) for f(g1,...,gn), it is enough to show that

(f(&1,-- 85, ap (RGi +0G,)0) =0, veVEMn 1<i<n

.....

(10.20)
Since g; itself satisfies (10.7), we have from (10.11):
AT AT _ A
al o @ @@z ) (Ae +d6 + Y. X))
keG;
= 0.

As in the proof of Lemma 10.4 (cf. (10.16)), we see from the definition (9.5) of

X(k), that
Y Xth= ) xj.

keG; J€GO\{i}

After setting all x; = Aj + 0, we can add x; to the above sum, because g; is
defined only up to adding elements of (A; + d). We obtain

Z Xjlx;=A;+8 = AGo + 9Go-
J€Go
ml ‘mn
After applying f At A, () to this we get 0, since f satisfies (10.7). This
proves (10.20) and ﬁmshes the proof of the lemma. O

Theorem 10.6. The vector superspaces P°(n), n > 0, together with the actions
of the symmetric groups Sy given by (10.10) and the composition maps defined
by (10.11), form an operad, which is graded by (10.9).

Proof. First, let us check that f° € P¢(n) forevery f € PY(n) and o € S,,.
The cycle relations (10.4) and (10.5) for f“ are obvious, using the fact that
if C C E(I') is an oriented cycle of I', then o(C) (obtained by applying o
to the tails and heads of all edges in C) is an oriented cycle of o (I"). Next, if
I' =T U--- U Ty is a disjoint union of connected components, then o (I") is
a disjoint union of connected components o(I'y) U --- U o (I'y). From here, it
is easy to derive the sesquilinearity conditions (10.6) and (10.7) for f°. Thus,
f9 e PYn).

We have already shown in Lemma 10.5 that the composition f(g1,...,gn) €
P (M,) for f € P'(n) and g; € P (m;). It is clear by construction that the
action of the symmetric group (10.10) and the composition maps (10.11) are
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parity preserving linear maps P¢'(n) — P (n) and P'(n) ® P'(m;) ® --- ®
P%Ym,) — P (M,), respectively. The unity axioms (3.3) are obvious, where
the unit 1 € P°(1) is the identity operator

@) =v+(0+A) € VIAJ/(0+A) = V.

and e represents the graph with one vertex. The fact that P¢! is a graded operad
follows from Lemma 9.2 and the definition (10.10), (10.11) of the operad struc-
ture. To finish the proof of the theorem, we need to verify the associativity (3.2)
of the composition and the equivariance (3.4) of the symmetric group action.

To prove the associativity axiom, given f € P¢(n), g; € P(m;) and
hij € P°'(¢;;), we need to show that ¢ = ¥, where

(P - f(gl(hll,---,hlml)a---agn(hnl»---,hnmn)),
w = (f(gl,...,gn))(hll,...,hlml,...,hnl,...,hnmn).

Let us introduce the lexicographically ordered index sets

I =) |1 <i<n 1=<j<m},

H ={ljk)|1 <i<n, 1<j<m, | <k =<{;},
and the notation

mj lJ

ZZAUk’ Al] - Z)Ll]k’ 1<i<n, (ij)e /

—lk 1

Li:zzij’ L=ZL1'=ZZ£U.
j=1

i=1 i=1j=1

Then for any graph I' € % (L) and vectors v;jx € V, we find from the definition
of composition (10.11):

r
gD(Aij'k)(zijk)ex( ® Uijk)

(ijk)exr
. n ivlim; . Ly-L
A (I A LA TTTNI)
= fAloa--->An (®(gl)A?1 ----- Aimi

Lt Lij

(@i (@)
k=1
w(iijk)(ijk)ex( ® Uijk)

(ijkyex
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AU (AT () AP ’"”(A‘“ fnmn (1))

_fAl, WA (®( ’)All, o ANim

i=1

411 “Lnmp

@) L
(cgo<hu>kj?fy*jz Qi)
k=1

The above right-hand sides are equal by Proposition 9.6, thus proving the asso-
ciativity axiom (3.2).

Now we will prove the supersymmetric equivariance (3.4). Let f € P (n),
gi € P (m;) as before, and 0 € Sy, 7; € Sy, for 1 < i < n. Then for a graph
I' € %(m1 + --- + my) and vectors v;; € V', we compute:

SO g5 (R )

(j)es
EUNGE ’””(F) o ATy
=(f )Al, (®( ’),111, i (® ij))
o5 () o (A1 () >
= fA o—1(1) HA o1l )( (®( l)/\ ._1(1),...,/11.1:._1(’”.)('51'(®Uij))))
i=1 T i [ j=1
o (A (TY)
_Gg((f)é lt(® Uzj)( )f _1(1)’ ’A _l(n)
Ts l(l)(A _1(1) (F))
(R sy
g o~ 1@/ —1(1)‘5;11(1.)(1),-,1 1)t _1()(m0_1(l.))

Ms—13)

(10 g )

A Mo—1 (1) oL (g (11 ... ty))(T))

= €@ @, v @) a1t i
(®(g0_l(l))f _Ul .1(111’”0 l(n_,)(ig(j’ ST)(I)
= Ly 0 e o Ly oy
Mo—1)
(fr0( @ o))
j=1

)(U(fla 5Tn))(T)

= @) oy Lm0

((0(1'1, s rn))( ® Uij))

Gpes

1(1) —1( ) _l(n))
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(ij)e s

For the first equality above, we used the definition (10.11) of the composition;
for the second equality, the definition (10.10) of the action of the symmetric
group on P (n); for the third equality, the definition (2.2)—(2.3) of the action of
S, on a tensor product of n vector superspaces; for the fourth equality, Propo-
sition 9.7; for the fifth equality, we used again (10.11), (2.2) and the definition
of the composition of permutations; and for the last equality, we used again
(10.10).

This completes the proof of the theorem. O

10.3. Poisson vertex algebras and the operad P!

As in Sect. 7.4, given the vector superspace V', with parity p, and the even endo-
morphism 0 € End(V'), we denote by [TV the same vector space with reversed
parity p = 1 — p. Consider the corresponding operad P°/(ITV) from Sect.
10.2 and the associated Z-graded Lie superalgebra W(I1V) := W(P(T1V))
given by Theorem 3.4.

Theorem 10.7. We have a bijective correspondence between the odd elements
X € WICI(H V) such that XUOX = 0 and the Poisson vertex superalgebra
structures on V, defined as follows. The commutative associative product and
the A-bracket of the Poisson vertex superalgebra V corresponding to X are
given by

ab = (—1)?@DX* @ ®b), [a;b] = (—1)’DX3°, (@a®b). (10.21)
Proof. Note that, by the first sesquilinearity condition (10.6), the polynomial
X mz depends only on A1 + A, = —0. Hence, it is independent of A1, A5. For
this reason, in the first equation of (10.21) we omitted the subscripts A, A5.

First, we check that the symmetry of X translates to the commutativity of
the product ab and the skew-symmetry of the A-bracket [a;b]. We have

X @ v) = (XU (01 @ vo) = (~)PCPEIX (0 @ vy)
— (_I)P(U1)+P(U2)+P(U1)P(U2)X’_)‘(vz ® v1),

which, by the first equation in (10.21), is equivalent to the symmetry condition
of the product: vivy = (—1)P@DP®2) 4,4, Similarly, evaluating the identity
X = X2 on the disconnected graph e e, we get

X5t w1 ®v2) =(XI)32, (v ®vy)
= (_l)p(vl)p(UZ)X:;t—a,A(UZ ® v1),



322 B. Bakalov, A. De Sole, R. Heluani and V.G. Kac

which, by the second equation in (10.21), is equivalent to the skew-symmetry
condition (5.3) of the A-bracket.

Next, we need to prove that the condition X[JX = O translates to three
conditions: the associativity of the product ab, the Jacobi identity (5.3) for the
A-bracket [a b], and the Leibniz rule (10.1). Recall that, by (3.14),

XOX =Xo1 X 4+ Xox X + (X op X)12.

Since, by construction, X[ 1X is invariant by the action of the symmetric group,
to impose the condition X(JX = 0 is the same as to impose (XOX)I' = 0 for
each of the three graphs:

O O O, o 0—o0, O—0—0, 10.22
1 2 3 1 2 3 1 2 3 ( )

Evaluating all three summands of X[1X on the disconnected graph e e e we
get, by the definition (10.11) of the composition maps,

(X 01 X)3. 7,2, (V1 ®v2 ®v3)

= X3 has (X001 ® v2) ®u3)

= (=1)?Y[[vg;, v2l5, +4,03).

(X 02 X)3. 5,5, (v1 ® v2 ® v3)

= (—DPOIXSe, .01 ® X5 (12 ®v3))
= (=1)"TPC2) [y [v25,03]l,

(X 02 X)UD)3° 2 (01 ® vz ® v3)

= (_l)ﬁ(m)ﬁ(vz)()( 0y X):lz.,)thh (v2 ® V1 ® v3)
= (=1)PEDHFPEIPEI; [u1, va]l.

Hence, the condition (X[JX)® **® = 0 is equivalent to the Jacobi identity (5.3)
for the A-bracket.

Evaluating all three summands of XX on the second graph in (10.22), we
get, by the definition (10.11) of the composition maps,

(X 01 X)3,%5.0,(v1 ® v2 ® v3)

XK Sy (01 ©02) B (1, g0)
= (=17 u1;, v2]vs,

(X 02 X)3 %00, (01 ® v2 ® v3)

= (—1)"3(”1))(;:1";LZM3 (v1 @ X*7*(v2 ® v3))

= (_1)1+p(v2)[vlkl U21)3],
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(X 02 X)U2)3 o0 (01 ® v2 ® v3)

= (— 1)P(v1)P(v2)(X 0y X):\;A.l 13(’)2 ® v ® v3)
= (_1)10(v2)+p(v1)p(v2)X.—»((|x2 A2+8v2) 2 X/h )L3+x2(v1 ® v3))
— (_1)10(1)2)+P(1)1)P(vz)v2[vl)Ll vs).

Hence, the condition (XC1X)® ** = 0 is equivalent to the Leibniz rule (10.1).

Finally, we evaluate all three summands of XX on the third graph in
(10.22). We get

(X o1 X)5 75,5, 01 ®v2®v3) = X*7°(X*7° (1 ® v2) ® v3)
= (=172 (vyv3)v3,
(X 02 X)3755, (1 @ 2 ®v3) = (=DPCVN ™ (01 ® X*7* (02 ® v3))

— (_1)1+P(vz)vl(vzv3)’

(X 02 X)U2)55>8 (01 ® 2 ® v3)

= (—)POIPWI (X 0y X)1~ ) 0 (12 ® V1 ® v3)
— (_l)ﬁ(v2)+ﬁ(vl)ﬁ(v2)XU(, ) =0.

The last equality holds because X evaluated on a graph containing a cycle is,
by definition, zero. Hence, the condition (XX )*~** = 0 is equivalent to the
associativity of the product. This completes the proof. O

In view of Theorem 10.7, we have the definition of the corresponding coho-
mology complex.

Definition 10.8. Let V' be a Poisson vertex superalgebra. The corresponding
PVA cohomology complex is defined as

(WTIV),ad X),
where X € Wi (I1V)g is given by (10.21).

Remark 10.9. Let V. = &P, gr" V be a graded vector superspace. Recall from
Remark 10.2 that we have the corresponding grading of the operad P/(I1V),
and hence of the Lie superalgebra WC(ITV). It is easy to check, as for Theo-
rem 8.10, that under the correspondence from Theorem 10.7, the structures of
graded Poisson vertex algebra on V' are in bijection with the odd elements X €
gr! WICI(H V) satisfying XT1X = 0. (Recall that V is a graded Poisson vertex
algebra if (gr? V)(gr4 V) C gr? T4V and [gr? V; gr? V] C grP T4~ 1 V[A].)
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10.4. Relation between gr P and P9

Recall from Corollary 8.8 that for every X € gr” P"(k + 1) (with a representa-
tive X € F” P"(k 4 1)) and every graph I' € ¢ (k + 1) with r edges, we have
the map

XT(= X(pr): VKD s Vo, ... ARl/ (0 + Ao + -+ + Ag).

Theorem 10.10. For every vector superspace V with an F[0]-module structure,
there is a canonical injective morphism of graded operads

or PNV — PY(V), (10.23)
mapping X € gr” PN (k + 1) to:
(XUV|T e 9k +1) with r edges} € gr” Pk + 1). (10.24)
This morphism is a bijection gr P"(k + 1) = Pk + 1) fork = —1,0, 1.

Proof. As a consequence of Corollary 8.8 (a)—(b) and the definition of the
graded operad P°, the map (10.24) is a well-defined morphism of operads,
and by Corollary 8.8 (c) this morphism is injective. Surjectivity of the mor-
phism for k = —1,0 is immediate. Let us prove it for k = 1. Recall that
gr P1(2) = gr® P1(2) @ gr! PC!(2). By definition, gr® P!(2) consists of maps

Xe* . ve — vl
satisfying the sesquilinearity conditions

X/{ *((dvg) ® vy) = —AXI *(vo ® V1),
X3 *(vo ® (0v1)) = (A + 9) X *(vo ® v1).

A preimage X € FOP(2) = P<M(2) can be constructed by letting
X (vo, v1;2)

I\ e :
(_ﬁ) X; "(vo®vy) if n >0,

= A Mm—1
D" dpy--- dpm X, 2 (vo ® vy) if n =—m < —1.
0 0

It is not hard to check that, indeed, X is a well-defined element of P¢h (2) and
the image of its coset [X] € gr® P"(2) = FOP(2)/F! P"(2) via the mor-
phism (10.23) coincides with X*®. Next, gr! P°(2) consists of F[d]-module
homomorphisms

X Ve Ly



Cohomology of vertex algebras via operads 325

A preimage X € F1P(2) can be constructed by letting
B 0 if n>0,
X (vo, v1;291) = "
(UO U1 ZOI) ( ) Xo—)o((a + /’\)mv() ® vl) ifn=-m—-—1<-1.

Again, it is not hard to check that X is a well-defined element of F!pch 2) =
gr! P°"(2) and its image via the morphism (10.23) coincides with X *~°. O

Example 10.11. Let V be a non-unital vertex algebra. By Theorem 6.12, the
vertex algebra structure of V' corresponds to an odd element X € th(l'[ V)=
PM(2)(ITV) such that XX = 0. The filtration (8.4) of P"(2) is

FOP(2) = PM(Q2), F'PPQ)={f|f(0;)=0}, F>P"Q2) =0

Hence, the image Xg of gr’ X in P¢!(2) via the map defined in Theorem 10.10,
is the element
Xo* *=X(1), X" =0.

Thus we obtain a PVA structure on V', where the A-bracket is the same as for
the vertex algebra V', and the commutative associative product is zero.

Recall that if V is a filtered vector space, then P"(V) is a filtered operad
with respect to the refined filtration introduced in Sect. 8.5, and P (gr V) is a
graded operad with respect to the refined grading introduced in Remark 10.2.
Then Theorem 10.10 still holds:

Theorem 10.12. We have a canonical injective morphism of graded operads
from

gr PNV) — P (erV). (10.25)
Explicitly, f € gt” P;éh(V), with a representative f € F' PM(V), is mapped to
the element f € gr’ Plgl (gr V) defined as follows. If I € ¢ (k) has s edges and
V1 Q- QUi € grt(V®k) = @r1+-"+rk=t g’V ®---® gV, we let

Sng @1 @@ 0p) = [ vy, s pr) + FHTTTIY (10.26)

in (g T VYA, AR]/(0 4+ A+ Ag).
Proof. Straightforward. O

Let V' be a filtered vertex algebra and let gr V' be the associated graded Pois-
son vertex algebra. By Theorem 8.10, the vertex algebra structure of V' cor-
responds to an odd element X € F! th(l'[ V) = F!' Ph(2)(ITV) such that
XX = 0. Moreover, by Remark 10.9, the Poisson vertex algebra structure of
gr V corresponds to an odd element X € gr! Wfl(H arV) =gl PAQ)IgrV)
such that XOX = 0.
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Theorem 10.13. The image of X € gr! th(H V') via the morphism defined by
Theorem 10.12 is X.

Proof. The proof follows by construction. O

Obviously, the morphism of operads defined in Theorem 10.12 induces a Lie
superalgebra injective homomorphism

gt WNIIV) — W (erIIV). (10.27)

Moreover, by Theorem 10.13, X = gr X, where X € th(l'[ V') is associated
to the vertex algebra structure of 1/, is mapped by the homomorphism (10.27)
to X € Wfl (gr I1V'), associated to the PVA structure of gr V. Summarizing, we
have:

Theorem 10.14. Let V' be a filtered vertex algebra and let grV be the associ-
ated graded Poisson vertex algebra. Denote by X € F! th(l'[ V') the element
corresponding to the vertex algebra structure of V by (6.31) (cf. Theorem 8.10),
and denote by X € gr! Wfl (gr T1V) the element corresponding to the Poisson
vertex algebra structure of grV by (10.21) (c¢f. Remark 10.9).

(a) There is a canonical injective homomorphism of graded Lie superalgebras
gr WRIIV) — W(grIIV), (10.28)

mapping X € gr! WMIIV) 10 X € gr! Wfl(gr Imv).
(b) Hence, we have an injective morphism of complexes

(g WNMV),dg = gradX) — (W (gr11V),dg = ad X). (10.29)

(c) As a consequence, we have the corresponding Lie superalgebra homomor-
phism of cohomologies:

H(grW™NIV),dg) — HWNIV),dg). (10.30)

Remark 10.15. 1t is interesting to understand whether the morphism (10.25) is
in fact an isomorphism. In the recent paper [BDSHK18], we prove this un-
der the assumption that the filtration of V' is induced from a grading such that
V =~ grV as F[d]-modules. In this case, (10.28) and (10.30) are Lie superalge-
bra isomorphisms and, since the cohomology of a complex is majorized by the
cohomology of the associated graded complex, we get the inequalities

dim H*(W™NIIV), dx) < dim H* (W (gr V), dg) (10.31)

for every k > 0.
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10.5. A finite analog of the operad P!

For a vector superspace V, we can define a finite analog P™ of the operad P°!
introduced in Sect. 10.2 as follows (cf. [Mar96]). We let P™(n) be the space of
all maps

f:9m)x Ve — v, (10.32)

which are linear in the second factor, mapping the n-graph I' € ¢(n) and the
monomial v; @ --- ® v, € V" to the vector fT(v] ® -+ ® v,), satisfying
the cycle relations (10.4) and (10.5). The action of the symmetric groups Sy is
given by

W@ @)= Do @ ®vn)), (10.33)

where 0(v] ® - -+ ® vy) is defined by (2.2), and o (") is defined in Sect. 9.3. As
for the composition maps, using the cocomposition maps on graphs defined in
(9.2), we let

(f(gl’ L gn))r _ ngll..-mn (D) (glAflnl...mn ) R ® gnAnml...mﬂ (I‘)),
(10.34)
for f € P™(n), g1 € P™(my), ..., gn € PM(my), and T € ¥ (M,,).
The same proof as for Theorem 10.7 leads to:

Theorem 10.16. We have a bijective correspondence between the odd elements
X € Wlfn(l_[ V') such that XU1X = 0 and the Poisson superalgebra structures
on 'V, given by

ab = (=)PDX* @ ®b), {a.b}=(-DPDX**@®b). (1033

11. The variational Poisson cohomology and the PVA cohomology
11.1. The Lie superalgebra W (T1V)

In this section, we review the construction of the cohomology complex associ-
ated to a Poisson vertex algebra introduced in [DSK13]. Let V' be a commutative
associative superalgebra with an even derivation d. As usual, we denote by p the
parity of V' and by ITV the space V' with reversed parity p. For k > —1, we let
Wka “(ITV) be the subspace of W2(ITV) (cf. Sect. 5.3) consisting of all linear
maps
f: | AN F_[A1,...,Ax] ®rpa) Vs
V1 ® - ®Up > fa,,..4, (V1 ® - ®up),
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satisfying the sesquilinearity conditions (5.5) and the following Leibniz rules:

f)\.l,...,)\.n(vl’""uiwi""’vn)

= (=P th=D) o (V1 Ui U)W

+ (—PeDP@I TSItk £ (U1 Wi Un)
(11.1)

where the arrow means that d is moved to the right and s;; is as in (7.7).

Proposition 11.1 ([DSK13, Proposition 5.1-5.2]). The space

wismy) = @ wl e my)
k>—1

is a subalgebra of the Lie superalgebra Wa(l'[ V). Moreover, there is a bijective

correspondence between the odd elements X € Wla’as(l'[ V) such that [X, X] =
0 and the Poisson vertex algebra A-brackets on 'V, given by

laxb) = (=P DX, 5 _a(a @ b). (11.2)

As a consequence, given a Poisson vertex algebra A-bracket on V, we have the
corresponding cohomology complex (W*(I1V), d ) with differential d 5 =
ad X.

11.2. Relation between W(I1IV') and W9 (I1V)

Let V' be a Poisson vertex algebra. Recall that, by Theorem 10.7, associated
to the PVA structure of V' there is an odd element X € Wfl(H V') such that
[X, X] = 2XOX = 0, and we thus have the corresponding cohomology com-
plex

(WTIV), ad X). (11.3)

Moreover, by Proposition 11.1, we also have an odd element X e Wla’as(l'[ V)
such that [ X, X] = 0, and we thus have the corresponding cohomology complex

(WOS(T1V), ad X). (11.4)
By (10.21) and (11.2), we have
X=Xx°*". (11.5)

It is natural to ask what is the relation between the two cohomology theories
(11.3) and (11.4).

Recall that the operad P°/(ITV), hence the Lie superalgebra W< (ITV'), has
a grading gr” defined in (10.9): an element f € gr” WkCI(H V) vanishes on all
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graphs I" with (k + 1) vertices and number of edges not equal to r. Hence, every
€ ecomposes as a finite sum
weIv)d fini

f=> 1 (11.6)

r=>0

where frF = fTif T has r edges, and frF = 0 otherwise. In particular, the
element X decomposes as
X = Xo + X1,

and the condition [X, X] = 0 is equivalent to
[Xo, Xo] = [X1, X1] = [Xo, X1] = 0.

Hence, we have two anticommuting differentials dx,, = ad X¢ and dy, = ad X
on WC(ITV'), which are homogeneous of degree 0 and 1 respectively.

Lemma 11.2. We have a natural Lie algebra isomorphism
womv) — g weav), (11.7)
mapping f € WO(I1V) to the element f € gr® WY(I1V) such that
frrt=f and fU=0if [ED)|#0.

Proof. 1t follows from the definitions, that we have an isomorphism between
the operads ##..» and gr® P¢!. The statement of the lemma is an obvious con-
sequence of this fact. O

Lemma 11.3. Let f € Wka(l'[ V) and let fy be its image in gr° W,fl(l'[ V) via
the isomorphism (11.7). We have:
(a) dx fo =0 <= dx,fo =dx, fo =0;
(b) dxo fo =0 < dgzf =0;
(c)dx, fo=0 < fewl™v).
Hence, ~
foeKer(dy) < f € Ker(d)ﬂwasas(nv))-

Proof. Claim (a) is obvious, by looking at the various degrees separately. Claim
(b) follows from Lemma 11.2. Let us prove claim (c). Note that dy, fo =
[X1. fo] € gr! Wi, (ITV). Hence, to impose the condition [X1, fo] = 0 it
is enough to evaluate it on graphs with 1 edge, and, by symmetry, on the graph

IF=oe e .- o —>e,

By definition, [X1, fo] = X10 fo — (—=1)?Y0) £,00X, and we will compute the
two summands separately. By (3.13) and (10.10), we have

X10f0)3, s, (V1 ® - @ Vi y2)
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—1
= Z (X101 fo)° )El,_,_,xkﬂ(vl ® - ® Vgyn)

OESKk+1.1

_1F _
= > X Sl G @ 018 ® Uky),

.....

OESKk+1.1

Observe that, since fo has zero degree, (X oy fo)"_l(r) = 0 if the subgraph
obtained from o~ !(I") by deleting the vertex labeled (k + 2) has an edge. This
leaves only two shuffles in the above sum: o = the identity and o = the trans-
position of (k 4 1) and (k + 2). In the latter case, 0~ !(I") is the same as I" with
reversed orientation of the edge, which leads to a minus sign. Hence, by (10.11)
and (10.21), we get

(V1 ® -+ @ Vg42)

= (X101 fo)E1 ..... A, (V1 ® - @ U y2)

_ (_l)ﬁ(vk+1)ﬁ(vk+z)(X1 o1 fO)El,. (V1 ® ® Vgyr ® Vk41)

A2, k41

= Xl._).(fll ..... lk+1+xk+2(vl K- Uk+1) ® (|xk+2=kk+2+avk+2))

_ (_l)ﬁ(vk+l)ﬁ(vk+2)X1._»(fll,...,Ak,kk+z+Xk+1 (V1 @ @V ® Vkt2)

X (|xk+1=kk+1+avk+l))

— (_1)1+ﬁ(f)+ﬁ(vl)+.“+ﬁ(vk+l)(f_‘A,l,...,A‘k-i-l+Ak+2+a(v1 R R vk+1)_)vk+2

+ (—D)PORDIPOIR2) fy a0V ® 1 ® Ug2) 5 V1)
As for the second summand in the bracket [X7, fo], we have, by (3.13) and
(10.10),

(SoOXD3, gy, (V1 ® - ® Vky2)
-1
= D ((foo1 XD )}, 4,01 ® - ® ki)

oE€SH k

-1 .
Y. (foor Xl)ZqEAz an (@ "1 ® -+ ® vg42))

.....

U€S2!k

Since fy has zero degree, (fp o1 X 1)U_I(F) = 0 unless the only edge of the
graph o ~1(I") connect the vertices labeled 1 and 2. This happens for only one
shuffle, given by

oc)=k+1,02)=k+2,0(i)=i—-2 for i=3,...,k+2.
Hence, by (10.11) and (10.21), we have

(meXI)El,___,Ak+2(U1 ® - @ Vky2)
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= EU(v)f_/lk+1+Ak+2,).1,...,).k (X._).(vk-i-l ® Uk+2) QU & & Uk)
= (_l)p(vk+l)60'(v)flk+1—|—)Lk+2,ll,...,).k (vk+lvk+2 QUVI®:--® Uk)

1+p ++p .
= (_1) p(o1) p(vk—i—l)fll ..... Ak,lk+1+lk+2(v1 R QU & Uk_|_1l)k+2),

where
és(v) = (=) PO+ +PWk+2)) Y1 pvi)

In the last equality we used the symmetry condition on f_ e WO(I1V), and the
fact that

P(Wk+1Vk+2) = 1+ p(Uk+1) + P(Vk42).
Combining the above results, we conclude that the condition [X, fo] = O is

equivalent to the equation

fkl,...,1k+1+ﬁ.k+2+3(vl K- QR vk+l)—>vk+2
+ (_l)p(vk+1)p(vk+2)fll ..... lk+1+lk+2+3(vl K- vk+2)—>vk+l

= ot i1 +Axgs (V1 @ - @ U & Vg 1Vk+2),
1.e., f_ satisfies the Leibniz rule (11.1). This proves claim (c). The last assertion
of the lemma is an obvious consequence of the previous claims. O

Theorem 11.4. We have a canonical injective homomorphism of Lie superalge-
bras

HWYS(V),dg) —> HW(IIV),dx) (11.8)
induced by the map (11.7).

Proof. By Lemmas 11.2 and 11.3, the map (11.7) restricts to a Lie superalgebra
isomorphism

Ker(d g |y o.(1v)) —5 Ker(dy) N gr® we(Iiv). (11.9)
Note that, by degree considerations, we have
dx (W(IV)) N g W) = {[Xo. ol | g0 € g’ W(ITIV), [X1, go] = O}

It follows that, under the isomorphism (11.9), d ¢ (W23 (T1V)) maps bijectively
to dy (W (I1V)) N gr® We(I1V). Hence, (11.9) induces an isomorphism

Ker(dy) N gr® We(I1V)

d,as _
HOVEEN- 4o = G wamy)) n e we(mv)

(11.10)

The claim follows since the RHS of (11.10) is a subalgebra of H(W\(ITV), dx).
O
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Remark 11.5. The map (11.8) is an isomorphism for the 0-th and 1-st cohomolo-
gies. Therefore, by Remark 10.15 we have the following inequality

dim H*(W(I1V), dx) < dim H*(Wo*(grT1V), d5) (11.11)

for k = 0,1 provided that V' and gr V' are isomorphic as F[d]-modules. In
[BDSHKV19], we prove that (11.8) is an isomorphism, provided that, as a dif-
ferential algebra, V' is an algebra of differential polynomials in finitely many
variables.

11.3. Application to the free boson

Let .% be a differential field with the derivation 0. Consider the Lie conformal
algebra of N free bosons

R=Z7[0u1 ®---®F[0lun & FK,
with the A-brackets on the generators uy,...,uy given by
wijuj] =A6;K, i,j=1,...,N,
where K is central and 0K = 0. Its universal enveloping vertex algebra is

B=ZKu™|i=1,...,Nnez], o™ =u""tH

1

with the increasing filtration defined by letting the degrees of u l(n) and K equal

1. The associated graded of the vertex algebra B is the Poisson vertex algebra

B=gB=FKu"|i=1,... NneZy, " =u"",
9K =0,

with the A-bracket on generators given by {u; yuj} = A§;; K fori,j =1,...,N,
where again K is central. By (11.11) we have

dim H*(B) < dim H* (%), (11.12)

for k = 0,1, where on the left we have the cohomology of the vertex algebra
B while on the right we have the variational Poisson cohomology of the PVA
A. In fact, due to Remarks 10.15 and 11.5, the inequality (11.12) holds for all
k > 0.

We are interested in the quotients B = B/(K — 1) and # = #/(K — 1) by

the ideals generated by (K — 1). Then B is the vertex algebra of N free bosons

B=Fu"|i=1,...,N, neZy,
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while 4 is the Poisson vertex algebra

B=Fu™|i=1,...,N, nel4

1

with the A-bracket on generators given by {u;u;} = Ad;j fori,j =1,..., N.
It is not hard to relate the cohomologies of B and A to those of B and %,
respectively, and to show that

dim H*(B) < dim H*(%), k >0 (11.13)

(see [BDSK19] for details).

It was proved in [DSK12] and [DSK13], respectively, that dim H* (%) =
(Y+) it # = F with OF = 0, and dim H*(2) = (,},) if .7 is linearly
closed. The representatives of cohomology classes were explicitly computed.
Using those results, it is easy to find representatives of a basis of the space of
Casimirs for 4, and of the space of derivations of 2 modulo inner derivations.
For .# = T, representatives of a basis of H%(%) C /0% are the Casimir

elements
L,uy,...,upn, (11.14)

and representatives of a basis of H (%) = Der(%)/ Inder(%) are the follow-
ing derivations,

0
—yi=1,...,N, and
ou;

o m 0w 0 o
Dy =3 (u PRGN W) P=i=/=N
nezy u] Uj

(11.15)

If the field .% is linearly closed, it contains x such that dx = 1, hence we have
1 = dx = 0in $£/0A, and 83,- = {xuj)}r=0, i = 1,..., N, are inner
derivations, while the remaining elements in (11.14) and (11.15) are linearly
independent representatives.

Note that, in the case when .% = T, the elements (11.14) are Casimirs of
B, linearly independent over . Hence, dim(Cas(B)) > N + 1. On the other
hand, by Theorem 7.6 and the inequality (11.13) the opposite inequality holds.

It follows that

dim(Cas(B)) = N + 1,

and the elements (11.14) form a basis of Cas(B).

Next, still in the case .# = T, derivations (11.15) are actually derivations of
the Lie conformal algebra R. Hence, they uniquely extend to derivations of its
universal enveloping vertex algebra B, and it is easy to see that they are linearly
independent modulo inner derivations of B. Hence, dim(Der(B)/ Inder(B)) >
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%N (N + 1). On the other hand, by Theorem 7.6 and the inequality (11.13), the
opposite inclusion holds. It follows that

dim(Der(B)/ Inder(B)) = (N;_ 1),

and the derivations (11.15) are representatives of a basis of Der(B)/ Inder(B).
Similarly, in the case when .7 is linearly closed, we obtain

dim(Cas(B)) = N and dim(Der(B)/ Inder(B)) = (Z)

with the same representatives as for %4, described above.

A. Relation to chiral algebras

In [BDO04] the authors introduced an algebro-geometric rendition of the theory
of vertex algebras, which they called chiral algebras. In this section we outline
the relation of the above results with their definitions.

A.l. Chiral operations

Consider a smooth algebraic curve X over F. For any right Zy-module .7,
Beilinson and Drinfeld construct an operad 9;1; whose (k + 1)-ary operations
are

Dk + 1) = Homg,, | mod(juj * ¢V Ay,

where j is the inclusion of the open complement of the diagonal divisor on
X*+1 (union of hypersurfaces x' = x/ fori # j), and A: Al — AK+1 is the
diagonal embedding x +— (x,...,x). A non-unital chiral algebra on X is by
definition a morphism of operads

e —> @f;
In particular it is defined by a binary operation
P2 st juj A R —> Ao, (A.1)

satisfying skew-symmetry and Jacobi identity.
The dualizing sheaf wy of X carries a canonical chiral algebra structure
given by the residue map. For this we define u as the cokernel of the inclusion

0—>a)X&a)X—>j*j*wx&wX$A*a)X—>0.
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Skewsymmetry follows from the isomorphism wy Xwy =~ wy2, which is skew-
equivariant for the action of Z /27 by permutation of the two factors. The Jacobi
identity 1s a little subtler to prove and is a consequence of the Cousin resolution
of wys with respect to the diagonal stratification (see [BD04] or [FBZ04]). A
non-unital chiral algebra .7 is called unital or simply a chiral algebra if there is
a morphism wy — &/ of Zx-modules such that the restriction of the multipli-
cation jto of &7 to j«j*wxy X o/ — j«j*o/ K A coincides with the cokernel
of the sequence

0— wxy XoZ — juj ox R — A/ — 0. (A.2)

A.2. 9-modules on the line

In the particular case when X = Al is the affine line over I, any Zx-module .27
is determined by the T'(A!, Z,1)-module 4 := I'(A!,.o7) of global sections.
The same is true for the Zy«+1-modules

j*j*ﬂf&(k"'l) and A<,

Let P41 be the algebra of regular differential operators on (k 4 1) variables
Zo,...,Zk asin Sect. 6.2, and let I be the left ideal generated by {zog — z; }f=1.
Let Ok 11 = F[zo,. .., zx] and recall the algebra &7 4 of functions defined in

Sect. 6.2. It is naturally an O ;-module, as is Z ;. Notice that A®K+1) g
naturally a & 4 -module. We have

DAY, juj* ™) = 0F | @4, ABETD,

and the Z 4 1-module structure is by the action on the right factor.

Consider I\ Zj 41, which is a (Z1—% +1) bimodule as follows. The action
of P41 is by multiplication on the right. The action of &7 = F|[z][0;] on the
left is defined by letting z act as multiplication on the left by zo and 9, act as

multiplication on the left by Zf:o dz;. We have
FA M) = A @9, I\ Zk41) (A3)

with its natural right & 4 ;-module structure by right multiplication on the right
factor. We have

Pk + 1) =Homg, ., (O}, ®cpy A2ETV A®g, (1\Dk11)). (A
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A.3. Equivariant 9-modules

Let X be a smooth scheme, G an algebraic group acting on X, and .# a quasi-
coherent sheaf of ’x-modules. Denote by a: G x X — X the G-action and by
7y GxX — X the projection to the second factor. We say .# is G -equivariant
if there exists an isomorphism of &g x x-modules

«:a*F — 15 F (A.5)
such that:

(1) the diagram
(lgxa)'nyF ——>niF

T T (A.6)

(g xa)* a*F ——= (m x 1x)* a*.7

commutes in the category of 0gxGxx-modules’;
(2) the pullback
(e xIx)*a: F — ZF,

where e € G is the unit, is the identity map.

A Px-module % is called strongly equivariant if a given « as in (A.5) is an
isomorphism of Zgx x-modules and the diagram (A.6) is in the category of
26 xGxx-modules. The module . is said to be weakly equivariant if « is an
isomorphism of g ® Py -modules.

A.4. Equivariant 9-modules on the line

Consider the affine line A! over a field IF, with its natural action of the additive
group G, by translations. Let .# be a translation equivariant &'y1-module. Let
0 € Al be the origin. The functor 0* of taking the fiber at 0 defines an equiv-
alence of categories between translation equivariant quasi-coherent sheaves on
the line and vector spaces. The inverse functor associates to the vector space V'
the sheaf associated to the F[x]-module V[x] and the action of t € G is given
by v(x) — v(x + t). The isomorphism « as in (A.5) is given by

a: Vit,x] — VIt,x], v(t,x)— v(t,x +1). (A.7)

Notice that V[x] has a canonical right Z;-module structure with dx acting
by —d /dx. Similarly, V[¢, x] has right action of 2, = I'(G, x A!, D, xal)-
The map (A.7) is a morphism of Z,-modules. In fact, we have an equivalence
of categories between strongly equivariant Z-modules on A! and vector spaces.

! Here 73 : G x G x X — X is the projection map.
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Now let 0 € End(V'). As in Sect. 6.3, we have a Z;-module structure on
V[x] defined by letting x act as multiplication by x and dx act by d—d /dx. The
map (A.7) no longer commutes with the action of d;; hence, it defines a weakly
equivariant Z-module structure on the sheaf associated to the Z;-module V[x].
In other words, differentiating the G, action on V' [x], we obtain that d, acts by
—d /dx, which does not coincide with the action obtained from the Z-module
structure. The assignment (V,d) — V[x] defines an equivalence of categories
between weakly equivariant Z-modules on A! and pairs (V, d) of a vector space
and an endomorphism.

A.5. Equivariant operads

Let & be a symmetric operad and G be a group. We say that & is G -equivariant
if every space & (n) carries an action of G and the composition maps (3.1) are
morphisms of G-modules. In particular, this implies that the action of G com-
mutes with the symmetric group action on each &(n). It is clear that the spaces
of invariants 22 (n)% (respectively, coinvariants & (n)g) form a suboperad (re-
spectively, quotient operad) of Z.

A.6. Equivariant chiral operations

Consider a weakly equivariant Z-module 7 on the line corresponding to the
pair (V, d). The & 41-module (A.3) is in this case given by

V ®r(a) Flx][0o. - ... Ik, (A.8)

where we view F[x][do, ..., 0x] as a (F[0] — Zk1)-bimodule as follows. The

left action of 0 is given by Z{F:o d;. The right action of 9; is by multiplication
by 0;, and the right action of z; is given by

0
aai

F(x,00,....08) - 2" = xf(x,30,....0%) + — f(x.90.....0%). (A.9)

In this case, (A.4) reads
Pk + 1) = Homg, ., (OF,, ® VOETD vV @ppo Flx][do. - . .. dk)).

The group G, acts on these operations as follows. Given t € G, and ¢ €
Wflh(k + 1), we obtain a new operation ¢’ by letting

got(f(ZOﬂ---ﬂZk)@vO®"'®Uk)

(A.10)
=o(f(zo—1,....,2k — 1) @V ® *++ @ Vi) |x=x+¢-
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The set of translation invariant operations Q;’Ch C @f; defines a suboperad. A

weakly translation equivariant Z-module .7 on A! is called a non-unital weakly
translation equivariant chiral algebra if the multiplication (A.1) is translation
invariant. For instance, the unital chiral algebra w1 1s weakly translation equiv-
ariant. A unital chiral algebra is called translation equivariant if the morphism
wy1 — </ is equivariant for the G,-action.

Lemma A.1. Let V be an F[0]-module, and <7 be its associated weakly equiv-
ariant P-module on A'. Let P" be the operad from Proposition 6.7 associated
to V. Then we have an isomorphism of operads c@;’Ch ~ pch,

Proof. Recall the algebra of translation invariant differential operators QkT 41 of
Sect. 6.2. The action of G, on A! induces an action on A .27 and consequently
on its global sections (A.8), which is given simply by x — x + ¢. The space
of invariant sections is a @]Z +1—module 1isomorphic to (6.7). Indeed, we have an
isomorphism

V Qa1 Fldo, - - . 0k] —> Vo, ..., Axl/(d + Ao + -+ + Ag),
vQ® f(do,...,0k) —> f(—=Ao.....—Ap)v,

which is compatible with the action of 91T = F[d]. Similarly, the space of G-
invariant sections of 07 | ® Y ®k+1) is given by ﬁ,:_{l Q@ VOKk+D and is a

T
‘@k+1
For ¢ € L@;’Ch(k + 1), restricting ¢ to ﬁ,:_{l ® VOK&+D we see that by

(A.10)

(A.11)

-module as in Sect. 6.3.

fRuy®-- ® vy

does not depend on x; therefore, by (A.11) it defines a vector in
ViAo, ..., Ak]/{(0+ Ao + -+ Ag).

Hence, ¢ defines an element of PM'(k + 1).
Conversely, given X as in (6.11) satisfying the sesquilinearity conditions
(6.12), we extend X to a morphism ¢ € QZ;’Ch (k + 1) as follows. By a Taylor

expansion, we can express any function f(zo, ..., zx) € 05, as a finite sum

+1
n;
> gizo.z1. ... zp)zg

for some g; € ﬁ,’gil and some nonnegative integers n;. We define

P(f@uo®- - @ut) =) x" X(gi ®vo®--- ® vg),

where we identified X(g; ® vo ® - - - ® vy ) with a translation invariant vector in
(A.8) by (A.11). It is clear that ¢ is translation invariant and it is a morphism of
Dy +1-modules. O
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Corollary A.2 ([BD04, 0.15]). There is an equivalence of categories between
weakly translation equivariant chiral algebras on A' and vertex algebras.

Proof. We first prove the analogous statement for non-unital algebras. The non-
unital weakly translation equivariant chiral algebras are given by morphisms of
operads %z — @Z;’Ch for a weakly equivariant Z-module <. By Lemma A.1,
we have an F[0]-module V and a morphism of operads %% — PP, In a similar
way as in Remark 4.3, these correspond to an odd element X € th(l'[ V)
satisfying X[1X = 0. The result then follows from Theorem 6.12. Under this
equivalence, the unit vertex algebra [F corresponds to the chiral algebra w1 .

Consider now a translation equivariant unital chiral algebra V on A!. Then
the morphism w,1 — 7 corresponds to a morphism of vertex algebras F — V.
The image of 1 € F is the vacuum vector |0) of V. Indeed, since wy1 — &7
is a morphism of Z-modules, we have d|0) = 0. If X € th(HV) is the
corresponding operation, it follows from (A.2) that

X(|0)®v® )zv, vev,

Z1 — 20

from where the vacuum axioms follow. O

A.7. Lie conformal operad

In addition to the operad P;} associated to any Yy -module .7, Beilinson and
Drinfeld define an operad P, by letting

Pk + 1) = Homg,_, . moa(™* TV A, c7).

In the case of X = Al and .7 a weakly equivariant Z-module, we let @;* be
the suboperad of G,-invariant operations. We have in the same way as Lemma
A.1 the following:

Lemma A.3. Let V be an F[0]-module, and <7 be its associated weakly equiv-
ariant P-module on A'. Let %22 be the operad from Sect. 5.2 associated to

V. Then we have an isomorphism of operads 3”;* ~ o

A.8. Classical operations

For any smooth algebraic curve X over I and any right Zy-module <7 on it,
in [BD04, 1.4.27] the authors define an operad of classical operations &¢, as
follows. Let .~ be the Lie operad, that is, “z(k + 1) is the vector space with
a basis consisting of all formal symbols

[X5(0)s [Xo(1)s " [Xotk=1)> Xa )] - -1, 0 € Sk4+1, 0(0) =0.
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The composition in -~z is defined by replacing the corresponding variables and
expanding using the Jacobi and skew-symmetry identities. For each k > 0 and
each (myo, ..., my)-shuffle o as in Sect. 2.5, we let

ooy = Z(mg) @ -+ Q@ Zze(my),

and
@Z/(O—) = Hom.@Xk_H -mod(%®m0 X-.. X 52{®mks A*%)’

where A: X <> X**1 is the small diagonal embedding. Finally, put

n

75+ 1) =P P 20)© Z%,,
k=0 ©

where the inner sum is over (my, ..., my)-shuffles o such that Zf:o m; =n+
1. The composition in &?¢, is defined as the tensor product of the compositions
in the operad &7, defined in A.7 and the compositions in the “z operad (see
[BD04, 1.4.27] for details). The operad &7¢, defined this way is graded, with
the grading given by k in the above sum.

Remark A.4. In [BD04] the authors work with unordered sets and equivalence
relations on these sets, namely, instead of defining the n-ary operations &(n)
for an operad, they define the [ -ary operations &?(1) for any finite nonempty set
I. Similarly, composition is defined for any equivalence relation S in / instead
of a shuffle o. For the equivalence of these two approaches, see [GK94].

In the case when X = Al and &7 is a weakly G,-equivariant Zx-module,

we consider the translation equivariant suboperad 32;’0, and in the same way
as in A.6, we have the following:

Theorem A.5. Let V be an F[0]-module, and <7 be its associated weakly equiv-
ariant 9-module on A'. Let P be the operad from Theorem 10.6 associated

to V. Then we have an isomorphism of graded operads ,_@;;’c ~ Pcl.

Sketch of the proof. The proof relies on a theorem by Chapoton and Livernet
[CLO1], which states that the operad of pre-Lie algebras? is isomorphic to the
operad of rooted trees. Using this theorem, one can associate to any n-ary op-
eration in the operad “z a connected graph I' € ¢(n) as in Sect. 8.2. More
generally, given an (my, . .., my)-shuffle o and

T0® QT € Yiy,

we obtain a graph I' € 4(>_m;) with (k + 1) connected components, the i-
th component of which being a connected graph in ¢ (m;). By Lemma A.3, to

2 That is algebras satisfying an even version of (3.15).
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any element of (@;’*(0) we associate an operation f1 satisfying the sesquilin-
earity conditions (10.6), (10.7). The operation fT satisfies in addition the cy-
cle relations (10.4), (10.5), since the graph I comes from an operation in “z
and therefore satisfies skew-symmetry (as opposed to the general graph that by
Chapoton—Livernet’s theorem defines only a pre-Lie algebra operation). This

defines an isomorphism of graded vector spaces ﬁ;c (n) ~ P (n) for all n.
One readily checks that this isomorphism is compatible with compositions in
both operads. O

The operad @gf‘ carries a natural filtration given by the diagonal stratifica-
tion of X” for each n. It gives rise to the associated graded operad gr @g{‘ In
[BD04, 3.2.5] the authors produce a canonical embedding of graded operads

gr ,@21 —> P,

and claim that it is an isomorphism if .27 is a projective Zx-module. In the case
of X = A and considering the translation invariant suboperads, this embedding
is the geometric counterpart to Theorem 10.10.
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