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Abstract. We present different continuous models of random geometry that have been intro-
duced and studied in recent years. In particular, we consider the Brownian sphere (also called
the Brownian map), which is the universal scaling limit of large planar maps in the Gromov–
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Brownian motion indexed by the Brownian tree.
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1. Introduction

The goal of this work is to survey a number of recent developments concern-
ing the continuous models of planar random geometry that have been studied
extensively in the last ten years, and their connections with discrete models. A
very important feature of the continuous models that we will present is their
universality, meaning that they appear in the scaling limit of many different dis-
crete models. This is similar of course to the universality of standard Brownian
motion, which is the scaling limit of all random walks satisfying mild moment
conditions. Partly because of this analogy, and also because Brownian motion
plays a crucial role in the construction of our basic objects of study, we use
the name Brownian geometry for the general area of continuous models of ran-
dom geometry that are discussed below. In the present article, we stress the role
played by Brownian motion indexed by the Brownian tree, which is the main
ingredient of the construction of the random metric space called the Brownian
sphere (or Brownian map) and of other models, and which in our opinion is also
an important object worth of study in its own. Many properties of Brownian mo-
tion indexed by the Brownian tree, in particular the excursion theory presented
in Sect. 7 below, have direct applications to Brownian geometry.

The discrete models of random geometry that we will consider are pla-
nar maps, which are finite connected graphs embedded in the two-dimensional
sphere and viewed up to orientation-preserving homeomorphisms (see Sect. 2
below for a more precise definition). The faces of a planar map are the connected
components of the complement of the union of edges, and important particular
cases of planar maps are triangulations, respectively, quadrangulations, where
all faces are bounded by 3 edges, respectively by 4 edges. We note that many
of the results that follow can be extended to graphs embedded in surfaces of
higher genus, but we will not discuss these extensions here. Planar maps are im-
portant objects of study in combinatorices, and random planar maps have been
used for a long time by theoretical physicists as models of random geometry, in
the setting of two-dimensional quantum gravity, see in particular [64] and the
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book [6]. From the mathematical point of view, a natural question is to consider
a planar map chosen at random in a suitable class, say the class of all trian-
gulations with a fixed number n of faces, and to investigate the properties of
this object when n ! 1. One expects, in a way similar to the convergence of
rescaled random walks to Brownian motion, that, when its size tends to infinity,
the random planar map, suitably rescaled, will be close to a certain continuous
model. It turns out that this vague idea can be made precise in the framework
of the Gromov–Hausdorff convergence of compact metric spaces (see e.g. [20]
for basic facts about the Gromov–Hausdorff distance). Starting from a random
planar map Mn uniformly distributed over the class of all triangulations with
n faces (or quadrangulations with n faces), one shows [43], [54] that the ver-
tex set V.Mn/ equipped with the graph distance rescaled by the factor n�1=4

converges in distribution in the Gromov–Hausdorff sense to a limiting random
compact metric space which we call the Brownian sphere, see Theorem 1 below
(the case of triangulations had been conjectured by Schramm [62]). We note that
in previous work the Brownian sphere was called the Brownian map after Mar-
ckert and Mokkadem [51]. The proof of the latter convergence was strongly mo-
tivated by earlier results concerning asymptotics for the two-point function [23]
or the three-point function [18] of random quadrangulations. The preceding con-
vergence to the Brownian sphere has been extended to many classes of random
planar maps, always with the same limiting space, up to unimportant scaling fac-
tors on the distance: This is the universality property of the Brownian sphere,
which was already mentioned above.

The construction of the Brownian sphere, and the relevance of Brownian
motion indexed by the Brownian tree, are best understood from purely combi-
natorial considerations about planar maps. Perhaps surprisingly, various classes
of planar maps are in one-to-one correspondence with certain classes of discrete
trees whose vertices are assigned integer labels. A common feature of these bi-
jections is the fact that labels assigned to the vertices of the tree are closely
related to graph distances from a distinguished vertex in the associated planar
map. Therefore, a good understanding of the labeled tree associated with a ran-
dom planar map yields useful information about the metric properties of the
vertex set of the planar map equipped with the graph distance. In Sect. 4 be-
low, we present the simplest example of the bijections between planar maps and
labeled trees, in the case of quadrangulations.

It turns out that the tree associated with a large random planar map is close,
modulo a suitable rescaling, to the continuous random tree which we call the
Brownian tree (this is essentially the CRT introduced and studied by Aldous
[4], [5]). Furthermore, labels on the tree behave like Brownian motion indexed
by the Brownian tree when the size of the planar map goes to infinity. At least
informally, these observations explain the construction of the Brownian sphere
which is presented in Sect. 3: Following [2], we introduce the concept of a
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snake trajectory—this is a convenient framework for studying the Brownian
snake driven by a Brownian excursion [40], which is basically the same object as
Brownian motion indexed by the Brownian tree—and explain how to associate
a compact metric space with a snake trajectory. If the snake trajectory is chosen
at random according to the normalized Brownian snake excursion measure, the
associated compact metric space is the Brownian sphere, and the “labels” (the
values of the tree-indexed Brownian motion) are related to distances from a
distinguished point of the Brownian sphere.

The Brownian sphere is by no means the only interesting model in our Brow-
nian geometry. In Sect. 5, we briefly present the Brownian plane, which is an
infinite-volume version of the Brownian sphere and can be obtained as the scal-
ing limit of the infinite random lattices called the UIPT (for uniform infinite pla-
nar triangulation) and the UIPQ (for uniform infinite planar quadrangulation).
In Sect. 6, we introduce Brownian disks as scaling limits of planar maps with a
boundary, when the boundary size tends to infinity [14], [16]. In contrast with
the Brownian sphere, which is homeomorphic to the two-dimensional sphere,
Brownian disks are homeomorphic to the closed unit disk. We pay special at-
tention to the free Brownian disk, which has a fixed boundary size or perimeter
but a random volume.

Sect. 8 presents a construction of Brownian disks from a continuous random
tree equipped with Brownian labels, which is analogous to the construction of
the Brownian sphere, with the difference that the labels now correspond to dis-
tances from the boundary (this is in contrast with the previous constructions
of [14], [16], which also used labeled trees, but with a different interpretation
of labels). Our construction relies on an excursion theory for Brownian motion
indexed by the Brownian tree, which is developed in Sect. 7 and is of indepen-
dent interest. Roughly speaking, if T� denotes the Brownian tree and .Za/a2T�

denotes Brownian motion indexed by T� , we describe the distribution of “ex-
cursions” of Z away from 0, each excursion corresponding to the restriction of
Z to one connected component of fa 2 T� W Za 6D 0g. We obtain that these
excursions are independent conditionally given their “boundary sizes”, and dis-
tributed according to a certain excursion measure on snake trajectories.

The construction of Sect. 8 makes it possible to identify certain subsets of
the Brownian sphere as Brownian disks. In particular, Theorem 17 shows that
connected components of the complement of the ball of radius r centered at
the distinguished point in the Brownian sphere are independent Brownian disks,
conditionally on their boundary sizes and volumes. A similar result holds for
the free Brownian disk D: If r > 0 and H.x/ denotes the distance from a point
x 2 D to the boundary, connected components of the set fx 2 D W H.x/ > rg
are independent free Brownian disks conditionally on their boundary sizes. Fi-
nally, in Sect. 9, we present the very recent results of [50] studying the sequence
of boundary sizes of the connected components of fx 2 D W H.x/ > rg as a pro-
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cess parameterized by r . We show that this process is a growth-fragmentation
process whose distribution is completely determined. The latter result is very
closely related to the recent papers [12], [13] investigating scaling limits for a
similar process associated with triangulations with a boundary.

Even if it was not possible to provide detailed proofs in this survey, we have
tried to sketch the main ideas underlying several important results. We give a
detailed presentation of Schaeffer’s bijection between quadrangulations and la-
beled trees, and, at the end of Sect. 4, we explain informally why the construc-
tion of the Brownian sphere, which may appear rather involved at first glance,
is a continuous counterpart of this bijection. Similarly in Sect. 8, we empha-
size that the study of connected components of the complement of balls in the
Brownian sphere can be reduced to the study of excursions of Brownian motion
indexed by the Brownian tree.

Let us briefly mention several recent articles that are related to the present
work. The paper [26] discusses the Gromov–Hausdorff convergence of rescaled
planar maps when the graph distance is replaced by a “local modification”, and
shows that the scaling limit is still the Brownian sphere. The study of the UIPT
and the UIPQ has given rise to a number of interesting developments: See in par-
ticular [31] for a proof of the recurrence of simple random walk on these infinite
random lattices. Hyperbolic versions of the Brownian plane have been studied
by Budzinski [19]. The Brownian half-plane, which also appears as the scaling
limit of quadrangulations with a boundary when the volume and the boundary
size tend to infinity in a suitable way, is discussed in [34] and [9]—a presumably
equivalent construction had been given earlier by Caraceni and Curien [21]. The
paper [9] provides an exhaustive study of possible scaling limits of quadrangula-
tions with a boundary, leading to new models of Brownian geometry in addition
to the Brownian sphere, the Brownian plane or the Brownian disk. In a series of
recent papers, Miller and Sheffield [57]–[60] have developed a completely new
approach to the Brownian sphere, showing also that this random compact metric
space can be equipped with a conformal structure which is linked to Liouville
quantum gravity. An important step in this approach [57] was the derivation of
an axiomatic characterization of the Brownian sphere. The paper [57] uses a def-
inition of Brownian disks which is different from the one in [14] but which can
be shown to be consistent with the latter thanks to the results of [45]. Brownian
disks play an important role in the recent work [32], [34], [35] of Gwynne and
Miller motivated by the study of statistical physics models on random planar
maps. We also mention the paper [36] showing that certain discrete conformal
embeddings of random planar maps converge to their continuous counterparts.
Finally we refer to [48], [55] for pedagogical presentations of random planar
maps and the convergence to the Brownian sphere.
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2. Discrete and continuous models of random geometry

2.1. Planar maps

The basic discrete model of random geometry that we will consider is a random
planar map. Let us start with a precise definition.

Definition 1. A planar map is a proper embedding of a finite connected graph
in the two-dimensional sphere S2. Two planar maps are identified if they corre-
spond via an orientation-preserving homeomorphism of the sphere.

In this definition, “proper” means that edges are not allowed to cross. The
identification modulo homeomorphisms is interpreted by saying that we are only
interested in the shape of the embedding, and not in its precise details.

In the preceding definition, we should in fact have written “multigraph” in-
stead of graph, meaning that we allow self-loops and multiple edges. Many of
the results that follow are expected to hold, and sometimes have been proved,
also for simple planar maps where self-loops and multiple edges are forbidden,
but the technicalities become more difficult. See Fig. 1 for an example with a
self-loop and a double edge.

root
edge

root
vertex

root
face

Fig. 1. A rooted triangulation with 20 faces

Thanks to the fact that the graph is embedded, we can define the notion
of a face. Faces are the connected components of the complement of edges,
or equivalently the regions bounded by the edges. The degree of a face is the
number of half-edges incident to this face: Note that we say half-edges instead
of edges because if both sides of an edge are incident to the same face, this edge
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is counted twice in the degree (for instance the face inside the self-loop in Fig. 1
has degree 3 though there are only two edges in its boundary).

If p � 3 is an integer, a planar map is called a p-angulation if all its faces
have degree p, and we say triangulation when p D 3, quadrangulation when
p D 4. Fig. 1 shows a triangulation with 20 faces.

We will deal with rooted planar maps, meaning that we distinguish an ori-
ented edge, which is called the root edge. The origin of the root edge is called the
root vertex, and the face lying to the left of the root edge (this makes sense be-
cause the root edge is oriented) is called the root face. See again Fig. 1. Notice
that in order to identify two rooted planar maps via an orientation-preserving
homeomorphism we require that this homeomorphism preserves the root edge.
The reason for dealing with rooted maps comes from the fact that enumeration
questions, or bijections between maps and simpler objects such as trees, become
more tractable (rooting a map avoids problems related to the presence of sym-
metries). However, it is strongly believed that the results that follow hold as well
for planar maps that are not rooted.

Let p � 3 and n � 1 be integers. The set of all rooted p-angulations with
n faces will be denoted by M

p
n . It is easy to see that Mp

n is empty if p and n
are both odd integers. So when p is odd, in particular when p D 3, we will
implicitly restrict our attention to even values of n. Thanks to the identification
in Definition 1, the set Mp

n is finite, and so it makes sense to choose a rooted
p-angulation with n faces uniformly at random.

If M is a planar map, we will denote the vertex set of M by V.M/. We
equip V.M/ with the usual graph distance dM

gr : If v and v0 are two vertices of
M , dM

gr .v; v
0/ is the minimal number of edges on a path from v to v0. Our first

goal is to study the metric space .V .M/; dM
gr / when M is chosen uniformly at

random in M
p
n (for some fixed p) and when n is large. For this study, we will

need a notion of convergence of a sequence of compact metric spaces.

2.2. The Gromov–Hausdorff distance

Let us first recall that, if K1, K2 are two compact subsets of a metric space
.E; d/, the Hausdorff distance between K1 and K2 is defined by

dE
Haus.K1; K2/ D inff" > 0 W K1 � U".K2/ and K2 � U".K1/g;

where U".K1/ D fx 2 E W d.x;K1/ � "g is the "-enlargement of K1.

Definition 2 (Gromov–Hausdorff distance). Let .E1; d1/ and .E2; d2/ be two
compact metric spaces. The Gromov–Hausdorff distance between E1 and E2 is

dGH.E1; E2/ D inffdE
Haus. 1.E1/;  2.E2//g;
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where the infimum is over all isometric embeddings  1 W E1 ! E and  2 W
E2 ! E of E1 and E2 into the same metric space .E; d/.

Let K stand for the set of all compact metric spaces, where as usual two
compact metric spaces are identified if they are isometric. Then the Gromov–
Hausdorff distance dGH is a metric on K, and furthermore .K; dGH/ is complete
and separable. In other words, .K; dGH/ is a Polish space, which makes it espe-
cially suitable to study the convergence in distribution of random variables with
values in K.

One can prove [56] that a sequence .En/ of compact metric spaces converges
to a limiting space E1 in K if and only if all spaces En and the limit E1 can
be embedded isometrically in the same metric space E in such a way that the
convergence holds in the sense of the Hausdorff distance (see [30], Lemma 5.8
for the analogous result in the slightly different setting of the Gromov–Prohorov
convergence of metric measure spaces).

2.3. Convergence to the Brownian sphere

We will now discuss the convergence in distribution of .Mn; n
�1=4dMn

gr / when
Mn is chosen uniformly at random in M

p
n (for some fixed p). Note that we

rescale the graph distance dMn
gr by the factor n�1=4: The need for such a rescal-

ing is clear since one expects that the diameter of the graph blows up when the
number of faces grows to infinity. The reason why the correct rescaling factor
is n�1=4 is more mysterious and will be best understood from the bijections be-
tween planar maps and labeled trees that are described below (see the beginning
of Sect. 4.2).

The following theorem is proved in [43]. The particular case of quadrangu-
lations p D 4 was obtained independently by Miermont [54]. The case p D 3

solves a problem of Schramm [62].

Theorem 1 (The scaling limit of p-angulations). Suppose that either p D 3

(triangulations) or p � 4 is even. Set

c3 D 61=4; cp D
� 9

p.p � 2/
�1=4

if p is even.

For every integer n � 2 (n even if p D 3), let Mn be uniformly distributed over
M

p
n . Then,

.V .Mn/; cp n
�1=4 dMn

gr /
.d/�!

n!1 .m1; d1/

in the Gromov–Hausdorff sense. The limit .m1; d1/ is a random compact met-
ric space (that is, a random variable with values in K) that does not depend on
p and is called the Brownian sphere.
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In most of the previous work in this area, the Brownian sphere is called the
Brownian map after Marckert and Mokkadem [51] who obtained a weak form
of the theorem in the case of quadrangulations. The name “Brownian sphere”
however seems more appropriate in view of Theorem 3 below and of the related
objects called the Brownian disk and the Brownian plane that we shall discuss
later. We note that the role of the constants cp in the theorem is only to ensure
that the limit does not depend on p. It is expected that the result of the theorem
holds for all values of p � 3, but the case of odd values p � 5 seems more
difficult to handle for technical reasons.

The fact that the limit does not depend on p is a very important feature of
Theorem 1. Roughly speaking, it means that at large scales the metric properties
of a typical (large) planar map are the same if this planar map is a triangulation,
or a quadrangulation, or a p-angulation. This is the universality property of
the Brownian sphere, which has been confirmed in many subsequent works: In
particular, analogs of Theorem 1, always with the same limit .m1; d1/ hold for
general planar maps with a fixed number of edges [15], for bipartite planar maps
with a fixed number of edges [1], for simple triangulations or quadrangulations
(where self-loops and multiple edges are not allowed) [3], for planar maps with
a prescribed degree sequence [52], etc. We also mention that results similar to
Theorem 1 hold if the graph distance is replaced by a “local modification”: The
paper [26] considers the so-called first-passage percolation distance on random
triangulations (independent random weights are assigned to the edges and the
distance between two vertices is the minimal total weight of a path between
them). Perhaps surprisingly, this local modification does not change the scaling
limit, which is still the Brownian sphere up to a deterministic scale factor for
the distance.

As a general principle, the scaling limit of large random planar maps is ex-
pected to be the Brownian sphere whenever some bound is assumed on the de-
gree of faces. On the contrary, if one considers probability distributions on pla-
nar maps that favor the appearance of very large faces, different scaling limits
may occur (the so-called stable maps of [47]), but we will not discuss this case
here.

It is implicit in Theorem 1 that the limit .m1; d1/ is not the degenerate
space with a single point. We make this more explicit in the following two the-
orems that give some useful information about the Brownian sphere.

Theorem 2 ([41]). The Hausdorff dimension of .m1; d1/ is a.s. equal to 4.

Theorem 3 ([49]). The compact metric space .m1; d1/ is a.s. homeomorphic
to the 2-sphere S2.

Both these theorems can be deduced from the construction of the Brownian
sphere from Brownian motion indexed by the Brownian tree that will be given
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below. The proof of Theorem 2 is in fact relatively easy, but that of Theorem 3
is more intricate and relies in part on an old theorem of Moore giving conditions
for a quotient space of the sphere to be homeomorphic to the sphere.

Since planar maps are defined as graphs embedded in the sphere, and since
we take a limit where the number of vertices tends to infinity, it is maybe not
surprising that the limiting metric space has the topology of the sphere. Still,
Theorem 3 implies a non-trivial combinatorial fact about the non-existence of
small “bottlenecks” in a large planar map: Informally, for a random triangulation
with n faces, the probability that there exists a cycle with length o.n1=4/ such
that both sides of the cycle (meaning both components of its complement) have a
diameter greater than ın1=4, for some fixed ı > 0, will tend to 0 as n ! 1. The
question of the existence of small separating cycles in random planar maps has
been investigated recently in connection with isoperimetric inequalities [46].

3. The construction of the Brownian sphere

In this section, we present a construction of the limiting space .m1; d1/ of
Theorem 1. This construction relies on the notion of Brownian motion indexed
by the Brownian tree. We start by a brief presentation of the Brownian tree.

3.1. The Brownian tree

Recall that an R-tree is a metric space .T ; d/ such that, for every a; b 2 T
there is, up to reparameterization, a unique continuous injective path � from a

to b, and the range of � , which will be denoted by ŒŒa; b��, is isometric to the
line segment Œ0; d.a; b/�. An R-tree T is rooted if there is a distinguished point
� 2 T , which is called the root. This makes it possible to define a notion of
genealogy in the tree T : If a; b 2 T , we say that b is a descendant of a, or a is
an ancestor of b, if a 2 ŒŒ�; b��.

In the present work, we will consider only compact R-trees, and we will use
the fact that such trees can be coded by continuous functions. Let h W RC ! RC
be a nonnegative continuous function on RC such that h.0/ D 0. We assume
that h has compact support, so that

�h WD supft � 0 W h.t/ > 0g < 1:

Here and later we make the convention that sup∅ D 0.
For every s; t 2 RC, we set

dh.s; t/ WD h.s/C h.t/ � 2 min
s^t�r�s_t

h.r/:
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We note that dh is a pseudo-metric on RC, and thus we may introduce the as-
sociated equivalence relation on RC, defined by setting s �h t if and only if
dh.s; t/ D 0, or equivalently

h.s/ D h.t/ D min
s^t�r�s_t

h.r/:

Then, dh induces a distance on the quotient space RC=�h.

Lemma 4 ([29]). The quotient space Th WD RC=�h equipped with the distance
dh is a compact R-tree.

The R-tree .Th; dh/ will be called the tree coded by h. The canonical pro-
jection from RC onto Th is denoted by ph. By definition, Th is rooted at
� D ph.0/. In addition, it is often convenient to equip Th with a volume mea-
sure, which is defined as the push forward of Lebesgue measure on Œ0; �h� under
ph.

Remark. It is not hard to verify that any compact R-tree can be represented as
Th for some (not unique) function h, but we will not need this fact.

The coding by a function makes it possible to define “lexicographical” in-
tervals on the tree. Let us explain this. If s; t � 0 and s > t , we make the
convention that Œs; t � D Œs;1/ [ Œ0; t � (of course, if s � t , Œs; t � is the usual in-
terval). If a; b 2 T with a ¤ b, there is a smallest “interval” Œs; t � with s; t � 0

(but not necessarily s � t ) such that ph.s/ D a and ph.b/ D t , and we then set
Œa; b� D ph.Œs; t �/. Note that Œa; b� is typically different from Œb; a�. Intuitively,
Œa; b� is the set of all points of Th that are visited when going from a to b around
the tree in “clockwise order”. We note that Œa; b� [ Œb; a� is not the whole tree,
unless a and b are both leaves (vertices whose removal does not disconnect the
tree).

Let us now randomize h. We let n.dh/ stand for Itô’s excursion measure of
positive excursions of linear Brownian motion (see e.g. [61], Chap. XII) nor-
malized so that, for every " > 0,

n.max
s�0

h.s/ > "/ D 1

2"
:

Under n.dh/, we will write � D �h for the duration of the excursion h. It
will also be convenient to introduce the conditional probability measure n.s/ WD
n.�j� D s/, for every s > 0. In particular n.1/ is the law of the normalized
excursion, and we have

n D
Z 1

0

n.s/

ds

2
p
2�s3

:

Definition 3. The Brownian tree is the tree Th coded by h under n.dh/.
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It is important to realize that n is an infinite measure. We can also consider
the tree Th under the probability measure n.1/.dh/, and this random tree is Al-
dous’ continuum random tree, also called the CRT (our normalization is slightly
different from the one in [4], [5]). However, it is often more convenient to argue
under the infinite measure n.

3.2. Snake trajectories

We now propose to discuss Brownian motion indexed by the Brownian tree of
Definition 3. The fact that we are interested in a random process indexed by
a random set creates some technical difficulties, which we will avoid here by
introducing the concept of a snake trajectory.

A finite real path is a continuous mapping w W Œ0; �.w/� ! R, where the
number �.w/ � 0 is called the lifetime of w. We let W denote the space of all
finite paths in R. The set W is a Polish space when equipped with the distance

dW .w;w0/ D j�.w/ � �.w0/j C sup
t�0

jw.t ^ �.w// � w0.t ^ �.w0//j:

The endpoint or tip of the path w is denoted by bw D w.�.w//. For every x 2 R,
we set Wx D fw 2 W W w.0/ D xg. The trivial element of Wx with zero
lifetime is identified with the point x—in this way we view R as the subset of
W consisting of all finite paths with zero lifetime.

Definition 4. Let x 2 R. A snake trajectory with initial point x is a continuous
mapping

! W RC �! Wx

s 7�! !s

which satisfies the following two properties:

(i) We have !0 D x and the number �.!/ WD supfs � 0 W !s 6D xg, called
the duration of the snake trajectory !, is finite.

(ii) For every 0 � s � s0, we have

!s.t/ D !s0.t/; for every 0 � t � min
s�r�s0

�.!r /:

Property (i) implies in particular that the function s 7! �.!s/ has compact
support.

Important Remark. A snake trajectory ! is completely determined by the knowl-
edge of the lifetime function s 7! �.!s/ and the tip function s 7! b!s D
!s.�.!s//. Indeed, for any s � 0 and r 2 Œ0; �.!s/�, if �s.r/ D inffu � s W
�.!u/ D rg, property (ii) implies that !s.r/ D b!�s.r/.
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We write Sx for the set of all snake trajectories with initial point x, and

S WD
[
x2R

Sx

for the set of all snake trajectories.
Let ! 2 S . Then the real function s 7! �.!s/ satisfies the conditions re-

quired to define the tree coded by this function (cf. Sect. 3.1) and we will write
T� for this tree, and p� for the canonical projection from RC onto T� . We
sometimes say that T� is the genealogical tree of the snake trajectory !. Prop-
erty (ii) in Definition 4 implies that !s D !s0 whenever p� .s/ D p� .s

0/. In
other words, !s only depends on the equivalence class of s in the quotient space
T� , and the mapping s 7! !s induces a function defined on the genealogical
tree T� . We should think of the collection .!s/s�0 as forming a “tree of paths”
whose genealogy is prescribed by T� (see the left side of Fig. 6 below for an
illustration).

Notation In what follows, we will consider snake trajectories ! that may be de-
terministic or chosen according to a measure on S , and we will use the notation
Ws D Ws.!/ D !s , and �s D �s.!/ D �.!s/.

3.3. Constructing a compact metric space from a snake trajectory

The Brownian sphere of Theorem 1 is constructed from a random snake tra-
jectory distributed according to a certain probability measure. To explain this
construction, it is best to consider first the case of a deterministic snake trajec-
tory !.

So we fix ! 2 S0 and we recall that T� is the tree coded by .�s/s�0 (we
use the notation explained at the end of Sect. 3.2). If a 2 T� , we set Za D bWs

if s is such that p� .s/ D a and we also say that Ws is the historical path of a
(by preceding observations, this does not depend on the choice of s such that
p� .s/ D a). We view .Za/a2T�

as a collection of labels assigned to the points
of T� . Note that the function a 7! Za is continuous on T� .

We will now associate a metric space with the space trajectory !, and roughly
speaking this metric space will be obtained from the genealogical tree T� by
gluing together certain pairs of points. Let us turn to a precise definition. For
every a; b 2 T� , we set

Dı.a; b/ D Za CZb � 2max. min
c2Œa;b�

Zc ; min
c2Œb;a�

Zc/; (1)

where we recall that Œa; b� stands for the lexicographical interval from a to b in
T� . We note that Dı.a; b/ D 0 if and only if

Za D Zb D max. min
c2Œa;b�

Zc ; min
c2Œb;a�

Zc/; (2)
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which informally means that a and b have the same label and that we can go
from a to b around the tree (clockwise or counterclockwise) visiting only points
whose label is at least as large as the label of a and b. We then letD.a; b/ be the
largest symmetric function of the pair .a; b/ that is bounded above by Dı.a; b/
and satisfies the triangle inequality: For every a; b 2 T� ,

D.a; b/ D inf
n kX

iD1

Dı.ai�1; ai /
o
; (3)

where the infimum is over all choices of the integer k � 1 and of the elements
a0; a1; : : : ; ak of T� such that a0 D a and ak D b. We note that

D.a; b/ � jZa �Zbj (4)

as an immediate consequence of the similar bound for Dı.
We now observe that D is a pseudo-metric on T� , and we let M be the as-

sociated quotient space, which is the quotient of T� for the equivalence relation
a � b if and only if D.a; b/ D 0. We equip M with the distance induced by
D, for which we keep the same notation. We note that .M ;D/ is a compact
metric space, and we let … denote the canonical projection from T� onto M .
By abuse of notation, for every x 2 M , we write Zx D Za if x D ….a/ (by
(4) this does not depend on the choice of a such that x D ….a/). So labels can
also be viewed as defined on the quotient space M . Later it will be convenient
to have a volume measure v.dx/ on M , which is defined as the push forward of
the volume measure on T� under ….

The preceding construction obviously depends on the choice of !, which
was fixed in the beginning of this section. We claim that it does so in a measur-
able way.

Lemma 5. The mapping ! 7! .M ;D/ defined above, with values in the space
.K; dGH /, is measurable.

We refer to [45], Lemma 6 for the proof of a more precise statement.
Let us mention some properties of D that will play a role later. Let a� be

any point of T� such that
Za�

D inf
a2T�

Za:

The existence of such a point follows from a compactness argument (notice that
a� may not be unique, but it will follow from (5) below that ….a�/ is uniquely
determined). Then we have, for every a 2 T� ,

D.a�; a/ D Za �Za�
:
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The lower boundD.a�; a/ � Za �Za�
is immediate from (4). The correspond-

ing upper bound is also trivial since it is clear that Dı.a�; a/ D Za � Za�
. So

setting Z� D Za�
and x� D ….a�/, we get that, for every x 2 M ,

D.x�; x/ D Zx �Z�: (5)

We interpret this by saying that M has a distinguished point x� such that labels
exactly correspond to distances from x�, up to the shift by Z�.

3.4. Measures on snake trajectories

We start with a key lemma.

Lemma 6. Let h W RC ! RC be a continuous function with compact support
such that h.0/ D 0. Assume that h is Hölder continuous, meaning that there
exist positive constants ı 2 .0; 1� and C such that jh.s/ � h.s0/j � C js � s0jı
for every s; s0 � 0. Then there exists a random snake trajectoryW h D .W h

s /s�0

with initial point 0 such that:

(i) �.W h
s / D h.s/, for every s � 0, a.s.

(ii) The process .bW h
s /s�0 is a centered Gaussian process with covariance

cov.bW h
s ;

bW h
s0 / D min

s^s0�r�s_s0

h.r/:

The process .W h
s /s�0 is called the Brownian snake driven by the function h.

We note that the distribution of W h is completely determined by properties
(i) and (ii), thanks to the remark following Definition 4. The intuition underlying
the preceding definition is as follows: For every s � 0, W h

s is a Brownian
path with lifetime h.s/, when h.s/ decreases the path W h

s is erased from its tip
and when h.s/ increases the path W h

s is extended by adding “little pieces of
Brownian paths” at its tip.

The proof of Lemma 6 is straightforward: See [47], Sect. 4.2 for a detailed
argument. Note that the Hölder continuity assumption of h is used to warrant
the existence of a continuous modification of a process satisfying properties (i)
and (ii) of Lemma 6.

As a consequence of (ii), we have W h
0 D 0 and

EŒ.bW h
s � bW h

s0 /
2� D dh.s; s

0/;

where the pseudo-metric dh was defined in Sect. 3.1. Since we already noted
that the snake trajectory W h can be viewed as indexed by the tree Th, the last
display justifies the fact that bW h is interpreted as Brownian motion indexed by
Th. In fact, if ' W Œ0; u� ! Th is an isometry mapping the interval Œ0; u� onto a
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line segment of Th, we immediately see that .bW h
'.r/

� bW h
'.0/

/0�r�u is a linear
Brownian motion.

If h satisfies the properties in Lemma 6, we let Ph stand for the distribution
of W h, which is thus a probability measure on the space S0. We now intro-
duce Brownian snake excursion measures, which will play a major role in what
follows.

Definition 5. The Brownian snake excursion measure N0 is the � -finite measure
on S0 defined by

N0.d!/ D
Z

n.dh/Ph.d!/:

Similarly, the normalized Brownian snake excursion measure is the probability
measure on S0 defined by

N
.1/
0 .d!/ D

Z
n.1/.dh/Ph.d!/:

In other words, to construct a random snake trajectory distributed according
to N0 (resp. according to N

.1/
0 ) we just pick a Brownian excursion h distributed

according to n (resp. a normalized Brownian excursion) and consider the Brow-
nian snake driven by h. This makes sense because we know that h is Hölder
continuous, n.dh/ or n.1/.dh/ a.e.

Lemma 5 now allows us to set the following definition.

Definition 6. The Brownian sphere is the random compact metric space .M ;D/

obtained via the construction of Sect. 3.3 from a snake trajectory ! distributed
according to N

.1/
0 .

One can prove [41] that N.1/
0 a.s., for every a; b 2 T� the propertyD.a; b/ D

0 holds if and only if Dı.a; b/ D 0 (the fact that Dı.a; b/ D 0 implies
D.a; b/ D 0 is obvious since D � Dı). So the construction of the Brownian
sphere can be summarized by saying that we start from the CRT T� equipped
with “Brownian labels” .Za/a2T�

, and we identify points a and b of the CRT if
and only if Dı.a; b/ D 0, which has a simple interpretation as explained above
after (2) (furthermore the metric D is the largest metric bounded above byDı).

It is often useful to consider also the free Brownian sphere, which is just the
metric space .M ;D/ under the measure N0. Many properties of the free Brow-
nian sphere are “nicer” than those of the “standard Brownian sphere” because
there is no constraint on the total volume, but the price to pay is to work under
a � -finite measure.
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4. Discrete bijections with trees

4.1. Schaeffer’s bijection

In this section, we explain a bijection between quadrangulations and (discrete)
labeled trees, which can be found in [23] and is in some sense a discrete analog
of the construction of the Brownian sphere that was given in the previous sec-
tion. In fact this discrete bijection (and its generalizations) plays a major role in
the proof of Theorem 1, and helps in the understanding of the definition of the
Brownian sphere and of the metric D. We restrict our attention to the case of
quadrangulations because the description is simpler in that case, but we imme-
diately mention that similar bijections exist for more general planar maps (see
in particular [17]).

We first need to introduce the class of discrete trees that will be relevant.
First recall that a plane tree 	 is a (finite) rooted ordered tree. A plane tree
can be specified by representing each vertex as a finite word made of positive
integers, in such a way that the empty word ∅ corresponds to the root, and for
instance the word 21 corresponds to the first child of the second child of the
root. This should be clear from the left side of Fig. 2 (ignore for the moment the
circled figures). To make the connection with planar maps, we will assume that
plane trees are drawn in the plane (or rather on the sphere) in the way illustrated
in the left side of Fig. 2, so that in particular the edges connecting a vertex to
its parent, its first child, its second child, etc., appear in clockwise order around
that vertex.
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Fig. 2. Schaeffer’s bijection. Left: a labeled tree with 8 edges. Middle: the sequence c0; c1; : : : ;

c15 of corners enumerated in cyclic order. Right: the edges of the associated quadrangulations
with 8 faces (case " D �1)
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A labeled tree is a plane tree 	 , with vertex set V.	/, whose vertices are as-
signed integer labels .`v/v2V.�/ in such a way that the following two properties
hold:

(i) `∅ D 0;
(ii) j`v � `v0 j � 1 whenever v; v0 2 V.	/ are adjacent.

The circled figures in the left side of Fig. 2 show a possible assignment of labels.
For every n � 2, let Tn stand for the set of all labeled trees with n edges.

A rooted and pointed quadrangulation is a rooted quadrangulation given with
a distinguished vertex (which can be any vertex, including the root vertex). For
every n � 2, let M4;�

n stand for the set of all rooted and pointed quadrangula-
tions.

We then claim that there is a one-to-one correspondence between the sets
M

4;�
n and Tn 	 f�1; 1g (this correspondence is called Schaeffer’s bijection). To

explain this correspondence, let us start from a labeled tree .	; .`v/v2V.�// in
Tn and a sign " 2 f�1;C1g. We need to consider corners of the tree 	 : A corner
incident to a vertex v of 	 is an angular sector between two successive edges
incident to v (for instance, in the tree of the left side of Fig. 2, the root ∅ has
2 corners, the vertex 21 has 3 corners, and the vertex 221 has only one corner).
By convention, the root corner c0 is the corner “below” the root vertex. The set
of all corners is given a cyclic ordering by moving clockwise around the tree:
starting from the root corner c0, the 2n corners can be listed as c0; c1; : : : ; c2n�1

in cyclic ordering (see the middle part of Fig. 2). We agree that every corner
inherits the label of the vertex to which it is incident.

With the labeled tree .	; .`v/v2V.�//, we associate a quadrangulation M by
the following procedure. First, the vertex set of M is the union of the vertex set
of 	 and an extra vertex v�, which by convention is assigned the label

`v�
D min

v2V.�/
`v � 1:

Then, in order to obtain the edges of the quadrangulation M , we proceed in the
following way. For every corner c of 	 , with label `c , we draw an edge starting
from this corner and ending at the next corner of 	 (in the cyclic ordering) with
label .`c � 1/—this corner will be called the successor of c. This makes sense
unless `c is equal to the minimal label on the tree 	 , in which case we draw an
edge starting from c and ending at v�. All these edges can be drawn, in a unique
manner (up to homeomorphisms), in such a way that they do not cross and do
not cross the edges of 	 , and the resulting planar map is a quadrangulation (see
Fig. 2 for an example where, for instance, there are edges of M connecting c0

to c1, c1 to v�, c2 to c5, c3 to c4, etc.).
We still have to define the root of the quadrangulation and its distinguished

vertex. The root edge is the edge starting from c0 and ending at the successor of
c0, and its orientation is determined by the sign ": The root vertex is ∅ if and
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only if " D C1. Finally the distinguished vertex ofM is v�, and we have indeed
obtained a rooted and pointed quadrangulation.

Proposition 7. The preceding construction yields a bijection from Tn 	 f�1; 1g
onto M

n;�
4 . Moreover, if the rooted and pointed quadrangulation M is the im-

age of the pair ..	; .`v/v2V.�//; "/ under this bijection, the vertex set V.M/ is
canonically identified with V.	/ [ fv�g, where v� is the distinguished vertex of
M , and with this identification we have, for every v 2 V.	/,

dM
gr .v�; v/ D `v � min

u2V.�/
`u C 1: (6)

Let us explain why property (6) holds. Let v be a vertex of M distinct from
v�, so that v is identified to a vertex of 	 . Choose any corner c incident to v in
the tree 	 . The construction of edges in Schaeffer’s bijection shows that there
is an edge connecting c to a corner c0 of a vertex v0 with label .`v � 1/. But
similarly, there is an edge of M connecting the corner c0 of v0 to a corner of a
vertex with label .`v � 2/. We can continue inductively, and we get a path in
M of length .`v � minu2V.�/ `u/ connecting v to a vertex with minimal label,
which itself (by the rules of Schaeffer’s bijection) is adjacent to v� inM . In this
way we get the upper bound

dM
gr .v�; v/ � `v � min

u2V.�/
`u C 1:

The corresponding lower bound is also very easy, using the fact that j`v �`v0 j D
1 whenever v and v0 are adjacent inM , again by the construction of Schaeffer’s
bijection.

Property (6) is useful when studying the metric properties of M (in view of
proving the case p D 4 of Theorem 1). However, (6) only gives information
about distances from the distinguished vertex v�, which is far from sufficient
if one is interested in the Gromov–Hausdorff convergence. If v and v0 are two
arbitrary vertices of M , there is however a very useful upper bound for the
graph distance dM

gr .v; v
0/. To state this bound, recall that c0; c1; : : : ; c2n�1 is the

sequence of corners of the tree 	 associated withM , listed in the cyclic ordering
that was already used in Schaeffer’s bijection. For every i 2 f0; 1; : : : ; 2n � 1g,
let vi be the vertex corresponding to the corner ci . Then, if 0 � i < j � 2n�1,
we have

dM
gr .vi ; vj / � `vi

C `vj
� 2max. min

k2Œi;j �
`vk
; min

k2Œj;2n�1�[Œ0;i�
`vk
/C 2: (7)

The proof of this bound is easy. Consider the geodesic path � from the corner ci

to v� constructed as in the proof of (6), and the similar geodesic path from the
corner cj . A simple argument shows that these two geodesic paths coalesce at a
vertex whose label is the maximum appearing in (7) minus 1. The concatenation
of these two geodesic paths up to their coalescence time thus gives a path from
vi to vj whose length is the right-hand side of (7).
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4.2. Ideas of the proof of Theorem 1

Schaeffer’s bijection allows us to sketch the main ideas of the proof of Theorem
1 in the case of quadrangulations. We start from a uniformly distributed rooted
and pointed quadrangulationMn with n faces (the fact that we consider a rooted
and pointed quadrangulation rather than a rooted quadrangulation as in Theorem
1 is unimportant since by “forgetting” the distinguished vertex of Mn we get
a uniformly distributed rooted quadrangulation), and we let .	n; .`

n
v/v2V.�n//

be the associated labeled tree. We note that 	n is uniformly distributed over
the set of all plane trees with n edges, because for every such tree there is the
same number 3n of possible assignments of labels. It is well known that the
height of the tree 	n is of order

p
n when n is large, and, from the central limit

theorem, one may guess that the maximal and the minimal label in 	n are of
order

pp
n D n1=4 (just note that conditionally given 	n, the increments of

labels along the different edges of 	n are independent and uniformly distributed
over f�1; 0; 1g). Recalling (6), we see that the diameter of Mn must be of order
n1=4, which explains the rescaling in Theorem 1.

Then, a well-known result of Aldous shows that the tree 	n viewed as a
metric space for the graph distance rescaled by the factor 1=

p
2n converges in

distribution to the CRT—with our particular normalization of the CRT. This con-
vergence can be stated in a more precise form using the so-called “contour func-
tions” which keep track of the lexicographical order on the trees. Furthermore,
using the fact that the variance of the uniform distribution on f�1; 0; 1g is 2=3,
one gets that the labels rescaled by .2=3/�1=2.2n/�1=4 converge to Brownian
motion indexed by the CRT (we do not make the meaning of this convergence
precise here). This suggests that the scaling limit of Mn can be described in
terms of the CRT equipped with Brownian labels. However, in contrast with the
discrete picture, we need to perform some identification of vertices of the CRT.
Let us explain this. Writing again c0; : : : ; c2n�1 for the sequence of corners of
the tree 	n, we note that for i < j , the corner ci is connected to the corner cj
by an edge of Mn as soon as

`cj
D `ci

� 1 and `ck
� `ci

for every k 2 fi; i C 1; : : : ; j � 1g:
The point is now that, even for large values of n, this property will hold for
certain pairs .i; j / such that .j � i/ is of order n. Because of the rescaling of the
graph distance by n�1=4, which informally implies that two adjacent vertices
are identified in the scaling limit, this means that certain pairs of distinct points
of the CRT must be glued together.

Finally, a tightness argument relying on the bound (7) can be used to verify
that sequential limits of .V .Mn/; n

�1=4dMn
gr / exist in the Gromov–Hausdorff

sense, and are represented as quotient spaces of the CRT (equipped with Brow-
nian labels) for a certain pseudo-metric D. The discrete bound (7) implies that
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the pseudo-metric D satisfies D � Dı, where Dı is defined in (1). It immedi-
ately follows that D must be bounded above by the right-hand side of (3). The
remaining part of the argument, which unfortunately is much harder, is to verify
that (3) indeed holds.

5. Infinite-volume models and the Brownian plane

The random planar maps discussed in the preceding sections are finite (random)
graphs embedded in the sphere. It turns out that one can also define infinite
random lattices that are limits in a certain sense of uniformly distributed trian-
gulations or quadrangulations with a fixed number of faces (one could consider
more general planar maps, see in particular [63]). A pioneering work of An-
gel and Schramm [8], which (together with the companion paper [7] and the
Chassaing–Schaeffer paper [23]) motivated much of the subsequent research
about random planar maps, introduced the so-called uniform infinite planar tri-
angulation or UIPT as the local limit of uniformly distributed triangulations
with a fixed number of faces—in fact, Angel and Schramm considered “type
II triangulations” where self-loops are not allowed, but the analogous construc-
tion for general triangulations can be found in [63]. Let us present the ana-
log of the Angel–Schramm construction for quadrangulations, which is due to
Krikun [39].

If M is a rooted planar map with root vertex �, and r � 1 is an integer, the
ball of radius r in M , which is denoted by Br.M/, is the rooted planar map
obtained by keeping only those faces of M that are incident to a vertex whose
graph distance from � is at most .r �1/. See Fig. 3 for an illustration in the case
of a quadrangulation. This definition of balls can be extended to infinite (rooted)
planar lattices, meaning infinite (rooted) connected graphs properly embedded
in the plane.

For every n � 1, let Qn be uniformly distributed over the set M4
n of all

rooted quadrangulations with n faces. Then one proves [39] that there exists an
infinite random rooted planar lattice Q1 such that, for every integer r � 1 and
for every rooted planar map M , we have

P.Br.Qn/ D M/ �!
n!1 P.Br.Q1/ D M/:

The infinite random lattice Q1 is called the uniform infinite planar quadran-
gulation or UIPQ. It is the local limit of Qn as n ! 1, meaning that the
distribution of what one sees in Qn in a fixed neighborhood of the root vertex
“stabilizes” when n ! 1 to the distribution of the corresponding neighborhood
of the root vertex in Q1. We emphasize that this convergence is very different
from the convergence in Theorem 1 (which also dealt with uniformly distributed
quadrangulations): Here there is no rescaling of the graph distance, and the limit
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ρ

Fig. 3. A large quadrangulation Q near its root vertex � and in grey the ball B2.Q/

is an infinite random lattice instead of a random compact metric space. Both the
Krikun paper [39] and the Angel–Schramm work [8] for triangulations relied
on enumeration techniques, but a different approach to the UIPQ based on bi-
jections with labeled trees was proposed by Chassaing and Durhuus [22] (the
equivalence between this approach and Krikun’s one was later established by
Ménard [53]). A simple construction of the UIPQ, relying on the version of
Schaeffer’s bijection presented in Sect. 4.1, can be found in [27].

The UIPQ is an infinite-volume limit of finite quadrangulations. In the same
way, one may ask about the existence of an infinite-volume version of the Brow-
nian sphere. This is the Brownian plane, which was constructed in the joint pa-
per [24] with Nicolas Curien, and appears in the following theorem as a scaling
limit for the UIPQ. Before stating this theorem, recall that a metric space is
called boundedly compact if every closed bounded set is compact. Write dQ1

gr

for the graph distance on the vertex set V.Q1/, and view .V .Q1/; dQ1

gr / as a
pointed metric space, where the distinguished point is the root vertex.

Theorem 8 ([24]). There exists a random boundedly compact pointed metric
space .P;D1/ such that

.V .Q1/; 
 dQ1

gr /
.d/�!

�!0
.P;D1/;
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where the convergence holds in distribution in the local Gromov–Hausdorff
sense.

The local Gromov–Hausdorff convergence (in distribution) means that, for
every real r > 0, the closed ball of radius r centered at the distinguished point
of V.Q1/ converges (in distribution) to the same ball centered at the distin-
guished point in the limiting space P , in the sense of the Gromov–Hausdorff
distance for compact spaces. Just like the Brownian sphere, the Brownian plane
is believed to be a universal object, and in fact a version of the preceding the-
orem for the UIPT has been proved by Budzinski [19] with the same limiting
space.

We refer to [24] for the construction of the Brownian plane, which is a con-
tinuous analog of the construction of the UIPQ in [27] (a slightly different ap-
proach to the Brownian plane is given in [25]). The construction of [24] is very
similar to the construction of the Brownian sphere in Sect. 3. The key ingredi-
ent is now Brownian motion indexed by the infinite Brownian tree, which can
be understood as the Brownian tree conditioned on non-extinction.

One may obtain the Brownian plane as a limiting object in a variety of dif-
ferent ways. For instance, starting from the Brownian sphere .m1; d1/ of The-
orem 1 and viewing m1 as a pointed space with distinguished point x� (cf. the
end of Sect. 3.3), one checks that .P;D1/ is the limit of .m1; 
 d1/ when

 ! 1, in the local Gromov–Hausdorff sense. In the terminology of [20],
one may say that the Brownian plane is the tangent cone (in distribution) of
the Brownian sphere at x�. Alternatively one can start from the uniformly dis-
tributed quadrangulation Qn and scale the distance by a factor "n tending to 0
less fast than n�1=4. Fig. 4 gives a diagram taken from [24] that summarizes
these convergences in distribution, together with those of Theorems 1 and 8.

Quadrangulations
Uniform

planar quadrangulation)
UIPQ (Uniform infinite

Brownian sphere

Brownian plane

.Qn; dQn
gr /

scaling n 1=4

local scaling "n n 1=4

.m1; d1/

local
!1

.Q1; dQ1

gr /
local !0

.P; D1/

�

�

Fig. 4. Convergence to the Brownian plane

In a way similar to Theorem 3, the Brownian plane is homeomorphic to the
usual plane. On the other hand, the Brownian plane shares the same local prop-
erties as the Brownian sphere (in fact in a strong sense, since one can couple the
Brownian plane and the Brownian sphere so that the respective balls of suffi-
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ciently small radius centered at the distinguished point are isometric, see [24]).
In particular, the Hausdorff dimension of the Brownian plane is also equal to
4. Furthermore, the Brownian plane enjoys an additional property of scaling
invariance: For every 
 > 0, the space .P; 
D1/ has the same distribution
as .P;D1/. This makes certain calculations more tractable in the Brownian
plane than in the Brownian sphere: See [25] for several remarkable distributions
related to the Brownian plane.

6. Planar maps with a boundary and Brownian disks

In this section we introduce Brownian disks as scaling limits of quadrangula-
tions with a boundary. Brownian disks are models of random geometry which
unlike the Brownian sphere are homeomorphic to the closed disk. Nonetheless,
Brownian disks are very closely related to the Brownian sphere, and, as we will
discuss later, various subsets of the Brownian sphere can be identified as Brow-
nian disks.

Let us start with a basic definition. Recall that the root face of a rooted planar
map is the face lying to the left of the root edge.

Definition 7. A quadrangulation with a (general) boundary is a rooted planar
map Q such that all faces but the root face have degree 4. The root face is also
called the outer face and the other faces are called inner faces. The degree of the
outer face, which is an even integer, is called the boundary size or the perimeter
of Q.

See Fig. 5 for an example. One could also consider p-angulations with a
boundary (in particular triangulations with a boundary) but for the sake of sim-
plicity we restrict our attention to quadrangulations.

For every integer k � 1, we denote the set of all pointed quadrangulations
with a boundary of size 2k by Q@;k . For every integer n � 0, the subset of Q@;k

consisting of those quadrangulations Q that have n inner faces is denoted by
Q

@;k
n . Then, for every k � 1, there is a constant bk > 0 such that

#Q@;k
n �

n!1 bk 12
n n�5=2:

See formula (4) in [28].
A random variable Bk with values in Q@;k is called a Boltzmann quadrangu-

lation with a boundary of size 2k if, for every integer n � 0 and everyQ 2 Q
@;k
n ,

P.Bk D Q/ D ebk 12
�n;

where ebk > 0 is the appropriate normalizing constant.
The following result, which is analogous to Theorem 1, is a special case

of [16], Theorem 8.
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Fig. 5. A quadrangulation with a boundary of size 14

Theorem 9. For every integer k � 1, let Bk be a Boltzmann quadrangulation
with a boundary of size 2k. Then,

.V .Bk/;
p
3=2 k�1=2 dBk

gr /
.d/�!

k!1
.D;D@/;

where the convergence holds in distribution for the Gromov–Hausdorff topol-
ogy. The limiting random compact metric space .D;D@/ is called the free Brow-
nian disk with perimeter 1.

The factor
p
3=2 in the convergence of the theorem is present only to allow

a simpler description of the limit in the next section.
In contrast with Theorem 1, we notice that the number of faces of Bk is

not fixed, but only its perimeter. One can verify that the number of faces of Bk

is typically of order k2, and so the scaling factor k�1=2 in Theorem 9 corre-
sponds to the factor n�1=4 in Theorem 1. One can prove versions of Theorem
9 for quadrangulations where both the boundary size and the volume (number
of faces) are fixed and grow to infinity simultaneously in such a way that the
volume stays proportional to the square of the boundary size: This leads to the
definition of Brownian disks with given perimeter and volume. See [9] for a
discussion of all possible scaling limits of quadrangulations with a boundary,
and [33] for an analog of Theorem 9 in the case of quadrangulations with a
simple boundary.

For every a > 0, the free Brownian disk with perimeter a may be defined as
the random metric space .D;

p
aD@/.

One proves [14] that the Brownian disk is homeomorphic to the closed unit
disk, and this makes it possible to define the boundary @D as the set of all points
in D that have no neighborhood homeomorphic to the open unit disk.



160 J.-F. Le Gall

7. Excursion theory for Brownian motion indexed by the Brownian tree

In this section, which is mostly taken from the joint paper [2] with Céline Abra-
ham, we discuss an excursion theory for Brownian motion indexed by the Brow-
nian tree. An important motivation is to derive a construction of Brownian disks
which is analogous to the construction of the Brownian sphere explained in Sect.
3. However, we believe that this excursion theory is interesting in its own and
should have many other applications. There is of course a strong analogy with
the classical Itô theory [37] but also important differences due to the fact that
the parameter set is a tree, and so connected components of the complement of
the zero set of Brownian motion are R-trees instead of intervals, as appear in
the classical setting.

Recall from Definition 5 the � -finite measure N0.d!/ on the space of snake
trajectories with initial point 0, and the notation Ws.!/ D !s , �s.!/ D �.!s/

for s � 0, and �.!/ D supfs � 0 W �s 6D 0g. The “Brownian tree” T� is the tree
coded by the function .�s/s�0 as explained in Sect. 3.1, and we use the notation
Za D bWs if a D p� .s/, where we recall that bWs denotes the tip of the finite path
Ws , and p� stands for the canonical projection from RC onto T� . The collection
.Za/a2T�

is thus our Brownian motion indexed by the Brownian tree.
In a way very similar to classical excursion theory, our aim is to describe the

process Z restricted to a connected component of fb 2 T� W Zb 6D 0g. To this
end we first introduce the notion of an excursion debut. We say that a 2 T� is
an excursion debut if

(i) Za D 0;
(ii) a has a strict descendant a0 such that Zb 6D 0 for every b 2��a; a0��.

In (ii), we use the obvious notation ��a; a0�� D ŒŒa; a0��nfag. We then observe that
connected components of fb 2 T� W Zb 6D 0g are in one-to-one correspondence
with excursion debuts: The connected component Ca associated with an excur-
sion debut a is just the set of all strict descendants a0 of a such that the property
Zb 6D 0 for every b 2��a; a0�� holds.

We will now explain how the values of Z on a given connected component
can be represented by a snake trajectory. In what follows, we fix an excursion
debut a but note that the discussion applies to every excursion debut, almost
surely. The fact that a has strict descendants implies that there are exactly two
times u < v such that p� .u/ D p� .v/ D a (there could be three such times
if a were a branching point of T� , but this case is excluded because branching
points have nonzero labels, almost surely). Recall that Wu D Wv is called the
historical path of a. We note that the descendants of a are exactly the points
p� .s/ for s 2 Œu; v�. We can then define a snake trajectory QW .a/ D . QW .a/

s /s�0

in S0, which describes the labels of descendants of a, by setting for every s � 0,

QW .a/
s .t/ WD W.uCs/^v.�u C t/ ; for 0 � t � Q�.a/

s WD �.uCs/^v � �u:
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0

excursion

excursion

excursion

excursion

�

d� .�;a/

C4

C2

C3

C1

Za T�

C4

C3

C1

Fig. 6. A schematic representation of excursions. The right side shows the tree T� , and the parts
of the tree inside the dotted lines are a few connected components of the set fa 2 T� W Za 6D 0g.
The left side shows the values of Za for a 2 T� , or equivalently the pathsWs which form a “tree
of Brownian paths”, and the parts inside the dashed lines are a few excursions away from 0

In fact we are not interested in all descendants of a, but only in those that lie in
the associated connected component Ca. For this reason, we introduce the time
change

�.a/
s WD inf

n
r � 0 W

Z r

0

dt 1f��

0 . QW .a/
t /�Q�.a/

t g > s
o
;

where we use the notation 	�
0 .w/ D infft 2 .0; �.w/� W w.t/ D 0g for w 2 W ,

with the usual convention inf∅ D C1. The effect of this time change will be to
disregard the paths QW .a/

s that return to 0 and then survive for a positive amount
of time. Setting for every s � 0,

W .a/
s WD QW .a/

�
.a/
s

defines another snake trajectory in S0, which accounts for the labels on the
connected component Ca. We sometimes call W .a/ the excursion associated
with the excursion debut a.

Let .ai /i2I be the (countable) collection of all excursion debuts. For every
i 2 I , we write li for the total local time at 0 accumulated by the historical path
of ai (this makes sense because historical paths behave like one-dimensional
Brownian paths), and we note that li is also the total local time at 0 for the
historical path of any point in the component Cai

.



162 J.-F. Le Gall

Theorem 10 ([2]). There exists a � -finite measure M0 on S0 such that, for any
nonnegative measurable function ˆ on RC 	 S0, we have

N0

� X
i2I

ˆ.li ;W
.ai //

�
D

Z 1

0

d`M0

�
ˆ.`; �/

�
:

For symmetry reasons, we may write

M0 D 1

2
.N�

0 C LN�
0/

where N�
0 is supported on nonnegative snake trajectories, and LN�

0 is the push
forward of N�

0 under the mapping ! 7! �!. Under N�
0 , the paths Ws form a

“tree of Brownian paths” starting from 0, which take positive values until the
first time when they return to 0 (if they do return to 0) and are stopped at that
time if not earlier. See Fig. 7 for a schematic illustration.

t

Ws.t/

Fig. 7. A schematic representation of the paths Ws under N�
0 . The quantity Z �

0 measures the
“number” of circled points corresponding to returns of certain paths Ws to 0

Theorem 10 provides a first-moment formula for the collection of excur-
sions .W .ai //i2I , but, in contrast with the classical excursion theory, this result
does not say anything about the independence of these excursions. To discuss
independence properties, we first need to introduce the “boundary size” of an
excursion, which roughly speaking measures the quantity of pathsWs that return
to 0.
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Proposition 11. The limit

Z �
0 WD lim

"!0

1

"2

Z �

0

1f0<jcWs j<"g ds

exists M0 a.e.

Using scaling arguments, it is not hard to define the conditional probability
measures M0.�jZ �

0 D z/ for every z > 0.
In order to state the main result of this section, we still need to introduce a

process .ƒr/r>0 defined under the excursion measure N0, such that, for every
r > 0, ƒr “counts the number” of paths Ws that accumulate a total local time
r at 0 and are stopped when they have accumulated that amount of local time.
The precise definition of ƒr fits in the general framework of exit measures as
presented in [40], Chapter V, but can also be given via the following approxi-
mation:

ƒr WD lim
"!0

1

"

Z �

0

1f	r .Ws/<�s<	r .Ws/C"g ds; N0 a.e.,

where �r.Ws/ D infft � 0 W L0
t .Ws/ > rg, if .L0

t .Ws//0�t��s
denotes the

local time at 0 of the path Ws .
Thanks to the special Markov property of the Brownian snake (see the ap-

pendix of [44]), one can prove that the process .ƒr/r>0 is Markovian under N0

(this makes sense even though N0 is an infinite measure because N0.ƒr 6D 0/ <

1 for every r > 0) with the transition kernels of the continuous-state branching
process with branching mechanism  .u/ D p

8=3 u3=2 (see e.g. [40], Sec-
tion II.1 for the definition and basic facts about continuous-state branching
processes). In particular, .ƒr/r>0 has a càdlàg modification with only positive
jumps, which we consider in the next statement.

Recall that li denotes the total local time at 0 accumulated by the historical
path of ai .

Theorem 12 ([2]). The numbers li , i 2 I , are exactly the jump times of the
process .ƒr/r>0. Furthermore, conditionally on the process .ƒr/r>0, the ex-
cursions W .ai /, i 2 I , are independent and, for every j 2 I , the conditional
distribution of W .aj / is M0.�jZ �

0 D ƒlj /.

In particular, the boundary size of the excursion W .aj / is ƒlj .
In the applications developed below, we will be interested mainly in pos-

itive excursions and in the measure N�
0 , which we call the positive Brownian

snake excursion measure. As in the case of M0 we can define the conditional
probability measures

N
�;z
0 WD N�

0.�jZ �
0 D z/;

for every z > 0.
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Interestingly, a number of explicit distributions can be computed under N�
0 .

In particular the joint distribution of the pair .Z �
0 ; �/ (boundary size and vol-

ume) under N�
0 has a density given by

f .z; s/ D
p
3

2�

p
z s�5=2 exp

�
� z2

2s

�
:

Consequently, for every fixed z > 0, the density of � under N�;z
0 is

gz.s/ D 1p
2�

z3 s�5=2 exp
�

� z2

2s

�
:

The latter density also appears as the density of the asymptotic distribution of
the rescaled volume (number of faces) of a Boltzmann quadrangulation with
perimeter 2k, when k ! 1. This will be explained by the results of the next
section.

In the classical setting of excursions away from 0 for a standard linear Brow-
nian motion starting from 0, it is well known that the process can be recon-
structed by concatenating the different excursions (some care is required since
there are infinitely many excursions on any interval Œ0; t �, t > 0). In our setting
of a tree-indexed process, things are more complicated since excursions are no
longer ordered linearly, but have a certain genealogical structure induced by the
genealogy of their debuts: In the example of Fig. 6, the excursion C1 is an an-
cestor of both C3 and C4, but C3 is not ancestor of C4. Still this genealogical
structure can be described in the following way.

For every a; a0 2 T� , we let ı.a; a0/ be the total local time at 0 accumulated
by the process Z along the line segment ŒŒa; a0�� of the tree T� . This makes
sense since we know that Z evolves like a linear Brownian motion along any
segment of the tree. Then ı.�; �/ is a pseudo-metric on T� , and we can define the
associated equivalence relation by setting a ' a0 if and only if ı.a; a0/ D 0.
Obviously a ' a0 holds if a and a0 belong to the same connected component of
fb 2 T� W Zb 6D 0g (because then Z does not vanish on ŒŒa; a0��). The quotient
space T�=' can thus be seen as obtained from T� by gluing each excursion
component into a single point. It turns out [44] that this quotient space has a
remarkable probabilistic structure.

Theorem 13 ([44]). Under N0, the quotient space T�= ' equipped with the
distance induced by ı is a stable Lévy tree with index 3=2.

We refer to [29] for the definition and main properties of Lévy trees (note
that these trees are typically defined under an infinite measure). See Fig. 8 for
a simulation. The stable Lévy tree appearing in the theorem has infinitely many
points of infinite multiplicity, and to each such point one can assign a “mass”
corresponding informally to the degree of the point in the tree. Then one can
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check that points of infinite multiplicity of the tree T�= ' are in one-to-one
correspondence with excursions of .Za/a2T�

, and that the mass of every point
of infinite multiplicity coincides with the boundary size of the associated excur-
sion.

Fig. 8. A simulation of the stable tree with index 3=2 (simulation: I. Kortchemski)

The previous lines then suggest the following possible “reconstruction”
method (which we will not attempt to make rigorous here). Starting from a
stable Lévy tree with index 3=2, associate independently with each point a of
infinite multiplicity a snake trajectoryW a distributed according to M0.�jZ �

0 D
ma/, where ma is the mass of a, then “glue” at the location of a the genealogi-
cal tree of the snake trajectoryW a, with the corresponding labels inherited from
W a. The resulting random R-tree equipped with labels should be the Brownian
tree equipped with Brownian labels.

8. Constructing Brownian disks from the positive Brownian snake
excursion measure

The results of this section are taken from [45]. The first naive idea to construct
a free Brownian disk is to imitate the construction of Sect. 3.3, replacing the
measure N0 by N�

0 . This does not give the desired result, but yields another
object of interest, namely the (free) Brownian disk with glued boundary.
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Recall our notation .D;D@/ for the free Brownian disk with perimeter 1, and
@D for the boundary of D. We define a pseudo-metric on D by setting, for every
x; y 2 D,

D
.x; y/ D minfD@.x; y/;D@.x; @D/CD@.y; @D/g:
Clearly D
.x; y/ D 0 if and only if x D y, or both x and y belong to @D.
Write D
 for the set obtained from D by identifying all points of the boundary
@D to a single point. Then D
 induces a metric on D
, which we still denote by
D
. The compact metric space .D
;D
/ is called the free Brownian disk with
perimeter 1 and glued boundary. The case of a perimeter equal to z is treated
analogously.

Proposition 14. The random metric space .M ;D/ defined via the construction
of Sect. 3.3 from a snake trajectory ! distributed according to N

�;z
0 is a free

Brownian disk with perimeter z and glued boundary.

The problem is then to recover the free Brownian disk from the same object
with glued boundary. This can indeed be achieved by a slight modification of
the construction of Sect. 3.3.

From now on, we argue under the measure N
�;z
0 .d!/ for some fixed z > 0.

Recalling that T� denotes the genealogical tree of the snake trajectory !, we
use the same notation Za for the “labels” on T� (Za D bWs if a D p� .s/). In
contrast with the case of N0, labels are now nonnegative reals, and we define
the “boundary” @T� by

@T� WD fa 2 T� W Za D 0g:
Recalling the definition of Dı in (1), we set, for every a; b 2 T� n @T� ,

ı.a; b/ D
(
Dı.a; b/ if max. min

c2Œa;b�
Zc; min

c2Œb;a�
Zc/ > 0;

1 otherwise:

Roughly speaking, the condition in the first line of the last display means that
we can go from a to b “around” the tree T� without visiting a vertex of @T� . We
then define .a; b/ for every a; b 2 T� n @T� by the exact analog of formula
(3):

.a; b/ D inf
n kX

iD1

ı.ai�1; ai /
o
;

where the infimum is over all choices of the integer k � 1 and of the elements
a0; a1; : : : ; ak of T� n @T� such that a0 D a and ak D b. One easily verifies
that the mapping .a; b/ 7! .a; b/ takes finite values and is continuous on
.T� n @T� / 	 .T� n @T� /.
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Theorem 15. With probability one under N
�;z
0 , the function .a; b/ 7! .a; b/

has a continuous extension to T� 	 T� , which is a pseudo-metric on T� . We
let ‚ stand for the associated quotient space, and we equip ‚ with the induced
metric, which is still denoted by.a; b/. Then, the random metric space .‚;/
is a free Brownian disk with perimeter z under N�;z

0 , and its boundary @‚ is the
image of @T� under the canonical projection from T� onto ‚. Furthermore, if
x 2 ‚ is the image of a 2 T� under the canonical projection, we have

.x; @‚/ D Za:

We note that we can define a volume measure V.dx/ on ‚ as the image of
the volume measure on T� under the canonical projection. In particular the to-
tal mass of V is V.‚/ D � (recall our notation � for the duration of the snake
trajectory !, which is also the total mass of the volume measure on T� ). Hence
we may define the Brownian disk with perimeter z and volume v as the random
metric space .‚;/ under the conditional probability measure N

�;z
0 .�j� D v/.

This is consistent with the construction of [14],[16] using scaling limits of quad-
rangulations with a boundary with fixed perimeter and volume.

A nice feature of the construction of Theorem 15 (in contrast with the pre-
vious constructions in [14], [16]) is the fact that labels Za now correspond to
distances from the boundary. This also makes it possible to construct a natural
“length measure” on the boundary. The following proposition is closely related
to the approximation of Z �

0 in Proposition 11.

Proposition 16. Almost surely under N�;z
0 , there exists a finite measure � on @‚

with total mass z, such that, for every bounded continuous function ' on ‚,

h�; 'i D lim
"!0

1

"2

Z
‚

V.dx/ '.x/ 1f�.x;@‚/<"g:

We will now exhibit certain particular subsets of the Brownian sphere that
are Brownian disks. So we now argue under the measure N.1/

0 .d!/ and consider
the metric space .M ;D/ constructed in Sect. 3.3. Recall from the end of this
section that M has a distinguished point x� such that distances from x� exactly
correspond to the labels Zx up to a shift (see (5) above). We will discuss prop-
erties of the connected components of the complement of balls centered at x�.
At this point, we should mention that the point x� does not play a special role,
and that the re-rooting invariance properties of the Brownian sphere [42], Sect.
8 show that the same properties hold if x� is replaced by a point chosen accord-
ing to the volume measure on the Brownian sphere. We recall that this volume
measure, which is denoted by v.dx/, is the push forward of the volume measure
on T� , and that v is a probability measure under N.1/

0 .d!/.
We note that the Brownian sphere is a length space (as a Gromov–Hausdorff

limit of length spaces) and that, if O is an open subset of M , we can define an
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intrinsic metricDO
intr onO by declaring thatDO

intr.x; y/ is the minimal length of
a continuous path connecting x to y in O (see [20], Chap. 2).

For every z > 0 and v > 0, we let Fz;v be the distribution of the Brownian
disk with perimeter z and volume v. The following statement can be found
in [45], Theorem 3 (see also [38] for a related work).

Theorem 17. Let r > 0 and let B.x�; r/ stand for the closed ball of radius r
centered at x� in .M ;D/. Then, N.1/

0 a.s. for every connected component C of
M n B.x�; r/, the limit

j@Cj WD lim
"!0

1

"2

Z
C

v.dx/ 1fD.x;@C/<"g (8)

exists and is called the boundary size of C. On the event fM n B.x�; r/ 6D ∅g,
write Cr;1;Cr;2; : : : ; for the connected components of M n B.x�; r/ ranked in
decreasing order of their boundary sizes. Let Dr;j

intr be the intrinsic distance on
Cr;j . Then, N.1/

0 a.s. on the event fM nB.x�; r/ 6D ∅g, for every j D 1; 2; : : :,

the metric Dr;j
intr has a continuous extension to the closure Cr;j

of Cr;j , and this

extension is a metric on Cr;j
. Furthermore, under N.1/

0 .�jM n B.x�; r/ 6D ∅/

and conditionally on the sequence

.j@Cr;1j; v.Cr;1//; .j@Cr;2j; v.Cr;2//; : : : ;

the metric spaces .Cr;j
;D

r;j
intr /, j D 1; 2; : : :, are independent Brownian disks

with respective distributions Fj@Cr;j j;v.Cr;j /, j D 1; 2; : : :.

Let us briefly explain why Theorem 17 is related to the excursion theory de-
veloped in Sect. 7. The key point is the fact that distances from x� are given (up
to the shift by �Z�) by the labels Zx . Assuming that r > �Z� for simplicity, it
is then not too hard to verify that connected components of the complement of
B.x�; r/ correspond—via the construction presented in Sect. 3—to excursions
of Brownian motion indexed by the Brownian tree above the (random) level
rCZ�. The distribution of these excursions can be analysed thanks to Theorem
12 and we also use Theorem 15 to relate the positive Brownian snake excursion
measure to the law of Brownian disks. There are however two significant tech-
nical difficulties, because on one hand we have to deal with excursions above a
random level, instead of level 0 in Theorem 12, and on the other hand, we argue
under N.1/

0 instead of N0 in Sect. 7.
Informally, Theorem 17 says that connected components of the complement

of a ball centered at a “typical point” in the Brownian sphere are independent
Brownian disks conditionally on their boundary sizes and volumes. A similar
result [45], Theorem 18 holds for the connected components of the comple-
ment of the Brownian net, which is a particular subset of the free Brownian
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sphere playing an important role in the axiomatic characterization of Miller and
Sheffield [57]. At this point, we mention that we could have stated a version
of Theorem 17 for the free Brownian sphere, which is nicer in the sense that
we do not need to condition on the volumes: We get that the connected compo-
nents of the complement of a ball centered at x� are independent free Brownian
disks conditionally on their perimeters. In the next section, we discuss a similar
statement for the free Brownian disk, where distances from x� are replaced by
distances from the boundary.

9. Slicing Brownian disks at heights

In this section, which is based on a joint work with Armand Riera [50], we
consider the random metric space .‚;/ defined in Theorem 15, which is a
free Brownian disk with perimeter z under the probability measure N

�;z
0 . For

every x 2 ‚, define the height of x by

H.x/ D .x; @D/:

We also consider the maximal height

H� D max
x2‚

H.x/:

Recall the notation V.dx/ for the volume measure on ‚.

Theorem 18. Let r > 0. Then, N�;z
0 a.s., for every connected component C of

fx 2 ‚ W H.x/ > rg, the limit

j@C j D lim
"!0

1

"2

Z
C

V.dx/ 1fH.x/<rC"g

exists and is called the perimeter of C . On the event fH� > rg, let C r;1;C r;2; : : : ;

be the connected components of fx 2 ‚ W H.x/ > rg ranked in decreas-
ing order of their perimeters. Then, a.s. on the event fH� > rg, for every
j D 1; 2; : : :, the intrinsic metric on C r;j has a continuous extension to the clo-
sure C

r;j
of C r;j , which is a metric on C

r;j
, and conditionally on the perime-

ters j@C 1;r j; j@C 2;r j; : : :, the resulting metric spaces C
r;1
;C

r;2
; : : : ; are inde-

pendent free Brownian disks.

As explained for Theorem 17 at the end of the previous section, Theorem
18 can be derived from the excursion theory developed in Sect. 7. The difficulty
now comes from the fact that we must argue under N�;z

0 instead of N0 in Sect.
7.
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With the notation of Theorem 18, an obvious question is to describe the
distribution of the process

X.r/ D .j@C 1;r j; j@C 2;r j; : : :/

giving for every r > 0 the perimeters of all connected components of fx 2
‚ W H.x/ > rg (by convention X.r/ D .0; 0; : : :/ if H� � r). We also take
X.0/ D .z; 0; 0; : : : / and view .X.r//r�0 as a random process taking values in
the space of nonincreasing sequences of nonnegative real numbers. Theorem 18
then suggests that this process enjoys properties similar to those of the growth-
fragmentation processes that have been studied recently by several authors. In
fact, Bertoin, Curien and Kortchemski [13] (see also [12] for extensions) have
considered a process analogous to X for triangulations with a boundary and
showed that the scaling limit of this process (when the boundary size tends
to infinity) is a well-identified growth-fragmentation process. Still it does not
seem easy to apply the results of [13] in order to identify the distribution of the
process X, but the excursion theory of Sect. 7 can be used instead to compute
this distribution.

Before stating our last result, we need to recall a few basic facts about
growth-fragmentation processes (see [11] for more details). The starting in-
gredient is a positive self-similar Markov process .Yt /t�0 with only negative
jumps. Suppose that Y0 D z, and view .Yt /t�0 as the evolution in time of the
mass of an initial particle also called the Eve particle. At each time t where the
process Y has a jump, we consider that a new particle with mass �Yt (a child
of the Eve particle) is born, and the mass of this new particle evolves (from time
t ) again according to the law of the process Y , but independently of the evo-
lution of the mass of the Eve particle. Then each child of the Eve particle has
children at discontinuity times of its mass process, and so on. Under suitable
assumptions (see [11]), we can make sense of the process .Y.t//t�0 giving for
every time t the sequence (in decreasing order) of masses of all particles alive
at that time. The process Y is Markovian and is called the growth-fragmentation
process with Eve particle process Y .

Theorem 19. Under N
�;z
0 , the process .X.r//r�0 is a growth-fragmentation

process, which is constructed from an Eve particle processX whose distribution
starting from 1 is specified as follows:

Xt D exp.��.t//;

where

	.t/ D inf
n
u � 0 W

Z u

0

e�s=2 ds > t
o
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and � is the spectrally negative Lévy process such that, for every q > 0, EŒexp.q �t /�

D exp.t .q//, with

 .q/ D
r

3

2�

�
� 8

3
q C

Z 1

1=2

.xq � 1C q.1 � x// .x.1 � x//�5=2 dx
�
: (9)

Remark. The process � drifts to �1 and the event f	.t/ D 1g occurs with
positive probability if t > 0: On this event, we of course make the convention
that exp.�1/ D 0.

The expression of the process X in terms of the Lévy process � is a special
case of the classical Lamperti representation of a positive self-similar Markov
process (here with index 1=2) in terms of a spectrally negative Lévy process.
The formula for  is the same as formula (1) in [13], except for the (unimpor-
tant) multiplicative constant

p
3=2� . This should not come as a surprise in view

of preceding comments.
Although we have chosen to state them as properties of the free Brownian

disk, Theorems 18 and 19 are really results about the tree-indexed Brownian
motion .Za/a2T�

under N�;z
0 . In particular, Theorem 19 relies on the identifi-

cation of the distribution of the process giving, for each r � 0, the sequence of
boundary sizes of all excursions above level r of the process .Za/a2T�

under
N

�;z
0 . There is a striking analogy with the fragmentation process occuring when

cutting the CRT at a fixed height: Precisely, it is shown in [10] that the sequence
of volumes of the connected components of the complement of the ball of radius
r centered at the root in the CRT is a self-similar fragmentation process whose
dislocation measure has the form .2�/�1=2.x.1 � x//�3=2 dx, to be compared
with the measure .x.1 � x//�5=2 dx appearing in formula (9).

As a consequence of Theorem 19 and known asymptotics [12], Corollary 4.5
for the distribution of the extinction time of a growth-fragmentation process, we
derive the following corollary about the tail of the distribution of the maximal
height in a Brownian disk.

Corollary 20. There exist positive constants c1 and c2 such that, for every r �
1,

c1r
�6 � N

�;z
0 .H� > r/ � c2r

�6:
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