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Abstract. This is a mixture of survey article and research announcement. We discuss instan-
ton Floer homology for 3 manifolds with boundary. We also discuss a categorification of the
Lagrangian Floer theory using the unobstructed immersed Lagrangian correspondence as a mor-
phism in the category of symplectic manifolds.
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combination of cobordism type argument and homological algebra, we can resolve various dif-
ficulties in the analytic approach. It thus solves various problems and also simplify many of the
proofs.
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1. Introduction and review

The research defining invariants by using moduli spaces in differential geome-
try and topology started around 1980’s. One of its first examples is Donaldson’s
polynomial invariant of smooth 4 manifolds [D3]. Various ‘quantum’ invariants
of knots which appeared around the same time have a similar flavor and actually
they turn out to be closely related to each other. (Instanton) Floer homology of
3 manifolds (homology 3 spheres) appeared late 1980’s [Fl2] and it was soon
realized that instanton Floer homology provides the basic framework to define
a relative version of the Donaldson invariant. The notion of topological field
theory was introduced by Witten [Wi1] inspired by this relative Donaldson in-
variant. Soon after that Witten [Wi2] found an invariant of 3 manifolds (possibly
equipped with knot and link) and its relative version. This is a generalization of
quantum invariant of knot. The relative version of Witten’s invariant uses con-
formal block as its 2 dimensional counterpart. Segal [Se1], [Se2] introduced
categorical formulation of conformal field theory and of several related theo-
ries. Since then various categorifications have been introduced and studied by
many mathematicians. In this article the author surveys some of them where
A1 category appears.
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Table 1.

invariants Case n D 4 Case n D 3

n number Donaldson invariant Witten’s invariant
n � 1 group Floer homology Conformal block
n � 2 category Fuk.R.†// representation of loop group

The gauge theory invariant we discuss in this article is one in the column
n D 4, of the Table 1.

We begin with a quick review of 4 and 3 dimensional invariants.

1.1. Donaldson invariant

Let X be an oriented 4 manifold and PX ! X either a principal SO.3/ or SU.2/

bundle. (We denote G D SO.3/ or SU.2/.) We take a Riemannian metric on X ,
which induces the Hodge � operator on differential k forms.

� W �k.X/ �! �4�k.X/:

On 2 forms we have �� D 1. Therefore �2.X/ is decomposed into a direct sum

�2.X/ D �2C.X/ ˚ �2�.X/; �2˙.X/ D fu 2 �2.X/ j �u D ˙ug:
Let ad.PX / D PX �G g be the Lie algebra (g D so.3/ or su.2/) bundle
associated to PX by the adjoint representation G ! Aut.g/. For a connection
A of PX its curvature FA is a section of �2.X/ ˝ ad.PX /. We decompose it
into

FA D F C
A C F �

A ;

where FȦ is a section of �2˙.X/ ˝ ad.PX /.
A connection A is called an Anti-Self-Dual (or ASD) connection if F C

A D 0.
We denote by A.PX / the set of all (smooth) connections on PX and G.PX /

the set of all (smooth) SU.2/-gauge transformations of PX . (The latter is the
set of all smooth sections of the bundle Ad.PX / D PX �G SU.2/ which is
associated to PX by the adjoint action of G on SU.2/.) The group G.PX / acts
on A.PX / and we denote by B.PX / the quotient space.

Remark 1.1. Note the adjoint action of SU.2/ on SU.2/ is induced by an action
of SO.3/ D SU.2/=f˙1g on SU.2/. Therefore the bundle PX �G SU.2/ is
defined in the case G D SO.3/, too.

A section g of PX �G SO.3/ lifts to a section of PX �G SU.2/ if and only
if the restriction of g to one skeleton is homotopic to the identity. So our choice
of gauge transformation group coincides with the one in [BD, page 198].

Hereafter, we mean by gauge transformation SU.2/ gauge transformation in
both cases G D SU.2/; SO.3/, unless otherwise specified.
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We denote by M.PX / � B.PX / the set of all G.PX / equivalence classes of
ASD connections.

In the simplest case, the Donaldson invariant of X is the order of the set
M.PX / (counted with appropriate sign), and is an integer. More generally it is
regarded as a polynomial map H �.B.PX // ! Z obtained by

(1.1) c 7�!
Z
M.PX /

c:

Actually since M.PX / is non-compact, we need to study the behavior of the
cohomology class c at infinity of M.PX /, carefully. Another problem is that
M.PX / has in general a singularity. We do not discuss these points in this sec-
tion. Donaldson used a map � W H2.X/ ! H 2.B.PX //: This map is defined
by the slant product c 7! p1=c, where p1 is the 1st Pontryagin or the second
Chern class of the universal bundle on B.PX / � X .

On the subring generated by the image of this map �, the integration (1.1)
behaves nicely and defines an invariant. (We need to assume that the number bC

2

which is the sum of the multiplicities of positive eigenvalues of the intersection
form on H2.X IQ/, is not smaller than 2, for this invariant to be well defined.)
In that case, we have a multi-linear map on H2.X/ which is called Donaldson’s
polynomial invariant. We denote it by

(1.2) Z.c1; : : : ; ckIPX / D
Z
M.PX /

�.c1/ ^ � � � ^ �.ck/ 2 Z

for ci 2 H2.X/. Note the integration makes sense only when

dimM.PX / D 2k;

(deg ci D 2). The dimension of M.PX / is determined by the second Chern
(or the first Pontryagin) number of PX . So if we fix the second Stiefel–Whitney
class of PX the isomorphism class of bundle PX for which (1.2) can be non-zero
is determined by k. So we omit PX and write Z.c1; : : : ; ck/ sometimes.

1.2. Floer homology (instanton homology)

Let M be a 3 manifold and PM a principal G D SO.3/ or SU.2/ bundle on it.

Assumption 1.2. We assume that one of the following two conditions is satisfied.

(1) G D SO.3/ and w2.PM / ¤ 0 2 H 2.M IZ2/. (Here w2.PM / is the second
Stiefel–Whitney class.)

(2) G D SU.2/ and H.M IZ/ Š H.S3IZ/.
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The notation A.PM /, G.PM /, B.PM / are defined in the same way as the
4 dimensional case. We denote by R.M IPM / � B.PM / the set of all G.PM /

equivalence classes of flat connections.
We assume the following for the simplicity of description.

Assumption 1.3. (1) The set R.M IPM / is a finite set.
(2) For any Œa� 2 R.M IPM / the cohomology group H 1.M I ada.PM // van-

ishes. Here the first cohomology group H 1.M I ada.PM // is defined by the
complex

ad PM ˝ �0 da�! ad PM ˝ �1 da�! ad PM ˝ �2:

Here da is defined by dab D db C b ^ a. (Note da ı da D 0 since Fa D 0.)

Remark 1.4. We can remove this assumption by appropriately perturbing the
defining equation Fa D 0 of R.M IPM / in a way similar to [D2], [Fl2], [He].

In case Assumption 1.2 (2) is satisfied we put R0.M IPM / D R.M IPM / n
fŒ0�g, where Œ0� is the gauge equivalence class of the trivial connection. In case
of Assumption 1.2 (1) we put B0.PM / D R.M IPM /.

We define Z2 vector space CF.M IPM / whose basis is identified with
R.M IPM /. We define a boundary operator

@ W CF.M IPM / �! CF.M IPM /

as follows. Let Œa�; Œb� 2 R0.M IPM /. We fix their representatives a; b. We
consider the set of connections A of the bundle PM � R on M � R with the
following properties. We use � as the coordinate of R.

(IF.1) F C
A D 0.

(IF.2) The L2-norm of the curvatureZ
M �R

kFAk2volM d�

is finite.
(IF.3) We require

lim
�!�1 A D a; lim

�!C1 A D b:

Remark 1.5. We can use Assumption 1.3 (2) to show that if (IF.3) is satisfied
then the convergence is automatically of exponential order.

We denote by fM.M � RI a; b/ the set of all gauge equivalence classes of the
connections A satisfying the above conditions (IF.1)–(IF.3).

The R action induced by the translation of R factor in M � R induces an
R action on fM.M � RI a; b/. We denote the quotient space by this action by
M.M � RI a; b/.
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Theorem 1.6 (Floer). We can define a map � W R0.M IPM / ! Z8 such that:

(1) M.M �RI a; b/ is decomposed into pieces M.M �RI a; bI k/ where k C1

is a natural number congruent to �.b/ � �.a/.
(2) By ‘generic’ perturbation we may assume that M.M � RI a; bI k/ is com-

pactified to a manifold with corners of dimension k, outside the singularity
set of codimension � 2.

(3) Moreover the boundary of M.M � RI a; bI k/ is identified with the disjoint
union of the direct product

(1.3) M.M � RI a; cI k1/ � M.M � RI c; bI k2/;

where c 2 R0.M IPM / and k1 C k2 C 1 D k.

Remark 1.7. In the SO.3/ case there is an involution of degree 4 and so Floer
homology is Z4 graded. Involution is induced by an SO.3/ gauge transformation
which does not lift to an SU.2/ gauge transformation. See [BD, page 198].

Now we define

h@Œa�; Œb�i � ]M.M � RI a; bI 0/ mod 2;

and

(1.4) @Œa� D
X

Œb�I�.b/D�.a/�1

h@.Œa�/; Œb�iŒb�:

Theorem 1.6 (3) implies that the union of the spaces (1.3) over c and k1; k2 with
k1 C k2 given is a boundary of some space. Especially in case k1 D k2 D 0 the
union of (1.3) over c is a boundary of 1 dimensional manifold and so its order
is even. It implies: X

c

]h@Œa�; Œc�ih@Œc�; Œb�i D 0:

Namely @@Œa� D 0.

Definition 1.8.

HF.M IPM / Š Ker .@ W CF.M IPM / �! CF.M IPM //

Im .@ W CF.M IPM / �! CF.M IPM //
:

We call this group (Z2 vector space) the instanton Floer homology of .M;PM /.
Actually we can orient the moduli spaces we use and then define Floer homology
group over Z.
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Floer ([Fl2], [Fl3]) proved that the group HF.M IPM / is independent of
various choices made in the definitions.

The idea behind this definition is to study the following Chern–Simons func-
tional. We consider the case when PM is an SU.2/ bundle which is necessary
trivial as a smooth SU.2/ bundle. We fix a trivialization and then an element of
A.PM / is identified with an su.2/ valued one form a. We may regard it as a
2 � 2 matrix valued one form. We then put

(1.5) cs.a/ D 1

4�2

Z
M

Tr
�1

2
a ^ da C 1

3
a ^ a ^ a

�
:

This functional descents to a map B.PM / ! R=Z. In fact if we regard a gauge
transformation as a map M ! SU.2/ we have

cs.g�a/ D cs.a/ C deg g:

On the other hand any connection A of PM �R on M �R can be transformed to
a connection without d� component by a gauge transformation. (Note � is the
coordinate of R.) We call it the temporal gauge. If we take the temporal gauge
and AjM �f�g D a.�/ then the equation F C

A D 0 is equivalent to

(1.6)
d

d�
a.�/ D grada.�/cs:

Here the right hand side is defined by

hgradacs; a0i D d

ds
cs.a C sa0/

ˇ̌̌
sD0

:

(h�; �i is the L2 inner product.) So HF.M IPM / is regarded as a Morse homology
of cs. There is a similar functional in the SO.3/ case.

1.3. Relative Donaldson invariant

The relation between Donaldson invariant and Floer homology is described as
follows.

Let X1 and X2 be oriented 4 manifolds with boundary M and �M , respec-
tively. We glue X1 and X2 at M to obtain a closed oriented 4 manifold X . We
consider the case H1.M IQ/ D 0. Then

(1.7) H2.X IQ/ D H2.X1IQ/ ˚ H2.X2IQ/:

We also assume bC
2 .Xi /, the sum of multiplicities of positive eigenvalues of the

intersection form on H2.Xi IQ/, is at least 2.
We remark that

R0.M IPM / Š R0.�M IPM /:
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We define a pairing

h�; �i W CF.M IPM / ˝ CF.�M IPM / �! Z

by

hŒb�; Œb0�i D
�
1 if Œb� D Œb0�;
0 if Œb� ¤ Œb0�.

Here we use Floer’s chain complex over Z coefficient. The map R� M ! R�
�M which sends .�; x/ to .��; x/ is an orientation preserving diffeomorphism.
So

h@M a; bi D ha; @�M bi:
Therefore the boundary operator @�M is the dual to @M . We thus obtain a pair-
ing:

h�; �i W HF.M IPM / � HF.�M IPM / �! Z:

Theorem 1.9 (Floer–Donaldson, see [Fu3], [D5]).

(1) If @X1 D M and PX1
jM D PM , then there exists a multilinear map

Z.�I X1;PX1
/ W H2.X1IZ/˝k �! HF.M IPM /:

(2) In the situation we mentioned at the beginning of this subsection we have

(1.8)
hZ.c1;1; : : : ; c1;k1

IPX1
/; Z.c2;1; : : : ; c2;k2

IPX2
/i

D Z.c1;1; : : : ; c1;k1
; c2;1; : : : ; c2;k2

IPX /:

The construction of relative invariant in Theorem 1.9 roughly goes as fol-
lows. We take a Riemannian metric on X1 n @X1 such that it is isometric to the
direct product M � Œ0; 1/ outside a compact set. Let a be a flat connection with
Œa� 2 R0.M IPM /.

We consider the set of connections A of PX such that

(1) F C
A D 0.

(2) The L2-norm of the curvature
R
X1

kFAk2volX1
is finite.

(3) We require lim�!C1 AjM �f�g D a:

We denote the set of gauge equivalence classes of such A by M.X1I aIPX1
/

and define

Z.c1;1; : : : ; c1;k1
I X1;PX1

/

D
X

a2R0.M IPM /

� Z
M.X1IaIPX1

/

�.c1;1/ ^ � � � ^ �.c1;k1
/
�
Œa�:
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We can show that this is a cycle in CF.M IPM / by studying the boundary of the
moduli space M.X1I aIPX1

/, that is,

@M.X1I aIPX1
/ D

[
b

M.X1I bIPX1
/ � M.M � RI b; a/:

To show (1.8) we consider the following sequence of metrics on X . We take
compact subsets Ki of Xi such that

Int X1 n K1 Š M � .0; 1/; Int X2 n K2 Š M � .�1; 0/:

We put

X.T / D .K1 [ M � .0; T=2�/ [ .M � Œ�T=2; 0� [ K2/

where we identify M �fT=2g Š M �f�T=2g. X.T / is diffeomorphic to X and
has an obvious Riemannian metric. So we obtain the moduli space M.X.T /IPX /.
We have

Z.c1;1; : : : ; c1;k1
; c2;1; : : : ; c2;k2

IPX / D
Z
M.X.T /IPX /

�.c1;1/^� � �^�.c2;k2
/

for any T .1

Then (1.8) will be a consequence of the next equality.

(1.9) lim
T !1M.X.T /IPX / D

[
a2R0.M IPM /

M.X1I aIPX1
/�M.X2I aIPX2

/:

2. Invariant in dimension 4-3-2

The idea to extend the story of Subsects. 1.1, 1.2, 1.3 so that it includes dimen-
sion 2 was studied by various mathematicians in 1990’s. (See for example [Fu2],
[Fu5].) It can be summarized as follows.

Problem 2.1. (1) For each pair of an oriented 2 manifold † and a principal G-
bundle P† on it, associate a category C.†IP†/, such that for each two ob-
jects of C.†IP†/ the set of morphisms between them is an abelian group.

(2) For any pair .M;PM / of an oriented 3 manifold M with boundary and a
principal G-bundle PM on it, associate an object HF.M;PM / of C.†IPM j†/,
where † D @M .

1 More precisely we cannot expect that M.X.T /IPX / is a smooth manifold for arbitrary T .
However we can expect that it is a smooth manifold for T outside a finite set. But the union of
M.X.T /IPX / for T 2 ŒT1; T2� is again a manifold. So the integral for T D T1 and T D T2

coincides by Stokes’ theorem.
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(3) Let .M1;PM1
/, .M2;PM2

/ be pairs as in (2) such that @M1 D �@M2 D †,
P† D PM1

j† D PM2
j†. We glue them to obtain .M;PM /. Then show:

(2.1) HF.M IPM / D C.HF.M1;PM1
/; HF.M2;PM2

//:

Here the left hand side is the instanton Floer homology as in Definition 1.8
and the right hand side is the set of morphisms in the category C.†IPM j†/,
which is an abelian group.

There is a formulation which includes the case

@.M;PM / D �.†1;P†1
/ t .†2;P†2

/:

See Sect. 8. We may join it with 4+3 dimensional picture so that we include the
case of 4 manifold with corner.

An idea to find such category C.†IP†/ is based on the fact that the space
of all flat connections R.†IP†/ has a symplectic structure, which we define
below.

Let Œ˛� 2 R.†IP†/. The tangent space T˛R.†IP†/ is identified with the
first cohomology

H 1.†; ad˛.P†// D Ker.d˛ W ad PM ˝ �1 d˛�! ad PM ˝ �2/

Im.d˛ W ad PM
d˛�! ad PM ˝ �1/

:

The symplectic form ! at T˛R.†IP†/ Š H 1.†; ad˛.P†// is given by

!.Œu�; Œv�/ D
Z

†

Tr.u ^ v/:

(See [Go].) We can prove that this 2 form ! is a closed two form based on the
fact that R.†IP†/ is regarded as a symplectic quotient

A.†;P†/==G.†;P†/:

In fact we may regard the curvature

˛ 7�! F˛ 2 C 1.†I ad˛ P ˝ �2/

as the moment map of the action of gauge transformation group G.†;P†/ on
A.†;P†/. (See [AB].)

We next consider .M;PM / as in Problem 2.1 (2). By the same reason as
Assumption 1.3 we assume:

Assumption 2.2. (1) The set R.M IPM / has a structure of a finite dimensional
manifold.
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(2) For any Œa� 2 R.M IPM / the second cohomology H 2.M I ada.PM // van-
ishes. Here the second cohomology group H 2.M I ada.PM // is the cokernel
of

da W ad PM ˝ �1 �! ad PM ˝ �2:

Remark 2.3. In Assumption 1.3 we assumed all the cohomology groups vanish.
In fact in case @M D ; (and M is 3 dimensional) we have

H 2.M I ada.PM // Š .H 1.M I ada.PM ///�

by Poincaré duality. So vanishing of the 2nd cohomology implies the vanishing
of the 1st cohomology. The zero-th cohomology vanishes if the connection is
irreducible. (Namely the set of all gauge transformations which preserve the
connection a is zero dimensional.)

We also remark that actually (2) implies (1).

We then have the next lemma.

Lemma 2.4. We assume @.M;PM / D .†;P†/ and Assumption 2.2. Let i W
R.M IPM / ! R.†IP†/ be the map induced by the restriction of the connec-
tion. Then

i�! D 0:

Here ! is the symplectic form of R.†IP†/.

Proof. This is an immediate consequence of Stokes’ theorem. �

Let i.a/ D ˛. We consider the exact sequence

(2.2)
0 �! H 1.M I ada.PM // �! H 1.†I ad˛.P†//

�! H 2.M; †I ada.PM // �! 0:

Note H 2.M I ada.PM // Š H 1.M; †I ada.PM // Š 0 by Assumption 2.2 (2)
and Poincaré duality. Moreover H 1.M I ada.PM // Š H 2.M; †I ada.PM //�
by Poincaré duality. Thus (2.2) implies that

(2.3) dim R.M IPM / D 1

2
dim R.†IP†/

if @M D †.

Corollary 2.5. In the situation of Lemma 2.4, R.M IPM / is an immersed La-
grangian submanifold of R.†IP†/ if i W R.M IPM / ! R.†IP†/ is an im-
mersion.
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We can again perturb the defining equation Fa D 0 of R.M IPM / so that
the assumption of Corollary 2.5 is satisfied in the modified form. Namely we
obtain a Lagrangian immersion to R.†IP†/ from a moduli space that is a per-
turbation of R.M IPM /. This is proved by Herald [He]. He also proved that the
Lagrangian cobordism class of the perturbed immersed Lagrangian submanifold
is independent of the choice of the perturbation.

The above observations let the Donaldson make the next:

Proposal 2.6 (Donaldson [D4]). The category C.†IP†/ is defined such that:

(1) Its object is a Lagrangian submanifold of R.†IP†/.
(2) The set of morphisms from L1 to L2 is the Lagrangian Floer homology

HF.L1; L2/.
(3) The composition of the morphism is defined by counting the pseudo

holomorphic triangle as in Fig. 1 below.

The first approximation of the object which we assign to .M;PM / is the
immersed Lagrangian submanifold R.†IP†/.

This proposal is made in 1992 at University of Warwick. There are vari-
ous problems to realize this proposal which was known already at that stage to
experts.

L2

L1

L3

Fig. 1. Holomorphic triangle

Difficulty 2.7. (1) The space R.†IP†/ is in general singular. Symplectic Floer
theory on a singular symplectic manifold is difficult to study.

(2) Even in the case of smooth compact symplectic manifold, the Floer homol-
ogy of two Lagrangian submanifolds is not defined in general and there are
various conceptional and technical difficulties in doing so.

(3) It is known that (instanton) Floer homology of M D M1 [† M2 is not
determined by the pair of Lagrangian submanifolds R.M1IPM1

/ and
R.M2IPM2

/. So we need some additional information than the immersed
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Lagrangian submanifold R.M IPM / to obtain actual relative invariant. (This
is the reason why Donaldson mentioned R.M IPM / as a first approximation
and is not a relative invariant itself.)

I will explain how much in 25 years, after the proposal made in 1992, our
understanding on these problems have been improved.

3. Relation to Atiyah–Floer conjecture

In this section we explain the relation of the discussion in the previous section
to a famous conjecture called Atiyah–Floer conjecture [At]. In its original form
Atiyah–Floer conjecture can be stated as follows. Let M be a closed oriented 3
manifold such that H1.M IZ/ D 0. We represent M as

M D H 1
g [†g

H 2
g ;

where H 1
g and H 2

g are handle-bodies with genus g and †g D @H 1
g D @H 2

g . We
consider the trivial SU.2/ bundle PM on M and on H i

g , †g . Let R.†g IP†g
/,

R.H i
g IPH i

g
/, R.M IPM / be the spaces of gauge equivalence classes of flat

connections of the trivial SU.2/ bundle on H i
g , †g , M , respectively. (2.3) holds

in this case without perturbation. Namely

(3.1) dim R.†g IP†g
/ D 3.g � 1/ D 1

2
dim R.H i

g IPH i
g
/

and R.H i
g IPH i

g
/ .i D 1; 2/ are Lagrangian ‘submanifolds’ of R.†g IP†g

/.

Conjecture 3.1 (Atiyah–Floer). The instanton Floer homology of M is isomor-
phic to the Lagrangian Floer homology between R.H 1

g IPH 1
g
/ and

R.H 2
g IPH 2

g
/. Namely

(3.2) HF.M IPM / Š HF.R.H 1
g IPH 1

g
/; R.H 2

g IPH 2
g
//:

Remark 3.2. In this remark we mention various problems around Conjecture
3.1.

(1) As we explain in later section (Subsect. 4.1), Lagrangian Floer homology
HF.L1; L2/ is defined as a cohomology of the chain complex whose basis
is identified with the intersection points L1 \ L2. (This is the case when L1

is transversal to L2.) It is easy to see that

R.M IPM / Š R.H 1
g IPH 1

g
/ �R.†gIP†g / R.H 2

g IPH 2
g
/:

Note instanton Floer homology HF.M IPM / is the homology group of a
chain complex whose basis is identified with R0.M IPM /. So roughly
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speaking two Floer homology groups HF.M IPM / and HF.R.H 1
g IPH 1

g
/;

R.H 2
g IPH 2

g
// are homology groups of the chain complexes whose underly-

ing groups are isomorphic. So the important point of the proof of Conjecture
3.1 is comparing boundary operators.

The boundary operator defining HF.M IPM / is obtained by counting
the order of the moduli space M.M � RI a; b/, as we explained in Subsect.
1.2. The boundary operator defining HF.R.H 1

g IPH 1
g
/; R.H 2

g IPH 2
g
// is ob-

tained by counting the order of the moduli space of pseudo holomorphic
strips in R.†g IP†g

/ with boundary condition defined by R.H 1
g IPH 1

g
/ and

R.H 2
g IPH 2

g
/. Various attempts to relate these two moduli spaces directly

have never been successful for more than twenty years.
(2) Another problem, which is actually more serious, is related to Difficulty

2.7 (1). In fact the space R.†g IP†g
/ is singular. The singularity corre-

sponds to the reducible connections. (Here a connection a is called reducible
if the set of gauge transformations g such that g�a D a has positive di-
mension.) Moreover the intersection R.H 1

g IPH 1
g
/ \ R.H 2

g IPH 2
g
/ contains

a reducible connection, which is nothing but the trivial connection. Note we
assumed Assumption 1.2 (2). In this situation the only reducible connec-
tion in R.M IPM / is the trivial connection. The singularity of R.†g IP†g

/

makes the study of pseudo holomorphic strip in R.†g IP†g
/ with boundary

condition defined by R.H 1
g IPH 1

g
/ and R.H 2

g IPH 2
g
/ very hard.

In other words, the right hand side of the isomorphism (3.2) has never
been defined. In that sense Conjecture 3.1 is not even a rigorous mathemati-
cal conjecture yet.

We like to mention that there is an interesting work [MW] by Manolescu
and Woodward on this point. They used extended moduli space studied pre-
viously by [Hu], [HL], [Je]. A proposal to resolve the problem of singularity
of R.†g IP†g

/ using the idea of [MW] is written in [DF].

There are various variants of Conjecture 3.1 which are solved and/or which
can be stated rigorously and/or which are more accessible.

Among those variants the most important result is one by Dostoglou–Salamon
[DS]. It studies Problem 2.1 in the following case. M1 D M2 D † � Œ0; 1�

where † is a Riemann surface. P† is an SO.3/ bundle with w2.P†/ D Œ†�.
Note @M1 D @M2 Š †t�†. When we glue M1 and M2 along their boundaries
we obtain a closed 3 manifold M of the form

† �! M �! S1:

Namely M is a fiber bundle over S1 with fiber †. The diffeomorphism class of
M is determined by ' W † ! †. Namely

M D M' D .† � Œ0; 1�/= 	
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and the equivalence relation 	 is defined by .1; x/ 	 .0; '.x//.
The diffeomorphism ' induces a diffeomorphism

'� W R.†IP†/ �! R.†IP†/

which is a symplectic diffeomorphism. Its graph

graph.'�/ D f.x; '�x/ 2 R.†IP†/ � R.†IP†/ j x 2 R.†IP†/g
is a Lagrangian submanifold of R.†IP†/ � R.†IP†/ equipped with symplec-
tic form �! ˚ !.

Theorem 3.3 (Dostoglou–Salamon [DS]). The instanton Floer homology
HF.M' IPM'

/ is isomorphic to the Lagrangian Floer homology HF.�; graph.'�//,
where � � R.†IP†/ � R.†IP†/ is the diagonal.

There is another case which is actually simpler. We consider † D T 2 (2
torus) with non-trivial SO.3/ bundle P†. Then it is easy to see that the space of
flat connections R.T 2IPT 2/ is one point. The following is known in this case.

Theorem 3.4 (Braam–Donaldson [BD]).

(1) Let M be an oriented 3 manifolds with boundary such that each of the con-
nected component of @M is T 2. Let PM be a principal SO.3/ bundle such
that w2.PM /j@M D Œ@M �.
Then we can define a Floer homology HF.M IPM / which is a Z2 vector
space.

(2) Suppose M1 and M2 are both as in (1). We assume @M1 Š @M2. We glue
them to obtain .M;PM /. Then

(3.3) HF.M;PM / Š HF.M1;PM1
/ ˝ HF.M2;PM2

/:

Note in the situation of Theorem 3.4 (1) the set of flat connections R.M IPM /

is a finite set if Assumption 2.2 is satisfied. In that case HF.M IPM / is the
cohomology of a chain complex CF.M IPM / whose underlying vector space
has a basis identified with R.M IPM /.

Note (3.3) is the case of Z2 coefficient. In the case of Z coefficient there is a
Künneth type split exact sequence.

In the situation of Theorem 3.4 (2) we assume both R.Mi IPMi
/ (i D 1; 2)

satisfy Assumption 2.2. Then we can identify

R.M IPM / D R.M1IPM1
/ � R.M2IPM2

/

and hence
CF.M IPM / D CF.M1IPM1

/ ˝ CF.M2IPM2
/

as vector spaces. It is proved in [BD] that the boundary operators coincide.
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There are two similar cases which were studied around the same time. One
is the case † D S2. In this case the bundle PS2 on S2 is necessarily trivial if it
carries a flat connection.2 In this case (3.2) and (3.3) correspond to the study of
the Floer homology of connected sum.

Theorem 3.5 (Fukaya, Li [Fu4], [Li]). Let .M1IPM1
/ and .M2IPM2

/ both
satisfy Assumption 1.2 (2). We put M D M1]M2 (the connected sum). PM1

and
PM2

induce a principal bundle PM on M in an obvious way so that Assumption
1.2 (2) is satisfied. Then for each field F there exists a spectral sequence with
the following properties:

(1) Its E2 page is

HF.M1IPM1
I F / ˚ HF.M2IPM2

I F /

˚ .HF.M1;PM1
I F / ˝ HF.M2;PM2

I F / ˝ H.SO.3/I F // :

(2) It converges to HF.M IPM I F /.

We can prove a similar statement in the case of Assumption 1.2 (1). (It was
not explored 25 years ago.)

Note in the situation of Theorem 3.5 we have the following isomorphism if
Assumption 2.2 is satisfied.

(3.4)
R0.M IPM / Š R0.M1IPM1

/ t R0.M2IPM2
/

t .R0.M1IPM1
/ � R0.M2IPM2

/ � SO.3//:

Note R0.M IPM / D R.M IPM / n ftrivial connectiong in our situation. The
first and the second term of the right hand side of (3.4) correspond to the flat
connection on M which is trivial either on M1 or on M2. The third term of
(3.4) corresponds to the flat connection on M which is non-trivial both on M1

and M2. In this case there is extra freedom to twist the connections on S2 where
we glue M1 and M2. It is parametrized by SO.3/. (3.4) explains Theorem 3.5
(1).

The spectral sequence in general does not degenerate in E2 level. In fact,
there is a non-trivial differential which is related to the fundamental homology
class of H.SO.3//. One such example is the case when M1 is Poincaré homol-
ogy sphere and M2 is Poincaré homology sphere with reverse orientation.

The next simplest case is one when † D T 2 with the trivial SU.2/ bundle.
The following Floer’s exact sequence is closely related to this case. Suppose
.M IPM / is as in Assumption 1.2 (1) and we take S1 D K � M , a knot. We
remove a tubular neighborhood S1�D2 of K from M and reglue S1�D2 along
the boundaries to obtain M 0. This process is called Dehn surgery. There are

2 If for a pair of closed 3 manifolds M and SO.3/ bundle PM , there exists S2 � M with
w2.PM / \ S2 ¤ 0, then HF.M IPM / D 0.
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several different ways to reglue, which is parametrized by the diffeomorphism
T 2 ! T 2. Composing with the diffeomorphism which extends to S1 � D2

does not change the diffeomorphism type of M 0 and so M 0 is parametrized by a
pair of integers .p; q/ (which are coprime) or p=q 2 Q[ f1g. We consider the
case when this rational number is 0; 1; 1 and write them M0, MC1 and M1.
The manifold M1 is actually M itself. MC1 is another 3 manifold which is a
homology 3 sphere. M0 is homology S1 � S2. (It satisfies Assumption 1.2 (1).)
We can extend PM jM nK to it and obtain PM0

such that the flat connection of
PM0

corresponds to the group homomorphism �1.M n K/ ! SU.2/ which
sends the meridian to �1. Here meridian is a small circle which has linking
number 1 with the knot K.

Theorem 3.6 (Floer [Fl3], Braam–Donaldson [BD]). There exists a long exact
sequence:

(3.5) � � � �!HF.MC1IPMC1
/�!HF.M1IPM1

/�!HF.M0IPM0
/�! � � � :

The relation of Theorem 3.6 to the gluing problem such as Theorems 3.3–3.5
is as follows. We put

ı
M D M n .S1 � Int D2/:

(Here S1 �D2 is the tubular neighborhood of the knot K.) The boundary @
ı

M is

T 2 on which PM is trivial. Therefore R.@
ı

M;P
@

ı

M
/ is the set of gauge equiva-

lence classes of flat SU.2/ connections on T 2, which is identified with T 2=˙1.
So, according to Proposal 2.6, the relative invariant HF ı

M
‘is’ a Lagrangian sub-

manifold of T 2=˙1, which is a sum of immersed circles in it.
On the other hand, the manifolds M0; MC1; M1 are obtained by gluing

S1 � D2 in various ways to
ı

M . The relative invariant HFS1�D2 is the set of
flat connections on M which can be identified with various circles. (See Fig. 2.)
Let C0; CC1 and C1 be the circles in T 2=˙1 corresponding to 0, C1 and 1
surgeries, respectively.

The Floer homologies appearing in (3.5) is obtained as the set of ‘mor-
phisms’ from the object HF ı

M
to those circles C0; CC1 and C1. The proof

then goes by using the identity

ŒC0� C ŒCC1� D ŒC1�

as cycles.
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CC1

C1

C0

Fig. 2. C0; CC1; C1

4. Biased review of Lagrangian Floer theory I

In this and the next sections we review Lagrangian Floer theory with emphasis
on its application to gauge theory. Another review of Lagrangian Floer theory
which put more emphasis on its application to Mirror symmetry is [Fu8].

4.1. General idea of Lagrangian Floer homology

Let .X; !/ be a 2n dimensional compact symplectic manifold (namely X is a
2n dimensional manifold and ! is a closed 2 form on it such that !n never
vanishes.) Let L1; L2 be Lagrangian submanifolds of X (namely they are n

dimensional submanifolds such that !jLi
D 0.) We first consider the case when

L1 and L2 are both embedded. We assume for simplicity that L1 is transversal
to L2. It implies that the set L1 \ L2 is a finite set. Let CF.L1; L2IZ2/ be
the Z2 vector space whose basis is identified with L1 \ L2. We take and fix an
almost complex structure J which is compatible with !. (Namely we assume
!.JX; J Y / D !.X; Y / and g.X; Y / D !.X; J Y / is a Riemannian metric.3)
For a; b 2 L1 \ L2 we consider the set of maps

u W R � Œ0; 1� �! X

with the following properties. (Here � and t are coordinate of R and Œ0; 1� re-
spectively.)

(LF.1) u is J holomorphic. Namely

(4.1)
@u

@�
D J

@u

@t
:

(LF.2) u.�; 0/ 2 L0 and u.�; 1/ 2 L1.

3 Actually the first condition is a consequence of the second condition.
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(LF.3) Z
u�! < 1:

Moreover
lim

�!�1 u.�; t/ D a; lim
�!C1 u.�; t/ D b:

We remark that these conditions are similar to (IF.1)–(IF.3) we put to define the
moduli space M.M �RI a; b/ in Subsect. 1.2. We denote the set of the maps u

satisfying these conditions by fM.L1; L2I a; b/. The translation on R direction
of the source R � Œ0; 1� induces an R action on fM.L1; L2I a; b/. We denote by
M.L1; L2I a; b/ the quotient space of this action.

We decompose M.L1; L2I a; b/ as

(4.2) M.L1; L2I a; b/ D
[
k;E

M.L1; L2I a; bI k; E/

where k 2 Z and E 2 R�0. Here M.L1; L2I a; bI k; E/ consists of the maps u

such that:

(1)
R

u�! D E.
(2) The index of the linearized equation (4.1) at u is k.

Roughly speaking the Floer’s boundary operator is defined by

(4.3) h@a; bi D
X
E

]M.L1; L2I a; bI 1; E/Œb�:

The proof of @@ D 0 would be based on the equality

(4.4)
@M.L1; L2I a; cI 2; E/

D
[

E1CE2DE

M.L1; L2I a; cI 1; E1/ � M.L1; L2I c; bI 1; E2/;

which is similar to (1.3). Actually (4.4) does not hold in general. There is so
called disk bubble which corresponds to another type of the boundary compo-
nent of M.L1; L2I a; cI 2; E/. Floer [Fl1] put Condition 4.1 below to avoid it.

Condition 4.1. For any u W .D2; @D2/ ! .X; Li / (i D 1; 2) we haveZ
D2

u�! D 0:

Theorem 4.2 (Floer [Fl1]). Under Condition 4.1, the following holds for generic
compatible almost complex structure J .

(1) The moduli space M.L1; L2I a; bI 1; E/ satisfies an appropriate transver-
sality condition.
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(2) We can define the boundary operator by (4.3).
(3) (4.4) holds and we can use it to prove @@ D 0. So we can define Floer

homology

HF.L1; L2/ Š Ker .@ W CF.L1; L2/ �! CF.L1; L2//

Im .@ W CF.L1; L2/ �! CF.L1; L2//
:

(4) If ' W X ! X is a Hamiltonian diffeomorphism then

HF.'.L1/; L2/ Š HF.L1; L2/:

(5) If L1 D L2 D L and ' W X ! X is a Hamiltonian diffeomorphism then
HF.'.L/; L/ is isomorphic to the ordinary homology H.LIZ2/ of L.

Remark 4.3. We do not explain the notion of Hamiltonian diffeomorphism here
since our description of Lagrangian Floer homology is biased to the direction
which is related to gauge theory.

If Li is spin we can define Floer homology over Z coefficient. (We can relax
this condition to relative spinness.) See [FOOO2, Chapter 8].

4.2. Monotone Lagrangian submanifold

Condition 4.1 is too much restrictive. Especially we can not work under this
condition in our application to gauge theory (for example to realize Proposal
2.6). The next step to relax this condition is due to Y.-G. Oh.

Theorem 4.4 (Oh [Oh]). Instead of Condition 4.1 we assume that Li is mono-
tone and has minimal Maslov number > 2, for i D 1; 2. Then Theorem 4.2
(1)–(4) holds.

We will explain the notion of monotonicity and minimal Maslov number
later in this subsection.

Remark 4.5. (1) Under the assumption of Theorem 4.4, Theorem 4.2 (5)
may not hold. There exists however a spectral sequence whose E2 term is
H.LIZ2/ and which converges to HF.'.L/; L/.

(2) If we assume Li to be spin (or more generally .X; L1; L2/ are relatively
spin) Theorem 4.4 (and item (1) of this remark) holds over Z coefficient.
This is proved in [FOOO1, Chapters 2 and 6] and [FOOO2, Chapter 8].

To apply Theorem 4.4 to gauge theory, we can use the next fact.

Proposition 4.6. Let .M;PM / be a pair of an oriented 3 manifold with bound-
ary and a principal SO.3/ bundle on it such that w2.PM /j@M is the fundamental
class Œ@M �. We also assume Assumption 2.2. Moreover we assume R.M IPM /

! R.@M IP@M / is an embedding (that is, injective).
Then R.M IPM / is a monotone Lagrangian submanifold. Its minimal Maslov

number is in 4ZC.
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This fact was known to many researchers at least in late 1990’s.

Sketch of the proof. We put R.@M IP@M / D R.†IP†/. Let u W .D2; @D2/ !
.R.†IP†/; R.M IPM // be a holomorphic map. Since D2 is contractible, u is
induced by a D2 parametrized family of flat connections z 7! A.z/ on †. We
use uj@D2 ! R.M IPM / to obtain an S1 D @D2 parametrized family of flat
connections z 7! A.z/ on M .

We regard A.z/ as a connection of P† � D2 and denote it by A. We also
regard A.z/ as a connection of PM � S1 and denote it by A. We remark that

Aj@M �S1 	 Aj†�@D2 :

Here 	 means SO.3/ gauge equivalent. We glue P† � D2 and PM � S1 on
@D2 �† by the above gauge equivalence to obtain a bundle PX on a 4 manifold
X D .† � D2/ [†�S1 .M � S1/. The connections A and A can be glued to
give a connection A of PX . (We can modify u by an arbitrary small amount so
that A becomes smooth.)

By using [Fu6, Formula (2.7)] we can show that the symplectic area of u is
proportional to the Yang–Mills functional of A. (Note Yang–Mills functional of
A is equal to one of A.)

Note the Maslov index of Œu� is defined by comparing two trivializations of
TR.†IP†/ on u.@D2/, one is obtained by contractibility D2 and the map u, the
other is obtained by

TR.†IP†/jR.M IPM / D TR.M IPM / ˝ C:

The first trivialization corresponds to the triviality of PX j†�D2 and the second
trivialization corresponds to the triviality of PX jM �S1 .

The difference between two trivializations of bundles on † � S1 is a gauge
transformation on †�S1 whose degree is nothing but the first Pontryagin num-
ber of PX . Thus the Maslov index of u is proportional to the first Pontryagin
number of PX .

Using the holomorphicity of u we can show that Yang–Mills functional and
first Pontryagin number is proportional. We thus proved the monotonicity.

The fact that Maslov index is divisible by 4 can be proved by showing that
Maslov index is 4 times the first Pontryagin number. We can prove it for example
from the formula [DS, page 592 the 6th line from the bottom]. It describes the
way how hc1.R.†IP†//; Œu�i changes when we twist the bundle by a gauge
transformation g on S3. (Here twisting bundle on 4 manifolds corresponding to
changing the map u from 2 manifold to R.†IP†/.) It claims that the change
of hc1.R.†IP†//; Œu�i is twice of the degree of g. Note the degree of g is the
amount of the change of the first Pontryagin number and Maslov index is twice
of c1.
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Theorem 4.7. Suppose .Mi ;PMi
/ satisfies the assumptions of Proposition

4.6 for i D 1; 2. Theorem 4.4 implies that Floer homology HF.R.M1IPM1
/;

R.M2IPM2
// is well-defined. We assume that @M1 D �@M2 and PM1

j@M1
Š

PM2
j@M2

.
Then instanton Floer homology is isomorphic to Lagrangian Floer homol-

ogy:

(4.5) HF.M IPM / Š HF.R.M1IPM1
/; R.M2IPM2

//:

Here .M;PM / is obtained by gluing .M1;PM1
/ and .M2;PM2

/ along their
boundaries.

Remark 4.8. Theorem 4.7 is claimed as [Fu9, Corollary 1.2]. The outline of its
proof is given in [Fu9, Sect. 5]. The detail of the proof of Theorem 4.7 will
be written in a subsequent joint paper [DFL] with Aliakbar Daemi and Max
Lipyanskiy.

The cobordism argument used in [Fu9, Sect. 5] appeared also in [Fu5, Sect.
8] as the proof of [Fu5, Theorem 8.7], which claims that there exists a homo-
morphism from the left hand side of (4.5) to the right hand side of (4.5). It was
conjectured but not proved in [Fu5, Conjecture 8.9] that this homomorphism is
an isomorphism. We use the same map to prove Theorem 4.7. The idea which
was missing in 1997 when [Fu5] was written is the following.

(1) When @.M;PM / D .†;P†/, we use R.M IPM / itself as a ‘test object’
of the functor: Fuk.R.†IP†// ! C H . (Here C H is the A1 category
whose object is a chain complex.) This is the functor which associates to L (a
Lagrangian submanifold of R.†IP†/) the chain complex CF..M IPM /I L/

the ‘Floer’s chain complex of .M IPM / with boundary condition given by
L’. (See Theorem 6.12.) In other words we take R.M IPM / as the La-
grangian submanifold L in (6.6).

(2) If we take L D R.Mi IPMi
/ then the chain complex CF..M IPM /I L/ in

(6.6) can be identified with the de Rham complex of L.

Something equivalent to these two points appeared in the paper [LL] by Lekili–
Lipyanskiy. After that it was used more explicitly in [Fu9]. The same argument
applied in a similar situation as Theorem 4.7 was explicitly mentioned in a talk
by Lipyanskiy [Ly2] done in 2012.

It seems to the author that [LL] is the paper which revives the idea using the
cobordism argument in this and related problems and became the turning point
of the direction of the research. During the years 1998–2010 the cobordism ar-
gument proposed in [Fu5] was not studied and instead a more analytic approach
using adiabatic limit had been pursued.

In the rest of this subsection we explain the notion of monotone Lagrangian
submanifold and minimal Maslov number and a part of the idea of the proof of
Theorem 4.4.
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We first review the definition of Maslov index of a Lagrangian submanifold.
(See [FOOO1, Subsect. 2.1.1] for detail.) Let .X; L/ be a pair of a symplectic
manifold X and its (embedded) Lagrangian submanifold L. We take a compat-
ible almost complex structure J on X . For a map u W .D2; @D2/ ! .X; L/ we
consider the equation @u D 0. Its linearization defines an operator

Du@ W C 1..D2; @D2/I .u�TX; u�TL// �! C 1.D2I u�TX ˝ �0;1/:

We can show that there exists � W H2.X; L/ ! Z such that

(4.6) Index Du@ D �.Œu�/ C dim L:

The number �.Œu�/ is called the Maslov index of u.

Definition 4.9. We call L a monotone Lagrangian submanifold, if there exists a
positive number c independent of u such that

(4.7) �.Œu�/ D c

Z
D2

u�!

for any u W .D2; @D2/ ! .X; L/.
The minimum Maslov number L is by definition:

(4.8) inff�.Œu�/ j u W .D2; @D2/ �! .X; L/; �.Œu�/ ¤ 0g:
Now we briefly explain the reason why the equality (4.4) holds in the situ-

ation of Theorem 4.4. Let ui W R � Œ0; 1� ! X be a sequence of elements of
M.L1; L2I a; bI 2; E/. By taking a subsequence if necessary we may assume
that the limit looks like either Fig. 3 or Fig. 4. The case of Fig. 3 corresponds to
the right hand side of (4.4). So it suffices to see that Fig. 4 does not occur. The
limit drawn in Fig. 4 can be regarded as a pair of Œu1� 2 M.L1; L2I a; bI k; E 0/
for some k and E 0 and u00 W .D2; @D2/ ! .X; Li /. Since u00 is pseudo holo-
morphic we have

R
D2.u00/�! > 0. Therefore (4.7) implies �.Œu00�/ > 0. Since

the minimal Maslov number is greater than 2 we have �.Œu00�/ > 2. By (4.6)
and index sum formula we can show

k D 2 � �.Œu00�/ < 0:

Using this fact we can show M.L1; L2I a; bI k; E 0/ is an empty set when ap-
propriate transversality is satisfied. This implies that Fig. 4 does not happen.

Remark 4.10. Note in the case when the minimal Maslov number is 2 we may
have k D 2 � 2 D 0. Since the (virtual) dimension of M.L1; L2I a; bI k; E 0/ is
k�1 D �1, one might imagine that this is enough to show that M.L1; L2I a; bI
k; E 0/ is an empty set. However there is a case a D b. In that case M.L1; L2I
a; aI 0; 0/ consists of one point (the constant map u to a). This is an element of
M.L1; L2I a; aI 0; 0/. So it is non-empty. Note this element is a fixed point of
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L2L1

Fig. 3. End 1

disk bubble

holomorphic stric L2

L1

Fig. 4. End 2

the R action. So even though the virtual dimension of M.L1; L2I a; aI 0; 0/ is
�1 it can still be non-empty. This is the reason why we need to assume that min-
imal Maslov index is strictly larger than 2 in Theorem 4.4. This point appeared
in [Oh] and was studied in great detail in [FOOO1, Sect. 3.6.3, etc.]. The notion
of potential function introduced in [FOOO1, Definition 3.6.33] is related to this
point.

As we have seen in this section, in the situation when the space R.M IPM /

is embedded in R.@M IP@M / we can use its monotonicity to define Lagrangian
Floer homology and prove Theorem 4.7.

In general R.M IPM / is an immersed Lagrangian submanifold in R.@M IP@M /

even after making appropriate perturbation. However we still have a kind of
monotonicity.

Definition 4.11. Let .X; !/ be a symplectic manifold and iL W QL ! X a
Lagrangian immersion. Namely iL is an immersion, dim QL D 1

2
dim X and

i�
L! D 0.

We say L D . QL; iL/ is monotone in the weak sense if for each pair .u; �/

such that u W D2 ! X and � W @S1 ! QL with uj@D2 D iL ı � the equality

(4.9) �.Œu�/ D c

Z
D2

u�!
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holds. (Note the Maslov index �.Œu�/ can be defined in a similar way as embed-
ded case.)

The minimal Maslov number is defined in the same way.

Proposition 4.12. Let .M;PM / be a pair of an oriented 3 manifolds with bound-
ary and a principal SO.3/ bundle on it such that w2.PM /j@M is the fundamental
class Œ@M �. We also assume Assumption 2.2. Moreover we assume R.M IPM /

! R.@M IP@M / is an immersion.
Then R.M IPM / is an immersed monotone Lagrangian submanifold in the

weak sense. Its minimal Maslov number is in 4ZC.

The proof is the same as the proof of Proposition 4.6.
However we cannot generalize Theorem 4.4 to the case of immersed mono-

tone Lagrangian submanifold in the weak sense with minimal Maslov number
> 2. In fact other than those drawn in Figs. 3 and 4 there exists another type of
boundary of the moduli space M.L1; L2I a; bI 2; E/, which is drawn in Fig. 5
below. So (4.4) does not hold in this generality.

Nevertheless actually we can still define the right hand side of (4.5) and can
prove the isomorphism (4.5). For this purpose we need various new ideas which
was developed in Lagrangian Floer theory during 1996–2009. We describe some
of them in the next section.

self-intersection

L2

L1

Fig. 5. End 3

5. Biased review of Lagrangian Floer theory II

5.1. Filtered A1 category

This subsection is a brief introduction to filtered A1 category and algebra.
For more detail, see [AFOOO], [Fu10], [Fu7], [FOOO1], [FOOO3], [Ke], [Le],
[Ly], [Sei] and, etc.
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For the application to gauge theory such as Problem 2.1 we can work on Z

or Z2 coefficient as we will explain in Subsect. 6.1. However for the general
story it is more natural to use universal Novikov ring which was introduced in
[FOOO1]. We first define it below. Let R be a commutative ring with unit, which
we call ground ring. The reader may consider R D Z2;Z;R or C. We take a
formal variable T and consider the formal sum

(5.1)
1X

kD0

akT �k

such that:

(NR.1) ak 2 R,
(NR.2) 	k 2 R�0,
(NR.3) 	k < 	kC1,
(NR.4) limk!1 	k D 1.

We call the totality of such formal sum (5.1) the universal Novikov ring and de-
note it by ƒR

0 . We replace (NR.2) by 	k 2 R (resp. 	k > 0) to define ƒR (resp.
ƒRC.) ƒR

0 and ƒR become rings with unit in an obvious way. ƒRC is an ideal of
ƒR

0 . In case R is a field, ƒR becomes a field, which we call (universal) Novikov
field. In case R is a field, ƒRC is a maximal ideal of ƒR

0 . In fact ƒR
0 =ƒRC D R.

The ring ƒR has a filtration F �ƒR which consists of (5.1) with 	0 � 	. It
induces a filtration F �ƒR

0 of ƒR
0 . This filtration defines a metric on these rings,

by which they become complete.
Hereafter we omit R and write ƒ0, ƒ, ƒC in place of ƒR

0 , ƒR, ƒRC, some-
times.

Definition 5.1. A filtered A1 category C consists of the following objects.

(1) A set Ob.C /, which is the set of objects.
(2) A graded ƒ0 module C .c1; c2/ for each c1; c2 2 Ob.C /. We call C .c1; c2/

the module of morphisms. It is a T -adic completion of a free ƒ0 module.
(We may consider Z grading or Z2N grading for some N 2 Z>0. In our
application in Sect. 6, we have Z4 grading. The number 2N in our geometric
applications is a minimal Maslov number explained in the last section.)

(3) For each c0; : : : ; ck 2 Ob.C /, we are given operations (ƒ0 linear homo-
morphisms)

(5.2) mk W C Œ1�.c0; c1/b̋ � � � b̋C Œ1�.ck�1; ck/ �! C Œ1�.c0; ck/;

of degree C1 for k D 0; 1; 2; : : : and ci 2 Ob.C /, which preserves the
filtration. We call it structure operations. Here C Œ1�.c; c0/ is the degree shift
of C .c; c0/. Namely the degree k part of C Œ1�.c; c0/ is degree k C 1 part
of C .c; c0/. The symbol b̋ denotes the T -adic completion of the algebraic
tensor product.
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(4) The following A1 relation is satisfied.
(5.3)

0 D
X

k1Ck2DkC1

k1�1X
iD0

.�1/�mk1
.x1; : : : ; xi ; mk2

.xiC1; : : : ; xk2
/; : : : ; xk/;

where � D i C Pi
j D1 deg xj , xi 2 C Œ1�.ci�1; ci /, c0; : : : ; ck 2 Ob.C /.

(5) We require
m0.1/ � 0 mod T �;

for some 
 > 0.
(6) An element ec 2 C .c; c/ of degree 0 is given for each c 2 Ob.C / such that:

(a) If x1 2 C .c; c0/, x2 2 C .c0; c/ then

m2.ec; x1/ D x1; m2.x2; ec/ D .�1/deg x2x2:

(b) If kC` ¤ 1, x1˝� � �˝x` 2 B`C Œ1�.a; c/, y1˝� � �˝yk 2 BkC Œ1�.c; b/

then

(5.4) mkC`C1.x1; : : : ; x`; ec; y1; : : : ; yk/ D 0:

We call ec the unit.4

A filtered A1 category with one object is called a filtered A1 algebra.
A filtered A1 category or algebra is called strict if m0 D 0. It is called

curved otherwise.

Note m1 W C .c; c0/ ! C .c; c0/ is degree one and is regarded as a ‘boundary
operator’. However in general m1 ı m1 D 0 does not hold. In fact (5.3) implies

(5.5) m1.m1.x// C m2.m0.1/; x/ C .�1/deg xC1m2.x; m0.1// D 0:

On the other hand (5.5) implies that m1 ı m1 D 0 if filtered A1 category
C is strict. The algebraic point about the well-definedness of m1 homology,
which we mentioned above, is closely related to the geometric problem to define
Lagrangian Floer theory, which we mentioned at the end of the last section. We
will go back to this point in the next subsection.

An idea introduced in [FOOO1] is to deform Floer’s boundary operator m1

to mb
1 so that mb

1 ı mb
1 D 0 holds.

Definition 5.2. Let c 2 Ob.C /. A bounding cochain (or Maurer–Cartan ele-
ment) of c is an element b 2 C .c; c/ such that:

(1) The degree of b is 1.
(2) b � 0 mod ƒC.

4 In some reference we do not assume unit to exist for filtered A1 category. In this article we
assume it to simplify the notation.
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(3)

(5.6)
1X

kD0

mk.b; : : : ; b/ D 0:

Note (2) implies that the left hand side of (5.6) converges in T -adic topology.
We denote by fM.c/ the set of all bounding cochains. We say an object c is

unobstructed if fM.c/ is non-empty.

Remark 5.3. (1) We can define appropriate notion of gauge equivalence among
elements of fM.c/. (See [FOOO1, Sect. 4.3].) The set of all gauge equivalence

classes is called Maurer–Cartan moduli space and is written as M.c/.5

(2) In certain situation we may relax the condition Definition 5.2 (2) and can
use a class b 2 C .c; c/ of degree 1 which satisfies (5.6). (In such a case the
left hand side of (5.6) should be defined carefully.) We write fM.cI ƒC/ in
place of fM.c/ when we want to clarify that we consider only the elements
satisfying Definition 5.2 (2).

Definition-Lemma 5.4. Let c; c0 2 Ob.C / and b 2 fM.c/, b0 2 fM.c0/. We
define

(5.7) m
b;b0

1 W C .c; c0/ �! C .c; c0/

by the formula:

(5.8) m
b;b0

1 .x/ D
1X

k;`D0

mkC`C1.b; : : : ; b„ ƒ‚ …
k

; x; b0; : : : ; b0„ ƒ‚ …
`

/:

(5.3) and (5.6) imply
m

b;b0

1 ı m
b;b0

1 D 0:

We define

(5.9) HF..c; b/; .c0; b0// D Ker.mb;b0

1 W C .c; c0/ �! C .c; c0//
Im.m

b;b0

1 W C .c; c0/ �! C .c; c0//

and call it the Floer cohomology of .c; b/ and .c0; b0/.

We can deform mk in the same way as follows. Hereafter we write mkC`C1

.bk; x; .b0/`/; etc. in place of mkC`C1.b; : : : ; b„ ƒ‚ …
k

; x; b0; : : : ; b0„ ƒ‚ …
`

/; etc.

Definition-Lemma 5.5. Let C be a curved filtered A1 category. We define a
strict filtered A1 category C 0 as follows.

5 It can be regarded as a set of rigid points of certain rigid analytic stack.
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(1) An object of C 0 is a pair .c; b/ where c 2 OB.C / and b 2 fM.c/.
(2) If .c; b/; .c0; b0/ are objects of C 0 then C 0..c; b/; .c0; b0// D C .c; c0/ by

definition.
(3) If .ci ; bi / 2 OB.C 0/ for i D 0; : : : ; k and xi 2 C 0..ci�1; bi�1/; .ci ; bi // D

C .ci�1; ci / for i D 1; : : : ; k. Then we define the structure operations
m

.b0;:::;bk/

k
of C 0 as follows.

(5.10)
m

.b0;:::;bk/

k
.x1; : : : ; xk/

D
X

`0;��� ;`k

mkC`0C���C`k
.b

`0

0 ; x1; b
`1

1 ; : : : ; b
`k�1

k�1
; xk; b

`k

k
/:

We call C 0 the associated strict category to C .

Note

m
.b/
0 .1/ D

1X
kD0

mk.b; : : : ; b/ D 0

by (5.6). We omit the proof that the structure operations (5.10) satisfies the
relation (5.3), which is an easy calculation.

5.2. Immersed Lagrangian submanifold and its Floer homology

Let iL W QL ! X be an n dimensional immersed submanifold of a symplectic
manifold X of dimension 2n. We say L D . QL; iL/ is an immersed Lagrangian
submanifold if i�

L! D 0.

Definition 5.6. We say that L has clean self-intersection if the following holds.

(1) The fiber product QL �X
QL is a smooth submanifold of QL � QL.

(2) For each .p; q/ 2 QL �X
QL we have

f.V; W / 2 Tp
QL ˚ Tq

QL j diL.V / D diL.W /g D T.p;q/. QL �X
QL/:

We say L has transversal self-intersection if L has clean self-intersection and

. QL �X
QL/ n QL

is a finite set. (Note the fiber product QL �X
QL contains the diagonal Š QL.)

A finite set of immersed Lagrangian submanifolds fLi j i D 1; : : : ; N g
is said a clean collection (resp. transversal collection) if the disjoint unionSN

iD1 Li has clean self-intersection (resp. has transversal self-intersection).
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Lagrangian Floer theory in [FOOO1], [FOOO2] associates a filtered A1 al-
gebra to an embedded Lagrangian submanifold L. This A1 algebra as a ƒ0

module is taken to be the cohomology group of L or any of its chain model.
Namely it defines a homomorphism mk W H.LI ƒ0/˝k ! H.LI ƒ0/ satis-
fying (5.3). It also associates a filtered A1 category Fuk.L/ to a transversal
collection of embedded Lagrangian submanifolds L D fLi j i D 1; : : : ; N g as
follows.

(L.C1) The set of object is L.
(L.C2) For Li ; Lj 2 L, the module of morphisms, which we write CF.Li ; Lj /,

is defined as follows:
(a) If i ¤ j then it is a free ƒ0 module whose basis is identified with

Li \ Lj .
(b) If i D j then CF.Li ; Li / D H.Li I ƒ0/. 6

(L.C3) The structure operations (5.2) is defined by using the moduli space of
pseudo holomorphic k C 1 gons.

Fig. 6 below is the moduli space of k C 1 gons, which calculate the coefficient
of Œx0� in m7.x1; : : : ; x7/:

DL5 L6

L7

DL1 L0

L2

L3

L4

z6

z0 z1

z2

z3

z4

z5

Fig. 6. hm7.x1; : : : ; x7/; x0i

Akaho–Joyce [AJ] generalized this story to the immersed case as follows.
Let L be a transversal collection of immersed Lagrangian submanifolds L D
fLi j i D 1; : : : ; N g. Then we have a filtered A1 category satisfying (L.C1)–
(L.C3), except (L.C2) (b) is replaced by

(b’) If i D j then

(5.11) CF.Li ; Li / D H.Li I ƒ0/ ˚
M

ƒ0.p; q/

6 We may also take CF.Li ; Li / (in principle any) chain model of the cohomology of Li .
For example in [FOOO1], [FOOO2], [FOOO3], [Fu6] the singular chain complex is used. In
[AFOOO], [Fu10], [FOOO5], [FOOO6], etc. de Rham complex is used.
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where the direct sum is taken over all .p; q/ such that iLi
.p/ D

iLi
.q/ and p ¤ q.

We say
L

ƒ0.p; q/ the switching part and H.Li I ƒ0/ the diago-
nal part of CF.Li ; Li /.

We remark that .p; q/ is an ordered pair. Namely .p; q/ ¤ .q; p/. So we asso-
ciate extra two generators to each self-intersection.

The definition of structure operation including the generator .p; q/ is simi-
lar and by using the moduli space drawn below. Note the 3rd marked point in

L2 L4

L1

L0

z0

z1 z2

z3

z4z5

Fig. 7. hm7.x1; : : : ; x5/; x0i

the figure corresponds .p; q/ which is the extra generator appearing in item (b’)
above. Those generators correspond to the switchings at the boundary curve.
We remark if x D iLi

.p/ D iLi
.q/ is the self-intersection point of Li , the inter-

section Li \ U of Li with a small neighborhood U of x consists of two smooth
n dimensional submanifolds. They are image of neighborhoods of p and of q

respectively. Switching at the 3rd marked point means that the boundary value
is on one of the components of Li \ U for z 2 @D2, z < z3 and on the other
component of Li \ U for z 2 @D2, z > z3. There are two different ways how
the switching occurs. One is the switching from the component containing p

to the component containing q, and the other is the switching from the compo-
nent containing q to the component containing p. Those two different ways of
switching correspond to the two generators appearing in (5.11).

5.3. The case of immersed Lagrangian submanifold which is monotone in the
weak sense

Note (5.5) shows that the term m0.1/7 causes the problem to define Floer ho-
mology. Namely if m0.1/ D 0 then m1m1 D 0. In other words we are looking

7 which is called curvature sometimes.



32 K. Fukaya

for an appropriate element b of CF.Li ; Li / such that mb
0.1/ D 0. We called

such b a bounding cochain. The progress we made recently in our study of 3+2
dimensional Donaldson–Floer theory, is that we can now prove the existence of
such b in the situation appearing in it. We explain it in Sect. 6. Before doing so
we go back to the situation of Subsect. 4.2.

Let L be a transversal collection of immersed Lagrangian submanifolds. We
put L D fLi j i D 1; : : : ; N g.

Proposition 5.7. Suppose each of Li are immersed monotone Lagrangian sub-
manifolds in the weak sense and its minimal Maslov index is greater than 2.
Then the element

m0.1/ 2 CF.Li ; Li /

lies in the switching part.

Proof. The diagonal part of m0.1/ is defined as the (virtual) fundamental class
of the moduli space of the pair ...D2; @D2/; z0/; u/ where u W .D2; @D2/ !
.X; Li / is a pseudo holomorphic curve such that @D2 ! Li lifts to QLi . There-
fore by assumption the (virtual) dimension of such moduli space is �.ˇ/ C n �
3 C 1. Since �.ˇ/ > 2 by assumption the dimension is greater than n. Hence it
lies in H�.Li / with � > n D dim Li and is 0. �

By Proposition (5.7) and (5.5) the right hand side of

m1m1.x/ D .�1/deg xm2.x; m0.1// � m2.m0.1/; x/

is defined by the moduli space as in Fig. 5. In other words this formula is an
algebraic way to explain the difficulty to define the Floer homology of a pair
of immersed Lagrangian submanifolds which is monotone but immersed. (We
explained it in Subsect. 4.2 in a geometric way.)

We also have the following:

Proposition 5.8. In the situation of Proposition 5.7 the sum appearing in the
definition of structure operations are all finite sum and the construction works
over the ground ring Z2 (or Z in the case when we can find orientations of the
moduli space which is compatible at the boundaries).

The proof of the first half is similar to the proof of Proposition 5.7. The proof
of the second half is similar to [FOOO4].

6. Instanton Floer homology for 3 manifolds with boundary

6.1. Main theorems

The next two theorems are the main results explained in this article. We assume
the following for the simplicity of the statement. Let M be a 3 manifold with
boundary † D @M and let PM be a principal SO.3/ bundle. We denote P† the
restriction of PM to †. We assume w2.P†/ D Œ†�. (cf. Assumption 1.2 (1).)
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Assumption 6.1. We assume Assumption 2.2. Moreover we assume that the re-
striction map defines an immersion R.M IPM / ! R.†IP†/.

We remark that we can reduce the general case to the case when this as-
sumption is satisfied by perturbing the equation Fa D 0 in the same way as
[D2], [Fl2], [He].

Theorem 6.2. We assume Assumption 6.1. Then the object R.M IPM / is unob-
structed. Namely there exists a bounding cochain bM in CF.R.M IPM //.

Moreover we can find bM in a canonical way. In other words, its gauge
equivalence class is an invariant of .M IPM /.

Remark 6.3. (1) We omit the definition of gauge equivalence between bounding
cochains. See [FOOO1, Definition 4.3.1].

(2) We can remove Assumption 6.1 in Theorem 6.2 by perturbing the equation
Fa D 0 (which defines R.M IPM /) on a compact subset of M . The same
remark applies to the next theorem.

(3) We can also prove that bM is supported in the switching components.

Theorem 6.4. Suppose .M1;PM1
/ and .M2;PM2

/ satisfy Assumption 2.2. We
also assume

@.M1;PM1
/ D .†;P†/; @.M2;PM2

/ D .�†;P†/:

We glue .M1;PM1
/ and .M2;PM2

/ along their boundaries to obtain .M;PM /.
Then we have an isomorphism:

(6.1) HF..R.M1IPM1
/; bM1

/; .R.M2IPM2
/; bM2

// Š HF.M;PM / ˝ ƒ
Z2

0 :

Note the Lagrangian Floer homology in the left hand side has ƒ
Z2

0 coeffi-
cient. However actually it can be defined over Z2 coefficient. In fact we have:

Proposition 6.5. In the situation of Theorem 6.2 we may choose the bounding
cochain bM so that it is entirely in the switching part.

Then using Proposition 5.8 we can define Floer homology

HF..R.M1IPM1
/; bM1

/; .R.M2IPM2
/; bM2

//

over Z2 coefficient and (6.1) holds over Z2 coefficient.
Theorems 6.2 and 6.4 will be proved in a forthcoming joint paper with Ali-

akbar Daemi. (See [DF] for possible generalizations of them.)
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6.2. A possible way to obtain bounding cochain bM directly from moduli
spaces of ASD-connections

In this subsection we explain a conjecture which provides a way to obtain the
bounding cochain bM in Theorem 6.2, directly by counting the order of certain
moduli space of ASD-connections. The author is unable to prove this conjecture,
which looks rather hard. The proof of Theorem 6.2 is performed in a different
way as we will sketch in Subsects. 6.3 and 6.4.

Let .M;PM / be as in Theorem 6.2. We consider the interior of M , that is
M n @M . We write it M for simplicity of notation in this subsection. We choose
its Riemannian metric such that M minus a compact set is isometric to the direct
product † � .0; 1/t . We use t as the coordinate of .0; 1/t . We put the suffix t

to clarify this point. We take direct product M �R� and use � as the coordinate
of R factor and consider a principal SO.3/ bundle PM � R� .

Definition 6.6. We consider the set of all connections A of PM � R� with the
following properties.

(1) F C
A D 0. Namely A is an Anti-Self-Dual connection.

(2) We have

(6.2)
Z

M �R�

kFAk2 VolM d� D E < 1:

We denote by fM.M �R� IPM �R� I E/ the set of all gauge equivalence classes
of such A. (Here E is as in (6.2).)

We can define an R� action on fM.M �R� IPM �R� I E/ by the translation
of R� direction. We denote by M.M � R� IPM � R� I E/ the quotient space of
this R� action.

Conjecture 6.7. We assume Assumption 6.1. Moreover we assume that R.M IPM /

has transversal self-intersection. Then we can find an R� invariant perturbation
supported on a compact subset of M so that the following holds.
(1) M.M � R� IPM � R� I E/ becomes a finite dimensional manifold.
(2) We can compactify it so that the singularity of the compactification has codi-

mension 4.
(3) Any element of M.M �R� IPM �R� I E/ is gauge equivalent to a connec-

tion A with the following properties.
(a) There exist Œa�; Œb� 2 R.M IPM / such that

lim
�!�1 AjM �f�g D a; lim

�!C1 AjM �f�g D b:

(b) There exists Œ˛� 2 R.†IP†/ such that the following holds for any � .

lim
t!1 Aj†�f.t;�/g D ˛:

Note we require ˛ to be independent of � .
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(c) In particular the restriction of a and b to † are both gauge equivalent to
˛.

(4) If the dimension of M.M �R� IPM �R� I E/ is zero then Œa� ¤ Œb� in item
(3).

(5) We put Switch D f.Œa�; Œb�/ j Œa� ¤ Œb�; Œaj†� D Œbj†�g. For each .Œa�; Œb�/

2 Switch, let c.Œa�; Œb�/ be the number of elements ŒA� as in item (3) such
that it is in the zero dimensional component. Then the sumX

.Œa�;Œb�/2Switch

c.Œa�; Œb�/.Œa�; Œb�/ 2 CF.R.M IPM /; R.M IPM //

is the bounding cochain bM in Theorem 6.2.

This conjecture is difficult to prove. It seems that item (3) is a kind of gauge
theory analogue of a result by Bottman [Bo].

6.3. Right A1 module and cyclic element

In this and the next subsections we explain a way to go around the difficult
analysis to study the moduli space M.M �R� IPM �R� I E/ but use an algebraic
lemma to obtain the bounding cochain bM . To state it we need notations.

Definition 6.8. Let .C; fmkg/ be a filtered A1 algebra, which may be curved.
A right filtered A1 module over .C; fmkg/ is .D; fnkg/ such that:

(1) D is a graded ƒ0 module which is a completion of free ƒ0 module,
(2) For k D 0; 1; 2; : : : ,

nk W D ˝ C Œ1� ˝ � � � ˝ C Œ1�„ ƒ‚ …
k

�! D

is a ƒ0 module homomorphism which preserves filtration and has degree 1.
Here C Œ1�d D C dC1 by definition.

(3) The next relation holds for y 2 D and x1; : : : ; xk 2 C .
(6.3)

0 D
kX

`D0

nk�`.n`.yI x1; : : : ; x`/; x`C1; : : : ; xk/

C
kX

iD�1

kX
j Di

.�1/�nk�j CiC1.yI x1; : : : ; m.xiC1; : : : ; xj /; xj C1; : : : ; xk/;

where � D deg y C deg x1 C � � � C deg xi C i C 1.
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Let .D; fnkg/ be a right filtered A1 module over .C; fmkg/ and b a bound-
ing cochain of .C; fmkg/. We define db W D ! D by

(6.4) db.y/ D
1X

kD0

nk.yI b; : : : ; b/:

It is easy to see from (6.3) that db ı db D 0.

Definition 6.9. Let .D; fnkg/ be a right filtered A1 module over .C; fmkg/. An
element 1 2 D is said to be a cyclic element if the following holds.

(1) The map x 7�! n1.1; x/ is a ƒ0 module isomorphism: C �! D,
(2) n0.1/ � 0 mod ƒC.

Definition 6.10. Let G be a submonoid of R which is discrete.
Let C be a completion of a free ƒ0 module. An element x of C is said to be

G-gapped if it is of the form

x D
X
i;j

ai;j T �i ej ;

where ai;j 2 R (the ground ring), 	i 2 G � R�0, and ej is a basis of C .
Suppose Ci (i D 1; 2) are completions of free ƒ0 modules. A filtered ƒ0

module homomorphism from C1 to C2 is said to be G-gapped if it sends G-
gapped elements to G-gapped elements.

A filtered A1 algebra (resp. category, module) are said to be G-gapped if
all of its structure operations are G-gapped.

The filtered A1 categories we obtain in Lagrangian Floer theory are always
G-gapped for some G.

Proposition 6.11. Let .D; fnkg/ be a right filtered A1 module over .C; fmkg/.
We assume that they are G-gapped. Let 1 2 D be a cyclic element, which is also
G-gapped.

Then there exists a unique G-gapped element b of C such that:

(1) b is a bounding cochain of C ,
(2)

(6.5) db.1/ D 0:

Here db is as in (6.4).

The proof is actually easy. We regard (6.5) as an equation for b. We can
solve it by induction on energy filtration. (We use G-gappedness here so that
the filtration is parametrized by a discrete set.) Then using db.db.1// D 0, we
can show that b is a bounding cochain. See [Fu9, Proposition 3.5] for the proof.
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We remark that we do not assume that C is unobstructed. Namely a pri-
ori there may not exist bounding cochain. In other words, we can use Propo-
sition 6.11 to show the existence of bounding cochain. This turn out to be a
useful tool to prove such existence. We remark that we are unable to define La-
grangian Floer homology unless we have some bounding cochain. So proving
the existence of bounding cochain is a crucial step for various applications of
Lagrangian Floer theory.

6.4. Existence of bounding cochain

In this subsection we show an outline of the way how we use Proposition 6.11
to prove Theorem 6.2.

To put the discussion in an appropriate perspective, we consider the follow-
ing situation. Let .M IPM / be as in Theorem 6.2. Let L be an immersed La-
grangian submanifold of R.†IP†/. We assume that fR.M IPM /; Lg is a clean
collection in the sense of Definition 5.6.

We put

(6.6) CF..M IPM /I L/ D C�.R.M IPM / �R.†IP†/ L/ Ő ƒ0:

Here R.M IPM / �R.†IP†/ L is the fiber product of two immersed Lagrangian
submanifolds and is a smooth manifold by our assumption. C�.R.M IPM /�R.†IP†/

L/ is certain chain model of the homology group of this manifold. Ő is the T -
adic completion of algebraic tensor product.

Note CF..M IPM /I L/ as a ƒ0 module is the same as the underlying ƒ0

module CF.R.M IPM /I L/ of the chain complex which we use to define Floer
homology HF.R.M IPM /I L/. We recall that we associated to L a filtered A1
algebra (as in Subsect. 5.2). We write it CF.L/.

Theorem 6.12. On CF..M IPM /I L/, there exists a structure of right filtered
A1 module over CF.L/.

We use the next proposition together with Theorem 6.12 to prove Theorem
6.2.

We take L D R.M IPM /. Then by definition

CF..M IPM /I L/ D C�.R.M IPM / �R.†IP†/ R.M IPM // Ő ƒ0:

We remark R.M IPM / is an open and closed submanifold of R.M IPM /�R.†IP†/

R.M IPM /. We denote by 1 2 CF..M IPM /I R.M IPM // the differential 0

form which is 1 on R.M IPM / and is zero on other part.

Proposition 6.13. 1 2 CF..M IPM /I R.M IPM // is a cyclic element of the
right filtered A1 module CF..M IPM /I R.M IPM // over CF.R.M IPM //.
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Theorem 6.2 is an immediate consequence of Proposition 6.11, Theorem
6.12 and Proposition 6.13.

In the rest of this subsection we briefly explain the idea of the proof of The-
orem 6.12. The idea is to use Lagrangian submanifold L as a boundary condi-
tion for an ASD-equation on M � R. (It appeared in [Fu2] in the year 1992. It
was elaborated in [Fu5]. Actually this was the motivation of the author when
he introduced the notion of A1 category in the study of gauge theory and of
symplectic geometry.)

We put a metric on M such that it is of product type † � .�1; 0� near the
neighborhood of the boundary @M D †. (Note this metric is different from one
we used in Subsect. 6.2. In Subsect. 6.2 we take a Riemannian metric on M n †

which is isometric to † � .0; 1/ outside a compact set.)
We then consider the product and M � R� and a connection A on it such

that:

(1) A is an ASD-connection. Namely F C
A D 0.

(2) Z
M �R�

kFAk2VolM d� < 1:

(3) There exists .a; a0/; .b; b0/ 2 R.M IPM / �R.†IP†/ L such that

lim
�!�1 AjM �f�g D a; lim

�!C1 AjM �f�g D b:

(4) We put L D . QL; iL/ where iL W QL ! R.†IP†/ is an immersion. There
exist Ez D .�1; : : : ; �k/ 2 R� with �1 < � � � < �k and a continuous map
� W R� n f�1; : : : ; �kg ! QL such that

lim
�!�1 �.�/ D a0; lim

�!C1 �.�/ D b0

and for each �

ŒAj@M �f�g� D iL.�.�// 2 R.†IP†/:

Moreover iL ı � W R� n f�1; : : : ; �kg ! R.†IP†/ extends continuously to
R� .

Remark 6.14. The way how we write Condition (4) above is not precise. There
are three different ways known to set this boundary conditions at the stage of
2016. (One which the author proposed in [Fu2] in the year 1992 does not seem
to give a correct moduli space.)

(i) The method to use a Riemannian metric which is degenerate near the
boundary. This was introduced by the author in [Fu6] in 1997.
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(ii) The method to require that A is flat on each † � f�g and its gauge equiv-
alence class is in L. This was introduced and used by Salamon–Wehrheim
[SaWe], [We1], [We2] at the beginning of the 21st century.

(iii) Using pseudo holomorphic curve equation near the boundary and a match-
ing condition. This is introduced by Lipyanskiy [Ly1] around 2010.

The methods (i), (iii) both can be used for our purpose. The compactness and
removable singularity results which are needed for our purpose are proved in
[Fu6] and in [Ly1]. The detail of the Fredholm theory is not yet written.

The method (ii) works for our purpose if R.M IPM / and L are both embed-
ded and monotone. In such a case [SaWe] gives a proof of Theorem 6.12. On
the other hand it seems difficult to generalize this method beyond the case when
R.M IPM / is embedded, by the reason explained in [Fu9, Sect. 6].

We consider the pair .A; Ez/ where A is a connection on M � R� satisfying
the above conditions (1)–(4) and Ez D .�1; : : : ; �k/ as in item (4). We denote the
totality of (the gauge equivalence class of) such pair by M..M IPM /; L/. We
use the boundary value of A at † � f�ig to define evaluation maps

ev D .ev1; : : : ; evk/ W M..M IPM /; L/ �! . QL �R.†IP†/
QL/k :

Namely
evi .ŒA�/ D . lim

�#�i

�.�/; lim
�"�i

�.�//;

where � is as in item (4) above.
Using asymptotic limit as � ! ˙1 we obtain

ev˙1 W M..M IPM /; L/ �! R.M IPM / �R.†IP†/
QL;

namely
ev˙1.ŒA�/ D . lim

�!˙1ŒA.�/�; lim
�!˙1 �.�//:

Now let h˙1 is a differential form on R.M IPM / �R.†IP†/
QL and h1; : : : ; hk

be differential forms on QL �R.†IP†/
QL. The right filtered A1 module structure

is defined roughly speaking by

(6.7)
hnk.Œh�1�I Œh1�; : : : ; Œhk�/; ŒhC1�i

D
Z
M..M IPM /;L/

ev�.h1 � � � � � hk/ ^ ev��1h�1 ^ ev�C1hC1:

(Note we use integration in (6.7). When we work on Z2 coefficient we actually
need to use, say, singular homology rather than de Rham homology.)

We can prove the relation (6.3) by studying the compactification of the mod-
uli space M..M IPM /; L/ and its codimension one boundary.
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6.5. Proof of Gluing theorem

In this subsection we sketch the proof of Theorem 6.4. This proof is a ‘gauge
theory analogue’ of the proof by Lekili–Lipyanskiy [LL] of a similar result in
Lagrangian correspondence. (See Sect. 7.) We consider a domain W of C as in

@0W

@1W

@2W

W

t

Fig. 8. The domain W

Fig. 8. It has three boundary components @0W , @1W , @2W , which lie in the part
t D 0, � < 0, � > 0, respectively.

We consider the direct product † � W with the direct product metric. We
glue M1 � R� with W � † by the diffeomorphism @M1 � R� Š † � @1W . We
also glue M2 �R� with W � † by the diffeomorphism @M2 �R� Š † � @2W .
We then obtain a 4 manifold X with boundary and ends. X has a boundary

@X D † � @0W Š † � R� :

X has three ends.

(End.1) M1 � .�1; 0�� . This lies in the part where � ! �1.
(End.2) M � Œ0; 1/t . Here M is obtained by gluing M1 and M2 along †. This

lies in the part where t ! 1.
(End.3) M2 � Œ0; C1/� . This lies in the part where � ! C1.

See Fig. 9.
Note the SO.3/-bundles PM1

and PM2
induce an SO.3/-bundle on X , which

we denote by PX .
We take

˛; ˇ 2 R.M1IPM1
/ �R.†IP†/ R.M2IPM2

/:

Note
R.M1IPM1

/ �R.†IP†/ R.M2IPM2
/ Š R.M IPM /:
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†@0W

†@1W

†W

†@2W

M2

M1

M

t

Fig. 9. The 4 manifold X

We regard ˇ as an element of R.M IPM / by this isomorphism. We consider the
connection A of PX with the following properties.

(1) A is an ASD connection. Namely F C
A D 0.

(2) On boundary .�1; 0��† we use the Lagrangian submanifold R.M1IPM1
/

to set the boundary condition for A.
(3) On boundary Œ0; C1/�† we use the Lagrangian submanifold R.M2IPM2

/

to set the boundary condition for A.
(4) At f.0; 0/g � † we require that the restriction of A is ˛.
(5) At the end (End.1) we require that A is asymptotic to an element of

R.M1IPM1
/ � R.M1IPM1

/ �R.†IP†/ R.M1IPM1
/:

(6) At the end (End.2) we require that A is asymptotic to the flat connection ˇ

of .M;PM /.
(7) At the end (End.3) we require that A is asymptotic to an element of the

diagonal

R.M2IPM2
/ � R.M2IPM2

/ �R.†IP†/ R.M2IPM2
/:

(8) Z
X

kFAk2VolM d� < 1:
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Note items (5) and (7) mean that A is asymptotic to the cyclic element 1 there.
See Fig. 10.

R.M1IPM1
/

R.M2IPM2
/

˛ ˇ

1

1

Fig. 10. Condition for connection A

Definition 6.15. We denote by M..X;PX /I ˛; ˇ/ the moduli space of gauge
equivalence classes of the connections A satisfying the conditions (1)–(8) above.

We use this moduli space to define a map

CF..R.M1IPM1
/; bM1

/; .R.M2IPM2
/; bM2

// �! CF.M IPM /

by

(6.8) Œ˛� 7�!
X

ˇ

]M..X;PX /I ˛; ˇ/Œˇ�:

Here we use the component of the moduli space M..X;PX /I ˛; ˇ/ with (vir-
tual) dimension 0.

To show that (6.8) becomes a chain map, we study the compactification of
M..X;PX /I ˛; ˇ/ and show that its codimension one boundary is classified as
follows.

(bdry.1) The disk bubble at the boundary point .�; 0/ with � < 0.
(bdry.2) Disk bubble at the boundary point .�; 0/ with � > 0.
(bdry.3) Disk bubble at .0; 0/.
(bdry.4) Sliding ends as � ! �1.
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(bdry.5) Sliding ends as � ! C1.
(bdry.6) Sliding ends as t ! C1.

See Fig. 11. Note there are two kinds of disk bubbles in (bdry.1), (bdry.2).
One is similar to the bubble in Fig. 4 and the other is similar to one in Fig. 5.
They are drawn as the left (resp. right) among two figures in Fig. 11 (bdry.1).
Actually in our situation where R.Mi IPMi

/ are monotone in weak sense, only
the bubble in the right figure of Fig. 11 (bdry.1) occurs in codimension 1.

(bdry.1) (bdry.3)

(bdry.4)

(bdry.6)

M

Fig. 11. The boundary of M..X;PX /I ˛; ˇ/

Remark 6.16. We use the method (i) or (iii) in Remark 6.14 to set boundary con-
dition in Definition 6.15. In those methods we switch from ASD-equation to the
pseudo holomorphic curve equation on a line which is close to but is different
from the boundary @0W . (See [Fu6], [Ly1] [DF], [DFL], etc.) So we have usual
pseudo holomorphic curve equation with Lagrangian boundary condition in a
neighborhood of @0W . We use this fact to classify the bubble on @M � R� as
above.

We can cancel the effect of the boundaries as in (bdry.1) and (bdry.2) using
bounding cochains bM1

and bM2
. (This part of the argument is the same as the
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Lagrangian Floer theory [FOOO1], [AJ].) The effect of boundaries as in (bdry.4)
and (bdry.5) is zero because of the equality

dbM1 1 D dbM2 1 D 0:

(This is the equality (6.5), which we required when we defined bM1
and bM2

.)
Therefore the remaining boundary components are ones of (bdry.3) and

(bdry.6).
(bdry.3) is described by the sum of the product

(6.9) M.R.M1IPM1
/; R.M2IPM2

/I ˛; ˛0/ � M..X;PX /I ˛0; ˇ/

for various ˛0. Here the first factor is a special case of the moduli space
M.L1; L2I a; b/, which we introduced in Subsect. 4.1, using (LF.1)–(LF.3). (In
Subsect. 4.1 it was assumed that Lagrangian submanifolds are embedded. We
can however define this moduli space in the same way in our embedded case,
requiring the boundary value to lift to R.M1IPM1

/; R.M2IPM2
/.)

(bdry.6) is described by the sum of the product

(6.10) M..X;PX /I ˛; ˇ0/ � M.M � RI ˇ0; ˇ/

for various ˇ0. Here the second factor is the moduli space introduced in Subsect.
1.2 using condition (IF.1)–(IF.3).

In the simplest case where bM1
D bM2

D 0 the above argument implies that
the sum of (6.9) and (6.10) is 0 (in Z2 coefficient in our situation). It implies
that the map (6.8) is a chain map.

In the general case we need additional term which is related to the correction
by bMi

. It is described by the moduli space drawn in Fig. 12. (We omit the
detail.) We again obtain a chain map

˛ ˇ

bM2

bM1

Fig. 12. The correction to the map (6.8)

F W CF..R.M1IPM1
/; bM1

/; .R.M2IPM2
/; bM2

// �! CF.M IPM /:
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To show that F induces isomorphism we use energy filtration. The leading
order term of the map F with respect to the energy filtration is the case of
energy 0. It consists of connections A which are flat. In that case ˛ is necessary
equal to ˇ. Thus the leading order term of the map F is the identity map, by
using the identification

R.M1IPM1
/ �R.†IP†/ R.M2IPM2

/ Š R.M IPM /:

Therefore F induces the required isomorphism

HF..R.M1IPM1
/; bM1

/; .R.M2IPM2
/; bM2

// Š HF.M IPM /:

This is the outline of the proof of Theorem 6.4.

7. Lagrangian correspondence and A1 functors.

The story we described in Sect. 6 has an analogue in the study of Lagrangian
correspondence, which we will outline in this section. See [Fu10] for detail. In
this section we work over the ground ring R. We need to take a spin or rela-
tive spin structure of a Lagrangian submanifold to use such ground ring. Spin
or relative spin structures are necessary to orient the moduli spaces of pseudo
holomorphic disks. (See [FOOO2, Chapter 8].) When .X; !/ is a symplectic
manifold and V is an oriented real vector bundle on it the V -relative spin struc-
ture of an oriented submanifold L � X is by definition the spin structure of
the bundle TL ˚ V jL. Under this assumption the construction of Subsect. 5.2
works over the ground ring R (or Q).

7.1. The main results

Let .X1; !1/ and .X2; !2/ be compact symplectic manifolds.

Definition 7.1. An immersed Lagrangian correspondence from X1 to X2 is an
immersed Lagrangian submanifold of .X1 � X2; �!1 ˚ !2/.

Let L12 D . QL12; iL12
/ be an immersed Lagrangian correspondence from

X1 to X2 and L1 D . QL1; iL1
/ be an immersed Lagrangian submanifold of

X1. If the fiber product QL2 D QL1 �X1
QL12 is transversal then, together with

the composition QL1 �X1
QL12 ! QL12 ! X1 � X2 ! X2, the manifold QL12

defines an immersed Lagrangian submanifold of X2. We call it the geometric
transformation of L1 by L12 and write it as L1 �X2

L12.
Let .Xi ; !i / .i D 1; 2; 3/ be symplectic manifolds. Let L12 be an immersed

Lagrangian submanifold of .X1 � X2; �!1 ˚ !2/ and L23 a Lagrangian sub-
manifold of .X2 � X3; �!2 ˚ !3/. We assume that the fiber product

QL12 �X2
QL23
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is transversal and write the fiber product as QL13. Together with the obvious map
iL13

W QL13 ! X1 �X3, the manifold QL13 defines an immersed Lagrangian sub-
manifold L13 of .X1 � X3; �!1 ˚ !3/. We call L13 the geometric composition
of L12 and L23. We write it as L12 �X2

L23.

See [We].

Definition 7.2. The (immersed) Weinstein category is defined as follows. Its ob-
jects are symplectic manifolds .X; !/. A morphism from X1 to X2 is an im-
mersed Lagrangian correspondence from X1 to X2.

The composition of morphisms is defined as their geometric composition.

A slight issue is that, actually, we can define geometric composition only for
a transversal pair. However, for the purpose of most of the applications, we can
go around this problem by considering only composable pair of morphisms. In
other words, Weinstein category is rather a ‘topological category’ where mor-
phisms can be composed only on certain dense open subset. We can thus go
around the problem by carefully stating various theorems in this subsection in
such a way using only transversal pair for compositions. Another possible way
to proceed is to introduce certain equivalence relation between Lagrangian sub-
manifolds such as Hamiltonian isotopy or Lagrangian cobordism so that we can
compose Lagrangian correspondences after perturbing them in the equivalence
classes.

In Subsect. 5.2 we started with a finite set of immersed Lagrangian subman-
ifolds L of .X; !/ (a clean collection) and obtained a filtered A1 category, the
set of whose objects is L. We denote it by Fuk.L/. Roughly speaking we can
take ‘all’ immersed Lagrangian submanifolds and define Fuk.X; !/. An issue
in doing so is perturbing all the Lagrangian submanifolds simultaneously to ob-
tain some clean collection. We do not discuss this point. Using Fuk.L/ instead
of Fuk.X; !/ is enough for the purpose of most of the applications. To simplify
the notation we pretend as if we defined the filtered A1 category Fuk.X; !/.
The actual result we prove is one which is restated by using Fuk.L/ instead.

Note the filtered A1 category Fuk.X; !/ is in general curved. We denote
by Fuks.X; !/ the strict category associated to Fuk.X; !/.

In fact to take care of the problem of orientation and sign we need to use
relative spin structure. We fix V and consider a set of triples .L; �; b/ where L

is a Lagrangian submanifold of X , � is a V -relative spin structure and b is a
bounding cochain of CF.L/, that is, the (curved) A1 algebra obtained by using
.L; �/. The strict filtered A1 category whose object is such triple .L; �; b/ is
abbreviated by Fuks.X; !; V /.

Definition 7.3. An unobstructed immersed Weinstein category is defined as fol-
lows.



Categorification of invariants in gauge theory and symplectic geometry 47

(1) Its object is a triple .X; !; V / where .X; !/ is a compact symplectic mani-
fold and V is a real oriented vector bundle on X .

(2) A morphism from .X1; !1; V1/ to .X2; !2; V2/ is a triple .L12; �12; b12/

where
(a) L12 is an immersed Lagrangian submanifold of .X1 � X2; �!1 ˚ !2/.
(b) �12 is a ��

1 V1 ˚ ��
1 TX1 ˚ ��

2 V2-relative spin structure of L12.
(c) b12 is a bounding cochain of CF.L12/. (Note the filtered A1 algebra

CF.L12/ is defined by using the relative spin structure in (b).)
(3) See Theorem 7.6 for the composition of the morphisms.

The main result of [Fu10] is a construction of the (2-)functor from the un-
obstructed immersed Weinstein category to the (2-)category of all filtered A1
categories. We will state it as Theorems 7.4, 7.6, 7.7 below.

Theorem 7.4 ([Fu10]). Let .L12; �12; b12/ be as in Definition 7.3 (2).

(1) Let .L1; �1; b1/ be an object of Fuks.X1; !1; V1/. Then the geometric trans-
formation L1 �X1

L12 has a canonical choice of V2 relative spin structure
�2 and a bounding cochain b2.

(2) There exists a strict filtered A1 functor

WL12
W Fuks.X1; !1; V1/ �! Fuks.X2; !2; V2/

of which the map .L1; �1; b1/ 7! .L1 �X1
L12; V2; b2/ in item (1) is the

object part.
(3) There is a strict filtered A1 bi-functor

Fuks.X1 � X2; �!1 ˚ !2; ��
1 V1 ˚ ��

1 TX1 ˚ ��
2 V2/ � Fuks.X1; !1; V1/

�! Fuks.X2; !2; V2/

which induces WL12
when we fix an object of the first factor Fuks.X1 �

X2; �!1 ˚ !2; ��
1 V1 ˚ ��

1 TX1 ˚ ��
2 V2/.

The notions of filtered A1 functor and bi-functor (and its strictness) are
explained in the next subsection.

Remark 7.5. If we assume all the Lagrangian submanifolds involved (including
those appearing as fiber products among the Lagrangian submanifolds) are em-
bedded, monotone and have minimal Maslov number > 2, Theorem 7.4 follows
from the earlier results by Wehrheim–Woodward [WW1], [WW2], [WW4],
[WW3] and Ma’u–Wehrheim–Woodward [MWW]. The same remark applies
to Theorems 7.6 and 7.7.

Note Theorem 7.4 (3) implies that there exists a strict filtered A1 functor

(7.1)
Fuks.X1 � X2; �!1 ˚ !2; ��

1 V1 ˚ ��
1 TX1 ˚ ��

2 V2/

�! Funcs.Fuks.X1; !1; V1/; Fuks.X2; !2; V2//:
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Here Funcs.C1; C2/ is the strict filtered A1 category whose object is a strict
filtered A1 functor W C1 ! C2.

Theorem 7.6 ([Fu10]). Let .L12; �12; b12/ (resp. .L23; �23; b23/) be morphisms
from .X1; !1; V1/ to .X2; !2; V2/ (resp. from .X2; !2; V2/ to .X3; !3; V3/).
(1) Let L13 D L12 �X2

L23 be the geometric composition. Then we can define
a ��

2 V2 ˚ ��
2 TX2 ˚ ��

3 V3-relative spin structure �13 on it and a bounding
cochain b13 of CF.L13/. (In particular L13 is unobstructed.)

(2) Let WL12
, WL23

and WL13
be strict filtered A1 functors associated to

.L12; �12; b12/, .L23; �23; b23/ and .L13; �13; b13/, respectively, by The-
orem 7.4 (2). Then

(7.2) WL23
ı WL12

	 WL13
:

Here the left hand side is the composition of strict filtered A1 functors and
	 is the homotopy equivalence of two strict filtered A1 functors.

(3) The next diagram commutes up to homotopy equivalence of strict filtered
A1 bi-functors.

Fuks.X1 � X2/ � Fuks.X2 � X3/ ��

��

Fuks.X1 � X3/

��
Funcs.Fuks.X1/;Fuks.X2//
�Funcs.Fuks.X2/;Fuks.X3//

�� Funcs.Fuks.X1/; Fuks.X3//:

Here the vertical arrows are (7.1). (We omit the bundle Vi in the notation.)
The first horizontal line is a strict filtered A1 bi-functor whose object part
sends ..L12; �12; b12/; .L23; �23; b23// to .L13; �13; b13/ in item (1).

The second horizontal line is a strict filtered A1 bi-functor whose object
part is a composition of filtered A1 functors.

(Note the commutativity of this diagram in the object level is (7.2).)

Theorem 7.7 ([Fu10]). The next diagram commutes up to homotopy equiva-
lence of strict filtered A1 tri-functors.

Fuks.X1�X2/�Fuks.X2�X3/
�Fuks.X3�X4/

��

��

Fuks.X1 � X3/ � Fuks.X3 � X4/

��
Fuks.X1 � X2/ � Fuks.X2 � X4/ �� Fuks.X1 � X4/;

where all the arrows are defined by composition functor in Theorem 7.6.

Theorems 7.4, 7.6, 7.7 provide the functorial picture of the construction of
A1 categories out of symplectic manifolds.

Remark 7.8. Theorems 7.4, 7.6, 7.7 provide the functorial picture up to the level
of 2-category. Since the diagram in Theorem 7.7 commutes only up to homo-
topy, we may continue and may have a compatibility as 1-categories.
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7.2. A1 functor, A1 bi-functor, and Yoneda’s lemma

The proof of Theorem 6.2 which we explained in Subsect. 6.4 could be regarded
as a proof using the idea of representable functors. For the proof of Theorems
7.4, 7.6, 7.7 we use a similar idea in a more systematic way. In this subsection
we explain certain definitions and results in the story of A1 category needed
for this purpose. See [Fu7], [Ke] ,[Le], [Ly], [Sei], etc. for homological algebra
of A1 category. The notion of A1 bi-functor is discussed in more detail in
[Fu10].

Let C be a filtered A1 category and c; c0 2 OB.C /. We define

(7.3) BkC Œ1�.c; c0/ D
M kO

iD1

C Œ1�.ci�1; ci /;

where direct sum is taken over all c0; : : : ; ck such that c0 D c and ck D c0. Note
the tensor product here is a T -adic completion of the algebraic tensor product.
We also put:

(7.4) BC Œ1�.c; c0/ D
1M

kD0

BkC Œ1�.c; c0/:

Here B0C Œ1�.c; c0/ D 0 if c ¤ c0 and B0C Œ1�.c; c0/ D ƒ0 if c D c0.
BC Œ1�.c; c0/ has a formal8 coalgebra structure

� W BC Œ1�.c; c0/ �!
M
c00

BC Œ1�.c; c00/ Ő B C Œ1�.c00; c0/

defined by

�.x1 ˝ � � � ˝ xk/ D
k�1X
iD1

.x1 ˝ � � � ˝ xi / ˝ .xiC1 ˝ � � � ˝ xk/:

The operation mk induces a unique coderivation BC Œ1�.c; c0/ ! BC Œ1�.c; c0/
so that its Hom.BkC Œ1�.c; c0/; B1C Œ1�.c; c0// component is mk . We denote it
by Odk and put

Od D
X Odk W BC Œ1�.c; c0/ �! BC Œ1�.c; c0/:

The A1 relation (5.3) is equivalent to the equality Od ı Od D 0.

Definition 7.9. Let C1; C2 be filtered A1 categories. A filtered A1 functor F W
C1 ! C2 consists of objects:

8 Here our structure is a formal coalgebra structure rather than a coalgebra structure since we
take completion of the tensor product.
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(1) A map Fob W OB.C1/ ! OB.C2/,
(2) A series of maps

Fc;c0 W BC1Œ1�.c; c0/ �! C2Œ1�.Fob.c/; Fob.c0//;

which preserves filtrations.
(3) We require that the coalgebra homomorphism

bF c;c0 W BC1Œ1�.c; c0/ �! BC2Œ1�.Fob.c/; Fob.c0//

induced by Fc;c0 is a chain map with respect to the boundary operator Od .
(4) We require bF c;c0.x1; : : : ; e; : : : ; xk/ D 0

except bF c;c.ec/ D eFob.c/:

A filtered A1 functor is said to be strict if its restriction to B0C1Œ1�.c; c/ is 0.

For a pair of filtered A1 categories C1; C2 we can define a filtered A1
category Func.C1; C2/ whose object is a filtered A1 functor W C1 ! C2. We
can define its strict version Funcs.C1; C2/ in the same way.

Definition 7.10. Let C1; : : : ; Cn and C be filtered A1 categories. A filtered A1
multi-functor

F W C1 � � � � � Cn �! C

consists of the following objects.

(1) A map Fob W Qn
iD1 OB.Ci / ! OB.C /.

(2) A series of ƒ0 module homomorphisms

F.c1;:::;cn/;.c0
1;:::;c0

n/ W
nO

iD1

BCi Œ1�.ci ; c0
i /

�! C .Fob.c1; : : : ; cn/; Fob.c0
1; : : : ; c0

n//;

which preserve filtrations.
(3) We require that the coalgebra homomorphism

OF.c1;:::;cn/;.c0
1;:::;c0

n/ W
nO

iD1

BCi Œ1�.ci ; c0
i /

�! BC Œ1�.Fob.c1; : : : ; cn/; Fob.c0
1; : : : ; c0

n//

induced by F.c1;:::;cn/;.c0
1;:::;c0

n/ is a chain map with respect to the boundary

operator Od .
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(4) OF.c1;:::;cn/;.c0
1;:::;c0

n/.x/ is zero if x contains the unity except

OF.c1;:::;cn/;.c1;:::;cn/.ec1
; : : : ; ecn

/ D eFob.c1;:::;cn/:

We use coalgebra structures of BCi Œ1�.ci ; c0
i / to define a coalgebra structure

on
Nn

iD1 BCi Œ1�.ci ; c0
i / in an obvious way.

We can define strictness of multi-functor in the same way.

Lemma 7.11. The following two objects can be identified.
(1) A filtered A1 bi-functor F W C1 � C2 ! C ,
(2) A filtered A1 functor F W C1 ! Funk.C2; C /.

Definition 7.12. (1) Let C be a strict filtered A1 category and c; c0 2 OB.C /.
We say c and c0 are homotopy equivalent if there exists x 2 C .c; c0/ and
x0 2 C .c0; c/ such that m1.x/ D m1.x0/ D 0, m2.x; x0/ � ec 2 Im.m1/,
m2.x0; x/ � ec0 2 Im.m1/.

(2) Two strict filtered A1 functors F1; F2 W C1 ! C2 are said to be homotopy
equivalent each other if they are homotopy equivalent in the functor category
Funcs.C1; C2/ in the sense of (1).

(3) A strict filtered A1 functor F W C1 ! C2 is said to be a homotopy equiv-
alence if there exists a strict filtered A1 functor G W C2 ! C1 such that
the compositions F ı G and G ı F are homotopy equivalent to the identity
functor.

Basic results in the story of A1 category is the following two theorems.

Theorem 7.13 (Whitehead theorem for A1 functor). Let F W C1 ! C2 be a
strict filtered A1 functor between strict filtered A1 categories. It is a homotopy
equivalence if and only if the following two conditions are satisfied.
(1) For any c0 2 OB.C2/ there exists c 2 OB.C1/ such that Fob.c/ is homo-

topy equivalent to c0.
(2) For any c; c0 2 OB.C1/ the chain map

Fc;c0 W C1.c; c0/ �! C2.Fob.c/; Fob.c0//
is a chain homotopy equivalence.

We omit the proof. See [Fu7].
Let D � OB.C /. We define a filtered A1 category whose object set is D

and the module of morphisms and structure operations are obvious restrictions
of those of C . We call such a filtered A1 category a full subcategory of C .

We denote by C H an A1 category whose object is a chain complex and
whose module of morphisms between two chain complexes is the set of linear
maps among them, which is a chain complex. The boundary operator of this
chain complex is the operator induced from m1 in an obvious way. The opera-
tion m2 is the composition of linear maps (up to sign). m3 and all higher mk

are all zero.
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Definition 7.14. Let C be a filtered A1 category. We define its opposite cate-
gory C op as follows.

(1) OB.C op/ D OB.C /,
(2) C op.c; c0/ D C .c0; c/,
(3)

m
op
k

.x1; : : : ; xk/ D .�1/�mk.xk; : : : ; x1/;

where � D 1CP
1�i<j �k.deg xi C1/.deg xj C1/. Here mop is the structure

operation of C op.

Theorem 7.15 (Yoneda’s lemma for A1 categories). Let C be a strict filtered
A1 category.

(1) There exists a filtered A1 functor YON W C ! Funcs.C op; C H /:

(2) Let c 2 OB.C / D OB.C op/. Then YONob.c/ W OB.C / ! OB.C H /

is a strict filtered A1 functor which is defined in the object level by

c0 7�! C .c; c0/:

(3) Let Rep.C op; C H / be a full subcategory of Funcs.C op; C H /, whose ob-
ject is an element of OB.Funcs.C op; C H // which is homotopy equivalent
to the image of YONob W OB.C / ! OB.C op; C H /. Then

YON W C �! Rep.C op; C H /:

is a homotopy equivalence.

We omit the proof. See [Fu7]. We call YON the Yoneda functor. We say an
object of Rep.C op; C H / a representable functor.

7.3. Künneth tri-functor and representability

In this subsection we sketch an argument to prove Theorem 7.4 using the alge-
braic framework of Subsect. 7.2. Let .Li ; �i / be a pair of Lagrangian subman-
ifold of Xi and its Vi -relative spin structure for i D 1; 2 and .L12; �12/ a pair
of Lagrangian submanifold of .X1 � X2; �!1 ˚ !2/ and its ��

1 V1 ˚ ��
1 TX1 ˚

��
2 V2-relative spin structure. We consider curved filtered A1 algebras CF.Li /

and CF.L12/. We assume appropriate transversality or cleanness of intersection
(or fiber product) among them.

Proposition 7.16. There exists a left CF.L1/, CF.L12/ and right CF.L2/ fil-
tered A1 tri-module D such that as a ƒ0 module D is

H. QL1 �X1
QL12 �X2

QL2I ƒ0/

or its chain model.
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The notion of tri-module is defined in a similar way as tri-functor (Definition
7.10). More explicitly it gives a series of operators

(7.5) nk1;k12;k2
W CF.L1/˝k1 ˝ CF.L12/˝k12 ˝ D ˝ CF.L2/˝k2 �! D

which satisfies a similar relation as right module. We sketch the proof of Propo-
sition 7.16 later in this subsection.

Corollary 7.17. If b1 and b12 are bounding cochains of CF.L1/ and CF.L12/

respectively then D in Proposition 7.16 has a structure of right filtered A1
module over CF.L2/.

Proof. Using (7.5) we obtain

nk W D ˝ CF.L2/˝k �! D

by
nk.yI x1; : : : ; xk/

D
1X

k1;k12D0

nk1;k12;k.b1; : : : ; b1I b12; : : : ; b12I yI x1; : : : ; xk/:

It is easy to check (6.3). �

Now we consider the case when L2 is the geometric transformation L1 �X1

L12. Then

D D H. QL1 �X1
QL12 �X2

QL2I ƒ0/ D H. QL2 �X2
QL2I ƒ0/:

The fundamental class of QL2 is an element of D, which we write 1.

Lemma 7.18. In the situation of Corollary 7.17 we assume that L2 is the geo-
metric transformation L1 �X1

L12.
Then 1 2 D is a cyclic element of right filtered A1 module D.

Theorem 7.4 (1) is a consequence of Corollary 7.17, Lemma 7.18 and Propo-
sition 6.11.

To prove Theorem 7.4 (2), (3) we enhance Proposition 7.16 as follows.

Proposition 7.19. There exists a filtered A1 tri-functor

Fuks.X1 � X2; �!1 ˚ !2; ��
1 V1 ˚ ��

1 TX1 ˚ ��
2 V2/

� Fuks.X1; !1; V1/ � Fuks.X2; !2; V2/op �! C H

such that the chain complex associated to L12, L1, L2 by this tri-functor is D

in Proposition 7.16.
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By Proposition 7.19, Lemma 7.11 induces a bi-functor

(7.6)
Fuks.X1 � X2; �!1 ˚ !2; ��

1 V1 ˚ ��
1 TX1 ˚ ��

2 V2/

� Fuks.X1; !1; V1/ �! Funcs.Fuks.X2; !2; V2/op; C H /:

Proposition 7.20. Let .L1; �1; b1/ and .L12; �12; b12/ be objects of Fuks.X1;

!1; V1/ and Fuks.X1 �X2; �!1 ˚!2; ��
1 V1 ˚��

1 TX1 ˚��
2 V2/, respectively.

Then the strict filtered A1 functor W Fuks.X2; !2; V2/op ! C H obtained
by applying (7.6) to them is represented by the object .L2; �2; b2/.

Here L2 is the geometric composition and b2 is obtained by Theorem 7.4
(1).

The proof is similar to the discussion in the next section using a diagram
similar to the Y diagram. See [Fu10].

By Proposition 7.20 we obtain a filtered A1 bi-functor

Fuks.X1 � X2; �!1 ˚ !2; ��
1 V1 ˚ ��

1 TX1 ˚ ��
2 V2/

� Fuks.X1; !1; V1/ �! Rep.Fuks.X2; !2; V2/op; C H /:

Therefore we use Theorem 7.15 (3) and compose homotopy inverse to the Yoneda
functor to obtain desired filtered A1 functor in Theorem 7.4.

We finally sketch a proof of Proposition 7.16. We use the moduli space of
objects drawn in the next Fig. 13.
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u1 u2

L12
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z12;2
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z2;2
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Fig. 13. Moduli space of simple quilt
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Here the source curve † is the domain R� � Œ�1; 1�t plus possibly some
sphere bubbles. We divide † into two parts. The first one †1 is the union of
R� � Œ�1; 0�t and sphere bubbles rooted on it and the second one †2 is the
union of R� � Œ0; 1�t and sphere bubbles rooted on it. (We require the sphere
bubbles are not rooted on the part t D �1; 0; 1.) The map is a combination of
u1 W †1 ! X1 and u2 W †2 ! X2. We include three kinds of marked points
z1;1; : : : ; z1;k1

2 R� � f�1g, z12;1; : : : ; z12;k12
2 R� � f0g, z2;1; : : : ; z2;k2

2
R� � f1g.

We require the following boundary conditions:

(1) u1.�; �1/ 2 L1.
(2) u2.�; C1/ 2 L2.
(3) .u1.�; 0/; u2.�; 0// 2 L12.
(4)

lim
�!�1.u1.�; t1/; u2.�; t2// D a 2 QL1 �X1

QL12 �X2
QL2:

(5)
lim

�!C1.u1.�; t1/; u2.�; t2// D b 2 QL1 �X1
QL12 �X2

QL2:

Moreover we assume

(6) Z
†1

u�
1!1 C

Z
†2

u�
2!2 D E < 1:

We denote the moduli space of such objects by Mk1;k12;k2
.L1; L12; L2I a; bI E/.

It comes with evaluation maps:

ev D .ev1; ev12; ev2/ W Mk1;k12;k2
.L1; L12; L2I a; bI E/ �! OLk1

1 � OLk12

12 � OLk2

2 ;

where
OL1 D QL1 �X1

QL1:

OL2 and OL12 are defined in the same way.
Let hi;j .j D 1; : : : ; ki / be differential forms on OLi and h12;j .j D 1; : : : ;

k12/ differential forms on OL12. Then we define the structure operations (7.5) of
the tri-module D by

nk1;k12;k2
.Eh1I Eh12I Œa�I Eh2/

D
X
E;b

T E Œb�

Z
Mk1;k12;k2

.L1;L12;L2Ia;bIE/

ev�.Eh1 ^ Eh12 ^ Eh2/:

Here Eh1 D .h1;1; : : : ; h1;k1
/ 2 CF.L1/˝k1 . The notations Eh12 and Eh2 are de-

fined in a similar way.
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We can show that it satisfies the required relation by studying the boundary
of our moduli space Mk1;k12;k2

.L1; L12; L2I a; bI E/ and using Stokes’ theo-
rem.

We remark that our moduli space Mk1;k12;k2
.L1; L12; L2I a; bI E/ is sim-

ilar to one we use to define Floer homology group HF.L1 � L2; L12/ in the
product space �X1 � X2. For example in case L1; L2; L12 are embedded and
monotone with minimal Maslov number > 2 we may use the case k1 D k12 D
k2 D 0 to obtain

n0;0;0 W D �! D

and D is a free ƒ0 module with basis

L1 �X1
L12 �X2

L2 D .L1 � L2/ \ L12:

So D is also the underlying vector space of the chain complex calculating Floer
homology HF.L1 � L2; L12/. Moreover the operation n0;0;0 coincides with
Floer’s boundary operator.

Remark 7.21. To obtain appropriate Kuranishi structure we need to slightly change
the way to compactify the bubble on the line t D 0. (See [Fu10, Sect. 12].)

In case ki or k12 are non-zero there is some technical difference between the
moduli space Mk1;k12;k2

.L1; L12; L2I a; bI E/ and the moduli space we use to
define CF.L1 � L2/-CF.L12/ bimodule structure on D.

Wehrheim–Woodward [WW1] studied the case of monotone Lagrangian
submanifolds using the moduli space M0;0;0.L1; L12; L2I a; bI E/. They also
generalize this moduli space to the case where the domain is divided into several
(not necessary two) domains which are sent to various symplectic manifolds by
a pseudo holomorphic curve. They call such objects pseudo holomorphic quilt.
Here we use only the simplest case of pseudo holomorphic quilt.

7.4. Y diagram and compatibility of compositions

In this subsection we give a brief explanation of the proof of Theorem 7.6.
The proof of Theorem 7.6 (1) is similar to one of Theorem 7.4 (1). (In fact

Theorem 7.4 (1) can be regarded as a special case of Theorem 7.6 (1) where L3

is a point.) We construct a tri-module D over CF.L12/, CF.L23/, CF.L31/ and
use it in the same way as the last subsection. The moduli space we use for this
purpose is obtained by replacing Fig. 13 by the next Fig. 14.

Here the source is a circular cylinder divided into three parts. The map is a
combination of three maps u1; u2; u3 which sends those three parts to X1, X2

and X3 respectively. We use L12, L23, L31 to set the boundary conditions at
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X
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L12u1

z31

L23
z23

Fig. 14. Composition of unobstructed correspondences

the lines where two of those three subdomains intersect. The underlying vector
space of D is the cohomology group of the triple fiber product

8<
:.x; y; z/ 2 QL12 � QL23 � QL31

ˇ̌̌
ˇ̌̌ �1.iL12

.x// D �1.iL31
.z//;

�2.iL12
.x// D �2.iL23

.z//;

�3.iL13
.x// D �3.iL23

.z//

9=
; :

Here �i W Xi � Xj ! Xi and �j W Xi � Xj ! Xj are projections.
We put elements of this triple fiber product at the part � ! ˙1 and use it

as the asymptotic boundary condition.
The proof of Theorem 7.6 (2), (3) is based on the moduli space introduced

by Lekili–Lipyanskiy [LL] which is drawn in the next Fig. 15.
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Fig. 15. Lekili–Lipyanskiy’s Y-diagram
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Here the source is a domain in C which is divided into three parts. The maps
u1; u2; u3 send each of those three parts to X1, X2, X3, respectively and are
pseudo holomorphic. Note in our situation of Theorem 7.6 (2), (3) we are given
6 Lagrangian submanifolds L12, L23, L31, L1, L2, L3, where Li � Xi and
Lij � Xi � Xj . We use Lij to set the boundary condition at the curves where
two subdomains intersect each other. We use Li to set the boundary condition
at the boundary of our domain. We have six curves and so we put six kinds of
marked points. The evaluation maps go to the products of OLi ’s and OLij ’s.

Note our domain has 4 ends. Three of them (left, upper right and lower
right) are similar to the ends appearing in Fig. 13 and the fourth one which is a
neighborhood of the white circle in the middle of the domain is similar to the
end appearing in Fig. 14.

Thus our moduli space defines a map which interpolates tensor products of
CF.Li /, CF.Lij / and tri-modules which we used to prove Theorem 7.6 (1) and
Theorem 7.4 (1).

The ƒ0 linear maps we thus obtain looks rather cumbersome. However when
we see them carefully we find that it is exactly the maps we need to show the
homotopy commutativity of the diagrams appearing in Theorem 7.6 (2), (3). See
[Fu10] for detail.

We finally mention that Theorem 7.7 is proved by using the objects drawn
in the next Fig. 16.
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Fig. 16. Associativity of compositions

8. Categorification of Donaldson–Floer theory

We can enhance the construction of Sect. 6 to the topological field theory style
results and clarify its relation to Lagrangian correspondence.

For oriented two manifold † we always consider an SO.3/ bundle P† on it
such that w2.P†/ is the fundamental class. Let R.†;P†/ be the moduli space
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of the gauge equivalence classes of the flat connections of P†. It is a symplectic
manifold and is monotone with minimal Chern number 2.

In this subsection we work over Z2 coefficient.

Definition 8.1. We consider the strict filtered A1 category Fuk.†/ as follows.

(1) The object of Fuk.†/ is a pair .L; b/. Here L is an immersed Lagrangian
submanifold of R.†;P†/, which is monotone in the weak sense (Definition
4.11) and has minimal Maslov number in 4ZC. b is its bounding cochain
which is supported in the switching components. (Here we consider the ƒ

Z2

0

filtered A1 algebra associated to L.)
(2) The module of morphisms is CF..L1; b1/; .L2; b2// which is (Z2 version)

of the chain complex introduced in Subsect. 4.1.
(3) The structure operations mk is defined as in Subsect. 5.2.

We remark that we can easily prove the following which is expected by topolog-
ical field theory.

Fuk.† t †0/ D Fuk.†/ ˝ Fuk.†0/;(8.1)
Fuk.�†/ D Fuk.†/op:(8.2)

Let M be a 3 manifold with boundary † D @M . We consider an SO.3/

bundle PM on M such that the restriction of PM to † D @M is P†.9 We
assume that @M is divided into @�M t@CM such that a neighborhood of @�M

(resp. a neighborhood of @CM ) in M is identified with @�M � Œ�1; 0/ (resp.
@CM � Œ0; C1/) as oriented manifolds.

By Theorem 6.2, the (appropriately perturbed) moduli space of flat connec-
tions R.M I EM / is unobstructed. Namely we have a bounding cochain bM of
the ƒ

Z2

0 linear filtered A1 algebra associated to R.M IPM / � �R.†�IP†�
/�

R.†CIP†C
/.

Definition 8.2. Suppose †�; †C ¤ ;. We define the strict filtered A1 functor

(8.3) HF .M;PM / W Fuk.†�/ �! Fuk.†C/

as the strict filtered A1 functor associated to the unobstructed immersed La-
grangian correspondence .R.M IPM /; bM / by Theorem 7.4.

We can prove the following compatibility result. We consider .Mi ;PMi
/

(i D 1; 2) as above. We suppose @CM1 Š @�M2 and fix a diffeomorphism and
its lift to a bundle isomorphism P@M1

! P@M2
. We glue M1 and M2 along

@CM1 Š @�M2 by this diffeomorphism to obtain M3 D M1 [@CD@�
M2 and

an SO.3/ bundle PM3
on it. Note

@�M3 D @�M1; @CM3 D @CM2:

9 When M has a connected component which does not intersect with boundary, we require
that the SO.3/ bundle PM is non-trivial on such a component.



60 K. Fukaya

Theorem 8.3. The filtered A1 functor HF .M3;PM3
/ W Fuk.@�M1/ !

Fuk.@CM2/ associated to .M3;PM3
/ by Definition 8.2 is homotopy equiva-

lent to the composition

HF .M2;PM2
/ ı HF .M1;PM1

/:

Here HF .M2;PM2
/, HF .M1;PM1

/ are filtered A1 functors associated to .M2;PM2
/

and .M1;PM1
/ by Definition 8.2 and their composition is defined by Theorem

7.6 (1).

Remark 8.4. Let M.†/ be the mapping class group, that is, �0 of the group of
oriented self-diffeomorphisms of a surface †. We include the homotopy class
of bundle isomorphisms P† ! P† which covers an element of M.†/ to define
MC.†/. The functoriality of † 7! Fuk.†/ implies that the group MC.†/ acts
on Fuk.†/ as the homotopy class of automorphisms of filtered A1 category.
Note a pair of an oriented self-diffeomorphism of a surface † and its lift to
the bundle induces a symplectic diffeomorphism of R.†;P†/. The action of
MC.†/ is induced by this symplectic diffeomorphism.

If we change the choice of the diffeomorphism @CM1 Š @�M2 then the
manifold M3 D M1 [@CD@�

M2 changes. The composition HF .M2;PM2
/ ı

HF .M1;PM1
/ also changes by the action of the group MC.@CM1/ inserted be-

tween HF .M2;PM2
/ and HF .M1;PM1

/.

Definition 8.5. Suppose †� D ;; †C ¤ ;. Then we define HF .M;PM / as the
object .R.M;PM /; bM / of Fuk.†C/.

Suppose †� ¤ ;; †C D ;. Then we define HF .M;PM / as the filtered A1
functor W Fuk.†�/ ! CH which is represented by the object .R.�M;P�M /;

b�M / of Fuk.†�/op.
Suppose †� D †C D ;. Then we define HF .M;PM / as its Floer homology

group as in Definition 1.8.

We can generalize Theorem 8.3 appropriately including the situation of Def-
inition 8.5. Since this generalization is straightforward we omit it.

The proof of Theorem 8.3 uses the following Fig. 17. X in the figure is a
4 manifold. X has 3 ends and 3 boundary components. The ends are identified
with

(8.4) M1 � .�1; 0�; M2 � .�1; 0�; M3 � Œ0; C1/:

The boundary (which are drawn by dotted lines) are identifies with

@�M1�R D @�M2�R; @CM1�R D @�M2�R; @CM2�R D @�M3�R:

The free domains �1, �2, �3 of C are attached to each of such boundary com-
ponents. We consider an Anti-Self-Dual connection A on X and holomorphic
maps u1 W �1 ! R.@�M1/, u2 W �2 ! R.@�M2/, u3 W �3 ! R.@CM3/.
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Along three dotted lines we require appropriate matching conditions similar
to those in [Fu6], [Ly1]. We also require u1, u2, u3 satisfy appropriate boundary
conditions on @�i n dotted lines, formulated by using Lagrangian submanifolds
R.M1IPM1

/, R.M2IPM2
/, R.M3IPM4

/, respectively.
We consider the moduli space of the such triples .A; u1; u2; u3/. (We also

include boundary marked points on the @�i n dotted lines and require certain
asymptotic boundary conditions on the three ends.)

We observe the sliding ends of this moduli space corresponding to the three
ends in (8.4) coincide with the moduli spaces we use to obtain bounding cochain
bM1

, bM2
, bM3

, respectively.
Using the moduli space of the triples .A; u1; u2; u3/ (plus marked points),

we can show that bM1
, bM2

, bM3
satisfies certain equalities which is the one we

need to prove Theorem 8.3.
In this article we restrict ourselves to the case of SO.3/ bundles P with non-

trivial w2.P/. The research to include the case when E is a trivial bundle is now
in progress, as a joint work of the author with A. Daemi [DF].
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Fig. 17. Proof of Theorem 8.3
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