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1. Introduction

In finite dimensions, one way to compute the homology of a compact, smooth
manifold is by Morse theory. Specifically, we start with a smooth function f W
X ! R and a Riemannian metric g on X . Under certain hypotheses (the Morse
and Morse–Smale conditions), we can form a complex C�.X; f; g/ as follows:
The generators of C�.X; f; g/ are the critical points of f , and the differential is
given by

(1) @x D
X

fyjind.x/�ind.y/D1g
nxy � y;

where nxy 2 Z is a signed count of the downward gradient flow lines of f
connecting x to y. The quantity ind denotes the index of a critical point, that is,
the number of negative eigenvalues of the Hessian (the matrix of second deriva-
tives of f ) at that point. The homology H�.X; f; g/ is called Morse homology,
and it turns out to be isomorphic to the singular homology of X [Wit82,Flo89b,
Bot88].

Floer homology is an adaptation of Morse homology to infinite dimensions.
It applies to certain classes of infinite dimensional manifolds X and functions
f W X ! R, where at critical points of f the Hessian has infinitely many pos-
itive and infinitely many negative eigenvalues. Although one cannot define the
index ind.x/ as an integer, one can make sense of a relative index �.x; y/ 2 Z
which plays the role of ind.x/� ind.y/ in the formula (1). Then, one can define
a complex just as above, and the resulting homology is called Floer homology.
This is typically not isomorphic to the homology of X , but rather encodes new
information—usually about a finite dimensional manifold from which X was
constructed.

Floer homology appeared first in the context of symplectic geometry [Flo87,
Flo88c,Flo88d,Flo88b]. In the version called Hamiltonian Floer homology, one
considers a compact symplectic manifold .M;!/ together with a 1-periodic
Hamiltonian function Ht on M . From this one constructs the infinite dimen-
sional space X D LM of contractible loops in M , together with a symplec-
tic action functional A W X ! R. The critical points of A are periodic or-
bits of the Hamiltonian flow, and the gradient flow lines correspond to pseudo-
holomorphic cylinders inM . Hamiltonian Floer homology can be related to the
homology of M ; the main applications of this fact are the proofs of the Arnol’d
conjecture [Flo89a,Ono95,HS95,FO99,Rua99,LT98].

A more general construction in symplectic geometry is Lagrangian Floer
homology. Given two Lagrangians L0; L1 in a symplectic manifold .M;!/,
one considers the space of paths

P.M IL0; L1/ D f� W Œ0; 1� ! M j �.0/ 2 L0; �.1/ 2 L1g
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together with a certain functional. The critical points correspond to the intersec-
tions of L0 with L1, and the gradient flows to pseudo-holomorphic disks with
half of the boundary on L0 and half on L1. Under some technical assumptions,
the resulting Lagrangian Floer complex is well-defined, and its homology can
be used to give bounds on the number of intersection points x 2 L0 \L1. Since
its introduction in [Flo88b], Lagrangian Floer homology has developed into one
of the most useful tools in the study of symplectic manifolds; see [FOOO09a,
FOOO09b,Sei08,Oh] for a few books devoted to this subject. Hamiltonian Floer
homology can be viewed as a particular case of Lagrangian Floer homology:
Given M and a Hamiltonian Ht producing a time 1 diffeomorphism  , the La-
grangian pair that we need to consider is given by the diagonal and the graph of
 inside M �M .

Apart from symplectic geometry, the other area where Floer homology has
been very influential is low dimensional topology. There, Floer homology
groups are associated to a closed three-manifold Y (possibly of a restricted
form, and equipped with certain data). The first construction of this kind was
the instanton homology of Floer [Flo88a], where the infinite dimensional space
X is the space of SU.2/ (or SO.3/) connections on Y (modulo the gauge action),
and f is the Chern–Simons functional. This construction has an impact in four
dimensions: the relative Donaldson invariants of four-manifolds with boundary
take values in instanton homology.

In this paper we survey Floer theory as it is relevant to low dimensional
topology. We will discuss four types of Floer homology that can be associated
to a three-manifold (each coming with its own different sub-types):

(a) Instanton homology;

(b) Symplectic instanton homology1;

(c) Monopole Floer homology;

(d) Heegaard Floer homology.

The types (a) and (c) above are constructed using gauge theory. In (a), the
gradient flow lines of the Chern–Simons functional are solutions of the anti-self-
dual Yang–Mills equations on R � Y , whereas in (c) we consider the Chern–
Simons–Dirac functional, whose gradient flow lines are solutions to the Sei-
berg–Witten equations on R � Y . Different definitions of monopole Floer ho-
mology were given in [MW01,Man03,KM07,Frø10].

The types (b) and (d) are symplectic replacements for (a) and (c), respec-
tively. Their construction starts with a decomposition of the three-manifold Y

1 The terminology “symplectic instanton homology” is not yet standard. We use it to mean
the different kinds of Lagrangian Floer homology that are meant to recover instanton homol-
ogy. By the same token, Heegaard Floer homology could be called “symplectic monopole Floer
homology.”
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into a union of two handlebodies glued along a surface †. To † we associate
a symplectic manifold M.†/: in (b), this is a moduli space of flat connections
on †, whereas in (d) it is a symmetric product of † (which can be interpreted
as a moduli space of vortices). To the two handlebodies we then associate La-
grangians L0; L1 � M.†/, and their Lagrangian Floer homology is the de-
sired theory. This kind of construction was suggested by Atiyah [Ati88], and the
equivalence of (a) and (b) came to be known as the Atiyah–Floer conjecture. In
the monopole context, the analogous construction was pursued by Ozsváth and
Szabó, who developed Heegaard Floer homology in a series of papers [OS04d,
OS04c,OS06,OS03a]. The equivalence of (c) and (d) was recently established
[KLT10a,KLT10b,KLT10c,KLT11,KLT12,CGH12b,CGH12c,CGH12a].

We will describe the four different Floer homologies (a)–(d) in each of the
Sects. 2 through 5, respectively. Throughout, we will give a sample of the appli-
cations of these theories to questions in low dimensional topology.

In Sect. 6 we will turn to the question of constructing Floer generalized ho-
mology theories, such as Floer stable homotopy. We will discuss how this was
done in the monopole setting in [Man03]. A by-product of this construction
was the definition of Pin.2/-equivariant Seiberg–Witten Floer homology, whose
main application is outlined in Sect. 7: the disproof of the triangulation conjec-
ture for manifolds of dimension � 5.

2. Instanton homology

The first application of gauge theory to low dimensional topology was Donald-
son’s diagonalizability theorem:

Theorem 2.1 (Donaldson [Don83]). Let W be a simply connected, smooth,
closed 4-manifold. If the intersection form of W is definite, then it can be di-
agonalized over Z.

The proof uses a study of the anti-self-dual Yang–Mills equations on W :

(2) ?FA D �FA;

where A is a connection in a principal SU.2/ bundle P on W , and FA denotes
the curvature of A.

Later, Donaldson introduced his polynomial invariants of 4-manifolds
[Don90], which are a signed count of the solutions to (2), modulo the action
of the gauge group �.EndP /. These have numerous other applications to four-
dimensional topology.

Instanton homology is a (relatively Z=8-graded) Abelian group I�.Y / asso-
ciated to a closed 3-manifold Y (with some restrictions on Y ; see below). The
main motivation behind the construction of instanton homology is to develop
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cut-and-paste methods for computing the Donaldson invariants. Roughly, if we
have a decomposition of a closed 4-manifold W as

W D W1 [Y W2;

then one can define relative Donaldson invariants D.W1/ 2 I�.Y / and D.W2/

2 I�.�Y / such that the invariant of W is obtained from D.W1/ and D.W2/

under a natural pairing map

I�.Y /˝ I�.�Y / �! Z:

More generally, instanton homology fits into a topological quantum field
theory (TQFT). Given a 4-dimensional cobordism W from Y0 to Y1, we get a
map

D.W / W I�.Y0/ �! I�.Y1/

which is functorial under composition of cobordisms.
As mentioned in the introduction, to define instanton homology we consider

an SU.2/ bundle P over Y (in fact, there is a unique such bundle, the trivial
one) and form the infinite dimensional space

X D fconnections on P g=gauge;

with the Chern–Simons functional

CS W X �! R=Z; CS.A/ D 1

8�2

Z
Y

tr.A ^ dAC A ^ A ^ A/:

We then define a Morse complex for CS. Its generators are connections A with
FA D 0, modulo gauge; these can be identified with representations �1.Y / !
SU.2/, modulo the action of SU.2/ by conjugation. Further, the differential
counts gradient flow lines, which can be re-interpreted as solutions to (2) on
the cylinder R � Y . The homology of this complex is I�.Y /.

The above is only a rough sketch of the construction. There are many caveats,
such as:

(i) To define the gradient we also need to choose a Riemannian metric g on
Y . (However, the resulting instanton homology will be independent of g.)

(ii) The Chern–Simons functional has to be suitably perturbed to achieve
transversality.

(iii) One needs to distinguish between irreducible connections (those with triv-
ial stabilizer under the gauge group) and reducible connections. In Floer’s
original theory [Flo88a], one only counts irreducibles. However, to have
@2 D 0 in the complex, we need to make sure the interaction with the
reducibles is negligible. This happens provided that either:
(a) Y is a homology sphere; or
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(b) Instead of the SU.2/ bundle we use a non-trivial SO.3/ bundle, satis-
fying an admissible condition (so that there are no reducibles). Such
bundles only exist for b1.Y / > 0.

There are also versions of Floer homology that involve the reducible; see
[Don02].

Point (iii) above says that Floer’s instanton homology I�.Y / is only defined
in cases (a) and (b), i.e., for homology spheres and for admissible bundles. If
one wants a consistent theory for all 3-manifolds Y , one way to produce it is
to take a connected sum with a fixed 3-manifold (such as T 3) that is equipped
with an admissible bundle P0. The resulting group

(3) I #.Y / WD I.Y #T 3; P #P0/

is called framed instanton homology; cf. [KM11b].
We now turn to a few applications of instanton homology.
Given the TQFT structure, it is not surprising that many applications have

to do with four-manifolds with boundary and cobordisms. In particular, let us
consider the three-dimensional homology cobordism group

(4) ‚H
3 D foriented homology 3-spheresg= �

where Y0 � Y1 , there exists a smooth, compact, oriented 4-manifoldW with
@W D .�Y0/[ Y1 and H1.W I Z/ D H2.W I Z/ D 0: Addition in ‚H

3 is given
by connected sum, the inverse is given by reversing the orientation, and S3 is
the zero element.

The first information about ‚H
3 came from the Rokhlin homomorphism

[Rok52,EK62]:

(5) � W ‚H
3 �! Z=2; �.Y / D �.W /=8 .mod 2/;

whereW is any compact, spin 4-manifold with boundary Y . One can prove that
the value of � depends only on Y , not onW . The homomorphism � can be used
to show that ‚H

3 is non-trivial: For instance, the Poincaré sphere P bounds the
E8 plumbing (of signature �8), so �.P / D 1.

The structure of ‚H
3 is still not completely understood. Most of what we

know comes from gauge theory. Using the Yang–Mills equations (albeit without
referencing Floer homology directly), Furuta and Fintushel–Stern proved that
‚H

3 is infinitely generated [Fur90,FS90]. Using the SU.2/-equivariant structure
on instanton homology, Frøyshov [Frø02] defined a surjective homomorphism

h W ‚H
3 �! Z:

This implies the following:

Theorem 2.2 (Frøyshov [Frø02]). The group ‚H
3 has a Z summand.
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Moreover, Frøyshov found the following generalization of Donaldson’s the-
orem to 4-manifolds with boundary:

Theorem 2.3 (Frøyshov [Frø02]). If a homology sphere Y bounds a smooth,
compact oriented 4-manifold with negative definite intersection form, then h.Y /
� 0. This inequality is strict if the intersection form is not diagonal over the
integers.

Another celebrated application of instanton homology is the proof of Prop-
erty P for knots. Given a knot K � S3 and relatively prime integers p; q, the
result of p=q surgery on K is the three-manifold

S3
p=q.K/ D .S3 � nbhd.K// [T 2 .S1 �D2/;

where the gluing along the torus is done such that the meridian f1g�D2 is taken
to a simple closed curve in the homology class pŒ��C qŒ��. (Here, � and � are
the longitude and the meridian of the knot.)

A theorem of Lickorish and Wallace [Lic62,Wal60] says that every closed
3-manifold can be obtained by surgery on a collection of knots in S3. Those
manifolds obtained by surgery on a single knot form an interesting class. Be-
fore Perelman’s proof of the Poincaré conjecture [Per02,Per03b,Per03a], as a
first step towards the conjecture, one could ask whether any counterexamples
can be obtained by surgery on a knot. Since Gordon and Luecke had shown
that S3

p=q
.K/ D S3 only when K is the unknot [GL89], that question can be

rephrased as follows: Does every non-trivial knot K � S3 have property P, i.e.,
do we have

�1.S
3
p=q.K// ¤ 1

for all p=q 2 Q? For p=q ¤ ˙1, this was established in [CGLS87]. The
remaining case p=q D ˙1 was completed by Kronheimer and Mrowka in 2004
(independently of Perelman’s work):

Theorem 2.4 (Kronheimer–Mrowka [KM04]). If a homotopy 3-sphere Y is
obtained by ˙1 surgery on a knot K � S3, then K is the unknot (and hence Y
is the three-sphere).

This result builds on the work of many mathematicians; it uses results from
symplectic and contact geometry, as well as gauge theory. Instanton homology
enters the picture through the connection between the generators of the Floer
complex (flat connections) and representations �1.Y / ! SU.2/. The final step
in the proof of Theorem 2.4 is to show that I�.S3˙1.K// ¤ 0, which implies the
existence of a non-trivial representation �1.S

3˙1.K// ! SU.2/, and hence the
non-vanishing of the fundamental group.
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Here is another application of instanton homology to knot theory. Recall that
to a knot K � S3 we can associate the Jones polynomial

VK.t/ 2 ZŒt; t�1�:

A natural question is whether the Jones polynomial detects the unknot U , that
is, if VK.t/ D VU .t/ D 1, do we have K D U ? This is still open, but a “cat-
egorified” version of this question has been answered. Specifically, in [Kho00,
Kho03], Khovanov defined (combinatorially) a bi-graded homology theory for
knots fKh.K/ D

M
i;j 2Z

fKhi;j .K/

such that its Euler characteristic gives the Jones polynomial:X
i;j 2Z

.�1/i tj rk fKhi;j .K/ D VK.t/:

It turns out that Khovanov homology detects the unknot:

Theorem 2.5 (Kronheimer–Mrowka [KM11a]). If a knotK � S3 has fKh.K/
D fKh.U /, then K D U .

The proof uses a version of instanton homology for knots, I \.K/. There is
a spectral sequence relating fKh.K/ to I \.K/, which implies a rank inequality
between the two theories, rk fKh.K/ � rk I \.K/. Using sutured decompositions
of the knot complement, it can be shown that rk I \.K/ � 1, with equality if
and only if K is the unknot; see [KM10,KM11a]. In turn, this implies the cor-
responding result for fKh.

3. Symplectic instanton homology

A Heegaard splitting of a closed 3-manifold Y is a decomposition

(6) Y D U0 [† U1;

where † is a surface of genus g and U0, U1 are handlebodies. Given such a
splitting (which can be found for any Y ), we consider the moduli space M.†/
of SU.2/ flat connections over †, modulo gauge. We can identify it with the
representation space

f�1.†/ �! SU.2/g=SU.2/:

The handlebodies Ui (i D 0; 1) produce subspaces Li � M.†/, corresponding
to representations that extend to �1.Ui /.
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The Atiyah–Floer conjecture [Ati88] states that there should be an isomor-
phism:

(7) I�.Y / Š HF�.L0; L1/;

where the left hand side is instanton homology, and the right hand side is La-
grangian Floer homology inside M.†/. The idea behind the conjecture is to
deform the metric on Y by inserting a long cylinder of the form Œ�T; T � �† in
the middle of the decomposition (6). As T ! 1, we expect the flat connections
on Y to “localize” to intersection points L0 \L1 � M.†/, and the ASD Yang–
Mills equations on R �Y to turn into the nonlinear Cauchy–Riemann equations
on M.†/ that define pseudo-holomorphic curves.

The first difficulty with (7) is that the right hand side (which we call symplec-
tic instanton homology) is not well-defined. This is because the moduli space
M.†/ and the Lagrangians L0; L1 are singular (at the points corresponding to
reducible connections). Still, by tweaking the definition in various ways, one
can define the right hand side in certain settings:

� Dostoglou–Salamon [DS94] considered U.2/ connections in a non-trivial
bundle over †. The resulting moduli space M 0.†/ is smooth, and using it
they formulate (and then prove) a version of (7) for mapping tori;

� Salamon–Wehrheim [SW08] defined a Lagrangian Floer homology in infinite
dimensions, as the first step in a program for establishing (7) for homology
spheres Y ;

� Wehrheim–Woodward [WW08] developed Lagrangian Floer homology in
M 0.†/ further. They define the right hand side of (7) whenever Y is equipped
with an admissible bundle (with no reducibles). In particular, by taking con-
nected sum with a torus, they can define a “framed” version of symplectic
instanton homology, which is conjecturally the same as I #.Y / from (3);

� Another definition of framed symplectic instanton homology was proposed
by Manolescu–Woodward [MW12]. This is based on doing Lagrangian Floer
homology inside a (smooth) extended moduli space of SU.2/ connections,
whose symplectic quotient is M.†/.

For recent progress towards the Atiyah–Floer conjecture for admissible bun-
dles (i.e., with no reducibles), see [Dun13,Lip14].

Symplectic instanton homology has not yet produced any significant topo-
logical applications. Nevertheless, it motivated the analogous construction in the
monopole setting, which led to the development of Heegaard Floer homology
(cf. Sect. 5 below).
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4. Monopole Floer homology

Apart from the ASD Yang–Mills equations, the other main input that gauge the-
ory provides for the study of 4-manifolds is the Seiberg–Witten (or monopole)
equations [SW94,Wit94]:

(8) FC
A D �.	/; DA	 D 0:

These are associated to a 4-manifoldW equipped with a Spinc structure s, with
spinor bundles SC; S�. In these equations, A is a Spinc connection, 	 is a sec-
tion of SC,DA is the Dirac operator associated toA, and � is a certain quadratic
expression in 	. The signed count of solutions to (8) gives the Seiberg–Witten
invariant of the pair .W; s/.

Monopole Floer homology is obtained from the Seiberg–Witten equations
similarly to how instanton homology is obtained from the Yang–Mills equa-
tions. Given a three-manifold Y with a Spinc structure s, we consider an infi-
nite dimensional configuration space of connection-spinor pairs .A; 	/, modulo
gauge. (Here,A is a connection in a U.1/, rather than in an SU.2/ or SO.3/ bun-
dle.) The configuration space is equipped with the Chern–Simons–Dirac func-
tional CSD, given by

CSD.A; 	/ D �1
8

Z
Y

.At � At
0/ ^ .FAt C FAt

0
/C 1

2

Z
Y

hDA	; 	i dvol :

Here, A0 is a fixed base connection, and the superscript t denotes the induced
connections in the determinant bundle.

The Floer homology associated to CSD is monopole Floer homology. There
are several difficulties that need to be overcome to make this definition precise.
As in the instanton case, the main problem is the presence of reducible con-
nections. In their monograph on the subject [KM07], Kronheimer and Mrowka
deal with this by considering a (real) blow-up of the configuration space. They
succeed in defining monopole Floer versions (in three versions: zHM, bHM, HM)
for all pairs .Y; s/.

When Y is a rational homology sphere, alternate constructions of monopole
Floer homology have been proposed by Marcolli–Wang [MW01], Manolescu
[Man03], and Frøyshov [Frø10].

Monopole Floer homology can be applied to questions about homology
cobordism and four-manifolds with boundary, in a manner similar to instanton
homology. In particular, one can define a surjective homomorphism

ı W ‚3
H �! Z

and give a proof of Theorem 2.2 using monopoles [Frø10,KM07]. The defini-
tion of ı uses the ZŒU �-module structure on zHM, which comes from the S1-
equivariance of the equations, sinceH�

S1.pt/ D H�.CP1/ D ZŒU �: Precisely,
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we have:

ı.Y /(9)

D1
2

minfr j 9x ¤ 0 s.t. 8l; x 2 im.U l W zHMrC2l.Y / �! zHMr.Y //g:
If Y is an integral homology sphere andW is a negative-definite 4-manifold

with boundary Y , we have

(10) c2 C rk.H 2.W I Z// 	 8ı.Y /;

for any characteristic vector c 2 H2.W I Z/=torsion, i.e., a vector such that
c � v 
 v � v .mod 2/ for all v 2 H2.W I Z/=torsion. This implies the analog of
Theorem 2.3, that ı.Y / � 0.

One advantage of monopole Floer homology (over instanton homology) is
its closer relation to geometric structures on 3-manifolds, such as embedded sur-
faces, taut foliations, and contact structures [KM97]. (Inspired by the monopole
case, similar connections were later proved to exist for instanton homology as
well, but in a more roundabout way: using sutured decompositions; see [KM10,
BS14].) By exploiting the relation of monopole Floer homology to taut folia-
tions, one can prove:

Theorem 4.1 (Kronheimer–Mrowka–Ozsváth–Szabó [KMOS07]). Suppose
K � S3 is a knot such that there is an orientation-preserving diffeomorphism
S3

r .K/ Š S3
r .U /, for some r 2 Q. Then K is the unknot U .

An important ingredient in the proof of Theorem 4.1 are exact triangles that
relate the Floer homologies of different surgeries on K. This allows one to re-
duce the argument to studying the Floer homology of 0-surgeries. One then uses
a non-vanishing result for the Floer homology of manifolds admitting taut foli-
ations (such as S3

0 .K/ for K ¤ U ).
Another celebrated application of monopole Floer homology is Taubes’ so-

lution to the Weinstein conjecture in dimension three:

Theorem 4.2 (Taubes [Tau07]). Let Y be a closed 3-manifold equipped with a
contact form, and let R be the associated Reeb vector field. Then R has at least
one periodic orbit.

The idea is to use the non-vanishing of monopole Floer homology to pro-
duce solutions to the Seiberg–Witten equations on Y . Then, one deforms these
equations so that in the limit, the spinor is close to zero only on a set that ap-
proximates the periodic orbits of the Reeb vector field R.
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5. Heegaard Floer homology

The definition of Heegaard Floer homology [OS04d] starts with a Heegaard
splitting Y D U0 [† U1, just as in (6). We then do Lagrangian Floer homology
on a symplectic manifold associated to the surface †. In the case of symplectic
instanton homology discussed in Sect. 3, the symplectic manifold was a moduli
space of flat connections on †; these flat connections are solutions to a two-
dimensional reduction of the ASD Yang–Mills equations. In the Heegaard Floer
setting, we use instead the vortex equations on †, which are a reduction of the
Seiberg–Witten equations. The moduli spaces of vortices are symmetric prod-
ucts of †. It is most convenient to consider the gth symmetric product, where g
is the genus of †:

Symg † D .† � � � � �†/=Sg :

Here, we take the Cartesian product of g copies of †, and then divide by the
natural action of the symmetric group Sg .

To construct Lagrangians in Symg.†/, pick simple closed curves ˛1; : : : ; ˛g

� † that are homologically linearly independent in †, and bound disks in the
handlebody U0; pick also similar curves ˇ1; : : : ; ˇg that bound disks in U1.
The set of data .†I˛1; : : : ; ˛g Iˇ1; : : : ; ˇg/ is called a Heegaard diagram for
Y . Consider the tori

T˛ D ˛1 � � � � � ˛g ; Tˇ D ˇ1 � � � � � ˇg � Symg.†/:

Heegaard Floer homology is the Lagrangian Floer homology of T˛ and Tˇ

inside Symg.†/. To get the full power of the theory, one picks a basepoint z 2 †
(away from the ˛ and ˇ curves) and then keeps track of the relative homotopy
classes of pseudo-holomorphic disks through their intersection with the divisor

fzg � Symg�1.†/ � Symg.†/:

This way one obtains three versions of Heegaard Floer homology, denoted
HFC;HF� and HF1. They are modules over the ring ZŒU �, and correspond to
the monopole Floer homologies zHM;bHM and HM, respectively. In this section
we will focus on HFC. By settingU D 0 in the chain complex for HFC and then
taking homology, one obtains a somewhat weaker theory denoted cHF, which is
the Lagrangian Floer homology of T˛ and Tˇ inside Symg.† � fzg/:

Just as monopole Floer homology, Heegaard Floer homology decomposes
according to the Spinc structures on Y . For example:

HFC.Y / D
M

s2Spinc

HFC.Y; s/:

Among the Floer homologies of 3-manifolds, Heegaard Floer homology is
the most computationally tractable:
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� The generators of the Heegaard Floer chain complex are n-tuples of intersec-
tion points between T˛ and Tˇ , so they can be easily read from a Heegaard
diagram;

� There are exact triangles relating HFC of different surgeries on a null-homo-
logous knot, in an arbitrary 3-manifold. Using these triangles, one can in-
ductively compute HFC for large classes of plumbed manifolds, such as all
Seifert fibered rational homology spheres [OS03b,Ném05]. More generally,
HFC for all Seifert fibered manifolds was computed in [OS11];

� By iterating the exact triangles, one can study HFC of the double branched
cover of S3 over a knot K, and relate it to the Khovanov homology of K
[OS05c]. In particular, one can explicitly calculate HFC of double branched
covers over alternating knots;

� There are surgery formulas that express HFC of a surgery on a knot in terms
of a Floer complex associated to the knot [OS08,OS11]. The knot Floer com-
plex was defined in [Ras03,OS04b], and knot Floer homology has many ap-
plications of its own; see [Man] for a survey;

� The knot Floer complex of a knot (or link) in S3 admits a combinatorial
description in terms of grid diagrams [MOS09];

� Using a special class of diagrams called nice, one can find a combinatorial
description of cHF.Y / for any 3-manifold Y [SW10];

� There is also a surgery formula for links [MO]. This expresses the Heegaard
Floer homology of an integral surgery on a link in terms of Floer data associ-
ated to the link and its sublinks;

� By combining the link surgery formula with the grid diagram technique for
links in S3, one arrives at a combinatorial description of HFC and cHF for all
3-manifolds. One also gets such a description for the related mixed invariants
of 4-manifolds from [OS06] (analogues of the Seiberg–Witten invariants).
See [MOT];

� There is a Heegaard Floer invariant for three-manifolds with boundary, called
bordered Floer homology [LOTa]. If we decompose a three-manifold Y along
a surface, cHF.Y / can be recovered as the tensor product of the bordered in-
variants of the two pieces. There is also an extension of this theory to 3-
manifolds with codimension 2 corners [DM14,DLM];

� Using bordered Floer homology, one can give an effective algorithm for com-
puting cHF for 3-manifolds [LOTb]. Further, one can compute cHF in infinite
families, for example for graph manifolds [Han].
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Next, let us discuss several useful properties of Heegaard Floer homology;
when combined with the calculational techniques above, they lead to many topo-
logical applications.

Some properties were inspired by the corresponding ones in gauge theory
(for instanton and/or monopole Floer homology):

(i) A cobordism between 3-manifolds (together with a Spinc structure on that
cobordism) induces a map between the respective Heegaard Floer homolo-
gies [OS06]. One can also define invariants of closed 4-manifolds, which
behave similarly (and are conjecturally identical) to the Seiberg–Witten
invariants;

(ii) There is a surjective homomorphism d W ‚3
H ! Z given by

d.Y /

D minfr j 9x ¤ 0 s.t. 8l; x 2 im.U l W HFC
rC2l

.Y / �! HFC
r .Y //g;

and we have the analog of the inequality (10); cf. [OS03a]. (Note that d
corresponds to 2ı.) More generally, we can define d.Y; s/ for any rational
homology sphere and s 2 Spinc.Y /;

(iii) Heegaard Floer homology detects the Thurston norm of 3-manifolds
(which gives the minimal complexity of surfaces in a given homology
class) [OS04a];

(iv) A contact structure 
 on Y induces an element c.
/ 2 cHF.�Y /= ˙ 1

[OS05a]. We have c.
/ D 0 for overtwisted contact structures, and c.
/ ¤
0 for symplectically semi-fillable contact structures [OS04a];

(v) We say that a rational homology sphere Y is an L-space if cHF.Y; s/ D Z
for any s 2 Spinc.Y /. If Y is an L-space, then Y does not admit a co-
orientable taut foliation [OS04a].

Other properties of Heegaard Floer homology were developed first in this
setting (and sometimes inspired similar results in gauge theory). This is the
case with fiberedness detection [Ghi08,Ni07,Juh08,Ni09], with surgery formu-
las [OS08,OS11,MO], and with extending Heegaard Floer homology to knots
[OS04b,Ras03], sutured 3-manifolds [Juh06], and bordered 3-manifolds
[LOTa].

We now list a few concrete topological applications of Heegaard Floer ho-
mology.

By making use of the contact invariant c.
/, one can study tight contact
structures on various classes of 3-manifolds. For example:

Theorem 5.1 (Lisca–Stipsicz [LS07,LS09]). A closed, oriented, Seifert fibered
3-manifold Y admits a positive tight contact structure if and only if Y is not
diffeomorphic to .2n � 1/ surgery on the torus knot T2;2nC1 for any n � 1.
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Using the fiberedness and genus detection properties of knot Floer homol-
ogy, one gets:

Theorem 5.2 (Ghiggini [Ghi08]). If K � S3 and r 2 Q are such that S3
r .K/

is the Poincaré sphere, then K is the trefoil.

By combining Ghiggini’s methods with the surgery formula from [OS11],
one obtains a surgery characterization (an analog of Theorem 4.1) for a few
non-trivial knots:

Theorem 5.3 (Ozsváth–Szabó [OS]). Let K be the left-handed trefoil, the
right-handed trefoil, or the figure-eight knot. Suppose K 0 � S3 is a knot such
that there is an orientation-preserving diffeomorphism S3

r .K/ Š S3
r .K

0/, for
some r 2 Q. Then K D K 0.

Using d invariants and surgery formulas, one gets constraints on the knots
in S3 that can produce lens spaces by surgery:

Theorem 5.4 (Ozsváth–Szabó [OS05b]). If K � S3 is such that S3
r .K/ is a

lens space for some r 2 Q, then the Alexander polynomial of K is of the form

�K.q/ D
kX

j D�k

.�1/k�j qnj ;

for some k � 0 and integers n�k < � � � < nk such that n�j D �nj .

Combining this with fiberedness detection [Ni07], one obtains the additional
constraint that K is fibered (under the same hypotheses).

If surgery on a knot K gives a lens space, one can also obtain inequalities
between the surgery slope and the genus of the knot, g.K/. For example:

Theorem 5.5 (Rasmussen [Ras04]). Let K � S3 be a knot such that S3
r .K/ is

a lens space, for some r 2 Q. Then:

jr j 	 4g.K/ � 3:
Theorem 5.6 (Greene [Gre13]). Suppose that K � S3 is a knot such that
S3

p .K/ is a lens space for some positive integer p. Then:

2g.K/ � 1 	 p � 2
p
.4p C 1/=5

unless K is the right-hand trefoil and p = 5.
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The proof of Theorem 5.6 combines methods based on the d invariant with
Donaldson’s diagonalizability theorem. Similar techniques allowed Greene to
give a complete characterization of which lens spaces can be obtained by inte-
gral surgery on a knot in S3.

By using the rational surgery formula from [OS11], one can study cosmetic
surgeries, that is, surgeries (with different coefficients) on the same knot, that
produce the same 3-manifold. Building up on work of Ozsváth–Szabó [OS11],
Ni and Wu proved:

Theorem 5.7 (Wu [Wu11]; Ni–Wu [NW]). Suppose K � S3 is a non-trivial
knot such that S3

r1
.K/ Š S3

r2
.K/ (as oriented manifolds) for two distinct ratio-

nal numbers r1 and r2. Then, r1 D �r2 and r1 is of the form p=q where p, q
are coprime integers with q2 
 �1 .mod p/:

Using d invariants, one can show that various 3-manifolds with b1 D 1 are
not surgery on a knot in S3 [OS03a]. By more refined methods (based on the
knot surgery formulas), one can show that certain families of integer homology
spheres are not surgeries on knots. For example:

Theorem 5.8 (Hom–Karakurt–Lidman [HKL]). For k � 4, the Brieskorn
spheres †.2k; 4k � 1; 4k C 1/ are not surgeries on knots in S3.

6. Floer stable homotopy

Suppose we have an infinite dimensional space X and a function f W X ! R
so that we can define some variant of Floer homology HF.X; f /. In [CJS95],
Cohen, Jones and Segal asked the following question: Can HF.X; f / be ex-
pressed as the homology of a “Floer space” S.X; f /? They proposed a con-
struction along the following lines: We choose an absolute grading on the Floer
complex, lifting the relative grading. Then, to each generator of the Floer com-
plex in degree k we associate a k-cell; this is attached to the lower dimensional
cells by maps determined by the spaces of gradient flow lines, according to the
Pontrjagin–Thom construction.

Let us illustrate this by an example: Suppose the Floer complex has only
two generators x and y, with relative index �.x; y/ D k � 1. The space of flow
lines between x and y is an k-dimensional manifold, with an action of R by
translation. Dividing by this action we obtain a .k�1/-dimensional manifold P .
Under certain hypotheses, P is closed, and can be equipped with a stable fram-
ing (a stable normal trivialization). If so, then the Pontrjagin–Thom construction
produces an element in the stable homotopy group of spheres �st

k�1
.S0/, repre-

sented by a map
� W SN Ck�1 �! SN
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forN � 0. The desired Floer space S.X; f / is obtained from anN -cell and an
.N C k/-cell, with the attaching map being �.

There are several caveats about this construction:

(i) If we increase N , then the space changes by a suspension. Thus, it makes
more sense to define S.X; f / as a stable homotopy type (suspension spec-
trum);

(ii) In many cases, the Floer complex has infinitely many generators, in in-
finitely many degrees. Cohen, Jones and Segal propose that in such situ-
ations the natural object to define is a pro-spectrum (an inverse system of
spectra);

(iii) The spaces P of flow lines may not be compact, for two reasons: bub-
bling (which happens in instanton and in Lagrangian Floer theory, but not
in monopole theory), and the presence of degenerations of flow lines into
broken flow lines. If we assume no bubbling, then the spaces P are ex-
pected to be manifolds-with-corners, which can be put together into at-
taching maps in a manner discussed in [CJS95];

(iv) Even if the non-compactness issues are resolved, we still need to spec-
ify stable framings for the Pontrjagin–Thom construction. Cohen, Jones
and Segal identify a class in KO1.X/ that obstructs the existence of such
framings;

(v) Even if the obstruction is zero, to define the framings we need to en-
dow the spaces of flow lines with smooth (not just topological) structures
of manifolds-with-corners, such that these structures are compatible with
each other. This leads into some difficult analytical issues.

In the case of Seiberg–Witten Floer homology on 3-manifolds Y with b1.Y /

D 0, a couple of the problems above disappear: There are only finitely many
generators (so we expect a spectrum, rather than a pro-spectrum), there is no
bubbling, and the framing obstruction vanishes. Still, defining the smooth mani-
fold-with-corners structures seems difficult.

A way of going around this problem was developed in [Man03]. Rather than
follow the Cohen–Jones–Segal program, one applies Furuta’s technique of finite
dimensional approximation [Fur01]. The configuration space X of connections
and spinors is a Hilbert space. We choose a certain sequence of finite dimen-
sional subspaces X� that are getting larger as � ! 1, so that their union
is dense in X . We consider an approximate Seiberg–Witten flow on X�. Of
course, on a closed finite dimensional manifold, instead of Morse homology we
can simply take the singular homology and get the same answer. Our vector
spaces X� are non-compact, but a similar procedure works: We consider the
Conley index [Con78] associated to the flow on a large ball B � X�. Roughly,
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the Conley index is the pointed space

I� D B=L

where L � @B is the part of the boundary of B where the flow goes outwards.
The homology of the Conley index is meant to be the Morse homology associ-
ated to the approximate flow (assuming that the flow is Morse–Smale).

In [Man03], we do not need to assume the Morse–Smale transversality con-
dition. Rather, we define Seiberg–Witten Floer homology directly as the relative
homology of I�, with an appropriate degree shift depending on �. This yields
the benefit that we also get a Floer stable homotopy type, the suspension spec-
trum associated to I�. Since the Seiberg–Witten equations have an S1 symme-
try, we actually have an S1-equivariant stable homotopy type

SWF.Y; s/

associated to a rational homology sphere Y and a Spinc structure s on Y .
Starting from here, if h is a generalized homology theory (such as K- or

KO-theory, complex bordism, stable homotopy, etc.), one can define a Seiberg–
Witten Floer generalized homology:

h�.SWF.Y; s//:

This turns out to be particularly useful when combined with additional sym-
metry of the Seiberg–Witten equations, the conjugation symmetry. Let us focus
on the case when Y is a homology sphere, so that there is a unique Spinc struc-
ture s, coming from a spin structure. The conjugation and the S1 symmetry
together yield a symmetry by the group

Pin.2/ D S1 ˚ S1j � C ˚ Cj D H;

where H are the quaternions and j 2 D �1. We can then define SWF.Y / D
SWF.Y; s/ as a Pin.2/-equivariant stable homotopy type [Man13], and for ex-
ample take its equivariant (Borel) homology

(11) SWFHPin.2/� .Y / D QH Pin.2/� .SWF.Y //:

This is the Pin(2)-equivariant Seiberg–Witten Floer homology of Y . In
Sect. 7 we will describe its application to the resolution of the triangulation
question in high dimensions.

One can also define Pin(2)-equivariant Seiberg–Witten Floer K-theory by

SWFKPin.2/.Y / D QKPin.2/.SWF.Y //:

This has applications to the topology of four-manifolds with boundary
[Man14,FL]. They are inspired from Furuta’s proof of the 10=8 inequality for
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closed, smooth, spin four-manifolds: If W is such a manifold, Furuta showed
that

b2.W / � 10

8
j�.W /j C 2;

where � denotes the signature. (Matsumoto’s 11=8 conjecture [Mat82] postu-
lates the stronger inequality b2.W / � 11

8
j�.W /j.)

Now suppose thatW is a smooth, spin, compact 4-manifold with boundary a
homology sphere Y . From SWFKPin.2/.Y / one can extract an invariant .Y / 2
Z, and then prove an analog of Furuta’s inequality:

b2.W / � 10

8
j�.W /j C 2 � 2.Y /:

Slightly stronger inequalities can be obtained by considering Pin.2/-equi-
variant KO-theory instead of K-theory; see [Lin14b].

7. The triangulation conjecture

A triangulation of a topological space is a homeomorphism to a simplicial com-
plex. In 1924, Kneser [Kne26] asked the following:

Question 7.1. Does every topological manifold admit a triangulation?

The answer was initially thought to be positive, and this was called the (sim-
plicial) triangulation conjecture. A stronger version of this was the combinato-
rial triangulation conjecture, which posited that manifolds admit triangulations
such that the links of the simplices are spheres. Such triangulations are called
combinatorial, and are equivalent to PL (piecewise linear) structures on those
manifolds.

Here is a short history of the relevant developments:

� Radó [Rad25] proved that two-dimensional manifolds admit combinatorial
triangulations;

� Cairns [Cai35] and Whitehead [Whi40] showed the same for smooth mani-
folds, of any dimension;

� Moise [Moi52] showed that three-manifolds have combinatorial triangula-
tions;

� Kirby and Siebenmann [KS77] showed that the combinatorial triangulation
conjecture is false: There exist manifolds without PL structures in every di-
mension � 5. Further, they showed that in these dimensions, the existence of
PL structures is governed by an obstruction class �.M/ 2 H 4.M I Z=2/;

� Edwards [Edw06] gave the first example of a non-combinatorial triangula-
tion of a manifold: the double suspension of a certain homology 3-sphere is
homeomorphic to S5, but the underlying triangulation is non-combinatorial;
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� Freedman [Fre82] found 4-dimensional manifolds without PL structures, e.g.
the E8-manifold;

� Casson [AM90] proved that, for example, Freedman’s E8-manifold does not
admit any triangulations. This gave the first counterexamples to the simplicial
triangulation conjecture (in dimension 4);

� The simplicial triangulation question in dimension � 5was shown by Galew-
ski–Stern [GS80] and Matumoto [Mat78] to be equivalent to a different prob-
lem in 3C 1 dimensions. This problem was solved in [Man13], using Pin.2/-
equivariant Seiberg–Witten Floer homology. As a consequence, there exist
non-triangulable manifolds in any dimension � 5.

Let us sketch the disproof of the triangulation conjecture in dimensions � 5.
Suppose that a closed, oriented n-dimensional manifold M (n � 5) is

equipped with a triangulation K. Consider the Sullivan–Cohen–Sato class (cf.
[Sul96,Coh70,Sat72]):

(12) c.K/ D
X

�2K.n�4/

ŒlinkK.�/� � � 2 Hn�4.M I‚H
3 / Š H 4.M I‚H

3 /:

Here, the sum is taken over all codimension four simplices in the triangulation
K. The link of each such simplex can be shown to be a homology 3-sphere.
(It would be an actual 3-sphere if the triangulation were combinatorial.) Note
the appearance of the homology cobordism group ‚H

3 defined in (4). We focus
on codimension four simplices in (12), because the analog of the homology
cobordism group in any other dimension is trivial [Ker69].

The Rokhlin homomorphism � from (5) induces a short exact sequence

(13) 0 �! ker.�/ �! ‚H
3 �! Z=2 �! 0

and an associated long exact sequence in cohomology

(14) � � � �! H 4.M I‚H
3 /

����! H 4.M I Z=2/
ı�! H 5.M I ker.�// �! � � � :

It can be shown that the image of c.K/ under �� is exactly the Kirby–
Siebenmann obstruction to PL structures, �.M/ 2 H 4.M I Z=2/. Thus, if M
admits any triangulation, we get that �.M/ is in the image of ��, and hence in
the kernel of the Bockstein homomorphism ı. Thus, a necessary condition for
the existence of simplicial triangulations is the vanishing of the class

ı.�.M// 2 H 5.M I ker.�//:

Interestingly, this is also a sufficient condition:

Theorem 7.2 (Galewski–Stern [GS80]; Matumoto [Mat78]). A topological
manifold M of dimension � 5 is triangulable if and only if ı.�.M// D 0.



Floer theory and its topological applications 125

Thus, we need to find out if there exist manifolds M with ı.�.M// ¤ 0.
Observe that the Bockstein map ı is zero if the short exact sequence (13) splits.
Thus, if (13) split, then all high dimensional manifolds would be triangulable.
The converse is also true:

Theorem 7.3 (Galewski–Stern [GS80]; Matumoto [Mat78]). There exist non-
triangulable manifolds of (every) dimension � 5 if and only if the exact se-
quence (13) does not split.

Example 7.4. (due to Peter Kronheimer) By Freedman’s theorem [Fre82], sim-
ply connected, closed topological four-manifolds are characterized up to home-
omorphism by their intersection form and their Kirby–Siebenmann invariant.
Let W be the fake CP2#.�CP2/, that is, the closed, simply connected topo-
logical 4-manifold with intersection form Q D h1i ˚ h�1i and with non-trivial
Kirby–Siebenmann invariant. Since the formQ is isomorphic to �Q, by apply-
ing Freedman’s theorem again we find that W admits an orientation-reversing
homeomorphism f W W ! W . Let M be the mapping torus of f . Then M
is a five-manifold with the Steenrod square Sq1�.M/ 2 H 5.M I Z=2/ non-
trivial. Assuming that (13) does not split, it is not hard to see that the non-
vanishing of Sq1�.M/ implies the non-vanishing of ı.�.M//. Therefore, M
is non-triangulable. By taking products with the torus T n�5, we obtain non-
triangulable manifolds in any dimension n � 5.

In view of Theorem 7.3, the disproof of the triangulation conjecture is com-
pleted by the following:

Theorem 7.5 (Manolescu [Man13]). The short exact sequence (13) does not
split.

Sketch of the proof. A splitting of (13) would consist of a map � W Z=2 ! ‚H
3

with � ı � D id; that is, there would be a homology 3-sphere Y such that
�.Y / D 1 and 2ŒY � D 0 2 ‚H

3 .
To show that such a sphere does not exist, we construct a lift of � to the

integers,
ˇ W ‚H

3 �! Z;

with the following properties:

(a) If �Y denotes Y with the orientation reversed, then ˇ.�Y / D �ˇ.Y /;
(b) The mod 2 reduction of ˇ.Y / is the Rokhlin invariant �.Y /.

Given such a ˇ, if we had a homology sphere Y of order two in‚H
3 , then Y

would be homology cobordant to �Y , and we would obtain

ˇ.Y / D ˇ.�Y / D �ˇ.Y /;
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hence ˇ.Y / D 0 and therefore �.Y / D 0.
It remains to construct ˇ. Its definition is modeled on that of the Frøyshov in-

variant ı from (9), but instead of the (S1-equivariant) monopole Floer homology
zHM, we use the Pin.2/-equivariant Seiberg–Witten Floer homology SWFHPin.2/

from (11).
Specifically, we consider SWFHPin.2/� .Y / with coefficients in the field F D

Z=2: It is a module over the ring

H�
Pin.2/.ptI F/ D H�.B Pin.2/I F/ D F Œq; v�=.q3/;

where q is in degree 1 and v is in degree 4. Then, we set

b.Y /

D minfr 
 2�.Y /C 1.mod 4/; 9x 2 SWFHPin.2/
r .Y /; 0 ¤ x 2 im.vl/;8lg

and then normalize this to

ˇ.Y / D 1

2
.b.Y / � 1/:

Property (a) of ˇ and the fact that ˇ descends to a map on‚H
3 are similar to

what happens for the Frøyshov invariant, and can be proved in a similar manner.
More interesting is property (b) for ˇ, which is satisfied because by con-

struction we asked that b.Y / 
 2�.Y / C 1.mod 4/. However, one needs to
show that SWFHPin.2/.Y / contains nonzero elements x in degrees congruent to
2�.Y /C 1.mod 4/, and such that they are in the image of vl for all l .

To get an idea for why this is true, it is helpful to imagine that
SWFHPin.2/.Y / is the homology of a complex generated by solutions to the
Seiberg–Witten equations on Y (although its actual definition from Sect. 6 is in
terms of the singular homology of the Conley index). The Seiberg–Witten equa-
tions have some irreducible solutions (on which the group Pin.2/ acts freely),
and each such Pin.2/ orbit contributes a copy of F to the chain complex. There
is also a unique reducible solution, on which Pin.2/ acts trivially, and which
contributes a copy of H Pin.2/� .pt I F/ D H�.B Pin.2/I F/ to the complex. Fur-
ther, the bottom degree element in H�.B Pin.2/I F/ coming from the reducible
is in a degree congruent to 2�.Y /.mod 4/. (This is standard in Seiberg–Witten
theory, and follows from a relation between eta invariants and the Rokhlin ho-
momorphism.) The homology H�.B Pin.2/I F/ (and the cap product action on
it by the cohomology of B Pin.2/) can be depicted as follows:
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Thus, there are three infinite v-tails, which live in degrees congruent to
2�.Y /; 2�.Y /C 1 and 2�.Y /C 2.mod 4/. Since there are only finitely many
irreducibles, their interaction with the tails in the chain complex is limited to
some degree range. It follows that there must be some element in each of these
tails that survives in homology. To define ˇ we focus on the middle tail. The
other two tails produce maps ˛; � W ‚H

3 ! Z that do not quite satisfy the
desired property (a) under orientation reversal; rather, we have

˛.�Y / D ��.Y /:
On the other hand, ˇ satisfies both properties (a) and (b).
It is worth explaining why the same argument does not work in the case of

the S1-equivariant Seiberg–Witten Floer homology (which corresponds to zHM
from Sect. 4). That homology is a module over the ring ZŒU � with U in degree
2, and the reducible contributes a copy of H�.CP1/ to the Floer complex.
The bottom element is again in a degree congruent to 2�.Y /.mod 4/. However,
when we pass to homology, the new bottom element (which is used to define
the Frøyshov invariant) may no longer have the same grading .mod 4/. This
boils down to the fact that H�.CP1/ is 2-periodic, whereas H�.B Pin.2/I F/
is 4-periodic.

Let us illustrate this with an example: the Brieskorn sphere Y D †.2; 3; 11/,
equipped with a suitable metric. There is one Pin.2/-orbit of irreducible solu-
tions to the Seiberg–Witten equations, in degree 1. The reducible solution is in
degree 0, and indeed we have �.†.2; 3; 11// D 0. There are flow lines from
the irreducibles to the reducible, which contribute to the Floer differential. Pre-
cisely, the Pin.2/-equivariant Seiberg–Witten Floer complex of †.2; 3; 11/ is

with the leftmost element in degree 0. Its homology is

with the leftmost element in degree 1. We obtain b.Y / D 1, so ˇ.Y / D 0, in
agreement with �.Y / D 0.
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By contrast, the S1-equivariant Seiberg–Witten Floer complex of
†.2; 3; 11/ is

with the leftmost element in degree 0. Note that the Pin.2/ orbit consists of two
S1 orbits, which produce the two copies of Z at the bottom. The S1-equivariant
Seiberg–Witten Floer homology is

with the bottom 0˚ Z in degree 1. From here we get ı.Y / D 2=2 D 1, which
no longer gives �.Y / modulo 2. �

A different construction of Pin.2/-equivariant Seiberg–Witten Floer homol-
ogy was given by Lin in [Lin14a]. Rather than doing finite dimensional approxi-
mation, Lin extends the Kronheimer–Mrowka definition of monopole Floer ho-
mology [KM07] to a Morse–Bott setting, which is suitable for preserving the
Pin.2/-equivariance of the equations. One can give an alternate disproof of the
triangulation conjecture using Lin’s construction; see [Lin14a] for more details.
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