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1. Introduction

Finite Gelfand pairs not only constitute a useful tool for analyzing a wide range
of problems ranging from combinatorics to orthogonal polynomials and to sto-
chastic processes, but may also be used to shed light into theoretical problems
of representation theory. The simplest example is provided by the possibility to
recast the decomposition of the group algebra of a given finite group G, together
with the associated harmonic analysis, by using the action on G of the direct
product G x G. Another example comes from the application of Gelfand pairs
in the theory of multiplicity free groups, a key tool in the recent approach of
Okounkov and Vershik to the representation theory of the symmetric groups
[62,75] (see also [16]).

Let G be a finite group. Recall that the conjugate of a (unitary) representa-
tion (p, V') of G, is the G-representation (p’, V') where V' is the dual of V' and
[0/ (g)v'](v) = v'[p(g" )v] forall g € G,v € V, and v/ € V’. One then says
that p is self-conjugate provided p ~ p’; this is in turn equivalent to the asso-
ciated character y, being real-valued. When p is not self-conjugate, one says
that it is complex. The class of self-conjugate G -representations splits into two
subclasses according to the associated matrix coefficients of the representation
p being real-valued or not: in the first case, one says that p is real, in the second
case p is termed quaternionic.

Now let K < G be a subgroup and denote by X = G/K the corre-
sponding homogeneous space of left cosets of K in G. Setting L(X) = {f :
X — C}, denote by (A, L(X)) the corresponding permutation representation
defined by [A(g) f](x) = f(g 'x) forall g € G and f € L(X). Recall that
(G, K) is a Gelfand pair provided the permutation representation A decomposes
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multiplicity-freely, that is,
(L.1) r=Dri

with p; £ p; fori # j.Itis well known that if g~! € KgK forall g € G,
then (G, K) is a Gelfand pair; in this case all representations p; in (1.1) are real,
and one then says that (G, K) is symmetric. This last terminology is due to the
fact that the G-orbits on X x X under the diagonal action are symmetric (with
respect to the flip (x1, x2) — (x2, x1), X1, x2 € X).

A remarkable classical problem in representation theory is to determine the
decomposition of the tensor product of two (irreducible) representations. In par-
ticular, one says that G is simply reducible if (1) p; ® p» decomposes multiplicity
free for all irreducible G -representations p; and p, and (ii) every irreducible G-
representation is self-conjugate.

The class of simply reducible groups was introduced by E. Wigner [78] in
his research on group representations and quantum mechanics. This notion is
quite useful since many of the symmetry groups one encounters in atomic and
molecular systems are simply reducible, and algebraic manipulations of tensor
operators become much easier for such groups. Wigner wrote: “The groups of
most eigenvalue problems occurring in quantum theory are S.R.” (where “S.R.”
stands for “simply reducible”) having in mind the study of “small perturba-
tions” of the “united system” of two eigenvalue problems invariant under some
group G of symmetries. Then simple reducibility guarantees that the charac-
teristic functions of the eigenvalues into which the united system splits can be
determined in “first approximation” by the invariance of the eigenvalue problem
under G. This is the case, for instance, for the angular momentum in quantum
mechanics. We mention that the multiplicity-freeness of the representations in
the definition of simply reducible groups is the condition for the validity of the
well known Eckart—Wigner theorem in quantum mechanics. Also, an important
task in spectroscopy is to calculate matrix elements in order to determine energy
spectra and transition intensities. One way to incorporate symmetry considera-
tions connected to a group G or rather a pair (G, H) of groups, where H < G,
1s to use the Wigner—Racah calculus associated with the inclusion under consid-
eration: this is generally understood as the set of algebraic manipulations con-
cerning the coupling and the coupling coefficients for the group G. The Wigner—
Racah calculus was originally developed for simply reducible groups [64, 65,79,
80] and, later, for some other groups of interest in nuclear, atomic, molecular,
condensed matter physics [36, Chapter 5] as well as in quantum chemistry [34].

Returning back to purely representation theory, Wigner [78] listed the fol-
lowing examples of simply reducible groups: the symmetric groups S3 (= D3)
and S4 (== T},), the quaternion group Qg and the rotational groups O(3), SO(3)
or SU(2). More generally, it is nowdays known (cf. [68, Appendix 3.A]) that
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most of the molecular symmetry groups such as (using Schoenflies notation)
Doohs Coov, Cav, C3,9, Cop, D3p, D3g, Dgjp, T4 and Oy, are simply reducible.
On the other hand, the icosahedral group I}, is not simply reducible, although it
possesses only real characters.

In the automorphic setting, Prasad [63] implicitly showed that if k is a local
field then the (infinite) group G = GL(2, k) is simply reducible. Indeed, he
proved that the number of G-invariant linear forms on the tensor product of
three admissible representations of G is at most one (up to scalars). This is also
discussed in Sect. 10 of the survey article by Gross (Prasad’s advisor) [35], on
Gelfand pairs and their applications to number theory.

We also mention that simply reducible groups are of some interest also in
the theory of association schemes (see [3, Chapter 2]).

As pointed out by A.L. Kostrikin in [53], there is no complete description
of all simply reducible groups. Strunkov investigated simple reducibility in [73]
and suggested (cf. [54, Problem 11.94] in the Kourovka notebook) that the sim-
ply reducible groups must be solvable. After some partial results by Kazarin and
Yanishevskii [49], this conjecture was settled by Kazarin and Chankov [48].

Wigner [78] gave a curious criterion for simply reducibility. He showed that,
denoting by v(g) = |{h € G : hg = gh}| (resp. £(g) = |{h € G : h? = g}|)
the cardinality of the centralizer (resp. the number of square roots) of an element
g € G, then the equality

(1.2) D e} =) v(g?

geG geG

holds if and only if G is simply reducible.
A fundamental theorem of Frobenius and Schur [28] provides a criterion for
determining the type of a given irreducible representation p, namely

1 if p is real,

1
(1.3) Gi Z xo(g%) = {—1 if pis quaternionic,
gelG 0 if p 1s complex

see, for instance, [13, Theorem 9.7.7]. Moreover, the number / of pairwise in-
equivalent irreducible self-conjugate G-representations is given by

1
: h=—> 2
(1.4) G ¢(g)

geG

(cf- [13, Theorem 9.7.10]).

In this research-expository paper, following Mackey [59], Kawanaka and
Matsuyama [47], and Bump and Ginzburg [11], we endow G with an involu-
tory anti-automorphism 7: G — G. Mackey in [58] originally analyzed only
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the case when t is the anti-automorphism g — g~ ! and then, in [59], gener-

alized his results by considering any involutory anti-automorphism. The proofs
are even simpler but heavily rely on [58] (the reader cannot read the second
paper without having at hand the first one). Here we give a complete and self-
contained treatment of all principal results in [59], providing more details and
using modern notation.

We then present in Theorem 8.2 (Twisted Frobenius—Schur theorem) the
main result of Kawanaka and Matsuyama in [47]. Our proof follows the lines
indicated in Bump’s monograph [7, Exercise 4.5.1] but also heavily uses the
powerful machinery of A.H. Clifford theory specialized for subgroups of index
two (see, for instance, [15, Sect. 3]). Note that Bump and Ginzburg [11] con-
sider further generalizations involving anti-automorphisms of finite order (i.e.,
not necessarily involutive).

Let r : G — G be an involutory anti-automorphism.

Given a G-representation (p, V), we then define its t-conjugate as the G-
representation (p®, V') defined by setting [p*(g)v'](v) = v'[p(z(g))v] for all
g € G,v € V,and v/ € V’'. Then we introduce (cf. [47]) the associated -
Frobenius—Schur number (or t-Frobenius—Schur indicator) C;(p) defined by

Skew

C:(p) = dim HomSGym(pt, p) — dim Homg*" (p*, p),

where HomSGym (resp. Homg‘ew) denotes the space of symmetric (resp. antisym-
metric) intertwining operators, and show that, if p is irreducible, it may take
only the three values 1, —1, and O.

Given a subgroup K, we consider the t-conjugate A* of the associated per-
mutation representation. Suppose that A ~ A (note that this is always the case
if K is t-invariant, i.e., t(K) = K), then we present a characterization (the
Mackey—Gelfand criterion, see Theorem 4.5) of the corresponding analogue of
“symmetric Gelfand pair” that we recover as a particular case.

We say that G is t-simply reducible provided (i) p1 ® p2 is multiplicity-free
and (ii) p* ~ p, for all irreducible G-representations p1, p2 and p. We then
present the Mackey criterion (Theorem 5.3) and the Mackey—Wigner criterion
(Corollary 6.6) for t-simple reducibility, a generalization of Wigner’s original
criterion we alluded to above (cf. (1.2)); the latter is expressed in terms of the

equality
D k(@) =) v(@?

geG geG

where ¢;(g) denotes the number of elements 4 € G such that t(h~1)h = g.
As an application of both the Mackey criterion and the Mackey—Wigner cri-

terion, we present new examples of 7-simply reducible groups: in Sect. 7 we

show that the W.K. Clifford groups CIL(n) are t-simply reducible (where the
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involutive anti-automorphism t of CIL(n) is suitably defined according to the
congruence class of n modulo 4).

Generalizing the characterization (1.3), we show (the Kawanaka and Mat-
suyama theorem (Theorem 8.2)) that

Celo) = 57 2 10(e() ")

geG

Finally, in the last section, we present a twisted Frobenius—Schur type the-
orem in the context of Gelfand pairs (Theorem 9.1). This result, together with
the ones on t-simple reducibility of the Clifford groups we alluded to above,
constitutes our original contribution to the theory.

2. Preliminaries and notation
2.1. Linear algebra

In order to fix notation, we begin by recalling some elementary notions of linear
algebra. Let V, W be finite dimensional complex vector spaces and denote by
V', W' their duals. We denote by Hom(V, W) the space of all linear operators
AV > W.

If A € Hom(V, W) its transpose is the linear operator AT : W' — V'
defined by setting

(ATw')(v) = w'(Av)
for all w’ € W and v € V. Let Z be another finite dimensional complex vec-
tor space and suppose that B € Hom(V, W) and A € Hom(W, Z). Then, it
is immediate to check that (AB)T = BT AT. Moreover, modulo the canoni-
cal identification of V and its bidual V" = (V') (this is given by v < v”
where v/ € V” is defined by v”/(v') = v/(v) for all v/ € V'), we have
(AT)T = A.Given abasis {v1,v2, ..., v,}in V, we denote by {v],v5, ..., 0}
the corresponding dual basis of V/ which is defined by the conditions v} (v;) =
8, fori,j = 1,2,...,n. Let now {wy, wz,..., Wy} be a basis for W. Let
My = (aki)k=1.2...,m the matrix associated with the linear operator A, that
i=1,2,..., n

is, Av; = Y p_qakiwg, foralli = 1,2,...,n. Then ay; = w;c(Avi) and
ATw;c = Z?:l ak,-vlf; in other words, the matrix M 7 associated with the

2,...n of the

transpose operator A7 equals the transpose (M4)T = (a;x) i=1
k=1,2,...m

matrix My associated with A.

Suppose now that V' is endowed with a hermitian scalar product denoted
(-,-)v. The associated Riesz map is the antilinear bijective map Oy : V — V’
defined by setting

Oy v)(u) = (u,v)y
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for all u, v € V. Moreover, the adjoint of A € Hom(V, W) is the (unique) linear
operator A* € Hom(W, V') such that

(Av, w)w = (v, A*w)y

forallv € V and w € W. Observe that (A*)* = A. Also, the matrix M4+ asso-

ciated with the adjoint operator A* equals the adjoint (M4)* = (@jx) i=1.2...n
k=1,2,....m
of the matrix M4 associated with A. Moreover, we say that A is unitary if

A*A = Iy and AA* = Iy, where Iy € Hom(V, V) denotes the identity map
(note that a necessary condition for A to be unitary is that dim(}') = dim(W),
1.e.,n =m).

Lemma 2.1. Let A € Hom(V, W). Then AT Oy = 6y A*.
Proof. Forallv € V and w € W we have:
(AT O w)(v) = (OB w)(Av) = (Av, w)w = (v, A*w)y = By A*w)(v).
O

We now define the conjugate of A € Hom(V, W) as the linear operator A =
(A*)T € Hom(V’, W'). Then, the associated matrix M~ equals the conjugate
My = (ki)k=1,2,...,m of the matrix associated with A. Note that A = Aand

i=1,2,...,n
A = 4" (here we implicitly use the canonical identification of V' with its
bidual V). As a consequence, A is unitary if and only if ATA = Iy and
AAT =1 w’.

Suppose now that A € Hom(V’, V). Then, again modulo the canonical iden-
tification of V and V", we have

AT e Hom(V',V) and u'(ATv') = v/ (Au)

for all u’,v’ € V’. We then say that A € Hom(V’, V) is symmetric (resp.
antisymmetric or skew-symmetric) if AT = A (resp. AT = —A). We denote
by Hom®>™(V’, V) (resp. Hom®¥(V’, VV)) the space of all symmetric (resp.
antisymmetric) operators in Hom(V’, V). We have the elementary identity

_A+AT+A—AT
2 2

T . AT . . . .
where % 1s symmetric and 4 2A 1s antisymmetric: note that this is the

unique decomposition of A as a sum of a symmetric operator and an antisym-
metric operator. This yields the direct sum decomposition

A

(2.1) Hom(V’, V) = Hom>™(V’, V) & Hom>** (V' V).
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Letnow A € Hom[(V & W)', V & W]. Then there exist A; € Hom(V', V),
Ay € Hom(W', W), A3 € Hom(W’, V) and A4 € Hom(V’, W) such that

(2.2) AW +w') = (410 + Azw') + (A0 + Arw'),
forall v/ € V', w’ € W’. In other words, identifying A with the operator matrix

Ar 4s , we may express (2.2) in matrix form
Agq Ap

2.3) Ay Az v’ . Av + Asw’
' Agq Ap w' ] \Agv + Aw' )

Since -
(A1 A3) _ (AlT A3 )
- T 4T
Ag Az AS A5
we have that A = AT if and only if 4; = AT, A, = AT, A3 = AT and

Ag = Ag and this proves the first statement of the following lemma (the proof
of the second statement is similar).

Lemma 2.2. (1) The map

Ay Az
(A3T Az) —> (A1, Az, AD)

vields the isomorphism
Hom™™[(V & W),V & W]
~Hom™>™(V’, V) & Hom>™ (W', W) & Hom(V', W).
(2) The map

Ay Aj
(—A3T Az) —> (A1, Az, AY)

vields the isomorphism

Hom>*¥[(V & W),V & W]
~Hom>*¥(V', V) @ Hom>**¥ (W', W) & Hom(V', W).
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2.2. Representation theory of finite groups

We now recall some notions from the representation theory of finite groups. We
refer to our monographs [13,16] for a complete exposition and detailed proofs.

Let G be a finite group. We always suppose that all G-representations (p, W)
are unitary: the representation space W 1is finite dimensional hermitian and
p(g) € Hom(W, W) is unitary for every g € G (it is well known that every rep-
resentation of a finite group over a complex vector space is unitarizable (cf. [13,
Proposition 3.3.1])). We denote by G a complete set of pairwise inequivalent
irreducible G-representations.

Given two G -representations (p, W) and (o, V'), we denote by Homg (W, V)
(sometimes we shall also use the notation Homg (p, 0)) the space of all linear
operators A: W — V, called intertwiners of p and o, such that Ap(g) = o(g)A
forallg € G.

Let (p, W) be a G-representation. We denote by y,: G — C its character
and, in the notation from Sect. 2.1, we denote by (o', W’) the conjugate repre-
sentation defined by setting

(2.4) () =peH’

for all g € G. We have y, = ¥, (complex conjugation). Suppose now that
(0, W) is irreducible. Then p is said to be complex if y, # y,, thatis, p and
o’ are not (unitarily) equivalent; on the other hand, p is called self-conjugate
if xo = ., that is, p and p’ are (unitarily) equivalent. Clearly, p is self-
conjugate if and only if y, is real valued. The class of self-conjugate repre-
sentations in turn may be splitted into two subclasses. Let (p, W) be a self-
conjugate G-representation and suppose that there exists an orthonormal basis
{wy,ws,...,wg}in W such that the corresponding matrix coefficients are real
valued: u; j(g) = (p(g)wj,w;) € Rforallg € Gandi,j = 1,2,...,d.
Then p is termed real. Otherwise, p is said to be quaternionic.

Lemma 2.3. Let (p, W) be an irreducible, self-conjugate G-representation and
let A € Homg (W, W') be a unitary operator. Then, if p is real one has AA =

Iw (equivalently, A = AT), while if p is quaternionic one has AA = Iy
(equivalently, A = —AT ).
Proof. See [13, Lemma 9.7.6]. ]

Let n be a positive integer, and consider the diagonal subgroup G" = {(g,g.
..,8):g€G}of G" = G xG x---x G. Given G-representations (p;, V;),

n times

i = 1,2,...,n, following our monograph, we denote by (p; X pp X --- X
Pn, V1 ® Vo ®---® V) their external tensor product which is a G" -representa-
tion. Moreover we denote by (01 ® P2 @ - Q@ P, V1 ® V2 ® --- ® V) the
Kronecker product of the p;’s, that is the G-representation defined by p; ® p2 ®
- ® pn = ResZ (p1 K pp & -+~ K py).
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3. The 7-Frobenius—Schur number

In what follows, 7: G — G 1is an involutory anti-automorphism of G, that is a
bijection such that

t(g182) = t(g2)t(g1) and 7%(g) =g

for all g1,g2,g € G. In particular, t(lg) = 1g and (g~ !) = z(g)~!, for
all g € G. Let (p, W) be a G-representation. Then the associated t-conjugate
representation is the G-representation (p®, W’) defined by setting

3.1) p*(g) = plr(9)]”.
that is
(3.2) [pT (@w'](w) = w'[p(z(g))w],

forallg € G, w’ € W and w € W. Note that if 7,y : G — G is the involutory
anti-automorphism of G defined by iy (g) = g~ ! forall g € G, then p™» = p’

(cf. (2.4)).

Remark 3.1. Let go € G and denote by 74, the inner involutory anti-automorph-
ism of G given by composing conjugation by go and tiyy, that is, 74,(g) =
go g_lga ! for all g € G. Then, given a G-representation (p, W) we have, for
algeG,w e Wandw e W,
[0 (g)w'](w) = w'[o(tgy(g))w] = w'[p(gog ™ g5 ]

= w'[p(g0)p(g~")p(g0) ™' w]

= [(p(g0)p(g™)p(g0) ™" w'l(w)

= [p(go )" P (8)p(g0) " w')(w)

yielding p™0(g) = (p(g0)T) o™ (g)p(go)T, so that

prgO ~ ptinv.

Proposition 3.2. (1) The G-representation (p*, W') is irreducible if and only if
(p, W) is irreducible.

(2) If A € Homg (p%, p) then also AT € Homg (p®, p) and we have the direct
sum decomposition

S
Homg (p°, p) = Homg " (p*, p) & Homgr™ (p°, p),

where HomSGym = Hom>™ N Homg and Homsé<eW = Hom®*¥ N Homg
(compare with (2.1)).
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Proof. (1) Suppose first that p is reducible and let U < W be a nontrivial
p-invariant subspace. Then Z = {w’ € W’ : w'(u) = Oforallu € U} <
W' is nontrivial and p®-invariant, thus showing that p* is also reducible. Since
(p¥)* = p, by applying the previous argument we also deduce the converse.
(2) Let A € Homg(p®, p) and g € G. Then, by transposing the identity
Ap™(g) = p(g)A we get p*(g)T AT = AT p(g)T which, by (3.1), becomes
p[t(2)]AT = AT p*[r(g)]. Since 7 is bijective, by replacing 7(g) with g, we
finally obtain p(g)AT = AT p?(g), thus showing that AT € Homg (p%, p). The
direct sum decomposition is obvious. O

Lemma 3.3. Let (p, W) and (0, V') be two G -representations. Then the follow-
ing isomorphisms hold:

(3.3) Homg (0%, p) == Homg (p*, 0),
a4 Homy!"[(c ® p)*.0 & p]
gHomgm(o’, o) D Homsym(p p) @ Homg (c%, p)
and
G5) Homy®"[(0 @ p)°.0 & p]

gHomSkew(o ,0) @ HomSkeW(p p) ® Homg (o°, p).

Proof. The isomorphism (3.3) is realized by the map 4 — AT . The isomorhism
(3.4) (resp. (3.5)) is realized by the map in Lemma 2.2 (1) (resp. Lemma 2.2 (2)),
keeping into account that in the matrix notation (2.3) A is an intertwining oper-
ator if and only if Ay, A3, A3, A4 are intertwining operators. H

Definition 3.4. The t-Frobenius—Schur number of a G representation (p, W) is
the integer number C;(p) defined by

C:(p) = dim Homs(';ym (p%, p) — dim HomSkew (p%, p).

We also set C(p) = dim HomS (0, p) — dim HomSkew(,o p), that is C(p)
(p). We start by examining C (p) and C(p) when p is irreducible.

rl[lV
Theorem 3.5. Suppose that p is irreducible. Then

(1) C;(p) € {—1,0, 1}. Moreover, Cr(p) = 0 (resp. C:(p) = %1) if and only if

p* # p (resp. p* ~ p).
(2) In particular,

1 if p is real,
C(p) =140 if p is complex,

—1  if p is quaternionic.
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Proof. (1) If p* + p then dim Homg (p®, p) = 0 and therefore C;(p) = 0.
Now suppose that p ~ p®. If A € Homg(p®,p), A # 0, then also AT €
Homg (p*, p) and therefore, by Proposition 3.2 and Schur’s lemma, there ex-
ists A € C such that AT = 1A. By transposing we get A = AAT = 124,
which implies that A = 1. If A = 1 then A is symmetric and C;(p) =
dim Homzym(p’, p) — dim HomSerW(p’, p) = 1—0 = 1; similarly, if A = —1
then C;(p) = —1.

(2) If p is complex then p’ £ p and therefore dim Homg (o, p) = 0 and
C(p) = 0. If p is self-adjoint then dim Homg (p’, p) = 1 and this space is
spanned by a unitary matrix A as in Lemma 2.3, which is symmetric if p is real
and antisymmetric if p is quaternionic. O

We now examine the behaviour of C; with respect to direct sums and tensor
products.

Proposition 3.6. Let (p, W) and (0, V') be two G-representations. Then
C:(0 @ p) = C:(0) + C(p).
Proof. 1t is an immediate consequence of (3.4) and (3.5). ]

Proposition 3.7. Suppose that G = G1 x G, and that t satisfies 1(G1 x {16, })
= G1 x {lg,} and t({lg,} x G2) = {1g,} x Ga. Let (p;, W;) be a G;-
representation fori = 1,2. Then

(3.6) C:(p1 X p2) = Cr(p1)Cr(p2).

Proof. We first prove (3.6) under the assumption that both p; and p, are irre-
ducible. The representation (p1 X p2)® ~ pi X p3 is equivalent to p; X py if
and only if p1 ~ p] and pp ~ p3. Therefore C;(p1 X py) = 0 if and only if
C:(p1) = 0 or C¢(p2) = 0. On the other hand, if p1 ~ p], p2 ~ p5 and A4;
spans Homg, (o], p;), fori = 1,2, then Homg[(p1 X p2)®, p1 X po] is spanned
by A1 ® A,. Itis easy to check that (A} ® A2)T = AIT & A2T sothat A1 ® A»
is symmetric if and only if Ay and A, are both symmetric or antisymmetric,
while A1 ® A, is antisymmetric if and only if one of the operators A; and A,
is symmetric and the other is antisymmetric. In both cases, (3.6) follows.
Now we remove the irreducibility assumption and we suppose that

n k
01 :@mim and pzz@hjej
j=1

i=1
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are the decompositions of p; and p; into irreducible representations. Then

n k
Ce(pr B p2) = Cc[ D P mih; (0: B 6))]
i=1j=1
n k
= Z Z m;ihjC:(0; ®0;) (by Proposition 3.6)
i=1j=1
n k
= Z Z m;ihjC:(0;)C:(6;) (by the first part of the proof)
i=1j=1

= I:i miCt(Oi)] I:i hj Ct(ej)]

i=1 j=1
= C(p1)C¢(p2) (again by Proposition 3.6).

O

Note that when 7 = tj,y the first part of the proof of the preceding proposi-
tion may be also deduced from Theorem 3.5 (2).

Let now w: G — G be another involutory anti-automorphism of G com-
muting with 7, that is wt = tw. Clearly, the composition wt is now an (invo-
lutory) automorphism of G. Moreover we have

(p)*(g) = (P (@) = p(x(®(g))) = p(w(z(g))) = (0°)*(g)
for all g € G, that is,

(3.7) (0 = (p*)".
Lemma 3.8. Let w,t and (p, W) (not necessarily irreducible) be as above.
Then

C:(p?”) = Cz(p).

Proof. By virtue of Proposition 3.6 it suffices to examine the case when p is
irreducible. If C;(p) = 0 then p* £ p and therefore (p®)* = (p*)* £ p®
(recall that w is involutory). We deduce that C;(p®) = 0 as well.

Suppose now that p* ~ p and let A € Homg (p®, p) be a nontrivial unitary
intertwiner. Then, for all g € G we have p(g)A = Ap*(g) so that

(pH)?(9AT = (P ()T AT = (4p"(w(2)))T = (p(w(g) )T
= AT p”(g).

This shows that Homg (0, (0“)*) = Homg (p®, (p*)®) is spanned by AT, S0
that Homg ((0?)?, p®) is spanned by (A7)~! = (4T)* = A. Thus since A4
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is symmetric (resp. antisymmetric) if and only if A is symmetric (resp. anti-
symmetric), we deduce that C;(p®) = 1 (resp. C;(p®) = —1) if and only if
C:(p) = 1 (resp. Cz(p) = —1). O

By taking @ = t we deduce the following:
Corollary 3.9. C;(p*) = C;(p).

Let now K < G be a t-invariant (that is t(K) = K) subgroup. It is clear
that if (p, W) is a G-representation, then Resg (pY) = (Resg p)*. Conversely,

suppose now that (o, V') is a K-representation and let us show that IndIG< (0%) ~
(Indgcr)’. We set IndgV = {F e V9 : F(gk) = o(k"1)F(g), forall g €
G,k € K}, p = Indga, so that (c¢f. [16, Definition 1.6.1]) [p(go) F](g) =
F(gylg) forall g,go € G and F € Ind$V, and nd$V’ = {F' € (V)9 :
F'(gk) = o(k")F'(g), forallg € G,k € K}, D = Indgar, so that
[0(g0) F'l(g) = F'(g,'g) forall g, g0 € G and F’' € IndgV’.

Lemma 3.10. The linear map & : IndIG< V' — (IndIG< V) defined by setting

1

F)F) = —
EF)(F) =

> F(F(x(g™))

geG

forall F € IndIG< V, F' e IndIG{ V', yields an isomorphism between IndIG<crt and
(Indo)*.

Proof. Let S € G be a complete system of representatives for the set G/ K of
left cosets of K in G, so that G = ]_[SGS sK. On the one hand:

(EF')(F) = % Y F () (F(z(g™)
g€eqG
= G X X PR )
s€S keK
1
= g 2 LT ETHF ) FEE™)
s€S keK
1
=% SN F') ok )o®)Frs)™)  (by (2)
s€S keK
= Z F'(s)(F(z(s)™Y).
SES

Since F’ is uniquely determined by (F’(s))ses, we deduce that & is injective.
Moreover, as dim Indg V' = dim(Indg V)’ we deduce that £ is indeed bijective.
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On the other hand, for g¢g € G, we have

(0" (g0)§F')(F) = [EF'l(p((g0))F) (by (3.2))

= 3 P Fego) 1@ )

K| %%

1
= % 2 Flea' a0 (Fegn™)  Getiing g1 = g0g)
g1€G

= Y Bl Fle0F (e ™)

K|
g1€G

= {£[p(g0) F'I}(F).

This shows that p®(go)§ = £p(go) for all gg € G so that § € Homg (Indgar,
(Indga)’), completing the proof. O

Theorem 3.11. Let K < G be a t-invariant subgroup. Let also (p, W) be an
irreducible G-representation whose restriction ResIG( p is multiplicity-free, that

is, ResZ (0, W) = @/, (0:, V;), with o; irreducible and o; # o} for 1 <i #
J < m. Suppose that p* ~ p and o} ~ o; fori =1,2,...,m. Then

Cz(0i) = Cz(p)
foralli =1,2,...,m.

Proof. Letusset, fori =1,2,...,m,

W/ ={uw e W' kerw' = (é}lvj)@( Qm; V)=V

j=1 j=i+1

If we identify V; with W/ then (Resg PO)lw; = o} indeed

[p" (k)w'](v) = w'lp(z(k))v] = w'[oi (z(k))v] = [o] (k)w'](v),

forallw € W/, v € V;,and k € K (clearly W/ is K-invariant).
Now, if A € Homg (p?, p), that is, Ap*(g) = p(g)A forall g € G, we
deduce that

Aol (k)w' = Ap*(k)w' = p(k)Aw’
for all w’ € W/ and k € K. It follows that Al W/ — V; (recall that 67 ~
o; and of # oj forl < i # j < m). Thus, setting 4; = A|Wl_/ we have
A=A4104 0 @ An, AT = AT @ AT @ -.- @ AL, and A is symmetric
(resp. antisymmetric) if and only if Ay, As,..., Ay are all symmetric (resp.
antisymmetric).
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Lemma 3.12. Let p be a G-representation and denote by p = @7:1 pj a
decomposition into irreducibles (now the sub-representations p; need not be
pairwise inequivalent). Then dim HomSkeW(p p) = 0 if and only if for every
j =1,2,...,n one of the following conditions holds:

(i) Cz(pj) = 1 and pj # pi forallk # j;
(i) C(pj) = O and p; # py forallk # j.

Different j’s may satisfy different conditions.

Proof. Let us set 0; = EB;LZ- pj fori = 1,2,...,n. By repeatedly applying
Lemma 3.3, we deduce that

dim HomSkew (0%, p)
=dim Homg*" ((p1 @ 02)%, p1 ® 02)
=dim HomSkew (1, p1) + dim HomSkew (03, 02) + dimHomg (p, 02)

n—1

n
= Z dim HomSkeW(p] pj) + Z dim Homg (05, 0j+1)-
, et

Thus dim Hom%‘ew (p%, p) = 0 if and only if dim HomSkew (p* oy ;) = 0 for all
j =1,2,...,nand dimHom(;(,oJT.,UjH) = 0 for allj =1,2,....,.n—1.1t
follows that if ,oJ’. ~ p; we necessarily have C;(p;) = 1 and p; 76 pr for all
Jj < k < n, while if ,0]? # p; we necessarily have C¢(p;) = 0 and pjf. 2% Pk
for all j < k < n. Now, in both cases, the condition k > j can be replaced by
k # j: since the order in p = @7:1 pj 1s arbitrary, we may always suppose
j =1

4. Multiplicity-free permutation representations: the Mackey—Gelfand
criterion

Let G be a finite group and suppose we are given a transitive action 7: G —
Sym(X) of G on a (finite) set X . Fix xo € X and denote by K = Stab{ (xo) =
{g € G:m(g)xo = xo} < G its G-stabilizer. Then we identify the homoge-
neous space X with the set G/ K of left cosets of K in G. This way, the action
is givenby m(g)x = (gg’)K forall g € G and x = g’K € X (note that, in par-
ticular, xo = K). We also denote by &7 (X) the corresponding set of G-orbits
in X.

Let also 7: G — G be an involutory anti-automorphism of G which does
not necessarily preserve K. Let Y = G/7(K) denote the corresponding homo-
geneous space and by yo = t(K) € Y the corresponding t(K)-fixed point.
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We denote by L (X) the vector space of all functions f: X — C and denote
by (Ax, L(X)) the permutation representation associated with the action s, that
is, the G -representation defined by

Az (g) f1(x) = f(m(g™")x)

forallg € G, f € L(X) and x € X. Also, we denote by y: G — Sym(Y) the
actionof GonY: y(g)y = gg’t(K) forallg € Gand y = g't(K) € Y. We
then define a map 6: X — Y by setting, for every x € X,

4.1) 6(x) = y(zr(g 1)) ye, where g € G satisfies 7(g)xo = x.

Note that the map is well-defined: if g1, g» € G satisfy w(g1)xo = 7(g2)xo,
then there exists k € K such that go = g1k and therefore

y(t(gz " Nyo =y gr))vo = y(x(gr )y k™)) vo = y(x(gTH)yo.

It is clear that 6 is a bijection and that 6(xg) = .
We now define a second action 7¥: G — Sym(X) by setting

77 (g)x = m(x(g™))x

for all g € G and x € X. The associated permutation representation (A,z,
L (X)) is then given by

[Ane () f1(x) = f(m(z(g))x)

forallg e G, f e L(X)and x € X.
The t-conjugate representation (cf: Sect. 3) (AL, L(X)') of A is then given

by [A7(8)@'](f) = ¢'(Ax(z(g)) f) forallg € G, ¢’ € L(X) and f € L(X).
In the following, we identify the dual L(X)’ with L(X) via the bijective linear
map

L(X) — L(X)',

¢ +— ¢

(4.2)

where

¢'(f) = ox)f(x)

xeX

forall f € L(X).
Finally, we fix § C G a complete set of representatives of the double
7(K)\G/ K -cosets, so that

G = ]_[ 7(K)sK.

SES
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Observe that t(7(K)sK) = t(K)t(s)K and therefore (S) is also a system of
representatives of the double cosets. Let also 77 x 7: G — Sym(X x X) be
the action defined by

(" x m)(g)(x1,x2) = (7" (g)x1, 7(g)x2)

for all g € G and x1,x, € X. Also, we denote by b € Sym(X x X) the
involution defined by (xl,xz)l’ = (x2,x1) for all x1,x, € X.

Lemma 4.1. (1) The bijective map 0 in (4.1) satisfies O0n*(g) = y(g)0 for all
g € G. Thus Stab% (xo) = t(K).
(2) We have

(4.3) (A7, L(X)) ~ (Az7, L(X))

via the bijective map (4.2).
(3) The maps
S — ﬁf(K)(X) = 0% (X),

S s —> {m(z(k)s)xo : k € K}

and ;
S — 0% (X x X),

s —> {(w7(g)x0,m(gs)x0) : g € G}

]

S .

are bijective. Moreover, E,(s)(t(s)) = (Es(s))° forall s € S, where
Br(s)(t(s) = {(w"(g)x0, w(gT(s))x0) : g € G}.

Proof. (1) Let x € X and g¢o € G be such that x = m(gg)xo. Then for all
g € G we have

(7% (g)x) = O((c(g))7(g0)x0)
= 0(n(r(g7")go)x0)
= y(gt(go"))yo (by (4.1))

= y(g)y(tr(go"))yo (since y is an action)
= y(g)0(m(go)xo) (againby (4.1))
= y(g)0(x).
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(2) Letnow ¢, f € L(X) and g € G. Then we have

RL(@e1(f) = ¢’ Qr(x(2)) f)
=Y o) f(r(z(g”")x)

xeX

= Y o(n(x(g)2) f(z) (setting z = m(z(g™"))x)

zeX

= > e (90l(2) £ (2)

zeX

= (A== (8)9) (f).

so that AZ(g)¢" = (Az=(g)¢) . In other words, the bijective map (4.2) yields
the equivalence (4.3).

(3) By definition of §, Wg is well-defined and bijective. As for Eg, let
x1,x2 € X. Since the action 7 (resp. ) is transitive, we can find g, € G
(g2 € G) such that 7% (g1)xo = x1 (resp. w(g2)xo = x2). Letky,k, € K and
s € § be such that t(k1)sky = gl_lgz. Setting g = g1t(k1), we then have

(7 (g)x0, 7(gs)x0) = (w7 (g1) 7w (ki )xo0, w(g1)7 (z(k1)sk2)x0) = (x1,X2).

This shows that E g is surjective. Now we show that it is injective: if Eg(s1) =
Es(sy) forsy, sp € S then there exists g € G such that (77 (g)xg, w(gs2)x0) =
(x0,m(s1)X0), and this implies that g € 7(K) and sl_lgsz € K, so that 51 €
7(K)s2 K and necessarily s; = s,. Finally, let s € S and g € G and set
g’ = t(g71)s~!. It is then immediate to check that

(7 ()Xo, (g7 (5))x0) = (7(g's)x0, 77 (g)X0) = (" (&')x0, 7 (g'5)x0)".
[

Corollary 4.2. Suppose that K = ©(K). Then t = y, so that On*(g) = n(g)0
forallg € G and A, ~ Ay.

Proof. Just note that defining 7: L(X) — L(X) by setting (Tf)(x) =
f(O(x)) forall f € L(X),x € X, we getalinear bijection such that TA,(g) =
Art(g)T, forall g € G. O

Remark 4.3. Lemma 4.1 generalizes the well known facts that the maps s +—
{w(ks)xg,k € K} and s +— {(7w(g)x0,7(gs)x0) : g € G} are bijections
respectively between S and 0% (X) and between S and OF " (X x X). See
[13, Sect. 3.13] and [16, Sect. 1.5.3].

We shall say that a (7% x )-orbit of G on X X X is t-symmetric (resp. t-
antisymmetric) provided it is (resp. is not) invariant under the flipb: (x1, x3) —
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(x2,x1). We then denote by m; (resp. my) the number of such t-symmetric
(resp. T-antisymmetric) orbits. From Lemma 4.1 (3) we then have m (resp. m»)
equals the number of s € S such that t(s) € t(K)sK (resp. t(s) &€ 1(K)sK).
Note that m; 4+ mp = |S| and that m5 is even.

Theorem 4.4. We have
1
(4.4) dim Homsgm(/\;,)&n) =mp + Emz;
1
4.5) dimHomSé‘ew(/l;,)Ln) = Emz.

Proof. Denoting, as in (4.2), by ¢ — ¢’ the identification of L(X) and its dual
L(X)' and recalling that AL ~ A5z (cf. (4.3)), with every A € Homg (AL, Ax)
>~ Homg (A7, Az) we associate a complex matrix (a(x1,X2))x,,x,ex such
that

[Ag)(x2) = ) a(x1.x2)¢(x1)

x1€X

for all x; € X. Then A is an intertwiner if and only if

a(r*(g)x1,m(g)x2) = a(xy, x2)

forall g € G and x1, x € X, that is, if and only if a(xy, x2) is constant on the
(7' x r)-orbits of G on X x X. Now, if A is symmetric, a(x1, x2) must assume
the same values on coupled antisymmetric orbits and therefore (4.4) follows. On
the other hand, if A is antisymmetric, a(x, x2) must vanish on all symmetric
orbits and assume opposite values on coupled antisymmetric orbits. Thus (4.5)
follows as well. O

Theorem 4.5 (Mackey—Gelfand criterion). Suppose that AL ~ Ay. Then the
following conditions are equivalent.

(a) dim Hom3*V (A%, 1) = 0;

(b) every (® x m)-orbit of G on X x X is symmetric;

(c) every double coset ©(K)sK is t-invariant;

(d) (G, K) is a Gelfand pair and C(0) = 1 for every irreducible representation
o contained in Ay.

Proof. The equivalences (a) < (b) and (b) < (c¢) immediately follow from
Theorem 4.4 and Lemma 4.1, respectively. Finally, the equivalence (a) < (d)
follows from Lemma 3.12: indeed, the hypothesis AL ~ A, guarantees that
condition (2) therein cannot hold. ]

Corollary 4.6. If 1(K) = K then the conditions (a)—(d) in Theorem 4.5 are all
equivalent.
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Proof. This follows immediately from Corollary 4.2 and Theorem 4.5 since if
K is r-invariant then AL, ~ A . O

In particular, if T = tj,y, then one has 7% = 7 and the following result due
to A. Garsia [29] (see also [13, Sect. 4.8] and [12, Lemma 2.3]) is an immediate
consequence.

Corollary 4.7 (Symmetric Gelfand pairs: Garsia’s criterion). The following
conditions are equivalent:

(a) every (w x m)-orbit of G on X x X is symmetric;

(b) every double coset KsK is ti,y-invariant;

(¢) (G, K) is a Gelfand pair and every irreducible subrepresentation of Ay is
real.

Corollary 4.8 (Weakly symmetric Gelfand pairs). Suppose that
(4.6) g € Kt(g)K

forall g € G. Then 1(K) = K, AL ~ Ay and the conditions (a), (b), (c), and
(d) in Theorem 4.5 are verified.

Proof. For k € K, (4.6) becomes k € Kt(k)K, which implies (k) € K and
that K is t-invariant. Then AL ~ A, by Corollary 4.2 and (4.6) yields (c) in
Theorem 4.5. O

5. Simply reducible groups I: Mackey’s criterion

Let G be a finite group. We recall that for n € N we denote by G" = {(g,.g....,
g) : g € G} the diagonal subgroup of G = G xG x---xG.Lett: G —

n times
G be an involutive anti-automorphism, as before. We extend it to an involu-

tive anti-automorphism t,: G" — G” in the obvious way, namely by setting

(g1, 82,.--.8n) = (x(g1),7(g2),...,7(gn)) for all g1,82,....8n € G.
Observe that t,(G") = G".

Lemma 5.1. Let (0;, Vi), i = 1,2, be G-representations and denote by (1, C)
the trivial representation of G. For T: Vi — V, define T: Vi ® Vo — C by
setting T (v1 ® va) = T(v1)(vp) forall v;i € Vi, i = 1,2. Then the map

Homg (01, 0;) —> Homg (01 ® 02,(6),
T —> T

is a linear isomorphism. In particular,
dim Homg (01, 05) = dimHomg (01 ® 02, ()

so that, if 05 is irreducible, the multiplicity of 0} in 01 equals the multiplicity of
LG in o1 Q 07.
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Proof. We leave the simple proof to the reader. O

Definition 5.2 (Mackey—Wigner). One says that G is t-simply reducible pro-
vided the following two conditions are satisfied:

(1) p1 ® p2 is multiplicity-free for all py1, p2 € G;
(i) p* ~ pforall p € G.

When t = 1y, condition (11) becomes
(i) p' ~ pforallp e G

and, provided that condition (i) and (ii") are both satisfied, one simply says that
G is simply reducible.

Theorem 5.3 (Mackey’s criterion for t-simply reducible groups). G is t-
simply reducible if and only if every double coset of G3inG3is T3-invariant.
In particular, G is simply reducible if and only if every double coset of G3in
G3 is invariant under the inverse involution (Tiny)3.

Proof. We use the Mackey—Gelfand criterion (Theorem 4.5) with G3 (resp.
G3) in place of G (resp. K). Actually, we may apply Corollary 4.6 because
73 (G3) = G3. We now show that the present theorem is a particular case of
the equivalence between (c) and (d) in the Mackey—Gelfand criterion. First of
all, observe that condition (c) of Theorem 4.5, in the present setting, reads that
every double coset of G? in G3 is t3-invariant. Similarly, denoting by (73 the

trivial representation of G3, the first part of the equivalent condition (d) of the
same theorem, reads that Ind€ 3(t 3), which (cf. [16, Example 1.6.4]) coincides

with the permutation representatlon Aof G3on L(G3/ G3) is multlpllclty free.

Let then p1, p2, p3 € G. Consider the representation p; X py X p3 € G3 By
virtue of Frobenius’ remproaty (cf. [16, Theorem 1.6.11]) the multiplicity of

p1 X p2 X p3in nd€ 3) equals the multiplicity of (73 in p1 ® p2 ® p3 =

(L
G3
Reszcv;3 (p1 X pz X p3). By virtue of Lemma 5.1 (with o7 (resp. 0,) now replaced
by p1 ® p2 (resp. p3)) the latter equals the multiplicity of p5 in p; ® p». There-
fore IndG3 (¢173) is multiplicity free if and only if p; ® p2 is multiplicity free for
all p1,p2 € G. This shows that condition (1) in Definition 5.2 is equivalent to
the first part of (d).

Since Cr(p1 W p2 X p3) = Cr(p1)C:(p2)C(p3) (¢f- Proposition 3.7),
the second part of condition (d) in Theorem 4.5 holds if and only if

C:(p1)Cz(p2)C:(p3) = 1 whenever pj is contained in p; ® p2 (in particu-
lar, by Theorem 3.5 (1), we also have p ~ p® forall p € @).

Now, if p;1 ® po = Res%i (p1 X pp) is multiplicity free, then by virtue
of Theorem 3.11 we have that C(p1)Cz(p2) = C:(p1 X p2) equals C¢(p5)
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whenever p} is contained in p; ® p». Since by Lemma 3.8 C;(p3) = Cr(p5),
we deduce that the condition

Cr(p1 ®pp R p3) =1 whenever p5 < p1 ® p2

1s equivalent to

C:(p3)?> =1 whenever p3 < p1 ® pa.

Now, C;(p3)?> = 1 if and only if Cz(p3) = %1 which in turn is equivalent to
the condition p3 ~ p3, by virtue of Theorem 3.5 (1). Since the latter is nothing
but condition (i1) in Definition 5.2, this ends the proof. ]

6. Simply reducible groups II: Mackey’s generalizations of Wigner’s
criterion

Let G be a finite group and 7: G — Sym(X) a (not necessarily transitive)
action of G on a finite set X. As usual, we denote by OF, (X) the set of all G-
orbits of X. Let @ € Sym(X) and suppose that OF, (X) is a-invariant, that is,
«(2) € OF(X) forall Q € OF (X). Note that this condition is always satisfied
whenever « commutes with 77, namely, a7 (g) = 7(g)x forall g € G. Indeed,
in this case, denoting by Qx = {n(g)x : g € G} € OF(X) the orbit of a point
x € X, we have a(2x) = Qqx. We denote by O5(X)* = {Q € OF(X) :
a(2) = Q} the set of orbits which are (globally) fixed by «.

The following generalization of the classical Cauchy—Frobenius—Burnside
lemma (cf. [13, Lemma 3.11.1]) is due to Mackey.

Lemma 6.1. Setting p(g) = |{x € X : n(g)x = ax}| forall g € G, we have

ﬁ S p(g) = |OE(X)).
geG

Proof. Letx € X andsetg(x) = |{g € G : m(g)x = ax}|. Note that if Q, &
O (X)¥, then g(x) = 0.Indeed, since a(£2x)N2x = @, thereisno g € G such
that m(g)x € Qy equals ax € a(2x). On the other hand, suppose that 2, €
OG(X)*. If g € G satisfies w(g)x = ax, then gk satisfies the same condition
forall k € Stab’(’;(x); also if g1, g> € G satisfy 7(g1)x = ax = w(g2)x we
deduce that g7 'g> € StabZ(x). This shows that ¢(x) = [Stab (x)| = 161

[2x]
We then have
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Y p(® ={(x.g) € X xG :7(g) = ax}

geG
=Y qx)

xeX

> T
QEeOT(X)* xeQ
= |G- |0G(X)*].

O

The classical Cauchy—Frobenius—Burnside lemma corresponds to the case
when « is the identity map (so that, in this case, p(g), g € G, equals the number
of fixed points of 7(g)).

Let n > 1 and denote by 7,41 : G"T! — Sym(G") the action defined by

7Tn+1(gl,g2’ LI ,gn, gn—f—l)(hl»hZ, LI ahl’l)
=(g1h18, 41, 82M28n i1, - Enlngniy)

for all g1,g2,...,8n,8n+1,M1,h2,...,hy, € G. Note that 4 is transitive
and that the stabilizer of (1, 1g,...,1g) € G" is given by
Stabz ! (1. 1G.-... 1) = Gl

It follows that
(6.1) Gn-l—l/’én-i-l ~ G"

as homogeneous spaces. We also denote by y,: G — Sym(G") the conjugacy
action of G on G" given by

yn(€)(g1, 82, .. 8n) = (8818 ', 88287 ", ... ggng ")
forall g, g1,82,...,8n € G.Denotingby &,4+1: G — G"*1 the natural bijec-
tion given by ,4+1(g) = (g.g,...,g), we have

Yn = Tn+1lGn+1 © Ent1.

In other words, y, coincides with the action of G"*1! on G" and therefore (see
Remark 4.3) the map

. 5n+1\Gn+1/5n+1 N N ﬁ)’n(Gn)
n n
G" (g1, 82, "g”’g”+1)G = Q(glgn+1 8284 18 & i)

.....

(6.2)
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is well-defined and bijective. Indeed, the orbit corresponding to the double coset
of (81,82, ....8n.8n+1) € G"T1 contains the element

7Tn+1(g1»g2, o agn+1)(1G’ lGa e .oy 1G)
=180 1. 828nt1r - gngnl)).

For every g € G, we now denote by v(g) the cardinality of the centralizer
of g in G, that is, the number of elements 7 € G such that hg = gh. We then
have

Theorem 6.2. Let n > 1. The following quantities are all equal:

@ g7 Lgec V(@)™
(b) the number of double G™ 1 cosets in G"t1;
(c) the number of G-orbits on G™ with respect to the action yy,.

Proof. We first observe that the cardinality of the centralizer of (g,g,...,8) €
G" in G" is v(g)". Moreover, this is equal to the cardinality of the set of fixed
points of y,(g) in G™. Then, applying Lemma 6.1 with X = G", G = G",
T = yu, and ¢ = Idgn, we deduce the equality between (a) and (c) (actually,
we have used the classical Cauchy—Frobenius—Burnside formula). Finally, the
equality between (b) and (c) directly follows from the bijection (6.2). ]

Let 7 be, as usual, an involutory anti-automorphism of G. For every g € G,
we denote by ¢;(g) the number of elements 4 € G such that (A~ 1)k = g;in
formulae

(6.3) {(g) = [{h € G it (h™Hh = g},

Note that if T = i,y then, simply writing {(g) instead of {,_ (g), we have
that {(g) = |{h € G : h? = g}|. As before, we denote e by t,: G" — G"
its natural extension. Since G" is 1,,- invariant, the set G”\G” / G" of dou-
ble G" cosets in G" is also Ty_invariant. Indeed, 7, (G (g1.82,.--, gn)G”) =
G"(t(g1),t(g2),...,t(gn))G", forall g1, g2,...,gn € G. As aconsequence,
7, induces a permutation of the double G" cosets in G"; we shall call the cor-
responding fixed points Tn- -invariant double cosets. Similarly, the set O "1 (G™)
of all y, orbits of G = G" on G" is 7, invariant. Therefore, 7, 1nduces a per-
mutation of such orbits whose fixed points we shall call t,- invariant y,-orbits.

Theorem 6.3. Let n > 1. The following quantities are all equal:

1 1.
(a) @de(; G (9", _
(b) the number of t,-invariant double G" 1 cosets in G*+1;
(c) the number of t,-invariant y,-orbits on G".
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Proof. We start by proving the equality between (b) and (c). It suffices to show

that the bijective correspondence (6.2) transforms t,-invariant double cosets

into t,-invariant orbits. Now, the double coset containing the element (g1, g2,
.., &n) 18 Ty-invariant if and only if

(6.4) 3Jhy,hy € G suchthat t(g;) = hy1gihy foralli =1,2,...,n+1

while, the orbit containing (g g;_|1_1, gzg;_il_l, e 8n gn__il_l) 1S Tp-invariant if
and only if

(6.5)

3h3 € G such that t(g,+1) '1(gi) = h3g,-g;_|1_1h§1 foralli =1,2,...,n.

Let us show that conditions (6.4) and (6.5) are both equivalent to
(6.6)
3h4 € G such that t(gn41) t(gi) = h4g;}r1g,~hzl foralli =1,2,...,n.

Indeed, (6.4) implies (6.6) by taking h4 = h; !, while if (6.6) holds we have

t(g1)hagy! = t(g2)hagy ' =+ = t(gn+1)hagniq

and therefore (6.4) holds with &y = r(gn+1)h4g;_,1_1 and hp = h4_1. Finally
the equivalence between (6.5) and (6.6) trivially follows from the identity

hagni18ihy' = (hagyi1)€igni1(hagyy)™
which shows that the relation between h3 and /4 is simply given by h3 =

hy g;_,l_l. This completes the proof of the equality of (b) and (c).
We now turn to prove that (a) equals (c). For g € G let us set

Pn(g)
=[{(g1.82..-..8n) € G" 1 yn(8)(g1.82.---.&n) = (81,82, ... &n)}|
so that, in particular, p1(g) = |{h € G : ghg™! = ©(h)}|. It is obvious that
pn(g) = p1(g)". Moreover, we have ghg~! = t(h) if and only if (g) g =
t(gh™1)"!gh~1 and the number of elements & € G satisfying the latter identity

equals the number of elements u € G such that t(g)"'g = v(u)'u (just take
u = gh™1). In other words, we have p1(g) = {-(t(g)"!g). Thus

Y pa(@) =) p1(g)

geG geG

=) &(@ )"

geG

=Y LM)"{geG () g =1}

teG

= "t

teG
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Then the equality of (a) and (c) follows from Lemma 6.1 with X = G", G =
G", 7 = yu, @ = 1, and, obviously, p = pj. O

Recall that a conjugacy class is ambivalent when it 1s invariant with respect
to Tiny. Moreover the group is ambivalent when every conjugacy class is am-
bivalent, equivalently, every element is conjugate to its inverse. Then with the
above notation, when n = 1 we have:

Corollary 6.4. I?1| > geG bt (g)? equals the number of t-invariant conjugacy

classes of G. In particular (when t = tiny), |C1;_| > geG ¢ (g)? equals the number
of ambivalent conjugacy classes of G.

A more complete formulation of Corollary 6.4 will be given in Theorem 8.4.
Also, from Theorem 6.2 and Theorem 6.3 we deduce:

Corollary 6.5. We have
D @™t =) w(g™
geG geiG

Moreover equality holds if and only if every double G"t1 coset in G s 1,
invariant (equivalently, if and only if every y,-orbit of G on G" is t,-invariant).

When n = 2 Theorem 5.3 yields the following remarkable criterion.

Corollary 6.6 (Mackey—Wigner criterion for simple reducibility). The group
G is t-simply reducible if and only if

(6.7) D (g =) (g
geG geG
In particular (Wigner’s criterion), G is simply reducible if and only if
> e} =) vg*
geG geG

We now examine in detail the case n = 1.

Theorem 6.7. The following conditions are equivalent:

@) Ygeg 5e(8)* = Ygeq v(9)
(b) every conjugacy class of G is t-invariant;
(c) p ~ pt for every irreducible representation p of G.
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Proof. The equivalence (a) < (b) is a particular case of Corollary 6.4 since
ﬁ > geG V(&) equals the number of conjugacy classes of G (cf. Theorem 6.2).

Recall that the permutation representation L(G) = L(G?/ 52) equals the
induced representation Indfg«z L2 Moreover this representation is multiplicity

free (i.e., (G2, 52) 1s a Gelfand pair) and its decomposition into irreducibles is:

2
(6.8) Ind%zrg2 ~ ED(,O’ X p);
peG
see [13, Sect. 9.5] and [16, Corollary 2.16]. We now observe that (p')* = (p*)’:
indeed p’ = p"» and since T and tj,, commute, (3.7) holds. Moreover since

G = {p* 1 p € @}, from (6.8) we deduce

2
(6.9) Indg, > ~ P (o) B pY).
peG
By virtue of Proposition 3.7 and Lemma 3.8 we have

C:((p)* B p%) = C-((0)")C:(p") = C:(p)>.

Since by Theorem 3.5 p ~ p® if and only if C;(p) = =£1, we deduce that this
holds if and only if C;((p’)* X p*) = 1. As a consequence, the equivalence
(b) & (c) follows from the Mackey—Gelfand criterion (Theorem 4.5) applied
to (6.9), also taking into account the equality of the quantities (b) and (c) in
Theorem 6.3. O

The remaining part of this section is devoted to the analysis of the conse-
quences when equality occurs in Corollary 6.5 for n > 3. We need two auxiliary
lemmas.

Lemma 6.8. If there exists a positive integer ng such that deG Ce(g)rotl =

> g V(&)™ then we also have } |, < E (g = Y gec V(@) foralln <
no.

Proof. By Theorem 6.2 and Theorem 6.3 we have de(; Le(g)tott =
deG v(g)"° if and only if every y,,-orbit on G0 is 7,,-invariant. This is
equivalent to saying that for each choice of g1, g2,...,8n, € G there exists
g € G such that 7(g;) = ggig~',i = 1,2,...,n¢. But this implies the t,-
invariance of the y,-orbits also for all n < n¢ and another application of the
two above mentioned theorems completes the proof. [

Lemma 6.9. Let o be a representation. Suppose that o ® o’ contains the trivial
representation exactly once. Then o is irreducible.
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Proof. Leto = YL, pi denote the decomposition into irreducibles of . By
applying Frobenius reciprocity to (6.8) we deduce that each p; ® p; contains the
trivial representation exactly once. Then o ® ¢, which contains p; ® p; for all
i =1,2,...,m, also contains at least m copies of the trivial representation. By
our assumptions, this forces m = 1, yielding the irreducibility of o. O

Theorem 6.10. The following conditions are equivalent:

(a) There exists an integer n > 3 such that deG E (gt = deG v(g)"
forall g € G;

(b) Foralln > 1 and g € G we have ) _, C (gl = > gec V(@)
(¢c) The group G is abelian and t is the identity.

Proof. Clearly, (b) implies (a) and, by Corollary 6.5, (c¢) implies (b). Now as-
sume (a). By Lemma 6.8 the identity is verified also for n = 3 and therefore
Corollary 6.5 ensures that the double G* cosets in G* is t3-invariant. Then we
may apply the Mackey—Gelfand criterion (Theorem 5.3) deducing that (G*, G4)
is a Gelfand pair. It follows that if p,0,0,& € G then pRoXROKEis G-

. : : e 4 o :
irreducible and its multiplicity in Indfg«4 LG4 1s either O or 1. In particular, the
representation

(6.10) Res%j[(p X o) (o K o’)]

(which, modulo the identification of G* and G, is equivalent to the G-represen-
tation p® o ® p’ ®o’) contains the trivial representation at most once. Therefore,
by Lemma 6.9, p ® o is G-irreducible. Note that this holds for all p,o € G.
In particular, p ® p’ is irreducible and contains the trivial representation. Thus
p ® p' ~ g forcing p to be one-dimensional. It follows that G is abelian (see
[13, Exercise 3.9.11 or Sect. 9.2]). ~

Moreover, by (6.8) (with G2 in place of G, so that (G?)? = {(g.h,g.h) :
g, h € G}), the representation

Res [(0 R 0) X (p/ Ko

contains the trivial (G2)2 -representation exactly once. By further restricting to
the subgroup G* we deduce that (6.10) contains the trivial G4-representat10n
exactly once.

By Frobenius reciprocity, this implies that (p X o) X (p’ X ¢”) is contained

in Ind L’(‘;’4 (with multiplicity one). Then Theorem 4.5 (d) ensures that

1=C((pR o)X (o) Ko')) = C:(p)*Cr(0)?,

where the second equality follows from Proposition 3.7 and Corollary 3.9. This
implies C;(p) = =£1 so that Theorem 3.5 (1) ensures the equivalence p ~ p?,
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for all p € G. Since all these representations are one-dimensional, the latter
means exactly that p(g) = p(t(g)) forall g € G and p € G. Since G is abelian
(so that G separates the elements in G), this in turn gives 7 = Idg. O

Note that if in the preceding theorem 7 is the inversion, then G must be a
direct product of cyclic groups of order two.

7. An example: the Clifford groups

In this section, as an application of Mackey’s criterion (Theorem 5.3) and, in-
dependently, of the Mackey—Wigner criterion (Corollary 6.6), we show that
the Clifford groups CIL(n) are t-simply reducible (where the involutive anti-
automorphism 7 of CIL(n) is suitably defined according to the congruence class
of n modulo 4).

The Clifford group CIL(n), n > 1, is the group generated by the elements

€, Y1, Y2, - - -, Yn With defining relations (called Clifford relations)
g2 = 1,

(7.1) v =1,
Vivi = &ViVi

foralli,j = 1,2,...,nsuchthati # j.Forn = 1 one should also add the
relation

V1 = V1€
(Note that for n > 2 the relations €y; = y;e,i = 1,2,...,n, are easily deduced
from (7.1)).

The Clifford-Littlewood—Eckmann group Gg;, s,t € N, is the group with
generators ¢,ay, ds, ...,ds, by, ba, ..., bs and the following defining relations:
g2 = 1; ai2 = g, bjz = 1, bje = ¢bj, and a;b; = ¢ebj;a; for all i, j; and
ajaj = eaja; and bjb; = ebjb; foralli # j (see [55]). It can be easily shown
that Gy is a finite group of order 25, Note also that Go,, = CIL(n) for all
n € N.

The groups Gy, are implicit in W.K. Clifford’s work on “geometric alge-
bra” [19]. Indeed, G, appears naturally as a subgroup of the group of units of
the Clifford algebra C(gs ) of the quadratic form ¢, := s(—1) L (1) over
any field of characteristic # 2. They where explicitly defined by D.E. Little-
wood [56] in 1934. These groups are of great interest to theoretical physicists.
For example, Go,3 = CIL(3) is the group generated by the three (Hermitian)
Pauli spin matrices (coming from the commutation relations between angular
momentum operators in the study of the spin of the electron) and Go 4 = CL(4)
is the Dirac group, generated by the four (Hermitian) Dirac matrices (defined
by Dirac [22] in his study of the relativistic wave equation). More generally,
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the groups Go,2, = CL(2n), n > 1, arise naturally in quantum field the-
ory (e.g. in the theory of Fermion fields): originally they were introduced by
Jordan and Wigner in their paper on Pauli’s Exclusion Principle [45]. Using
Frobenius—Burnside theory of finite group representations (cf. [13, Sect. 3.11])
they determined all irreducible representations of these groups: apart the 2" one-
dimensional representations, Go 2, has only one irreducible representation (of
dimension 2").

For the sake of completeness, we mention that the groups G0, s > 1, are
also important to physicists. For instance, they were studied by Jordan, von
Neumann and Wigner [44] in connection with their algebraic formalism for
the mathematical foundations of quantum mechanics. Eddington [24,25], in his
studies in astrophysics, considered sets of anticommuting matrices and com-
plex representations of the group Gs . Note also that the groups Gy o play
an important role in connection with the Hurwitz problem of composition of
quadratic forms [37,38,67]. Indeed, Eckmann [23] rediscovered these groups
and observed that a set of solutions to the Hurwitz equations over a field [F
corresponds to an n-dimensional orthogonal representation p of Gy ¢ satisfying
p(e) = —I,. Then, Eckmann determined all irreducible orthogonal representa-
tions of Gy o over the real field R and deduced a purely group theoretical proof
of the Hurwitz—Radon theorem on the composition of sums of squares.

Returning back to our investigations, we shall make use of the following
alternative description of the Clifford groups (cf. [72, Chapter 4]). Setting X =
{1,2,...,n},wehave CLL(n) = {£y4 : A € X} with multiplication given by

(7.2) e174 - e2vp = e162(—1) By 0 p

where A denotes the symmetric difference of two sets and £(A, B) equals the
number of elements (a,b) € A x B such thata > b, for all e1,¢, € {1,—1}

and A, B C X. Notice that the identity element is given by 1¢,(,) = Yo and
1Al Al=1)

that (ey4) "' =e(—1)" 2  ypyforalle=+land 4 C X.
Consider now the map t’: CIL(n) — CIL(n) defined by

[A1dAl+1)
(7.3) t'(eya) =e(=1)" 2 ya

and note that v/ = 1;,, o "/ where

" (eya) = e(—1)!4ly,

forall e = +1 and A C X. It is straightforward to check that t” is an invo-

lutive automorphism of CIL(n) so that ’ is an involutive anti-automorphism of
CIL(n). We then set

T/ if n = 3 mod 4,

Tinv  Otherwise.

T =
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Theorem 7.1. The group CIL(n) is t-simply reducible.

Proof. We present two different proofs: the first one making use of the Mackey
criterion (Theorem 5.3) and the second one based on the Mackey—Wigner crite-
rion (Corollary 6.6).

First proof. Set G = CIL(n) and let us check that every double coset of G3in
G?3 is 13-invariant. Consider the action 7 of G2 on G? given by

7(g1,82,83)(h1,h2) = (g1h1g5 ", g2hag3 ")

forall g1, g2, g3, /1, h2 € G. Then the stabilizer of the element (1g, 1) € G2
is exactly G and the double cosets of G in G> coincide with the G3-orbits of
G> under the action r. Let A, C € X. Then

_ Iclaci—1
ve'lyayc = (1) 2 +E(A’C)+$(C’AAC)VCA(AAC)

(7.4) _ (_1)WJFE(A,CHE(C,AHS(C,C)

_, (—1Hlic-l4nc

YA
VA

where =, follows from the fact that £(C,C) = W From (7.4), a case-
by-case analysis yields the r3-invariance of all G 3-orbits. As an example, con-
sider the G 3-orbit of the element (yx, yx ). Suppose first that 7 is odd. Then

(n=DIC]

w(yc,ve,ve)yx, vx) = (=) DIClyy (—1) vx) = (vx, vx)

for all C C X. Therefore the G 3-orbit of (vx, yx) reduces to one point. Now,
if n = 1 mod 4 we have t(yx) = y;l = yx, while if n = 3 mod 4 we have

(yx) = —vy I = yy. Similarly, when # is even we have that the G 3-orbit of
nn—1)

(rx, vx) is {(yx. vx). (=yx, —yx)jand t(yx) = yx' = (=1)" = rx.
Thus, since all double cosets of G3 in G2 are 73-invariant, from the Mackey
criterion (Theorem 5.3) we deduce that CIL(n) is t-simply reducible.

Second proof. We start by computing the Right Hand Side in (6.7) where G =
C1L(n). First note that for A € X we have,

(7.5) v(yq) = 2".

Indeed, by virtue of (7.4), we have

v(ya) = l{eyc e = £1,|C N Al is even}| = 2. 214171 . on=l4l — on



Mackey’s theory of t-conjugate representations for finite groups 75

if | A| is even, and

v(y4) ={eyc : e = £1,|C N A] is even and |C| is even}|
+ {eyc : e = £1,|C N Al is odd and |C| is odd}|
=2. 2|A|_1 . 2n_|A|_1 +2. 2|A|—1 . 2n—|A|—1
="
if | A| is odd. We then have

D v =) v+ Y v(-ra)?

geG ACX AcX
=2 ) v(ya)?® (since v(—y4) = v(ya))
(7.6) AcX
—2 Z 22" (by (7.5))
ACX
— 23n+1.

We now compute the Left Hand Side in (6.7). First observe that by (7.2) we
have that {;(g) = 0if (and only if) g # £1g. Suppose first that # = 3 mod 4.
Then we have

t(lg) = [{eyc e = 1 and t(eyc) 'eye = 16}
=2|{yc : t(yc) 'yc = lg}|
=2l{yc : (=DIlycyc =16}

|ICldC+1)
=2{yc : (=1) 2 " 1g = 1g}|

=2|{yc : IC[(IC] + 1) = 0,3 mod 4}|
=2.2""1 =2",
Analogously, one has
(e(=1g) = 2l{yc : IC|(IC| + 1) = 1,2 mod 4}| = 2"
so that, all together,
(7.7) Y 69 =t (16)? + Le(—1g)% =271,
geG
On the other hand, if n = 0, 1, 2 mod 4 we have
tz(16) = 2|{yc : IC|(IC| = 1) = 0,1 mod 4}| = 2"

and
te(—1g) = 2|{yc : IC|(IC| = 1) = 2,3 mod 4}| = 2"
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thus showing that (7.7) holds also in this case. Comparing (7.6) and (7.7), from
the Mackey—Wigner criterion (Corollary 6.6) we deduce that CIL(n) is 7-simply
reducible. ]

Remark 7.2. Let p,o € m In [18] we give an explicit decomposition of the
tensor product p ® o. According to Theorem 7.1, this is multiplicity free and,
moreover, p ~ p°.

8. The twisted Frobenius—Schur theorem

Let N be a finite group, 7: N — N an involutory anti-automorphism, and
denote by « € Aut(N) the involutory automorphism defined by «(n) = t(n™1)
for all n € N. Consider the semi-direct product

(8.1) G = N Xy ().
In other words, G = {(n,a®) :n € N,e € {0,1}} and
(n’aé‘)(n/’ae/) — (noze(n/),a8+8/)

foralln,n” € N and ¢, &’ € {0, 1}. If we identify N with the normal subgroup
{(n,a®) : n € NYand we set h = (1y,a), then G is generated by N and /
and the following relations hold: 72 = 1 and hnh = t(n)~!, foralln € N.
We then have the coset decomposition G = N [ [ AN . Moreover, we can define
the alternating representation of G (with respect to V) as the one-dimensional
representation (&, C) defined by

() 1 ifgeN,
& =
5 —1 otherwise.

We define two actions of C, = {1,—1} on N and G as follows: 1 acts
trivially in both cases; —1 actson N by N 3 o + "o € N where

hs(n) = o (h~'nh)

for all n € N; finally, —1 acts on G by G300 Qe € G. Clearly, both N
and G are partitioned into their C,-orbits. Moreover every such an orbit consists
of one or two representations. Let also

Ig(o)={geG: % ~o}

be the in@rtia group of o € N with respect to G (again, 80 (n) = o(g 'ng))
and

Go)={0eG:0=<ResSO)={0eG:0=<nd§o}.
The following theorem yields a very natural bijection between the orbits of C»
on N and those on G. For the proof we refer to [15, Theorem 3.1] and [72,
Sect. IIL.11].
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Theorem 8.1. (1) If I(0) = N, then 6 := IndS0 € G, 0 ® ¢ = 0 and
ResNH = o &" 0, with o and "o not equivalent.
(2) If Ig(0) = G, then, taking 6 € G(a) we have IndN (0) =0 & (0 ®e) with
0 ALORe andRes%@ = Resg(e ®e) =o0.
(3) The map
{6, —> G(06) when Ig(o) =
and
{o} —> @(0) when Ig(o) =

yields a one-to-one correspondence between the C-orbits on N and on G.
In particular, to each single-element orbit on N (resp. on G ) there corre-
sponds a two-elements orbit on G (resp. on N ).

In the following, given an irreducible representation o of N, we denote by
o® and C;(0) the associated t-conjugate representation and the t-Frobenius—
Schur indicator of o (as in (3.1) and Definition 3.4; recall that C = C_ ). As
remarked in the Introduction, the following result goes back to Kawanaka and
Matsuyama [47] but the proof follows the lines in [7, Exercise 4.5.1].

Theorem 8.2 (Twisted Frobenius—Schur theorem). Ler o be an irreducible
representation of N and denote by ys its character. Then

(8.2) |N|Zxa(r(n) 'n) = C:(0).

neN
Proof. Let G be as in (8.1). We distinguish two cases.

Case 1: "o ~ o. In this case, for 0 € a(a), by Theorem 8.1 (2) we have
0 £ 0 Q® e and Res%@ = 0, so that yg(n) = yq(n) for all n € N. Since
g% € N forall g € G, we have

D x0@) =Y 2em® + Y xo((hn)?)

geG neN neN
=Yt + Y xe(xm)'n
neN neN

By the classical Frobenius—Schur theorem [13, Theorem 9.7.7], we have
C(6) = Z x0(2%)
geG

and

2
C(o) = |N| > xe®?).

neN



78 T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli

Therefore, since |G| = 2|N|, we deduce that

(8.3) C(6) = —C(o) + W Z Xo(T(n)™!

Suppose that o is self-conjugate.

Denote by A(n) (resp. A*(n)), with n € N, a matrix realization of o (resp.
o7). Note that "A(n) := A(h~'nh), with n € N, is a matrix realization of "o
(cf. [15, Lemma 3.1]). Moreover,

(8.4) A%(n) = "A(n)
for all n € N. Indeed, for all n € N we have "o (n) = o(t(n)"1) and therefore
(8.5) 6% () = o[t ="o(m™H)T = (o) ()

so that AT(n) = "A(n~HT = hA(n). Let also M(g), g € G, denote a matrix
realization of 6 such that M(n) = A(n) for all n € N. Then, the unitary ma-
trix V = M(h) satisfies M(nh) = A(n)V foralln € N, V? = M(h?) =
M(1g) = I so that

(8.6) V¥*=V and VI =V
and
(8.7) hA(n) = V*A(m)V = VA(n)V

for all n € N. Since o is self-conjugate, we can find a unitary matrix W such
that

(8.8) A(n) = WAm)W*
for all n € N. We therefore obtain
AT(n) = hA(n) (by (8.4))
= VA(m)V (by (8.7))
= VT Am)VT  (by (8.6))
=VIWAm)W*VT  (by (8.8))

that 1s,
(8.9) W VT AT(n) = Am)W*vT

foralln € N.Since W*VW = £V (cf [15, Theorem 3.4)]), and applying also
(8.6), we get

(8.10) W vHIT —=yW =WV =xwvT.
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From Lemma 2.3, it follows that WW = +1. More precisely, WW = I (resp.
WW = —I)if o is real (resp. quaternionic). Combining with Theorem 3.5, this
1s equivalent to

(8.11) W = C(o)W*.
From (8.10) and (8.11) we obtain
(8.12) w*vHT = xco)w*vT

where the sign is the same as in W*VW = =+V. Thus, from (8.9) (W*VT
intertwines A’ and A) and (8.12) (W*VT 1S symmetric/antisymmetric) with
the same sign therein, we obtain

(8.13) C:(0) = £C(0).

Now, if in (8.13) the sign is 4, then by [15, Theorem 3.4 (2)] we have C(6) =
C (o) and therefore from (8.3) and (8.13) we deduce that (8.2) is satisfied. On
the other hand, if in (8.13) the sign is —, then 6 is complex, C(6) = 0 and
C:(0) = —C(0) and from (8.3) we again deduce (8.2). This completes the
proof in the case o is self-conjugate.

Suppose now that o is complex. Then by [15, Theorem 3.4 (1)] we have that
6 is complex as well. Moreover o’ £ o and "o ~ o imply that 67 = he!
o’ + o (recall (8.5)) and therefore C;(0) = 0. Again, from (8.3) we deduce
(8.2). This completes the proof in the case o is complex and, together with the
previous step completes the proof for the case "o ~ o.

We now discuss the remaining case.

Case 2: "o + . From Theorem 8.1 (1) we deduce that Res%@ =o®"o
and therefore

Y x0@® =Y xem®+ D xoz(m)"'n)

geG neN neN

=Yt + Y g1

neN neN

+ Y xe@m ') + Y ez n).

nenN nenN

~

As
Xig (n%) = xo(hn?h) = xo(t(n)™?)

and

X (T()7'n) = yo(hr(m)~'nh) = yo (t((z(m)™'n)™h) = xo(nz(n)™")
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from the fact that n — t(n)~! is an automorphism, we deduce that

(8.14) C(6) = C(o) + WL' S o(eln)~'n).
neN

Suppose that o is real (resp. quaterionionic). Then, by virtue of [15, Theo-
rem 3.3 (1)] 6 is real (resp. quaterionionic) as well and therefore C (o) = C(6).
Now, if o ~ o, since by hypothesis hy + o, and (8.5) holds also in this case,
we have 67 = "o’ £ ¢’ ~ o, and therefore C;(c) = 0. Then (8.2) follows
from (8.14).

Suppose now that o is complex. If o/ £ hy, from [15, Theorem 3.3 (2)]
we deduce that 6 is complex as well. Moreover, 6% = "’ £ ¢ and therefore
C(0) = C(0) = C;(0) = 0 and (8.2) follows again from (8.14).

Finally, if o is complex and ¢’ ~ ha, then [15, Theorem 3.3 (3)] ensures
that 6 is self-conjugate. Moreover, 0* = hs' ~ . We then denote by U an
intertwining unitary matrix such that

(8.15) UA*(n) = A(n)U

foralln € N (A(n) is as in (8.4)). Since h? = 1g, from [15, Theorem 3.3 (3)]
we deduce that UU = %1, that is,

(8.16) U=4+UT.

Now, if in (8.16) the sign is +, [15, Theorem 3.3 (3)] ensures that 6 is real,
while (8.15) and (8.16) give C;(0) = 1. In other words, C(0) = 0, C;(0) =
C(f) = 1 and, once more, (8.2) follows from (8.14). Similarly if the sign in
(8.16) is —. W

Recall that {;(n), n € N, denotes the number of elements m € N such that
t(m~Ym = n (cf (6.3)).

Corollary 8.3. For alln € N we have

(8.17) Le(n) = ) Ce(0) xo ().
oceN
In particular,
v = ) do— Y do.
o1 clore

Proof. We observe that {; is a central function. Indeed, if m,n,s € N and
t(m~YYym = n, then

1

sns~l = st(m Ve (s)r(s Hms ™!

= t[t(s Hms ) e(sTHms™L.
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Therefore the map m +— (s~ !)ms™! yields a bijection between the set of
solutions of t(m~1)m = n and the set of solutions of t(m, )m; = sns~L.
From the Frobenius—Schur twisted formula (8.2) we deduce

(8.18) | Z Xo()Ez(n) = C(0)

| neN

(observe that {;(n) and C; (o) are both real). Since {; is central, by the orthogo-
nality relation for characters (cf. [13, Equation (3.21)]) (8.17) immediately fol-
lows from (8.18). ]

We are now in position to complete Corollary 6.4 by adding a third repre-
sentation theoretic quantity.
Theorem 8.4. The following quantities are equal:

(a) the number of 0 € N such that o ~ o%;
(b) the number of t-invariant conjugacy classes of N;

©) a7 Lnen Ce(m).

Proof. The equality between the numbers in (b) and (c) corresponds to Corol-
lary 6.4. On the other hand, from Corollary 8.3 we also have

ﬁ > G = o N| S L&)
neN

neN

— Z Cr(a)Ct(p) ZXU(")X;O(”)

G,pej\f\ nGN
=x Z C:(0)Cz(p)dg,p
o,0eN

= [{o € N : C¢(0) # 0}]
=|{c € N:0% ~ 0}

where =, follows from the orthogonality relations for the characters, and there-
fore we get the equality between (a) and (c). ]

9. The twisted Frobenius—Schur theorem for a Gelfand pair

In this section we specialize the results of the previous section to the context of
Gelfand pairs.
Let (G, K) be a Gelfand pair, X and x¢ as in Sect. 4 and

L(X) = @Vp

pel



82 T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli

the corresponding multiplicity free decomposition. By virtue of Frobenius reci-
procity, for each p € [, there exists a unique (modulo a complex factor of
modulus 1) unit vector v € V), such that p(k)v, = v, forall k € K. The spher-
ical function associated with v, is the complex valued function ¢, on G defined
by
$p(g) = (vp, p(Vp)v,

for all g € G. We observe that the spherical function ¢, is bi-K-invariant
(po(k1gka) = ¢pp(g) forall k1, k, € K and g € G) and recall the following re-
lations between ¢, and the corresponding character y, (c¢f. [13, Exercise 9.5.8]):

1 -
9.1) $o(8) = — > Xo(gk)
|K| kekK
and
d -
9.2) X0(8) = ﬁ > dp(h~1gh)
heG

for all g € G, where d, = dimV),.
Theorem 9.1 (Twisted Frobenius—Schur for a Gelfand pair). Lett : G — G

be an involutory anti-automorphism. Then we have
(1) For everyp € 1
d _
23 " o(z(8) ') = Celp).
Gl 7%
(2) For x € X we set {(x) = |{g € G : 1(g) 1 gxo = x}|. Then we have

1 1
E Z & (x)? = |K| Z a1
xeX pel: p
p~p°t

Proof. (1) From Theorem 8.2 we obtain (C;(p) is real)

Celp) = 5 2 1e() 8)

geG

d
— 2 3 e M) Gy 92)
g,heG
d
= s 2 o)™ e
g,heG
_ b

Z ¢p(‘E(S)_1S) (by setting s = t(h)gh).

|G|S€G
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(2) From the previous fact (by setting ¢,(x) = ¢,(g) if gxo = x: note that
this is well-defined by virtue of the bi-K-invariance of ¢,) we get

d
—ﬁ > () ().

C:(p) =
|G
xeX

Then the spherical Fourier inversion formula [13, Equation (4.15)] yields

L (x) = |K| D 0p(x)Ce(p).

pel

Therefore, from the orthogonality relations for spherical functions [13, Propo-
sition 4.7.1] we have

G X G = o Y GG
xeX

xeX
~ Yl
Py |G| dp
1
=|K| Y -
. o
p€el:
pt~p

O]

If 7(K) = K then t induces an involution (that we keep denoting by ) on
the set K\G/K of double cosets and therefore on the set K\ X of K-orbits on
X. This way, if g € G and Q24x, is the K-orbit containing gxo, then 7(2gx,)
is the K-orbit containing 7(g)xo.

Theorem 9.2 (Twisted Frobenius—Schur for a Gelfand pair II). Suppose that
(K) = K.

(1) If p € I then also p* € I and the number of p € I such that p* ~ p is equal
to the number of t-invariant K-orbits on X.
(2) If p € I and p* ~ p then C;(p) = 1.

Proof. (1) Let us define f, € V, by setting
(9.3) Fo(w) = (v, vp)y,

for all v € V,. Then we have

¢p(g) = fp[P(g_l)Up]-
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Moreover, p* (k) f, = f, forallk € K. Indeed, forall k € K and v € V,, we
have:

(0% (k) fplv = folp(z(k))v]
= (p(z(k))v, vp)
— (v, p(z (k)" vp)
= (v,vp) (since T(K) = K and v, is K-invariant).

This shows that p* € I because f, is a non-trivial K-invariant vector. Then,
we equip V/; with the scalar product given by duality so that (1, fp)y; = f(vp)
forall f € V/; and, recalling (9.3), we deduce that the spherical function ¢, is
given by

Gor(8) = [pT(g™ 1) ol (Wp) = folp(x() ™ vl = (vp, p(T())Vp)V,

= ¢p(1(2))
for all g € G. Thus,
1 S 1 -
— > $p(@bp(T (@) = = > $p()pr ()
G| G|
g€l g€G
©4) 0 ifptpt,
= 1 ) .
d_p if p ~ p*.

On the other hand, by virtue of the dual orthogonality relations for spherical
functions (cf. [13, Proposition 4.7.1]), we get

Xl
- —— if1(g)x0 € Qgxg»
9.5 > dpbp()bp(t(2)) = 1 2ol &0
pel 0 otherwise.
From (9.4) and (9.5) we deduce
1 -
fpelip~pl=) G > $(2)bp(x(2))
pel geG
1 | X|
|G 22 €2
QeK\X: geG:

7(Q)=Q gx0€N

1
= ). IKl-IX]|
G|

QeK\X:
T(Q)=Q

Qe K\X : t(Q) = Q.
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(2) Consider the permutation representation (A, L(X)). By Theorem 4.4 and
Lemma 4.1 (3) we know that C;(A) = m; = {2 € K\X : () = Q}|. By
Proposition 3.6 and Theorem 3.5 (1) we have that Cc(1) = > yer: C7(p).

~nT

Taking into account that, by the previous facts, C;:(A) = [{p € I : p ~ p*}|,
we conclude that C;(p) = 1 for all p € I such that p ~ p*. O

10. Examples

In this section we review some examples related to our investigations. Note that
all the examples discussed below refer to involutive automorphisms of the given
finite group G while our treatement concerns involutive anti-automorphisms.
Modulo the composition with the inverse map iy : g +— g~ !, the two ap-
proaches are clearly equivalent.

Let us recall that, given a finite group G, a Gelfand model, briefly a model,
for G (a notion introduced by I.N. Bernstein, I.M. Gelfand and S.I. Gelfand in
[6]) is a representation containing every irreducible representation with multi-
plicity one. Models for the finite symmetric groups S, and general linear groups
were described by A.A. Klyachko [50,52]. In [40] Inglis, Richardson and Saxl
presented a brief and elegant construction of an explicit involution model for
Sy (the term “involution” refers to the fact that the model is obtained by sum-
ming up induced representations of subgroups which are centralizers of certain
involutions). Their work was continued by Baddeley [2] who showed that if a
finite group H has an involution model, then the wreath product H ? S, also
has an involution model for any n € N. As a byproduct, he obtained involution
models for Weyl groups of type A,, B,, C,, and Dy, foralln € N. Note that
the theorem of Frobenius—Schur (¢f. Corollary 8.3 withn = 1g and t = tjyy)
imposes an obstruction for a group G to have an involution model: G admits an
involution model only if G has only real representations.

In the spirit of the present paper, Bump and Ginzburg [11] considered gen-
eralized involution models: these consist in replacing the involutions (resp. their
centralizers) with twisted-involutions (resp. their twisted-centralizers) with re-
spect to some involutive automorphism 7 of the ambient group (thus a model
for G is a generalized involution model for G with 7 equal to the identity auto-
morphism of G). In analogy with the standard involution models, we have the
following obstruction: G admits a generalized involution model (with respect to
t)onlyif C;(0) = 1forallo € G . We remark that the only abelian groups with
involution models are (Z,)", n € N, but every abelian group has generalized
involution models. On the other hand, a Coxeter group has an involution model
if and only if it has a generalized involution model. More recently, Marberg [60]
proved that if a finite group H has a generalized involution model, then, in anal-
ogy to Baddley’s main result, the wreath product H ? S, also has a generalized
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involution model for any n € N. As an application, it is shown that when H is
abelian, then H ? S, has a model: when H = Z,, r € N, this recovers a result
previously obtained by Adin, Postnikov and Roichman [1] (see below).

e R. Gow [32] considers the general linear group G = GL(n, k), where k is a
field, equipped with the involutory automorphism which sends each matrix
x € G into its transposed inverse (x7)~! (in our setting, this corresponds to
the involutory anti-automorphism t which sends each x € G into its trans-
posed xT') and the corresponding semi-direct product denoted G . It is first
shown that every element of G is a product of two involutions (Theorem 1)
and therefore it is conjugate to its inverse, so that GT is ambivalent and all
its irreducible representations are self-conjugate.

Let now k = [, be the field with g elements. Suppose ¢ is odd. In The-
orem 2, Gow shows that every irreducible representation of G is indeed
real. From this result the author deduces (Theorem 3) the formula

(10.1) Y x0(8) = &(2)
oeG

for all g € G. Comparing (10.1) and (8.17) one deduces that C; (o) = 1 for
all o € G. Note that by taking g = 1¢, the left hand side in (10.1) gives the
sum of dimensions of all irreducible representations of G, equivalently the
dimension of a model of G, while the right hand side gives the number of
symmetric matrices in G (Theorem 4). One may remark that Theorem 2 can
be derived from Theorem 4 using Theorem 1. Moreover, Theorems 2 and 4
are both valid also for even ¢. In fact, Theorem 4 has been proved indepen-
dently, for even as well as odd ¢, both by A.A. Klyachko [52, Theorem 4.1]
and by I.G. Macdonald (unpublished manuscript).

e In [33], Gow considers the general linear group G = GL(n,F,2), ¢ a prime
power, and its subgroups U = GU(n,F 2) (the unitary group of degree
n over F2) and M = GL(n,Fy). The Frobenius automorphism ¢ + ¢4
of 2> extends to an involutory automorphism F of G (leaving U and M
invariant) by raising the entries of a matrix in G to the gth power. Then
also F'*, the composition of F and the transposed inverse, is an involutory
automorphism of G (so that U is the G-subgroup consisting of F*-fixed
elements). By using these two automorphisms, it is then shown that (G, U)
(resp. (G, M)) is a Gelfand pair and that the irreducible subrepresentations
of L(G/U) (resp. of L(G/M)) are precisely the F-fixed (resp. F*-fixed)
irreducible representations of G. We mention that the F *-fixed representa-
tions of G were used by Kawanaka [46] to give a parameterization of the
irreducible representations of U.

e Inglis, Liebeck and Saxl in [39] consider the group Go = PSL(n,[F,) (the
projective special linear group of degree n over ), with n > 8. Let G
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be a group with socle Gy, that is such that Gy < G < Aut(Gyp). Then a
description of all Gelfand pairs (G, H) with H maximal subgroup of G not
containing Gy is given. Moreover, in [41] the authors finds a new model
of the general linear group over a finite field (this construction can also be
obtained from a result of Bannai, Kawanaka and Song [4] but the methods
in [41] are independent of and different from theirs).

e Vinroot [76] considers the group G = Sp(2n, ;) equipped with the involu-

tive automorphism
_In O _In O
g‘_’( 0 In)g( 0 1,,)‘

Let us denote by t the composition of the above automorphism and t,y, SO

that
—1, 0\ (-1, 0

’(g):( 0 In)g ( 0 1,,)'
Observe that when ¢ = 1(mod 4) then t is inner and every irreducible rep-
resentation of G is self-conjugate. Moreover, when ¢ = 3(mod 4) then t
is not inner, there exist irreducible representations of G which are not self-
conjugate, but C;(0) = 1 forallo € G (cf. [76, Theorem 1.3]). As a byprod-
uct, from the analogous formula (10.1) which holds in the present setting,
Vinroot determines explcitly the dimension of any model of Sp(2n,F,).
In [77] Vinroot uses Klyachko’s construction of a model for the irreducible
complex representations of the finite general linear group GL(n,F,;) we al-
luded to above to establish, by determining the corresponding Frobenius—
Schur number, whether a given irreducible self-conjugate representation of
SL(n,Fy;), the finite special linear group of degree n over [y, is real or
quaternionic.

e Adin, Postnikov and Roichman [1] study Gelfand models for wreath prod-

ucts of the form G = Z,?S,. Any element g of G can be expressed uniquely
as g = ov,whereo € S, and v € Z,". Consider the map t: G — G given
by t(g) = o(—v) forall g = vo € G.
An element g € G is said to be an absolute square root of another element
h € G provided gt(g) = h. Then the main result of this paper asserts that
the value of the character associated to the Gelfand model of G on A equals
the number {; (/) of absolute square roots of /& (cf. (6.3)). This generalizes
a result concerning groups possessing only real characters, e.g. S, (in this
case, absolute square roots coincide with square roots).

e Bannai and Tanaka [5] consider a finite group G, an automorphism ¢ and the
corresponding centralizer K := Cg(0) in G, i.e., the subgroup consisting of
all elements fixed by o. It is well known and easy to see that for g, 7 € G the
double cosets KgK and KhK are equal if and only if the elements go(g)
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and ho(h) are conjugate in K. Then the authors introduce the following
condition:

(x) If the elements go(g) and ho (h) are conjugate in G then they are con-
jugate in K,

and showed (Proposition 1) that if o is an involution and condition () holds,
then (G, K) is a Gelfand pair. For instance, if H is a finite group, G =
H x H,ando: G — G is the flip defined by o (h1, hp) = (h2, hy), then (x)
is satisfied and one recovers the well known fact that (G, K) is a Gelfand
pair, where K = C;(G)is H?> = {(h,h) : h e H}.
Moreover, they provided a list of other interesting examples where the above
condition is satisfied. In particular, when G is the symmetric group S, with
n > 4, their list exhausts all possible examples. Other examples from the
above mentioned list include some sporadic groups as well as some linear
groups including:

1) G = GL(n,Iqu), K = GL(n,Fy);

(ii)) G = GL(n,Fp2), K = GU(n, Fjp2);
(i) G = GL(2n,F,), K = Sp(2n,F,).
Moreover they leave it as an open problem to determine whether condition
(%) is satisfied in the case:
(iv) G = GL(2n,Fy), K = GL(n,F,2).

11. Open problems and further comments

Here below we indicate possible extensions and generalizations of the results
discussed by listing some open problems.

Comment 11.1 (Multiplicity-free induced representations). In his work on in-
duced representations, when looking for explicit criteria for multiplicity-free-
ness, Mackey basically limited his investigation to permutation representations,
that is, to representations obtained by inducing the trivial representation of a
subgroup. In this setting, the theory is rich and completely understood. We re-
call the Gelfand—Garsia criterion (Corollary 4.7, cf. [13, Example 4.3.2]) for a
symmetric Gelfand pair and the weak-Gelfand criterion (Corollary 4.8, cf. [13,
Exercise 4.3.3]). It is well known that there exist non-symmetric Gelfand pairs
(with the cyclic groups and the alternating groups [13, Example 4.8.3]) as well
as non-weakly-symmetric Gelfand pairs ([13, Sect. 9.6]).

Let G be a finite group and K < G a subgroup. Let also 7 be an involutive
anti-automorphism of G.

We notice that the sufficient condition in Corollary 4.8, namely Formula
(4.6), is not a necessary condition for: (i) (G, K) being a Gelfand pair and (ii)
C:(0) = 1 for every irreducible representation o contained in the permutation
representation A .
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Bump and Ginzburg [11] gave the following sufficient condition (cf. (4.6))
for Indge being multiplicity-free, where 6 is an irreducible K-representation:

M 7(K) =K;
(i) x%(z(g)) = x°(g) forall g € G;
(ii1)) KgK is t-invariant for all g € G;
(iv) 7(s) = kysk, for some ki, ko € K such that y (k1) x% (ko) = 1, for all
ses,

where )(9 denotes the character of 6 and S is a suitable complete set of repre-
sentatives for the double cosets of K in G.

It would be interesting to find an analogue of the Mackey—Gelfand criterion
(cf. Theorem 4.5) along the lines of [11] as well as to find an example of a K-
representation € # (g such that Ind[(ée is multiplicity-free but does not satisfy
the Bump and Ginzburg criterion above.

The first step towards the first part of the above problem, should be to ex-
amine the case dim6# = 1. In [17] we consider a Hecke algebra ¢ (G, K, 0)
and present a sufficient condition (a Garsia-type criterion on 7 (G, K, 0)) for
Indge being multiplicity-free and we illustrate it with the following example.
Let G = GL(2,F,) denote the group of invertible 2 x 2 matrices with coef-
ficients in [y, the Galois field with g elements, and K = {((1) ?) b e Fq}
the subgroup of unipotent matrices. Then for every non-trivial character y of
the (abelian) subgroup K the induced representation Indg x 1s multiplicity-free.
This 1s a particular case of the Gelfand—Graev representation of a simple group
of Lie type obtained by inducing a non-trivial character of the maximal unipo-
tent subgroup.

Now we list two open problems that, together with 11.7 and 11.8, suggest
that the Mackey—Wigner theory should be a particular case of a more general
theory.

Problem 11.2 (Harmonic analysis and tensor products). Let G be a finite
group and t an involutive anti-automorphism of G. Suppose G is t-simply re-
ducible. What is the relation between the spherical Fourier analysis on the ho-
mogeneous space L(G3/G?3) (see [13, Sect. 4]) and the decomposition of the
tensor products?

Problem 11.3 (Decomposition of tensor products). Suppose (G2, G3) is nota
Gelfand pair. Is it possible to find rules that relate the decomposition of
L(G?/G?) into irreducible representations with the decomposition of tensor
products of irreducible G-representations? A possible strategy could be to ap-
ply, in this context, the analysis developed in [69,70] for permutation repre-
sentations that decompose with multiplicity. Moreover, a possible application
should be to shed light to one of the major open problem in the representation
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theory of the symmetric group, namely the decomposition of the tensor product
of two irreducible representations (usually called Kronecker products). See [42,
Sect. 2.9] for an introduction, [30] as a classical reference, and [31] as a recent
interesting paper. Explicit decompositions of tensor products are also useful in
the determination of the lower bound for the rate of convergence to the sta-
tionary distibution for diffusion processes on finite groups; see [21] and [13,
Sect. 10.7].

Problem 11.4 (Characterization of simply reducible groups). The major
open problem in the theory of simply (or t-simply) reducible groups is to give
a nice and useful characterization of these groups. This was stated as an open
problem in the famous Kourovka notebook [54]. A great advance on this prob-
lem is in the recent paper [48] where the authors show that all t-simply reducible
groups are soluble (this also was an open problem in [54, Problem 11.94], posed
by Strunkov (see also [73]).

Comment 11.5 (McKay correspondence). Simple reducibility is also relevant to
the McKay correspondence which we now describe.

Let G be a finite group. Given a representation o of G, the McKay quiver
associated with o is the directed multi-graph defined as follows: the vertex set is
G and, given py, p2 € G, there are mgl p, directed edges from p; to pp, where
mg. ,, is the multiplicity of p2 in 0 ® p1.

Let now 7: SU(2) — SO(3) denote the standard double cover and note
that the only element of even order in SU(2) is the generator —1 of the kernel
of m. Therefore, any finite subgroup of SU(2) either has even order (and is the
preimage of some finite subgroup of SO(3)) or has odd order (and is isomorphic
to a finite subgroup of SO(3) of odd order, hence a cyclic group). Now, the
finite subgroups of SO(3) are: the cyclic groups Z/nZ, the dihedral groups
D5, the tetrahedral group T (i.e., the alternating group A4), the octahedral
group O (i.e., the symmetric group S4), and the icosahedral rotation group [/
(i.e., the alternating group As). It follows that the finite subgroups of SU(2) are:
the cyclic groups, the binary dihedral groups BD», = m~!(D,,), the binary
tetrahedral group BT = w~!(T), the binary octahedral group BO = 7~ 1(0),
and the binary icosahedral rotation group BI = 7~ (D).

Let G be any finite subgroup of SU(2) as above and let o denote the faith-
ful representation of G obtained from the embedding G < SU(2). Then, one
can show that the associated McKay quiver is connected and has no self-loops
(mg , = 0 forall p € @). Moreover, simple reducibility of G implies that

the McKay quiver is a simple and undirected graph (i.e., mgl € {0, 1} and

gl,pz = mgz’pl for all p1, p2 € G).
The McKay correspondence, named after John McKay [61,27], then states
that the construction of McKay quivers yields a bijection between the non-trivial

finite subgroups of SU(2) and the affine simply laced Dynkin diagrams (which

m
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appear in the A-D-E classification of simple Lie Algebras). For an overview
of the correspondence and other mathematical structures which appear in con-
nection with solvable models (e.g. the ice-type, Potts, and spin models) in two-
dimensional statistical physics, see [43, Sect. 2].

Comment 11.6 (Simple phase groups). Let G be a finite group and let (oj, V;),
i = 1,2,...,n, denote a list of all pairwise inequivalent irreducible repre-
sentations of G. Let d; = dim(V;) and fix an orthonormal basis {vf; DS =
1,2,...,d;}in Vi, forall i = 1,2,...,n. By multiplicity freeness, given 1 <
i,j <nwecanfind1 <i; <ip <:-- <ir < n such that

k
(11.1) 0i ® 0 ~ Poi,.
=1

Consider the vector space V; ® V; and let T € Homg (@]le Vie, Vi ® Vj) be
an unitary intertwiner (c¢f. (11.1)). There are two natural orthonormal bases in
V; ® V;, namely {v_’; Quv] s =1,2,....d;,t = 1,2,...,dj} and {T(vffz
ug=1,2,...,d;,,£ =1,2,...,k}. Then we can express

n d;

Ti)=>_Y Y > Ciliivi®v]

i=1j=1s=1t=1

where the complex numbers

(11.2) Colt

S,tUp

called the Clebsh—Gordan coefficients or Wigner coefficients constitute the uni-
tary matrix of change of base. As Wigner [79] showed (see also [36, Chapter 5]),
the Clebsh—Gordan coefficients can be chosen in such a way that their absolute
values are invariant under every permutation of the 7, j, i,’s and the correspond-
ing s, t, ug’s: in other words they change only by a multiplicative phase factor. If
one drops the property of ambivalence no essential new difficulties arise in the
definition and in the symmetry relations of Clebsh—Gordan coefficients. How-
ever, if the multiplicity free condition is dropped, then a multiplicity index enters
the Clebsh—Gordan coefficients. Derome has shown [20] that these multiplicity
Clebsh—Gordan coefficients are invariant under permutations in the above sense
if and only if

(11.3) Y@ =) @’

geG geG

forallo € G. Groups for which (11.3) holds are called simple phase groups (see
[20,9,10,51,74,26]). In [74] van Zanten and de Vries derive several Mackey—
Wigner type criteria for the existence of a real representation and then derive
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analogues of some of them, giving criteria for G to fail to be a simple phase
group. It would be interesting to investigate twisted versions (in terms of an
involutive (anti-)automorphism t of the group G) of their results.

Problem 11.7 (Multiplicity-free subgroups). Let G be a finite group and H <
G a subgroup. We say that H is a multiplicity-free subgroup of G when Resg p

decomposes without multiplicity for all p € G. See [82], our book [16] for its
relations with the theory of Gelfand-Tsetlin basis and the Okounkov—Vershik
approach to the representation theory of the symmetric group, and [70] for the
not multiplicity-free case. In particular, in [16, Theorem 2.1.10] we presented a
general criterion for the subgroup H being multiplicity-free in terms of commu-
tativity of the algebra ¢’(G, H) of H-conjugacy invariant functions on G and
of the Gelfand pair (G x H, H). Also, in [16, Proposition 2.1.12] we presented
the following sufficient condition: for all g € G there exists & € H such that
h~lgh = g=!. We then used this criterion to show the well known fact that
Syp—1 1s a multiplicity-free subgroup of S, the symmetric group of degree n
(cf. [16, Theorem 3.2.1 and Corollary 3.2.2]).

One of the key facts of the theory is that H is multiplicity-free if and only
if (G x H, H) is a Gelfand pair, where H = {(h,h) : h € H}. This is a
generalization of (6.8). Then it should be interesting to examine pairs like (G x
Gx H, H 3 or (G x H x H, H 3) and their relations with the representation
theory of G and H.

Problem 11.8. Theorem 8.4 gives a representation theoretical interpretation of
the purely group theoretical quantities in Corollary 6.4. Is there a representation
theoretical interpretation of the more general quantities in Theorem 6.3?

Acknowledgements. We express our deepest gratitude to Hajime Tanaka for interesting discus-
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