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Abstract. The concept of weights on the cohomology of algebraic varieties was initiated by
fundamental ideas and work of A. Grothendieck and P. Deligne. It is deeply connected with
the concept of motives and appeared first on the singular cohomology as the weights of (possibly
mixed) Hodge structures and on the etale cohomology as the weights of eigenvalues of Frobenius.
But weights also appear on algebraic fundamental groups and in p-adic Hodge theory, where they
become only visible after applying the comparison functors of Fontaine. After rehearsing various
versions of weights, we explain some more recent applications of weights, e.g. to Hasse principles
and the computation of motivic cohomology, and discuss some open questions.
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The theory of weights is already explained by Deligne in his talks at the Inter-
national Congresses of Mathematicians at Nice [De1] and Vancouver [De5], in
a magnificently concise and clear way, and every reader is urged to read his ac-
count before starting with this paper. In addition Deligne contributed the basic
substance to this theory, by proving the Weil conjectures in a very general way
and establishing the theory of mixed Hodge structures. So the modest aim of
this article is just to give a certain update of the results, and to discuss some
applications of weights in arithmetic geometry. For this we have of course to
rehearse some of the theory of weights, at least so far that our methods and
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results become clear. A certain emphasis is on the fact that weights are inti-
mately linked with resolution of singularities, although this is not so clear from
Deligne’s proof of the Weil conjecture. But resolution is, at least at present state,
indispensable in Hodge theory, and should also play a major role in establishing
good p-adic theories.

In the following, the word variety will mean a separated scheme of finite
type over a field K.

1. Weights in Hodge theory

A pure Q-Hodge structure of weight n is a finite dimensional Q-vector space V

together with a decomposition

VC WD V ˝Q C D
M

pCqDn

H p;q

into C-vector spaces such that H p;q D H q;p where H p;q D .id ˝ �/H p;q

for the complex conjugation � on C. This is exactly the structure one gets on
the Q-cohomology H n.X; Q/ of a smooth projective complex variety X , the
isomorphism with the de Rham cohomology

H n.X; Q/˝Q C Š H n
dR.X/

and the famous Hodge decomposition

H n
dR.X/ D

M
pCqDn

H p;q

into the spaces of harmonic .p; q/-forms. A morphism V ! V 0 of pure Hodge
structures is a Q-linear map respecting the bigrading after tensoring with C.
There is a natural tensor product of Hodge structures, by defining .V ˝W /

p;q
C

as the sum over all V
i;j
C ˝W

k;l
C with i C k D p and j C l D q. One has the

following obvious property.

Fact 1. If V and W are pure Hodge structures of weights m ¤ n, then every
morphism ' W V ! W of Hodge structures is trivial.

P. Deligne established the theory of mixed Hodge structures for arbitrary
complex varieties. These are finite dimensional Q-vector spaces V with an as-
cending filtration W:V by Q-vector spaces .Wn�1V � WnV / and a descending
filtration F �VC by C-vector spaces such that

GrW
n V WD WnV=Wn�1V

gets a pure Hodge structure of weight n via H
p;q
n D F p \ F qGrW

n VC, for
the induced filtration F � on GrW

n VC. A morphism V ! V 0 of mixed Hodge



Weights in arithmetic geometry 75

structures is a Q-linear map respecting both filtrations. It is a non-trivial fact that
this is an abelian category. The pure Hodge structures form a full subcategory
of the mixed Hodge structures.

For example a smooth quasi-projective complex variety U gets a mixed
Hodge structure on its cohomology as follows. By Hironaka’s resolution of
singularities, there is a good compactification of U , i.e., an open embedding
U � X into a smooth projective variety such that Y D X � U is a simple
normal crossings divisor, i.e., has smooth (projective) irreducible components
Y1; : : : ; YN such that each p-fold intersection Yi1

\ � � � \ Yip (with 1 � i1 <

i2 < � � � < ip � N ) is smooth of pure codimension p. This gives rise to a
combinatorial spectral sequence

(1.1) E
p;q
2 D H p.Y Œq�; Q.�q// H) H pCq.U; Q/

where
Y Œq� D

a
i1<���<iq

Yi1
\ � � � \ Yiq

is the disjoint union of all q-fold intersections of the Yi . Here Q.�q/ D
Q.2�i/�q , but moreover, one regards

H p.Y Œq�; Q.�q// Š H p.Y Œq�; Q/˝Q Q.�q/

as a pure Hodge structure of weight p C 2q, via defining the Tate Hodge struc-
ture Q.1/ D Q2�i as pure of weight �2 and Hodge type .�1;�1/, so that
Q.m/ WDQ.1/˝m, for m 2 Z, becomes pure of weight�2m and type .�m;�m/

for m 2 Z, and the m-th Tate twist V.m/ WD V ˝Q.m/ of a pure Hodge struc-
ture V of weight n has weight n � 2m. With this convention Deligne showed
that all differentials d

p;q
r in this spectral sequence are morphisms of pure Hodge

structures, and that there is a mixed Hodge structure on H n.U; Q/ such that the
weight filtration comes, up to certain shift, from the above spectral sequence:
If eW � is the ascending filtration on H n.U; Q/ with eW q= eW q�1 Š E

n�q;q1 then
the weight filtration Wq is given by Wq D eW q�n.

A remarkable consequence, observed by Deligne, is that the spectral se-
quence degenerates at E3, i.e., the differentials d

p;q
r vanish for r � 3. In fact

they go from a subquotient of E
p;q
2 D H p.Y Œq�; Q.�q//, of weight pC 2q, to

a subquotient of

E
pCr;q�rC1
2 D H pCr.Y Œq�rC1�; Q.�q C r � 1//;

which is of weight pC rC2q�2rC2 D pC2q� rC2 ¤ pC2q for r � 3,
and we can use Fact 1. I do not know of any proof not using weights.

A second remarkable consequence is that the E3 D E1-terms do not de-
pend on the choice of the good compactification. For this one has another proof
using the so-called weak factorization in the theory of resolution of singularities.
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A third remarkable consequence is that the intrinsic structure of H n.U; Q/

in some sense “sees” the good compactification, at least the homology of the
complexes of E2-terms. For example, if S is a surface with one isolated singular
point P which can be resolved by blowing up P , then the cohomology of U D
S � P sees the created exceptional divisor.

It is not known if the weight filtration on H n.U; Q/ can be obtained by some
other process, e.g. one that is intrinsic on U , or one which uses other types of
compactification, e.g. some which appear in the minimal model program.

Thus the theory of mixed Hodge structures and their weights depends on
resolution of singularities.

2. Weights in `-adic cohomology

Let K be an arbitrary field with separable closure K, and let ` be a prime invert-
ible in K. Let X=K be a smooth projective variety and let X D X �K K be the
base-change of X , which is a smooth projective variety over K. Then the `-adic
étale cohomology

(2.1) H n.X; Q`/

is a finite-dimensional Q`-vector space with a continuous action of the absolute
Galois group GK D Gal.K=K/, via functoriality of étale cohomology: for � 2
GK , id � � acts on X �K K and induces .id � �/� on H n.X; Q`/.

Now consider the case that K D Fq is a finite field with q elements. Then,
as conjectured by A. Weil [Weil] and reformulated and proved by P. Deligne
[De2], [De3], the Galois representation (2.1) is pure of weight n. This means:
If F 2 GK is a geometric Frobenius automorphism, i.e., the inverse of the
arithmetic one sending x 2 K to xq , then the eigenvalues ˛ of F (precisely:
F �) on H n.X; Q`/ are pure of weight n, i.e., they are algebraic numbers (the
characteristic polynomial of F lies in QŒT � rather than in Q`ŒT �), and one has

(2.2) j�.˛/j D q
n
2

for any field embedding � W Q.˛/ ,! C. We mention in passing that Deligne
also proved independence of `: The characteristic polynomial does not depend
on ` .¤ p D char.K//.

If K is finitely generated (over its prime field), then H n.X; Q`/ is again pure
of weight n, in the following sense: By assumption there is an integral scheme S

of finite type over Z with function field K. After possibly shrinking S we may
assume there is a smooth projective scheme X over S such that X DX �S K

(the fibre of � W X ! S over the generic point � D Spec.K/ of S). Then for
every closed point s 2 S the theory of smooth and proper base change gives an
isomorphism

(2.3) b�;s W H n.X �K K; Q`/
��! H n.Xs �s k.s/; Q`/
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where Xs D ��1.s/ is the fibre of X over s, k.s/ is the residue field of s,
and k.s/ is its separable closure. The above isomorphism is compatible with the
Galois actions, in the following sense. There is a decomposition group Gs �
GK with an epimorphism � W Gs � Gk.s/ such that b�;s is compatible with
the actions of Gs and Gk.s/, respectively. So the inertia group Is D ker.�/ acts
trivially on H n.X; Q`/ and via �, b�;s is a Gk.s/-morphism. Note that k.s/ is a
finite field so that it makes sense to speak of a pure Q`-representation for Gk.s/.

A general GK-representation V is now called pure of weight n, if there is
an S above with function field K such that for all s 2 S the inertia group
Is � Gs acts trivially and the obtained Gk.s/ D Gs=Is-representation V is pure
of weight n. Obviously we have:

Fact 2. If V and W are pure Q`-GK-representations of weights n ¤ m, then
every GK-homomorphism ' W V ! W is zero.

Again Deligne extended this to arbitrary varieties X over K. First of all he
introduced the concept of a mixed Q`-Gk-representation V ; this simply means
that there is a filtration W 0

n on V such that each GrW 0

n V is pure (of some weight).
For K (finitely generated) of positive characteristic he showed that then one
also has an ascending filtration Wn on V such that GrW

n V is pure of weight
n ([De6] Théorème (3.4.1) (ii)). A filtration with this property is unique (by
Fact 2) and is called the weight filtration, but it could be different from W 0

n

(look at the sum of two pure representations). Over a field K of characteristic
0 one can again use resolution of singularities to produce a weight filtration.
For example, for a smooth quasi-projective variety U=K one can again choose
a good compactification U � X 	 Y D X � U to obtain a spectral sequence

(2.4) E
p;q
2 D H p.Y Œq�; Q`.�q// H) H pCq.U ; Q`/

completely analogous to (1.1). Here Q`.m/ D Q`.1/˝m, where Q`.1/ D
Q` ˝Z`

Z`.1/ for Z`.1/ D lim �n
�`n , the inverse limit of the GK-modules

�`n � K of `n-th roots of unity. Hence Z`.1/ is non-canonically isomorphic to
Z`, and GK acts via the cyclotomic character. This definition makes sense over
any field of characteristic ¤ `. If K is a finite field, the arithmetic Frobenius
acts on Z`.1/ as multiplication by q D jKj. Therefore for any finitely generated
K with ` ¤ char.K/, Q`.1/ is pure of weight �2. Hence

H p.Y Œq�; Q`.�q// Š H.Y Œq�; Q`/.�q/

is pure of weight p C 2q. Here V.m/ WD V ˝ Q`.m/ is the m-th Tate twist
of a Q`-GK-representation. Like in (1.1), one obtains a weight filtration on
H n.U ; Q`/ as Wi D eW i�n, where eW � is the canonical ascending filtration
associated to (2.4).

Similar remarks as in the Hodge theoretic setting apply—except that now it
is clear that the weight filtration is intrinsic, once it exists.
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A noteworthy fact is that—in contrast to the case of positive characteristic,
where the mentioned weight filtration would give a splitting—there exist non-
trivial extensions

0 �! V1 �! V �! V2 �! 0

of `-adic representations over fields K of characteristic 0 such that Vi is pure
of weight ni , with n1 > n2 ([Ja3] Remark 6.8.4). So V does not have a weight
filtration.

3. Weights in p-adic cohomology

Let k be a perfect field of characteristic p > 0, let W D W.k/ be the ring of
Witt vectors over k, and let K0 D Frac.W / be the fraction field of W . If X is a
smooth projective variety over k, then the crystalline cohomology

H n.X=K0/ WD H n.X=W /˝W K0

is a finite-dimensional vector space over K0.
We shall need the following variant cohomology. If W ��

X is the de Rham–
Witt complex of X , see [Il], which is a pro-complex formed by the complexes
Wm��

X for all m 2 N, then one has a natural isomorphism

H n.X; W ��
X /

��! H n.X=W /;

where the left hand side is étale (hyper) cohomology. Let Wm�r
X;log � Wm�r

X
be the logarithmic part of the de Rham–Witt sheaf—it is étale locally generated
by sections of the form d Ox1= Ox1 ^ � � � ^ d Oxr= Oxr , where xi 2 O�

X and Oxi is a
Teichmüller lift in WmOX . Then there is an exact sequence of pro-sheaves ([Il]
I 5.7.2), where Fr is the Frobenius operator on the de Rham–Witt complex

0 �! W �r
X;log �! W �r

X

1�Fr�! W �r
X �! 0:

If k is algebraically closed, then it induces exact sequences ([Mi2] 1.15)

(3.1) 0 �! H n.X; Qp.r// �! H n
cris.X=W /Qp

F �pr

�! H n
cris.X=W /Qp

�! 0

where F is the (morphism induced by the) Frobenius endomorphism of X . Here
we use the following notation by J. Milne (loc. cit.):

Z=pmZ.r/ D Wm�r
X;logŒ�r�;

H n.X; Zp.r// D lim �
m

H n.X; Z=pmZ.r//;

H n.X; Qp.r// D H n.X; Zp.r//˝Zp
Qp:
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Now we discuss weights. First let k be a finite field, and let F W X ! X be
the (geometric) Frobenius relative to k, i.e., the k-morphism which sends a local
section f of OX to f q , q D jkj. Then by a simple but ingenious argument N.
Katz and W. Messing [KM] deduced from Deligne’s proof of the Weil conjec-
tures that H n.X=K0/ is pure of weight n in the sense that the eigenvalues ˛ of
the endomorphism F � induced on it are algebraic numbers with absolute value
j�.˛/j D q

n
2 for every embedding � W Q.˛/ ,! C. Moreover the characteristic

polynomial of F � is the same as the one obtained on the n-th Q`-cohomology.
By a lemma in (semi-)linear algebra, [Mi2], 5.1, the exact sequence (3.1)

for X D X �k k implies that the (linear!) action of the geometric Frobenius
F 2 Gk on H n.X; Qp.r// is pure of weight n � 2r , in perfect analogy to the
`-adic case. More precisely, the eigenvalues of F on H n.X; Qp.r// are those
eigenvalues for H n.X=K0/ which have slope pr .

Now let K be a finitely generated field of characteristic p > 0, and let S (of
finite type over Fp/ and X ! S (smooth and proper) be as above. Then M.
Gros and N. Suwa ([GrS] Th. 2.1) established a base change isomorphism

(3.2) b�;s W H n.X �K K; Qp.r//
��!H n.Xs �k.s/ k.s/; Qp.r//

for every closed s in a non-empty open subset U � S , which is equivariant
for the decomposition group at s. By this the left hand side is a pure Qp-GK-
representation in exactly the same sense as in the `-adic setting.

The case of a general variety is more difficult for p-adic cohomology. The
crystalline cohomology does not behave well for singular or non-proper vari-
eties; in particular it is not in general finite-dimensional. A good finite-dimen-
sional theory is given by the rigid analytic cohomology (this follows from de
Jong’s resolution of singularities [deJ], see P. Berthelot [Be]), and it coincides
with the crystalline cohomology for smooth proper varieties. But only quite
recently purity and a theory of weights have been studied thoroughly in this
context [NS], [Nakk], again using [deJ]. Below I am rather interested in the
cohomology H n.X; Qp.r//, but one does not have purity for general r , see
M. Gros [Gr], and no theory of weights for general varieties either. Fortunately
there is a good situation for r D dim.X/ (loc. cit.) which we will use for our
applications.

4. Weights for `-adic cohomology over local fields

Let K be a non-archimedean local field, i.e., a complete discrete valuation field
with finite residue field k. Let X be a smooth projective variety over K and let
` be a prime, ` ¤ p D char.k/. If X has good reduction, i.e., a smooth proper
model X ! Spec.OK/ over the ring of integers OK (i.e., the discrete valuation
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ring) of K, then as before the base change isomorphism

(4.1) H n.X; Q`/
��!H n.Xk; Q`/

shows that the inertia group I � GK acts trivially on H n.X; Q`/ and that
H n.X; Q`/ corresponds to a pure Q`-representation of weight n of GK=I Š
Gk .

In general it is a theorem of Grothendieck that, after possibly passing to a
finite separable extension of K, the ramification group P � I acts trivially and
the pro-cyclic group I=P acts unipotently on V D H n.X; Q`/. This allows to
define a nilpotent monodromy operator N D N` on V (basically the logarithm
of a generator of I=P ) satisfying

NF D qFN

any geometric Frobenius in GK (i.e., lift of the geometric Frobenius in Gk).
Moreover one obtains an ascending monodromy filtration M� on V , character-
ized by the fact that NMi �Mi�2 and that

(4.2) N i W GrM
i V

��! GrM�iV

is an isomorphism for all i 2 N. More canonically, using the canonical GK=I -
isomorphism

(4.3) I=P Š
Y
`¤p

Z`.1/;

N can be seen as a GK-equivariant map V ! V.�1/, and (4.2) is a GK-
isomorphism

GrM
i V

��! GrM�iV.�i/:

By construction (and assumption that P acts trivially), GrM
i V is a Q`-repre-

sentation of GK=I Š Gk . There is the following conjecture (see [De1] 8.1 and
[RZ]).

Conjecture 4.1 (monodromy weight conjecture). The Gk-representation
GrM

i H n.X; Q`/ is pure of weight nC i .

This was proved by Deligne in the equi-characteristic case .char.K/ > 0/,
[De6] Théorème (1.8.4), at least if X comes from a smooth projective scheme
� W X ! U over an open subscheme U of a curve C over a finite field, via
passing to the henselization (or completion) at a closed point x 2 C � U . The
general case was proved by T. Ito [It], by reducing it to Deligne’s case.

In the mixed characteristic case, i.e., the case of p-adic fields, very little is
known on the above conjecture. Using de Jong’s (weak) resolution of singu-
larities by alterations [deJ], and the result of M. Rapoport and Th. Zink [RZ]
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for the case of semi-stable reduction, one gets the conjecture for dim.X/ � 2,
hence for n � 2 by a Lefschetz argument. There is an analogous result in mixed
Hodge theory, for a family of proper complex varieties over a disk with degen-
erating fibre at 0, which produces the so-called limit mixed Hodge structure on
the generic fibre. The method in [RZ] borrows from these techniques by using
an étale version of the vanishing cycles spectral sequence. The problem is that
one needs a certain non-degeneracy statement, which is known for the Hodge
theory by some positivity, but is not known for the `-adic case, except for sur-
faces where it is the classical Hodge index theorem. It was proved by M. Saito
[SaM] that this non-degeneracy, and hence the monodromy weight conjecture,
would follow from Grothendieck’s standard conjectures for varieties over finite
fields.

We discuss an implication for the fixed module. The following result is un-
conditional. Let 	 D GK=I Š Gk and d D dim.X/.

Theorem 4.2. H n.X; Q`/I is a mixed 	-module with weights in Œmax.0; 2.n�
d//; min.2n; 2d C 2/�, and H n.X; Q`/I is a mixed 	-module with weights in
Œmax.�2; 2.n � d//; min.2n; 2d/�. In particular, H n.X; Q`.r//GK D 0 for
r … Œmax.0; n � d/; min.n; d C 1/�, and H 2.GK ; H m.X; Q`.s/// D 0 for
s … Œmax.mC 1 � d; 0/; min.d C 1; mC 1/�.

In fact, by de Jong’s resolution of singularities [deJ] one easily reduces to
the case where one has a regular proper model � W X ! OK . Then one has a
long exact sequence

� � � �! H n.Xur; Q`/ �! H n.Xur; Q`/ �! H nC1

Y
.Xur; Q`/ �! � � � ;

where Y is the special fiber of � , Y D Y �k k and the subscript ur denotes
the base change to the maximal unramified extension of K, i.e., to the strict
henselization of OK . By proper base change we have an isomorphism

H n.Xur; Q`/ Š H n.Y ; Q`/;

and by Deligne’s proof of the Weil conjecture [De6] Corollaire (3.3.8) the latter
representation is mixed with weights in Œmax.0; 2.n � d//; n�. By the proof of
cohomological purity by O. Gabber (see K. Fujiwara [FuG]) one has isomor-
phisms

H nC1

Y
.Xur; Q`/ŠH2.dC1/�n�1.Y ; Q`.dC1//ŠH 2d�nC1.Y ; Q`.dC1//_;

where V _ is the dual of a Q`-Gk-representation V , the group in the middle is `-
adic étale homology, and by Deligne (loc. cit.) the representation on the right is
mixed with weights in ŒnC 1; min.2d C 2; 2n/�. The first claim is now obvious
from the exact sequence

0 �! H 1.I; H n�1.X; Q`// �! H n.Xur; Q`/ �! H n.X; Q`/I �! 0;
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which follows from the Hochschild–Serre spectral sequence and the fact that I

has `-cohomological dimension 1. The second claim follows as well, using the
isomorphisms

H 1.I; H n�1.X; Q`// Š H 1.I=P; H n�1.X; Q`// Š H n�1.X; Q`/I .�1/

coming from the isomorphism (4.3) and the fact that P is a pro-p-group. The
third claim follows from the first claim, the isomorphism

(4.4) H n.X; Q`/GK D .H n.X; Q`/I /�

and Fact 2. The final claim is deduced by local duality.
The monodromy weight conjecture gives a better bound.

Corollary 4.3. If the monodromy weight conjecture holds, then

(a) H n.X; Q`/I is mixed with weights in Œmax.0; 2n�2d/; n� and H n.X; Q`/I

is mixed with weights in Œn; min.2n; 2d � 2/�.
(b) H n.X; Q`.r//GK D 0 for r … Œmax.0; n � d/; n

2
�, and H 2.GK ; H m.X;

Q`.s// D 0 for s … Œm
2
C 1; min.d C 1; mC 1/�.

In fact, by the construction of the monodromy filtration one has

.H n.X; Q`/I /� � .M0H n.X; Q`//� ;

and the monodromy weight conjecture implies that M0H n.X; Q`/ is a mixed
	-module of weights � n. Similarly one has a surjection H n.X; Q`/=M�1 �
H n.X; Q`/I and monodromy weight conjecture implies that H n.X; Q`/=M�1

is mixed of weights � n. Thus (a) follows from Theorem 4.2. Now (b) follows
as the last claim of Theorem 4.2.

We end this section with the following speculation. In the equi-characteristic
case Deligne proved a more general result, where C is a smooth curve over a
finite field k, U � C is a non-empty open subscheme and ` is a prime invertible
in k.

Theorem 4.4 ([De6] Théorème (1.8.4)). Let F be a smooth Q`-sheaf on U

which is pure of weight w (i.e., for each closed point s 2 U the stalk Fs is
a pure Gk.s/-representation of weight w). Let x 2 C � U be a closed point,
let Kx be the completion of the function field of C at x (i.e., the fraction field
of the completion of OC;x), and let � D Spec.Kx/ ! U be the corresponding
geometric point. If M is the monodromy filtration on the GKx

-representation
F� (the stalk of F at �), then GrM

i .F�/ is pure of weight w C i .

Question 4.5. Does the same hold if U is an open subscheme of Spec.OK/ for
a number field K, and ` ¤ char.k.x//?
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5. Weights for p-adic cohomology over local fields

Let K be a local field with finite residue field k as before, but now assume
that char.K/ D 0 and ` D p D char.k/. Let again X be a smooth projec-
tive variety over K. Even if X has good reduction, the Qp-GK-representation
V D H n.X; Qp/ is not unramified, and there is no obvious way to see weights.
However it was an insight of J.-M. Fontaine that one can associate a canonical
object to V on which one has a Frobenius and weights: Let W D W.k/ and
K0 D Quot.W / as in section 3; K0 is isomorphic to the maximal unramified
extension of Qp in K. Fontaine [Fo1] defined a certain ring Bcris over K0 and
conjectured a comparison isomorphism

(5.1) H n.X; Qp/˝Qp
Bcris Š H n.Xs=K0/˝K0

Bcris

where Xs is the special fibre of a smooth projective model X =Spec.OK/ of X

over OK as in section 4. Moreover, one has the following structures: H n.X; Qp/

is a Qp-GK-representation and H n.Xs=K0/ D H n.Xs=W / ˝W K0 is a so-
called filtered '-module over K, i.e., H n.Xs=K0/ is a K0-vector space with
a Frobenius ', and H n.Xs=K0/ ˝K0

K has a descending filtration F �, via a
canonical isomorphism

(5.2) H n.Xs=K0/˝K0
K Š H n

dR.X=K/

and the Hodge filtration on the de Rham cohomology on the right. Now Bcris

has both structures—it is a continuous Qp-GK-representation and a '-filtered
module over K—and one can recover H n.Xs=K0/ from H n.X; Qp/ and vice
versa, viz., one has

(5.3) H n.Xs=K0/ D .H n.X; Qp/˝Qp
Bcris/

GK

and

(5.4) H n.X; Qp/ D .H n.Xs=K0/˝K0
Bcris/

'Did \ F 0;

where the brackets have the mentioned three structures as well: H n.X; Qp/˝Qp

Bcris has the diagonal GK-action, and H n.X =K0/˝K0
Bcris has the diagonal '-

action, and the usual tensor filtration after scalar extension to K (F m.A˝B/ DP
iCj Dm F iA˝ F j B).
In fact, Fontaine showed that there are mutual inverse category equivalences

(5.5)
(crystalline Qp-GK-representations) �! (admissible '-filtered modules over K)

V 7�! D.V / D .V ˝Qp
Bcris/

GK

.D ˝K0
Bcris/

'D1 \ F 0  �Í D

where we refer to [Fo1] and [Pp] for a precise definition of both categories.
Fontaine’s crystalline conjecture was shown by J.-M. Fontaine and W. Messing
[FM] for dim.X/ < p, and by G. Faltings [Fa1] in general.
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We note that, in the geometric situation above, D D H n.Xs=K0/ is pure of
weight n, see section 3.

For X=K with not necessarily good reduction, Fontaine and I arrived at the
following conjecture ([Ja2] p. 347 and [Fo2]), which was then subsequently
proved by work of O. Hyodo and K. Kato [HyKa], [Ka2] and T. Tsuji [Tsu]:
There is a ring Bst over K0 which is a continuous Qp-GK-representation and
also a filtered .'; N /-module over K, i.e., it has the same structures as Bcris,
plus an operator N such that

(5.6) N' D p'N:

After possibly passing to a finite extension of K (and over K itself if X has
semi-stable reduction), there is an isomorphism, compatible with GK ; '; F � and
N ,

(5.7) H n.X; Qp/˝Qp
Bst Š Dn ˝K0

Bst;

where Dn is a finite-dimensional filtered .N; '/-module over K. In fact, if X

has semi-stable reduction, then Dn can be realized as the n-th log-crystalline
cohomology of the special fibre Xs of a semistable model over OK .

As in the `-adic case, the monodromy operator N on Dn—which must be
nilpotent by (5.6) and finite-dimensionality of Dn—allows to define a mon-
odromy filtration M� with

(5.8) N i W GrM
i Dn ��! GrM�iD

n.�i/;

and I conjectured ([Ja2] p. 347) the following p-adic analogue of (4.1):

Conjecture 5.1 (p-adic monodromy weight conjecture). As a '-module,
GrM

i Dn is pure of weight nCi and has the same eigenvalues as GrM
i H n.X; Q`/

for each ` ¤ p.

The action of ' is �-semi-linear, but the r-th power of ' (where pr D q is
the cardinality of the residue field of K0—and K) acts linearly, and hence there
are well-defined eigenvalues of 'r , and the purity is defined via q and these
eigenvalues as in (2.2).

As in the `-adic mixed characteristic case, this conjecture is still wide open,
except for a few remarkable cases by T. Saito [SaT1], [SaT2].

There is an equivalence of categories

(5.9)
.semi-stable Qp-GK-representations/

� .admissible filtered .N; '/-modules over K/

extending the one for the crystalline case [Pp].
This is compatible with Tate twists on both sides. Therefore one has:
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Corollary 5.2. The monodromy weight conjecture (5.1) would imply H n.X;

Qp.r//GK D 0 for r … Œmax.0; n � d/; n
2
�, and H 2.GK ; H m.X; Qp.s/// D 0

for s … Œm
2
C 1; min.d C 1; mC 1/�.

In fact, the equivalence of categories would give an isomorphism

H n.X; Qp.r//GK Š HomGK
.Qp; H n.X; Qp.r///

Š HomN;';F �.K0; Dn/ �M0D.r/'Did

and M0D.r/ would be mixed with weights in the interval Œmax.0; 2n � 2d/ �
2r; n � 2r�.

Unconditionally one can use the so-called Hodge–Tate decomposition to
show the p-adic analogue of Theorem 4.2:

Theorem 5.3 ([Ja2] p. 343 Corollary 5 or [Sou] proof of Theorem 2 iii) plus
an easy improvement by hard Lefschetz). One has H n.X; Qp.r//GK D 0 for
r … Œmax.0; n � d/; min.n; d/�.

We end with a question similar to the one at the end of the previous section.
Let U be a non-empty open subscheme of D D Spec.OK/ where K is a number
field, let p be a prime invertible on U , and let F be a smooth Qp-sheaf on U

which is pure of weight w. Let Kx be the completion of K at a point x 2
D � U and assume that p D char.k.x//. Let � D Spec.Kx/ ! U be the
corresponding geometric point, and let F� be the stalk of F at �, considered as
a Qp-GKx

-representation.

Question 5.4. Is F� a potentially semi-stable Qp-Kx-representation, i.e., a semi-
stable representation after restricting it to a finite field extension K 0 of Kx? If M:

is the monodromy filtration on the filtered .N; 
/-module D associated to this
Qp-GK0-representation via the category equivalence (5.9) over K 0, is GrM

i D

pure of weight w C i as a '-module?

6. Weights and Galois cohomology

Let K be a global field, i.e., a number field or a function field in one variable
over a finite field. Let X be smooth projective variety of pure dimension d over
K. For many arithmetic applications the Galois cohomology groups

H 1.K; H n.X; Z`.r///

need to be studied, together with the restriction map

(6.1) H 1.K; H n.X; Z`.r/// �!
Y

v

H 1.Kv; H n.X; Z`.r///
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where v runs over the places of K and Kv in the completion of K at v, i.e., a
local field. In fact, these data allow to define (generalized) Selmer groups which
play a role in the conjectures of Birch, Swinnerton-Dyer, Beilinson, Bloch and
Kato on generalized class number formulae and special values of L-functions.

Therefore it is interesting to study the kernel of (6.1). By Poitou–Tate duality,
and Poincaré duality

H n.X; Z`.r// �H 2d�n.X; Q`=Z`.d � r// �! H 2d .X; Q`=Z`.d//
Tr�! Q`=Z`;

the kernel of (6.1) is dual to the kernel of

(6.2) H 2.K; H m.X; Q`=Z`.s/// �!
M

v

H 2.Kv; H m.X; Q`=Z`.s///

for m D 2d �n and s D d � rC1. It turns out that the kernel can be controlled
by weights. In fact, one has the following cohomological Hasse principle:

Theorem 6.1 ([Ja5] Theorem 1.5). Let A be a discrete GK-module which is a
cofinitely generated divisible torsion Z`-module (i.e., isomorphic to .Q`=Z`/r

for some r , as a Z`-module). If A is mixed of weights¤ �2, the restriction map

H 2.K; A/
��!

M
v

H 2.Kv; A/

is an isomorphism. Here A is called mixed of weights w1; : : : ; wm, if this holds
for the r-dimensional Q`-representation V`.A/ D T`.A/˝Z`

Q`, where T`.A/

D lim �i
AŒ`i � is the inverse limit over the modules AŒ`i � D fa 2 A j `ia D 0g

via the `-multiplications.

It follows that (6.2) has finite kernel for m � 2s ¤ �2, i.e., m ¤ 2.s C 1/

because m � 2s is the (pure) weight of DivHm.X; Q`=Z`.s//, where DivA is
the maximal divisible module of a torsion Galois module A.

By Poitou–Tate duality, the kernel of (6.1) is finite for n ¤ 2r .
Combined with the local vanishing results from sections 4 and 5 we obtain

Theorem 6.2. One has H 2.K; DivHm.X; Q`=Z`.s/// D 0 for s … Œmax.�d �
1; 1/; min.d C 1; mC 1/�.

In fact, the local groups H 2.Kv; DivHm.X; Q`=Z`.s/// are a quotient of
H 2.Kv; H m.X; Q`.s///, which is dual to H n.X; Q`.r//GK for n D 2d � m

and r D d � s C 1. Now we can apply Theorems 4.2 and 5.3.
By the same argument, the local monodromy weight conjectures would im-

ply:

Conjecture 6.3. H 2.K; DivHm.X; Q`=Z`.s/// D 0 for s … Œm
2
C 1; min.d C

1; mC 1/�.

Arithmetic applications often need the Galois cohomology groups

H i .GS ; H n.X; Z`.r///:
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Here S is a finite set of places v of K and GS D Gal.kS=k/ is the Galois group
of the maximal extension kS of k which is unramified outside S . Moreover S

should contain all archimedean places and all places vj`, and should be large
enough so that the action of GK on H n.X; Z`.r// factors through GK � GS ,
i.e., such that H n.X; Z`.r// is unramified outside S . Such an S always exists.
In fact, there in open subscheme U � C D Spec.OK/ (if K is a number field)
or U � C (if K is the function field of a smooth projective curve C over a
finite field Fq), such that X=K has a smooth projective model � W X ! U .
As we have seen in section 2, H n.X; Z`.r// is then unramified at all places
v corresponding to points x 2 U with v − `, so we may take S as the set of
places not corresponding to these x, which are only finitely many. Then, after
possibly shrinking U , we can write the above Galois cohomology group also as
étale cohomology

H i .U; Rn��Z`.r//:

There is the following vanishing conjecture ([Ja2] Conjecture 1).

Conjecture 6.4. Let K be a number field. Then one has

H 2.GS ; H m.X; Q`.s/// D 0 for s …
hm

2
C 1; min.d C 1; mC 1/

i
:

The statement in loc. cit. uses the condition s … Œm
2
C1; mC1�; the refinement

comes from a simple Lefschetz argument.
Obviously, Conjecture 6.4 would follow from the monodromy weight con-

jectures and the following one:

Conjecture 6.5. If K is a number field, then the map

H 2.GS ; H m.X; Q`.s/// �!
M
v2S

H 2.Kv; H m.X; Q`.s///

is injective for m � 2s ¤ �1.

By Poitou–Tate duality, this is equivalent to the injectivity of

(6.3) H 1.GS ; H n.X; Q`.r/// �!
M
v2S

H 1.Kv; H n.X; Q`.r///

for n � 2r ¤ �1. The two conjectures above seem rather difficult, but they
are partly motivated by the fact that the same statements are true over global
function fields. As for Conjecture 6.4 one has the following more general result:

Theorem 6.6 ([Ja2] p. 335 Theorem 2). Let U be a smooth curve over a finite
field Fq , let ` be prime, ` ¤ char.Fq/, and let F be a smooth (=twisted constant)
Q`-sheaf on U . Assume that F is mixed of weights � 0 (has a filtration with
pure quotients of weights � 0) or that F _.2/ is entire ([De6] 3.3.2), where F _
is the dual of F . Then H 2.U; F / D 0.
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The statement in Conjecture 6.4 is a special case, because H n.X; Q`.j //

regarded as the smooth Q`-sheaf Rn��Q`.j / for � W X ! U as above, has
weights � 0 if n � 2j � 0, i.e., n C 1 > 2j , and H n.X; Q`.j //_.2/ Š
H 2d�n.X; Q`.d � j //.2/ Š H n.X; Q`.n � j C 2// (Poincaré duality and
hard Lefschetz) is entire for n � j C 2 � 0, i.e., nC 1 < j .

The statement in Conjecture 6.5 for global function fields follows from the
more general:

Theorem 6.7. Let U be a smooth curve over a finite field Fq , let ` be prime,
` ¤ char.Fq/, and let F be smooth Q`-sheaf of weight w on U . Then the
restriction map

H 2.U; F / �!
M
v2S

H 2.Kv; F /

is injective for w ¤ �1.

Proof. Let j W U ,! C be an open immersion into a smooth projective curve
C . Then the above map can be identified with the map ˛ in the long exact
cohomology sequence
(6.4)

� � � ! H 2.C; jŠF /
ˇ! H 2.U; F /

˛!
M

v2SDC �U

H 3
v .C; jŠF /! H 3.C; jŠF /! � � �

and the map ˇ factorizes through H 2.C; j�F / which sits in an exact sequence

(6.5) 0 �! H 1.C ; j�F /� �! H 2.C; j�F / �! H 2.C ; j�F /� �! 0:

Now Deligne has proved that H i .C ; j�F / is pure of weight w C i , so H 2.C;

j�F / vanishes if w C 1 ¤ 0 and w C 2 ¤ 0. The case w D �2 follows with
some extra argument (loc. cit. and [Ra] Thm. 4.1). �

We dare to state the following conjecture which would contain Conjectures
6.4 and 6.5.

Conjecture 6.8. Theorems 6.6 and 6.7 also holds for an open subscheme U �
Spec.OK/, where K is a number field and ` is invertible on U .

The exact sequence (6.4) and the factorization

ˇ W H 2.C; jŠF / �! H 2.C; j�F / �! H 2.U; F /

also exist for a number field K and C D Spec.OK/. Thus we are tempted to
state

Conjecture 6.9. Let ` be a prime and let U � C be an open subscheme such
that ` is invertible on U . Let F be a smooth Q`-sheaf on U which is mixed of
weights¤ �1. Then

H 2.C; j�F / D 0:
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The problem is that there are no obvious analogues of the groups H i .C ;

jŠF /; H i .C ; j�F / etc. in the number field case. The most common analogue
of the morphism C ! C , a pro-étale covering with Galois group 	 Š OZ,
would be the `-cyclotomic extension U ! U with Galois group Z�

`
. One even

can consider the corresponding covering C ! C , but it is not an étale covering
(so we do not have a Hochschild–Serre spectral sequence as in (6.5) above), the
associated cohomology groups do not have finiteness properties, and there does
not seem to be a theory of weights on them.

But we should remember that the situation was the same at the local places
v with vj`. There the weights only became visible after applying Fontaine’s
comparison functors. This leads to the following.

Question 6.10. Does there exist a global analogue of Fontaine’s functors over
number fields?

We recall that, although Iwasawa theory also exists and is useful over p-adic
fields, even there the obtained modules are only finitely generated over the Iwa-
sawa algebra, and do not show weights. Conversely, Fontaine’s theory of Bcris

and Bst does not see the cyclotomic extension, at least not directly. Neverthe-
less a certain link between Fontaine’s theory and Zp-extensions is given by the
theory of .'; 	/-modules and the fields of norms.

Question 6.11. Do there exist global analogues of these?

7. Application: Hasse principles for function fields

The cohomological Hasse principle in the previous section (Theorem 6.1) led
to a proof of the following Hasse principle conjectured by K. Kato [Ka1], and
proved by him for d D 1.

Let K be a global field, let F=K be a function field in d variables which
is primary (i.e., such that K is separably closed in F ), and let ` be a prime.
For every place v of K let Fv be the corresponding function field over Kv: If
F D K.V / for a geometrically integral variety V over K, then Fv D Kv.Vv/,
where Vv D V �K Kv.

Theorem 7.1 ([Ja5] Theorem 2.7). Let K be a number field. Then the map

H dC2.F; Q`=Z`.d C 1// �!
M

v

H dC2.Fv; Q`=Z`.d C 1//

is injective.

As in the classical case d D 0 (which corresponds to the classical Hasse
principle for the Brauer group of K), or the case d D 1 (see [Ka1], appendix
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by Colliot-Thélène), this Hasse principle has applications to quadratic forms. In
fact, it implies that the Pythagoras number of F is bounded by 2dC1 if d � 2

([CTJ]).
For the proof of Theorem 7.1 one first shows that, via the Hochschild–Serre

spectral sequence, the kernel of the map above is isomorphic to the kernel of the
map

H 2.K; H d .F K; Q`=Z`.dC1/// �!
M

v

H 2.Kv; H d .F K; Q`=Z`.dC1///

where F K D K.V /, with V D V �K K, is the corresponding function field
over K.

Now we have

H d .F K; Q`=Z`.d C 1// D lim�!H d .U ; Q`=Z`.d C 1//;

where U � V runs over the smooth open subvarieties. Thus it suffices to show
the injectivity of

H 2.K; H d .U ; Q`=Z`/.d C 1// �!
M

v

H 2.Kv; H d .U ; Q`=Z`/.d C 1//

for all affine open smooth U � V , or at least a cofinal set of them. To apply
Theorem 6.1, we investigate the weights of N D H d .U ; Q`=Z`/.d C 1/. Now
H d .U ; Q`=Z`/ is divisible (by weak Lefschetz, see (7.1) below) and mixed of
weights d; : : : ; 2d , so N is mixed of weights �2d � 2;�2d � 1; : : : ;�3;�2.
We cannot apply Theorem 6.1 directly, because the weight �2 occurs. But one
can use the weight filtration to show that it suffices to consider the weight �2

quotient, which sits at the top of the ascending weight filtration.
There are many weight �2 modules for which the Hasse principle fails—

basically this amounts to tori over K for which the analogous Hasse principle is
wrong. So we have to study GrW�2N carefully.

For this one uses resolution of singularities, which holds over fields of char-
acteristic zero by the work of Hironaka: There is a good compactification U �
X 
 Y D X � U D SN

iD1 Yi as in section 1 (but over K), and we use the
associated weight spectral sequence. But in general it has many terms and many
non-vanishing differentials.

The next observation is that one can greatly simplify the situation by the
weak Lefschetz theorem. It says that

(7.1) H a.U ; Z=`nZ/ D 0 for a > d

if U is affine of dimension d . Now one chooses U affine and a smooth hy-
perplane section YN C1 � X which intersects the normal crossing divisor Y

transversally. Then Z D Y [ YN C1 is a divisor with normal crossings, X0 D
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X �YN C1; U 0 D U �YN C1 D X �Z and Y 0 D Y �YN C1 are affine, many
terms in the spectral sequence vanish and one gets an exact sequence

(7.2)
0 �! GrW�2H d .U 0; Q`=Z`.d C 1//

�! H 0.ZŒd�; Q`=Z`.1//
��! H 2.ZŒd�1�; Q`=Z`.2//:

Here H 0.�/ and H 2.�/ are induced Galois modules, and a finer analysis shows
that one has a Hasse principle for GrW�2H d .U 0; Q`=Z`.d C 1//. Since one can
choose a cofinal set of these U 0, one obtains Theorem 7.1.

Theorem 7.1 extends to global fields K of positive characteristic if one as-
sumes the existence of good compactifications over the perfect hull of K. Due
to recent results on resolution of singularities [CP1], [CP2], [CJS], this holds
for d � 3.

8. Application: Hasse principles for smooth projective varieties over
global fields

Now we consider the cokernel of the map in Theorem 7.1. For any variety
X over a global or local field, Kato defined a complex of Bloch–Ogus type
C 2;1.X; Q`=Z`/:
(8.1)
� � � !

M
x2Xa

H aC2.k.x/; Q`=Z`.aC 1//!
M

x2Xa�1

H aC1.k.x/; Q`=Z`.a//! � � �

� � � !
M

x2X1

H 3.k.x/; Q`=Z`.2// !
M

x2X0

H 2.k.x/; Q`=Z`.1//:

Here Xa is the set of points x 2 X of dimension a, k.x/ is the residue field of
x, and the term with Xa is placed in (homological) degree a. Then we have

Theorem 8.1 ([Ja5] Theorem 4.8). Let K be a number field, let X be a con-
nected smooth projective variety over K, and, for any place v of K, let Xv D
X �K Kv be the corresponding variety over Kv. Then the restriction map

C 2;1.X; Q`=Z`/ �!
M

v

C 2;1.Xv; Q`=Z`/

is injective, and for the cokernel C 0.X; Q`=Z`/ one has

(8.2) Ha.C 0.X; Q`=Z`// D
�

0; a > 0;

Q`=Z`; a D 0
:
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This was conjectured by Kato ([Ka1] Conjecture 0.4) (for arbitrary global
fields), is the classical sequence of Brauer groups

(8.3) 0 �! Br.K/ �!
M

v

Br.Kv/ �! Q`=Z` �! 0

for d D 0 and X D Spec.K/, and was proved by Kato for d D 1 in [Ka1]. In
[JS2] there is an alternative proof of (8.2) (using Theorem 8.2 below).

Theorem 8.1 extends to a global function field K, if resolution of singulari-
ties holds over the perfect hull K 0 of K.

The first claim in Theorem 8.1 easily follows from Theorem 7.1 above, be-
cause the components of C 2;1 involve exactly the Galois cohomology groups
considered in 7.1 for all residue fields of X .

For the proof of the second claim (and in fact even for the proof of Theo-
rem 7.1) it is useful to consider the henselizations K.v/ of K rather than the
completions, and the factorization
(8.4)

C 2;1.X; Q`=Z`/
˛�!

M
v

C 2;1.X.v/; Q`=Z`/ �!
M

v

C 2;1.Xv; Q`=Z`/;

where X.v/ D X �K K.v/. This is possible because of the following rigidity
result.

Theorem 8.2. The map of complexes C 2;1.X.v/; Q`=Z`/�!C 2;1.Xv; Q`=Z`/

is a quasi-isomorphism (i.e., induces an isomorphism in the homology) for all
v.

By this property one may replace the complex C 0.X; Q`=Z`/ with the com-
plex C .X; Q`=Z`/ which is the cokernel of the map ˛ in (8.4), and show (8.2)
for this complex.

Note that the complexes C .X; Q`=Z`/ exist for arbitrary (not necessarily
smooth projective) varieties. Moreover, like for the complexes C 2;1.X; Q`=Z`/

and C 2;1.X.v/; Q`=Z`/, one has canonical short exact sequences of complexes

0 �! C .Y; Q`=Z`/ �! C .X; Q`=Z`/ �! C .V; Q`=Z`/ �! 0

for Y � X closed with open complement V D X � Y , because Xa is the
disjoint union of Ya and Va for all a.

This gives rise to a so-called (Borel–Moore type) homology theory

X 7�! H a.X; Q`=Z`/ WD Ha.C .X; Q`=Z`//

on the category V �
K of all varieties over K, with proper morphisms as mor-

phisms, i.e., a sequence of covariant functors (for proper morphisms) from V �
K

to abelian groups together with long exact sequences

� � � �! H a.Y; Q`=Z`/
i��! H a.X; Q`=Z`/

j �

�! H a.V; Q`=Z`/

ı�! H a�1.Y; Q`=Z`/ �! � � �
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for every closed immersion i W Y ,! X with open complements j W V ,! X ,
such that these long exact sequence are compatible with proper maps and the
additional morphisms j � for open immersions, in an obvious way.

Next we observe that we can compute H a rather well if we have resolution
of singularities and if we assume that property (8.2) holds for smooth projective
varieties. For example, if U is a connected smooth quasi-projective variety over
K and

(8.5) U � X 
 Y D
N[

iD1

Yi

is a good compactification, then one has an analogue of the weight spectral
sequence which becomes now very simple because of (8.2). In fact it would
follow that H a.U; Q`=Z`/ is the a-th homology of the complex
(8.6)

Q`=Z
�0.Y Œd�/

`
�! Q`=Z

�0.Y Œd�1�/

`
�! � � � �! Q`=Z

�0.Y Œ1�/

`
�! Q`=Z`

where d D dim.U / and the differentials have the obvious combinatoric descrip-
tion.

The proof of (8.2) then is based on the following result.

Theorem 8.3. (i) There is a homology theory H W� .�; Q`=Z`/ on V �
K which

has the property that for U � X 
 Y as in (8.5), H W
a .U; Q`=Z`/ is the

a-th homology of (8.6).
(ii) There is a morphism of homology theories

' W H �.�; Q`=Z`/ �! H W� .�; Q`=Z`/ :

(iii) This morphism is an isomorphism.

Obviously this implies (8.2) for C , because this condition holds for the ho-
mology H W .�; Q`=Z`/ by Theorem 8.3 (i).

The construction of (i) and (ii) depends on resolution of singularities and
will be discussed in the next section.

The crucial point of (iii) is that obviously one can show it by induction on
dimension and localization, i.e., by showing that for any integral variety V with
function field K.V / the morphism

(8.7) H a.K.V /; Q`=Z`/ �! H W
a .K.V /; Q`=Z`/

is an isomorphism for all a, where

(8.8) H a.K.V /; Q`=Z`/ D lim�!
V 0

H a.V 0; Q`=Z`/

(with the limit running over all open subvarieties V 0 � V ), similarly for H W .
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Concerning (8.7), we note that by definition of C .�; Q`=Z`/ one has

(8.9) H a.K.V /; Q`=Z`/ D 0 for a ¤ d D dim.V /:

and

H d .K.V /; Q`=Z`/ D C d .K.V /; Q`=Z`/

(8.10)

D coker
h
H dC2.K.V /; Q`=Z`.d C 1//!

M
v

H dC2.K.V /.v/; Q`=Z`.d C 1//
i

D H d .K.V /; Q`=Z`.d//GK
;

where V D V �K K and AGK
is the cofixed module (maximal quotient with

trivial action) of a discrete GK-module A. The last isomorphism follows easily
from Poitou–Tate duality (Here one uses that we consider henselizations K.v/

instead of completions Kv).
It remains to show the same properties for the weight homology H W� .�;

Q`=Z`/. Property (8.9) is shown by a Lefschetz argument: If U � X 
 Y is
as above, with U of pure dimension d , then by Bertini’s theorem we can find a
smooth hyperplane section YN C1 of X intersecting Y transversally and having
the property that

�0.Y Œi� \ YN C1/
��!�0.Y Œi�/

is an isomorphism for all i � d � 2 (viz., where dim.Y Œi�/ � 2) and that

�0.Y Œd�1� \ YN C1/ � �0.Y Œd�1�/

is a surjection (note dim.Y Œd�1�/ D 1). Let U 0 D U � U \ YN C1, and note
that U 0 D X � Z, where Z WD Y [ YN C1 is again a simple normal crossings
divisor on X , by the transversality of YN C1 and Y .

Thus the commutative diagram
(8.11)

.Q`=Z`/�0.Y Œd�1�\YN C1/ ��

��

.Q`=Z`/�0.Y Œd�2�\YN C1/ ��

Š
��

� � �
Š

��

.Q`=Z`/�0.Y Œd�/ �� .Q`=Z`/�0.Y Œd�1�/ �� .Q`=Z`/�0.Y Œd�2�/ �� � � � ;

in which the first vertical arrow is a surjection, shows that Ha.U 0; Q`=Z`/ D 0

for a ¤ d , because this is the a-th homology of the total complex associated
to the double complex (8.11). Since these U 0 are cofinal in the inductive limit
(8.8), condition (8.9) follows for H W

: . As for property (8.10) one has

H W
d .U 0; Q`=Z`/ D ker..Q`=Z`/�0.ZŒd�/ ˛W

�!.Q`=Z`/�0.ZŒd�//

by Theorem 8.3 (i). Now one shows the bijectivity of ' W H d .U 0; Q`=Z`/
��!

H W
d

.U 0; Q`=Z`/ by showing:
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Proposition 8.4. There is a commutative diagram with exact rows

0 �� H d .U 0; Q`=Z`.d//GK

��

'

��

H 0.ZŒd�; Q`=Z`/GK

��

'Š
��

H 2.ZŒd�1�; Q`=Z`/GK

'Š
��

0 �� H W
d

.U 0; Q`=Z`/ �� .Q`=Z`/�0.ZŒd�/ �� .Q`=Z`/�0.ZŒd�1�/:

The upper row comes from the weight spectral sequence for H �.U 0; Q`=Z`/

(compare (7.2)).

9. Hypercoverings, hyperenvelopes, and weight complexes

Hypercoverings were used by Deligne to define weight filtrations and mixed
Hodge structures on the cohomology of arbitrary complex algebraic varieties
X . A covering of X is a surjective proper morphism X 0 ! X . It is called a
smooth covering if X 0 is smooth. A simplicial variety X: over X (which is a
simplicial object in the category of varieties over X , or, equivalently, a mor-
phism of simplicial varieties X: ! X where X also stands for the constant
simplicial variety associated to X) is called a hypercovering if for all n � 0, the
morphism

(9.1) Xn �! .coskX
n�1skn�1X/n

is a covering. Here skn is the n-skeleton functor, i.e., skn.X:/ is the n-truncated
simplicial variety .Xm/m�n. The functor

coskX
n W .n-truncated simplicial X-varieties/ �! .simplicial X-varieties/

is the right adjoint of skn (which exists by general nonsense), and the map (9.1)
comes from the adjunction map

X: �! coskX
n�1skn�1X: :

It is a standard fact that the considered cohomology theories satisfy descent for
hypercoverings. So for a hypercovering X:! X as above the map

(9.2) H n.X; Q/
��!H n.X:; Q/

from the cohomology of X to the cohomology of the simplicial complex variety
X: is an isomorphism. Note that for any simplicial variety X: we have a spectral
sequence

(9.3) E
p;q
1 D H q.Xp; Q/ H) H pCq.X:; Q/ :
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Call X: ! X a smooth hypercovering if all Xp are smooth. A smooth hy-
percovering exists, if every variety has a smooth covering, so this holds over any
field by de Jong’s resolution of singularities.

Now consider the case where X is proper. Then all Xn can be chosen to
be smooth and projective, in which case we call X: ! X a smooth projective
hypercovering. From (9.2) and (9.3) we obtain a spectral sequence

(9.4) E
p;q
1 D H q.Xp; Q/ H) H pCq.X; Q/:

Note that H q.Xp; Q/ carries a pure Hodge structure of weight q. Deligne de-
fined the mixed Hodge structure on H n.X; Q/ in such a way that the spectral
sequence (9.4) gives the weight filtration, and is a spectral sequence of mixed
Hodge structures. Similarly as in section 1 it follows that the spectral sequence
degenerates at E2.

Analogous facts hold for the étale Q`-cohomology of varieties over finitely
generated fields and the weights on them.

On the other hand it is known that the above descent theory does not ex-
tend to other functors—like algebraic K-theory, or Chow groups, or motivic
cohomology—unless one uses Q-coefficients. But in [GS] H. Gillet and C.
Soulé developed a theory which works for integral coefficients. For this they
replaced coverings by so-called envelopes, i.e., surjective proper morphisms
� W X 0 ! X of schemes such that every x 2 X has a point x0 2 X 0 mapping
to x such that the morphism k.x/! k.x0/ of residue fields is an isomorphism.
In particular, � must be generically birational if X and X 0 are reduced. Call an
envelope X 0 ! X of varieties smooth if X 0 is smooth. If the ground field has
characteristic zero, then every reduced variety X has a smooth envelope by Hi-
ronaka’s resolution of singularities [Hi]. By a standard technique this also gives
a smooth hyperenvelope of X , i.e., a simplicial X-scheme X: ! X such that
each

(9.5) Xn �! .coskX
n�1skn�1X/n

is a smooth envelope. Now Gillet and Soulé showed that algebraic K-theory,
Chow groups and many related functors have descent for hyperenvelopes.

Via these methods they were also able to construct the following. Let CorrK

be the category of correspondences over a field K: objects are smooth pro-
jective varieties over K (not necessarily geometrically connected), and mor-
phisms are algebraic correspondences modulo rational equivalence. Let CHMK

be the idempotent completion of CorrK—objects are pairs .X; p/ where X is
a smooth projective variety over K and p is an idempotent in EndCorrK

.X/.
This is usually called the category of Chow motives over K (with integral co-
efficients); it is an additive category where each idempotent has a kernel and
cokernel. In contrast to [GS] let us normalize the categories so that the functor
X 7! M.X/ D .X; id/ from varieties to motives is covariant. Let Kb.CHMK/
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be the homotopy category of bounded chain complexes in CHMK . Then one
has:

Theorem 9.1 ([GS]). Let K be a field of characteristic zero, or assume that
resolution of singularities exists over K.

(a) For any variety X over K there is an associated complex W.X/ in
Kb.CHMK/ (called the weight complex of X), which is determined up to
unique isomorphism.

(b) The association X 7! W.X/ is covariant for proper morphisms, i.e., a func-
tor on V �

K .
(c) If X is a variety, Y ,! X is a closed subvariety and U ,! X is the open

complement, then one has a canonical exact triangle

(9.6) W.Y / �! W.X/ �! W.U / �! W.Y /Œ1�:

(d) If U is a smooth variety of dimension d and U � X 
 Y is a good com-
pactification, then W.U / is represented by the complex

M.Y Œd�/ �!M.Y Œd�1�/ �! � � � �!M.Y Œ1�/ �!M.X/;

with the obvious differentials.

Since the coefficients are integral everywhere, a remarkable consequence of
this theory is that one has a well-defined weight filtration on integral singu-
lar cohomology with compact supports H n

c .X; Z/ (over C) or étale cohomol-
ogy H n

c .X; Z`/, similarly for torsion coefficients, if one defines it via hyperen-
velopes. The first one coincides with Deligne’s filtration after tensoring with Q,
but it is shown in [GS] that it cannot be recovered from the Q-filtration. It would
be interesting to see if this weight filtration—which is trivial for smooth projec-
tive varieties by definition, gives some interesting information on coefficients
mod `, say.

The results above also give the following, which immediately implies Theo-
rem 8.3 (i).

Theorem 9.2 ([GS] 3.1.1). If H W CHMK �! Ab is a covariant functor from
Chow motives to abelian groups, there is a natural way to extend H to a ho-
mology thery H:.�/ on V �

K such that the following holds for smooth projective
X:

Ha.X/ D
�

0; a ¤ 0;

H.X/; a D 0
:

In fact, one gets the weight homology H W
: .�/ by applying Theorem 9.2 to

the functor H.X/ D .Q`=Z`/�0.X/.
As for the morphism of homology theories in Theorem 8.3 (ii), it is obtained

by refining Theorem 9.2 to a functor with values in complexes, applying it to
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the complexes C .X; Q`=Z`/, and defining ' as induced by functoriality of the
construction starting from the trace map

f� W C .X; Q`=Z`/ �! C .Spec.K/; Q`=Z`/ D Q`=Z`

for a connected smooth projective variety f W X ! Spec.K/.

10. Varieties over finite fields

Kato also stated a conjecture for varieties over finite fields. For such varieties X

he defined a complex C 1;0.X; Q`=Z`/:
(10.1)

� � � ��

M
x2Xa

H aC1.k.x/; Q`=Z`.a// ��

M
x2Xa�1

H a.k.x/; Q`=Z`.a � 1//

�� � � � ��

M
x2X0

H 1.k.x/; Q`=Z`/

and stated the following conjecture.

Conjecture 10.1 ([Ka1] Conjecture 0.3). If X is connected, smooth and proper
over a finite field k, then

(10.2) Ha.C 1;0.X; Q`=Z`// D
�

0; a > 0;

Q`=Z`; a D 0
:

For dim.X/ D 1 this conjecture amounts to (8.3) with K D k.X/, for
dim.X/ D 2 the conjecture was proved by Colliot-Thélène, Sansuc, and Soulé
[CTSS] for ` invertible in k and a D 2, by Gros [Gr] for ` D char.k/ and a D 2,
and by Kato [Ka1] in general. S. Saito [SaS] proved that H3.C 2;1.X; Q`=Z`//

D 0 for dim.X/ D 3 and ` ¤ char.k/. For X of any dimension Colliot-
Thélène [CT] (for ` ¤ char.k/) and Suwa [Su] (for ` D char.k// proved that
Ha.C 1;0.X; Q`=Z`// D 0 for 0 < a � 3.

In [Ja5] Theorem 6.1 it is shown that resolution of singularities for varieties
of dimension � d would imply this conjecture for X smooth projective of di-
mension � d . In [JS2] some recent results on resolution of singularities [CJS]
are applied in a different way to obtain the following unconditional result.

Theorem 10.2. If X is connected, smooth and projective over a finite field, then

Ha.C 1;0.X; Q`=Z`// D
�

0; 0 < a � 4;

Q`=Z`; a D 0
:

There are applications to the finiteness of certain motivic cohomology
groups with finite coefficients of X :
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Theorem 10.3 ([JS2] Theorem 6.3). Let X be a smooth projective variety of
pure dimension d over a finite field k. Assume that the Galois symbol

(10.3) KM
q .L/ �! H q.L; Z=`Z.q//

between Milnor K-theory and Galois cohomology ([Mi], [Ta], [BK]) is surjec-
tive for all ` j n and all fields L above k. Then the cycle maps

�
r;t
X W CHr.X; t IZ=nZ/ D H 2r�t

M .X; Z=nZ.r// �! H 2r�t .X; Z=nZ.r//

between higher Chow groups/motivic cohomology groups with finite coefficients
and étale cohomology are isomorphisms for r > d and t � q�1, and for r D d

and t � q� 2 � 2. In particular the above higher Chow groups are finite under
these conditions.

See also [Ja4] for some results in similar direction for Z-coefficients, and
work of T. Geisser [Ge], who formulated and studied an integral form of Kato’s
conjecture (over a finite field).

The surjectivity of (10.3) is known for ` D char.k/ ([BK]), and for ` invert-
ible in k in the following cases: q D 1 (Kummer theory), q D 2 ([MS]), ` D 2

([V1]); it has been announced by Rost and Voevodsky to hold in general [Ro],
[V2], see also [SJ] and [Weib].

Finally let me mention that Kato [Ka1] also stated some conjectures for reg-
ular proper schemes over Z or Zp (related to those considered in sections 7, 8,
and 9). These were studied in [JS1], again by weight methods.

Acknowledgements. I thank Takeshi Saito heartily for carefully checking the manuscript.
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