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Abstract. We present a number of important identities related to the excursion theory of linear
diffusions. In particular, excursions straddling an independent exponential time are studied in
detail. Letting the parameter of the exponential time tend to zero it is seen that these results
connect to the corresponding results for excursions of stationary diffusions (in stationary state).
We characterize also the laws of the diffusion prior and posterior to the last zero before the
exponential time. It is proved using Krein’s representations that, e.g. the law of the length of the
excursion straddling an exponential time is infinitely divisible. As an illustration of the results we
discuss the Ornstein–Uhlenbeck processes.
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1. Introduction and preliminaries

1.1 Throughout this paper, we shall assume that X is a linear regular recurrent
diffusion taking values in R+ with 0 an instantaneously reflecting boundary.
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Let Px and Ex denote, respectively, the probability measure and the expectation
associated with X when started from x ≥ 0. We assume that X is defined in the
canonical space C of continuous functions ω : R+ �→ R+. Let

�t := σ{ω(s) : s ≤ t}

denote the smallest σ -algebra making the co-ordinate mappings up to time t
measurable and take � to be the smallest σ -algebra including all σ -algebras
�t , t ≥ 0.

The excursion space for excursions from 0 to 0 associated with X is a subset
of C, denoted by E , and given by

E := {ε ∈C : ε(0) = 0, ∃ ζ (ε) > 0 such that ε(t) > 0 ∀ t ∈ (0,ζ (ε))
and ε(t) = 0 ∀ t ≥ ζ (ε)}.

The notation �t is used for the trace of �t on E.
As indicated in the title of the paper our aim is to gather a number of funda-

mental results concerning the excursion theory for the diffusion X . In Section 2
the classical descriptions, the first one due to Itô and McKean and the second one
due to Williams, are presented. In Section 3 the stationary excursions are dis-
cussed and, in particular, the description due to Bismut is reviewed. After this, in
Section 4, we proceed by analyzing excursions straddling an exponential time.
The paper is concluded with an example on Ornstein–Uhlenbeck processes.

Our motivation for this work arose from different origins:

• First, we would like to contribute to Professor Itô’s being awarded the 1st
Gauss prize, by offering some discussion and illustration of K. Itô’s excur-
sion theory, see [21], when specialized to linear diffusions. The present paper
also illustrates Pitman and Yor’s discussion (see [42] in this volume) of K.
Itô’s general theory of excursions for a Markov process.

• In the literature there seems to be lacking a detailed discussion on the excur-
sion theory of linear diffusions. Information available has a very scattered
character, see, e.g. Williams [52], Walsh [51], Pitman and Yor [38], [39],
[40], [41], Rogers [46], Salminen [49]. The general theory of excursions has
been developed in Itô [21], Meyer [35], Getoor [13], Getoor and Sharpe [15],
[14], [16], [17], and Blumenthal [4]. Although the case with Brownian mo-
tion is well studied and understood, for textbook treatments see, e.g. Revuz
and Yor [43] and Rogers and Williams [47], we find it important to highlight
the main formulas for more general diffusions using the traditional Fellerian
terminology and language.

• To generalize some recent results (see Winkel [53] and Bertoin, Fujita, Roy-
nette and Yor [2]) on infinite divisibility of the distribution of the length of
the excursion of a diffusion straddling an independent exponential time.
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• The Ornstein–Uhlenbeck process is one of the most essential diffusions. To
present in detail formulae for its excursions is important per se. One of
the key tools hereby is the distribution of the first hitting time Hy of the
point y from which the excursions are observed. For y = 0 this distribu-
tion can be derived via Doob’s transform (see Doob [8]) which connects
the Ornstein–Uhlenbeck process with standard Brownian motion (see Sato
[50], and Göing–Jaeschke and Yor [19]). For arbitrary y the distribution is
very complicated; for explicit expressions via series expansions, see Riccia-
rdi and Sato [44], Linetsky [32] and Alili, Patie and Pedersen [1]. We will
focus on excursions from 0 to 0 and relate our work to earlier papers by
Hawkes and Truman [20], Pitman and Yor [40], and Salminen [48]. Due
to the symmetry of the Ornstein–Uhlenbeck process around 0, it is sufficient
for our purposes to consider only positive excursions— the treatment of neg-
ative ones is similar— and view the process with values in R+ and 0 being a
reflecting boundary.

1.2 In this subsection we introduce the basic notation and facts concerning lin-
ear diffusions needed in the sequel. A main source of information remains Itô
and McKean [22], see also Rogers and Williams [47], and Borodin and Salmi-
nen [6].

(i) Speed measure m associated with X is a measure on R+ which satisfies
for all 0 < a < b < ∞

0 < m((a,b)) < ∞.

For simplicity, it is assumed that m does not have atoms. An important fact
is that X has a jointly continuous transition density p(t;x,y) with respect
to m, i.e.,

Px(Xt ∈ A) =
∫

A
p(t;x,y)m(dy),

where A is a Borel subset of R+. Moreover, p is symmetric in x and y, that
is, p(t;x,y) = p(t;y,x). The Green or the resolvent kernel of X is defined
for λ > 0 as

Rλ (x,y) =
∫ ∞

0
dt e−λ t p(t;x,y).

(ii) Scale function S is an increasing and continuous function which can be
defined via the identity

Px(Ha < Hb) =
S(b)−S(x)
S(b)−S(a)

, 0 ≤ a < x < b, (1)

where H. denotes the first hitting time, i.e.,

Hy := inf{t : Xt = y}, y ≥ 0.
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We normalize by setting S(0) = 0. Due to the recurrence assumption it
holds S(+∞) = +∞. Recall that {S(Xt∧H0) : t ≥ 0} is a continuous local
Px-martingale for every x ≥ 0 (see, e.g. Rogers and Williams [47] p. 276).
It is easily proved that S(X) = {S(Xt) : t ≥ 0} is a (recurrent) diffusion
taking values in R+. The scale function associated with S(X) is the identity
mapping x �→ x, x ≥ 0, and we say that S(X) is in natural scale. Clearly,
also for S(X) the boundary point 0 is instantaneously reflecting. Using the
Skorokhod reflection equation it is seen that S(X) is a Px-submartingale
(cf. Meleard [34] Proposition 1.4 where the semimartingale decomposition
is given in case there are two reflecting boundaries).

(iii) The infinitesimal generator of X can be expressed as the generalized dif-
ferential operator

� =
d

dm
d
dS

acting on functions f belonging to the appropriately defined domain�(� )
of � (see Itô and McKean [22], Freedman [12], Borodin and Salminen
[6]). In particular, since 0 is assumed to be reflecting then f ∈ �(� ) im-
plies that

f +(0) := lim
x↑0

f (x)− f (0)
S(x)−S(0)

= 0.

(iv) The distribution of the first hitting time of a point y > 0 has a Px-density

Px(Hy ∈ dt) = fxy(t)dt.

This density can be connected with the derivative of the transition density
of a killed diffusion obtained from X . To explain this, introduce the sample
paths

X̂ (y)
t :=

{
Xt , t < Hy,

∂ , t ≥ Hy,

where ∂ is a point isolated from R+ (a “cemetary” point). Then {X̂ (y)
t :

t ≥ 0} is a diffusion with the same scale and speed as X . Let p̂ denote the
transition density of X̂ (y) with respect to m. Then, e.g. for x > y

fxy(t) = lim
z↓y

p̂(t;x,z)
S(z)−S(y)

. (2)

For a fixed x and y, the mapping t �→ fxy(t) is continuous, as follows from
the eigen-differential expansions and discussion in Itô and McKean p. 153
and 217 (see also Kent [24], [25]). Recall also the following formula for
the Laplace transform of Hy

Ex
(
e−αHy

)
=

Rα(x,y)
Rα(y,y)

, (3)
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which leads to ∫ ∞

0
m(dx) Ex

(
e−αHy

)
=

1
αRα(y,y)

.

(v) There exists a jointly continuous family of local times

{L(y)
t : t ≥ 0,y ≥ 0}

such that X satisfies the occupation time formula∫ t

0
dsh(Xs) =

∫ ∞

0
h(y)L(y)

t m(dy),

where h is a nonnegative measurable function (see, e.g. Rogers and Willi-
ams [47] 49.1 Theorem p. 289). Consequently,

L(y)
t = lim

δ↓0

1
m((y−δ ,y+δ ))

∫ t

0
1(y−δ ,y+δ )(Xs)ds.

For a fixed y introduce the inverse of L(y) via

τ(y)
� := inf{s : L(y)

s > �}.

Then τ(y) = {τ(y)
� : � ≥ 0} is an increasing Lévy process, in other words, a

subordinator and its Lévy exponent is given by

Ey

(
exp(−λτ(y)

� )
)

= exp(−�/Rλ (y,y))

= exp(−�
∫ ∞

0
ν(y)(dv)(1− e−λ v)), (4)

where ν(y) is the Lévy measure of τ(y). The assumption that the speed
measure does not have atoms implies that τ(y) does not have a drift. In
case y = 0 we write simply L, τ and ν .

1.3 Assuming that X is started from 0 we define for t > 0

Gt := sup{s ≤ t : Xs = 0} and Dt := inf{s ≥ t : Xs = 0}. (5)

The last exit decomposition at a fixed time t states that for u < t < v

P0(Gt ∈ du,Xt ∈ dy,Dt ∈ dv)
= p(u;0,0) fy0(t −u) fy0(v− t)dudvm(dy). (6)

In fact, this trivariate distribution is only the skeleton of a more complete body
of processes:

{Xu : u ≤ Gt}, {XGt+v : v ≤ t −Gt}, and {Xt+v : v ≤ Dt − t} (7)
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the distributions of which we now characterize following Salminen [49]. For
general approaches, see Getoor and Sharpe [15], [14], and Maisonneuve [33].

Let x,y ∈ R+ and u > 0 be given. Denote by (Xx,u,y,Px,u,y) the diffusion
bridge from x to y of length u constructed from X , i.e., the measure Px,u,y govern-
ing Xx,u,y is the conditional measure associated with X started from x and condi-
tioned to be at y at time u. The bridge Xx,u,y is a strong non-time-homogeneous
Markov process defined on the time axis [0,u]. For the first component in (7),
we have conditionally on Gt = u

{Xs : 0 ≤ s <≤ Gt} d= {X0,u,0
s : 0 ≤ s ≤ u}. (8)

For the second component in (7), consider the process X̂ (y) as introduced in
(iv) above with y = 0. We write simply X̂ instead of X̂ (0). For positive x and y
let X̂ x,u,y denote the bridge from x to y of length u constructed, as above, from
X̂ . The measure P̂x,u,y governing X̂ x,u,y can be extended by taking (in the weak
sense)

P̂0,u,y := lim
x↓0

P̂x,u,y.

We let X̂0,u,y denote the process associated with P̂0,u,y. Then, conditionally on
Gt = u and Xt = y,

{XGt+s : 0 ≤ s ≤ t −Gt} d= {X̂0,t−u,y
s : 0 ≤ s ≤ t −u}. (9)

For the final part in (7), by the Markov property, we have conditionally on
Xt = y

{Xt+s : s ≤ Dt − t} d= {Xs : s ≤ H0}, (10)

where X0 = y.

Remark 1. Diffusion bridges can be seen as Doob’s h-transforms of the under-
lying diffusion. Indeed, for the nonnegative functional Ψ on the path space we
have for v < u

Êx,u,y (Ψ(ωs : s ≤ v)) = Êx

(
Ψ(ωs : s ≤ v)

p̂(u− v;ωv,y)
p̂(u;x,y)

)
.

Letting here y ↓ 0 and using (2) we may describe the measure associated with
the bridge X̂ x,u,0 via

Êx,u,0 (Ψ(ωs : s ≤ v)) = Êx

(
Ψ(ωs : s ≤ v)

fωv0(u− v)
fx0(u)

)
. (11)
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2. Two descriptions of the Itô measure

2.1. Description due to Itô and McKean

We discuss the description of the Itô measure n where the excursions are studied
by conditioning with respect to their lifetimes. Let X̂ be as in Section 1.3 and
p̂(t;x,y) its transition density with respect to the speed measure; in other words,

Px(X̂t ∈ dy) = Px(Xt ∈ dy;t < H0) = p̂(t;x,y)m(dy).

The Lévy measure ν of τ is absolutely continuous with respect to the Lebesgue
measure, and the density— which we also denote by ν— is given by

ν(v) := ν(dv)/dv = lim
x↓0

lim
y↓0

p̂(v;x,y)
S(x)S(y)

=: p↑(v;0,0). (12)

In Section 1.3 we have introduced the bridge X̂ x,t,y and the measure P̂x,t,y

associated with it. The family of probability measures {P̂x,t,y : x > 0,y > 0} is
weakly convergent as y ↓ 0 thus defining P̂x,t,0 for all x > 0. Intuitively, this
is the process X̂ conditioned to hit 0 at time t, cf. (11). Moreover, letting now
x ↓ 0 we obtain a measure which we denote by P̂0,t,0 which governs a non-time
homogeneous Markov process X̂0,t,0 starting from 0, staying positive on the time
interval (0,t) and ending at 0 at time t.

Theorem 2. (i) The law of the excursion life time ζ under the Itô excursion
measure n is equal to the Lévy measure of the subordinator {τ�}�≥0 and is given
by

n(ζ ∈ dv) = ν(dv) = p↑(v;0,0)dv. (13)

(ii) The Itô measure can be represented as the following integral

n(dε) =
∫ ∞

0
n(ζ ∈ dv) P̂0,v,0(dε). (14)

Moreover, the finite dimensional distributions of the excursion are characterized
for 0 < t1 < t2 < · · · < tn and xi > 0, i = 1,2, . . . ,n by

n(εt1 ∈ dx1,εt2 ∈ dx2, . . . ,εtn ∈ dxn)
= m(dx1) fx10(t1) p̂(t2 − t1;x1,x2)m(dx2) (15)

×·· · p̂(tn − tn−1;xn−1,xn)m(dxn).

In particular, the excursion entrance law is given by

n(εt ∈ dx) = m(dx) fx0(t),

and it holds

n(ζ > t) =
∫ ∞

0
n(εt ∈ dx) =

∫ ∞

0
m(dx) fx0(t). (16)
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Combining the formulas (13) and (14) with the last exit decomposition (6)
leads to a curious relation between the transition densities p and p↑.

Proposition 3. The functions p(t;0,0) and p↑(t;0,0) satisfy the identity

∫ t

0
du p(u;0,0)

∫ ∞

t−u
dv p↑(v;0,0) = 1. (17)

Proof. From (13) and (16) we may write∫ ∞

t
dv p↑(v;0,0) = n(ζ > t) =

∫ ∞

0
m(dx) fx0(t).

Consequently, identity (17) can be rewritten as

∫ t

0
du p(u;0,0)

∫ ∞

0
m(dx) fx0(t −u) = 1, (18)

but, in view of the last exit decomposition (6), identity (18) states that the last
exit from 0 when starting from 0 takes place with probability 1 before t, in other
words,

P0(Gt ≤ t) = 1,

which, of course, is trivially true. �

Remark 4. For another approach to (17), notice that (4) and (12) yield

1
Rλ (0,0)

=
∫ ∞

0
dv p↑(v;0,0)

(
1− e−λ v

)
.

Hence, from the definition of the Green kernel,

1 =
∫ ∞

0
du e−λ u p(u;0,0)

∫ ∞

0
dv p↑(v;0,0)(1− e−λ v). (19)

Consequently,

1
λ

=
∫ ∞

0
du e−λ u p(u;0,0)

∫ ∞

0
dv e−λ v

∫ ∞

v
ds p↑(s;0,0)

=
∫ ∞

0
du
∫ ∞

0
dve−λ (u+v) p(u;0,0)

∫ ∞

v
ds p↑(s;0,0),

from which (17) is easily deduced.
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2.2. Description due to Williams

In the approach via the lengths of the excursions the focus is first on the time
axis. In Williams’ description (see Williams [52], and Rogers [45], [46]) the
starting point of the analysis is on the space axis since the basic conditioning
is with respect to the maximum of an excursion. To formulate the result, let for
ε ∈ E

M(ε) := sup{εt : 0 < t < ζ (ε)}.
The key element in Williams’ description is the diffusion X↑ obtained by con-
ditioning X̂ not to hit 0. We use the notation P↑

x and E↑
x for the measure and

the expectation associated with X↑ when started from x. To define this process
rigorously set for a bounded Ft ∈ �t , t > 0,

E↑
x(Ft) := lim

a↑+∞
Ex(Ft ;t < Ha |Ha < H0)

= lim
a↑+∞

Ex(Ft ;t < Ha < H0)
Px(Ha < H0)

= lim
a↑+∞

Ex (Ft S(Xt) ;t < Ha ∧H0)
S(x)

,

where the Markov property and formula (1) for the scale function are applied.
The monotone convergence theorem yields

E↑
x(Ft) =

1
S(x)

Ex (Ft S(Xt) ;t < H0) ,

in other words, the desired conditioning is realized as Doob’s h-transform of X̂
by taking h to be the scale function of X . It is easily deduced that the transition
density and the speed measure associated with X↑ are given by

p↑(t;x,y) :=
p̂(t;x,y)
S(y)S(x)

, m↑(dy) := S(y)2 m(dy).

We remark that the boundary point 0 is entrance-not-exit for X↑ and, therefore,
X↑ can be started from 0 after which it immediately enters (0,∞) and never hits
0.

Theorem 5. (i) The law of the excursion maximum M under the Itô excursion
measure n is given by

n(M ≥ a) =
1

S(a)
.

(ii) The Itô excursion measure n can be represented via

n(dε) =
∫ ∞

0
n(M ∈ da)Q(∗,a)(dε),
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where Q(∗,a) is the distribution of two independent X↑ processes put back to
back and run from 0 until they first hit level a.

As an illustration, we give the following formula

n(1− exp(−
∫ ζ

0
dsV (εs)))

=
∫ ∞

0
n(M ∈ da)

(
1−
(

E↑
0(exp(−

∫ Ha

0
duV(ωu)))

)2
)

.

If V ≥ 0, this quantity is the Lévy exponent of the subordinator{∫ τ�

0
dsV (Xs) : � ≥ 0

}
,

that is,

E
{

exp

(
−α

∫ τ�

0
dsV (Xs)

)}
= exp

{
−�n

(
1− exp

(
−α

∫ ζ

0
dsV (εs)

))}
.

Comparing the descriptions of the Itô excursion measure in Theorem 2 (in
particular formula (15)) and in Theorem 5 hints that the processes X̂ and X↑
have, in addition to conditioning relationship, also a time reversal relationship.
This is due to Williams [52], who particularized to the case of diffusions the
general time reversal result, obtained by Nagasawa [36]. See also [43] p. 313,
and [6] p. 35.

Proposition 6. Let for a given x > 0

Λx := sup{t : ω(t) = x}

denote the last exit time from x. Then

{X̂s : 0 ≤ s ≤ H0} d= {X↑
Λx−s : 0 ≤ s ≤ Λx}, (20)

where X̂0 = x and X↑
0 = 0.
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3. Stationary excursions; Bismut’s description

Consider the diffusion X with the time parameter t taking values in the whole of
R. In the case m(R+) < ∞ the measure governing X can be normalized to be a
probability measure. Indeed, in this case the distribution of Xt is for every t ∈ R
defined to be

P(Xt ∈ dx) = m(dx)/m(R+) =: m̂(dx).

Recall from (5) the definitions of Gt and Dt , and introduce also Δt := Dt −Gt .

Theorem 7. Assume that m(R+) < ∞. Then the joint distribution of t −Gt and
Dt − t is given by

P(t −Gt ∈ du,Dt − t ∈ dv)/dudv =
∫ ∞

0
m̂(dy) fy0(u) fy0(v)

= ν(u+ v)/m(R+).

Consequently, for Δt it holds

P(Δt ∈ du)/du = uν(u)/m(R+). (21)

Moreover, the law of the process {XGt+v : v ≤ Δt} is given by

ζ (ε)n(dε)/m(R+), (22)

where n(dε) is the Itô measure, as introduced in Theorems 2 and 5, and ζ
denotes the length of an excursion.

Proof. The density of (t −Gt ,Dt − t) is derived using the time reversibility of
the diffusion X , i.e.,

{Xt : t ∈ R} d= {X−t : t ∈ R},
and the conditional independence given Xt . The fact that the density can be ex-
pressed via the density of the Lévy measure is stated (and proved) in Proposition
14 below, see formulas (32) and (33). To compute the distribution of Δt is el-
ementary from the joint distribution of t −Gt and Dt − t. For these results, we
refer also to Kozlova and Salminen [28]. The statement concerning the law of
{XGt+v : v ≤ Δt} has been proved in Pitman [37] (see Theorem p. 290 point (iii)
and the formulation for excursions on p. 293 and 294)— all that remains for us
to do is to find the right normalization constant, but this is fairly obvious, e.g.
from the density of Δt . �

If m(R+) = ∞ the measure associated with X is still well-defined but “only”
σ -finite. In this case, the distribution of Xt is plainly taken to be m. From (22) it
is seen that we are faced with a representation of the Itô measure via stationary
excursions valid in both cases m(R+) < ∞ and m(R+) = ∞. We focus now on
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this representation as displayed in (23) below, and present a proof of the rep-
resentation using the diffusion theory (this provides, of course, also a proof of
(22)). We remark that in Pitman [37] a more general case concerning homoge-
neous random sets is proved, and, hence, it seems worthwhile to give a “direct”
proof in the diffusion case.

Theorem 8. Let F be a measurable non-negative functional defined in the ex-
cursion space E. Then up to a normalization

n(F(ε)) = E
(

1
Δt

F (XGt+s : 0 ≤ s ≤ Δt)
)

. (23)

In particular, the process {XGt+s : 0 ≤ s ≤ Δt} conditionally on Δt = v is identi-
cal in law with the excursion bridge X̂0,v,0, as introduced in Section 2.1.

Proof. Without loss of generality, we take t = 0. From (21) we have

n( f (ζ )) =
∫ ∞

0
f (a)ν(a)da = E

(
1

Δ0
f (Δ0)

)
,

where f is a measurable nonnegative function on (0,∞). Therefore, it is enough
(cf. Theorem 2) to prove that

n(F(ε) |ζ = u) = E(F (XG0+s : 0 ≤ s ≤ Δ0) |Δ0 = u) . (24)

Define for 0 ≤ s1 < s2 < · · · < sn ≤ u

A1,n := {XG0+s1 ∈ dy1, . . . ,XG0+sn ∈ dyn},
and consider

P(A1,n |Δ0 = u) =
∫ ∞

y=0

∫ u

v=0
P(A1,n, −G0 ∈ dv, X0 ∈ dy |Δ0 = u)

=
∫ ∞

y=0

∫ u

v=0
P(A1,n |Δ0 = u, G0 = −v, X0 = y)

×P(−G0 ∈ dv, X0 ∈ dy |Δ0 = u) .

From the description of the process X , the conditional independence and the
equality of the laws of the past and future given X0, and by formula (21) we
obtain

P(−G0 ∈ dv, X0 ∈ dy |Δ0 = u) =
1

uν(u)
fy,0(v) fy,0(u− v)m(dy)dv. (25)

Letting k be such that −v+ sk < 0 < −v+ sk+1, if any, we write applying again
the conditional independence

P(A1,n |Δ0 = u, G0 = −v, X0 = y)



On the excursion theory for linear diffusions 109

= P(A1,k Ak+1,n |Δ0 = u, G0 = −v, X0 = y)
= P(B1,k |X0 = y)P(Bk+1,n |D0 = u− v, X0 = y) ,

where for 1 ≤ i < j ≤ n

Bi, j := {X−v+si ∈ dyi, . . . ,X−v+s j ∈ dy j}.
Recall from Introduction Section 1.2 (iv) the notation X̂ for the diffusion X
killed when it hits 0, and from Remark 1 the definition of the bridge X̂ y,v,0. With
these notations we have

P(A1,k |G0 = −v, X0 = y)

= P̂y,v,0 (ωv−sk ∈ dyk, . . . ,ωv−s1 ∈ dy1)

=
1

fy0(v)
p̂(v− sk;y,yk)m(dyk) p̂(sk − sk−1;yk,yk−1)m(dyk−1)

× . . . p̂(s2 − s1;y2,y1)m(dy1) fy10(s1)

and

P(Bk+1,n |D0 = u− v, X0 = y)

= P̂y,u−v,0
(
ωsk+1−v ∈ dyk+1, . . . ,ωsn−v ∈ dyn

)
=

1
fy0(u− v)

p̂(sk+1 − v;y,yk+1)m(dyk+1)

× p̂(sk+2 − sk+1;yk+1,yk+2)m(dyk+2)
× . . . p̂(sn − sn−1;yn−1,yn)m(dyn) fyn0(u− sn).

Using now (25) and formulas above we have after some rearranging and after
applying the symmetry of the transition density p̂

P(A1,n |Δ0 = u)

=
1

uν(u)
m(dy1) fy10(s1)p̂(s2 − s1;y1,y2)m(dy2)

× . . .
∫ u

0
dv
∫ ∞

0
m(dy) p̂(v− sk;yk,y) p̂(sk+1 − v;y,yk+1)

× . . . p̂(sn − sn−1;yn−1,yn)m(dyn) fyn0(u− sn).

Performing the integration yields

P(A1,n |Δ0 = u)

=
1

ν(u)
m(dy1) fy10(s1)p̂(s2 − s1;y1,y2)m(dy2)

× . . . p̂(sn − sn−1;yn−1,yn)m(dyn) fyn0(u− sn).

Consequently, (24) holds, and the proof is complete. �
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Remark 9. The formula (23) was derived for Brownian motion by Bismut [3].
The connection with the Palm measure and stationary processes is discussed
in Pitman [37]. In fact, Bismut describes in the Brownian case the law of the
process {XGt+s : 0 ≤ s ≤ Δt} in terms of two independent 3-dimensional Bessel
processes started from 0 and killed at the last exit time from an independent level
distributed according to the Lebesgue measure (see [3] and [43] for details).

4. On the excursion straddling an independent exponential time

In the literature one can find several papers devoted to the properties of excur-
sions straddling a fixed time t; first of all, Lévy’s fundamental paper [31], which
contains a lot about the zero set of Brownian motion, its (inverse) local time, ex-
cursions, and so on. See also Chung [7] starting from Lévy’s paper [31], Durrett
and Iglehart [9], and Getoor and Sharpe [16], [17]. In fact, the last exit decom-
position (6) lies in the heart of these studies (see Getoor and Sharpe [15], [14]).
However, it seems to us that excursions straddling an exponential time are not
so much analyzed. Here we make some remarks on this subject.

Let T be an exponentially distributed random variable with parameter α > 0,
independent of X , and define

GT := sup{s ≤ T : Xs = 0}, DT := inf{s ≥ T : Xs = 0},
and

ΔT := DT −GT .

The Lévy exponent of the inverse local time at 0 is denoted by Φ, in other words,

E0 (exp(−λτ�)) = exp(−�Φ(λ ))

Recall the relation (cf. (4) with y = 0)

Φ(λ )Rλ (0,0) = 1. (26)

4.1. Last exit decomposition at T

In this subsection we study the distributions of different path segments of the
diffusion X killed at the first hitting time of 0 after the exponential time T .

Theorem 10. (i) The processes

{Xu : u ≤ GT} and {XGT +v : v ≤ ΔT}
are independent.
(ii) The law of {Xu : u ≤ GT} may be described as follows:
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(a) LT := LGT is exponentially distributed with mean 1/Φ(α).
(b) The process {Xu : u ≤ GT} conditionally on LT = � is distributed as {Xu :

u ≤ τ�} under the probability

exp(−α τ� + �Φ(α)) P0.

(iii) The law of the process {XGT +v : v ≤ ΔT} is given by

1
Φ(α)

(
1− e−αζ (ε)

)
n(dε). (27)

where n(dε) is the Itô measure associated with the excursions away from 0 for
X and ζ denotes the length of an excursion.

Proof. Let F1 and F2 be two nonnegative functionals on the path space and
consider

E0 (F1(Xu : u ≤ GT )F2(XGT +v : v ≤ ΔT ))

= α
∫ ∞

0
dt e−αtE0 (F1(Xu : u ≤ Gt)F2(XGt+v : v ≤ Δt))

= αE0

(
∑
�

∫ τ�

τ�−
dt e−αtF1(Xu : u ≤ τ�−)F2(Xτ�−+v : v ≤ τ�− τ�−)

)

= E0

(∫ ∞

0
d� e−α τ�F1(Xu : u ≤ τ�)

)
×
∫

n(dε)
(

1− e−α ζ (ε)
)

F2(εs : s ≤ ζ (ε))

= Φ(α)E0

(∫ ∞

0
d� e−α τ�F1(Xu : u ≤ τ�)

)
×
∫

n(dε)

(
1− e−α ζ (ε)

Φ(α)

)
F2(εs : s ≤ ζ (ε)),

where the third equality is based on the properties of the Poisson random mea-
sure associated with the excursions (see Revuz and Yor [43] Master Formula p.
475). �

Remark 11. Notice that letting α → 0 in (27) and using

lim
α→0

α
Φ(α)

= lim
α→0

α Rα(0,0) = 1/m(R+) (28)

yield the probability law of the excursion straddling a fixed time in the stationary
setting, cf. (22) in Theorem 7.
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As a corollary of Theorem 10 we have the following results which show
that after conditioning the quantities do not depend on α . The formulas should
be compared with (8), (9), and (10). The distributions of GT and ΔT are given,
respectively, in (42) and (37) below.

Corollary 12. For any three nonnegative functionals F1,F2, and F3 on the path
space it holds

E0 (F1(Xu : u ≤ GT ) |GT = g) = E0 (F1(Xu : u ≤ g) |Xg = 0)
= E0,g,0 (F1(ωu : u ≤ g)) , (29)

E0 (F2(XGT +u : u ≤ T −GT ) |T −GT = d, XT = y)

= E↑
0 (F2(Xu : u ≤ d) |Xd = y)

= Ê0,d,y(F2(ωs : s ≤ d)), (30)

and

E0 (F3(XGT +v : v ≤ ΔT ) |ΔT = h) = E↑
0 (F3(Xv : v ≤ h) |Xh = 0)

= Ê0,h,0(F3(ωs : s ≤ h)). (31)

Proof. The statements (29) and (30) can be obtained from the corresponding
result for fixed time as presented in (8) and (9), respectively. Also (31) can be
derived from the fixed time result but we prefer to present here a proof based on
the Master Formula. For this consider for 0 < a < b

E0
(
F2(XGT +v : v ≤ ΔT )1{a≤ΔT <b}

)
=
∫

n(dε)

(
1− e−α ζ (ε)

Φ(α)

)
F2(εs : s ≤ ζ (ε))1{a≤ζ (ε)<b}.

Using the description (14) of the Itô excursion law we obtain

E0
(
F2(XGT +v : v ≤ ΔT )1{a≤ΔT <b}

)
=
∫ b

a
duν(u)

(
1− e−α u

Φ(α)

)
Ê0,u,0(F2(ωs : s ≤ u)).

Recognizing here the density of the distribution of ΔT as given in (37), we obtain
(31). �

In the next proposition we discuss some properties of the processes {XGT +u :
u ≤ T −GT} and {XT+u : u ≤ DT −T}. In particular, it is interesting that the
time reversal of {XGT +u : u ≤ T −GT} has a clean description, as presented in
point (iii) below.
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Proposition 13. (i) Conditionally on XT , the processes

{XGT +u : u ≤ T −GT} and {XT+u : u ≤ DT −T}
are independent.
(ii) Given XT = y, the process {XT+u : u ≤ DT −T} is distributed as the process
{Xu : u ≤ H0} when started from y.
(iii) Given XT = y, the process {XT−u : u ≤ T −GT} is distributed as the process
{Xu : u ≤ H0} conditioned by the event {H0 < T} and started from y.

Proof. The first two claims are easy consequences of the Markov property. To
prove the third claim we compute first the joint distribution of T −GT and XT .
Letting (u,v) �→ϕ(u,v) be a nonnegative measurable function formula (6) yields

E0 (ϕ(T −GT ,XT )) = α
∫

R4
+

ϕ(u,y)1{u<t<v} e−αt p(t −u;0,0)

× fy0(u) fy0(v− t)m(dy)dudvdt.

Integrating with respect to v and t yields

E0 (ϕ(T −GT ,XT )) = α Rα(0,0)
∫

R2
+

ϕ(u,y)e−αu fy0(u)m(dy)du.

For any pair (Ψ,ψ), which consists of a nonnegative functional on path space
and a Borel function, we consider for uo > 0

Q(Ψ,ψ) := E0
(
Ψ(XT−u : u ≤ uo) 1{uo<T−GT } ψ(XT )

)
= α

∫ ∞

0
e−αt E0

(
Ψ(Xt−u : u ≤ uo) 1{uo<t−Gt} ψ(Xt)

)
dt

= α
∫ ∞

0
dt e−αt

∫ t

v=0

∫ ∞

y=0
P0(t −Gt ∈ dv, Xt ∈ dy)ψ(y)

×E0
(
Ψ(Xt−u : u ≤ uo) 1{uo<t−Gt} |t −Gt = v, Xt = y

)
.

From (9),

E0
(
Ψ(Xt−u : u ≤ uo) 1{uo<t−Gt} |t −Gt = v, Xt = y

)
= Ê0,v,y (Ψ(ωv−u : u ≤ uo)) , uo < v.

By the time reversal property of diffusion bridges (see [49] Proposition 1) it
holds for all uo ≤ v

Ê0,v,y (Ψ(ωv−u : u ≤ uo)) = Êy,v,0 (Ψ(ωu : u ≤ uo)) .

From (11) we have for uo < v

Êy,v,0 (Ψ(ωu : u ≤ uo)) = Êy
(
Ψ(Xu : u ≤ uo) fXuo 0(v−uo)

)
/ fy0(v)
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and, therefore,

Q(Ψ,ψ) =
∫

R2
+

P0(T −GT ∈ dv, XT ∈ dy)ψ(y) Êy,v,0 (Ψ(ωu : u ≤ uo))

= α Rα(0,0)
∫

R2
+

dvm(dy)ψ(y)

×e−αv Êy
(
Ψ(Xu : u ≤ uo) fXuo 0(v−uo)

)
= α Rα(0,0)

∫
R+

m(dy)ψ(y)

×Ey (Ψ(Xu : u ≤ uo) ; uo < H0 < T )

by the Markov property. Consequently,

Q(Ψ,ψ) = α Rα(0,0)
∫

R+

m(dy)ψ(y)Py(H0 < T )

×Ey
(
Ψ(Xu : u ≤ uo) 1{uo<H0} |H0 < T

)
,

and this proves the claim since we may identify the distribution of XT by taking
Ψ ≡ 1 and letting uo ↓ 0. �

4.2. On the distribution of (GT ,DT )

In this subsection the distributions of T −GT , DT −T and ΔT := DT −GT are
studied in detail.

Proposition 14. The joint distribution of T −GT and DT −T is given by

P0(T −GT ∈ du,DT −T ∈ dv)

= dudvα Rα(0,0)e−αu
∫ ∞

0
m(dy) fy0(u) fy0(v). (32)

=
α e−αu ν(u+ v)

Φ(α)
dudv. (33)

In particular,

ν(u+ v) =
∫ ∞

0
m(dy) fy0(u) fy0(v). (34)

Proof. From (6),

P0(t −Gt ∈ du,Dt − t ∈ dv)

= dudv p(t −u;0,0)1{u≤t,v≥0}
∫ ∞

0
m(dy) fy0(u) fy0(v),

and, hence,

P0(T −GT ∈ du,DT −T ∈ dv)
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= dudvα
∫ ∞

u
dt e−αt p(t −u;0,0)

∫ ∞

0
m(dy) fy0(u) fy0(v),

from which (32) follows. To derive (33), we apply again the Master Formula
(see Revuz and Yor [43] p. 475). For this, let (u,v) �→ ϕ(u,v) be a non-negative
and Borel measurable function and define

Q(ϕ) := E0(ϕ(T −GT ,DT −T )).

Letting τ� denote the inverse of the local time L at 0 we have

Q(ϕ) = E0

(
∑
�≥0

ϕ(T − τ�−,τ� −T )1{τ�−<T<τ�}

)

= E0

(∫
R2

+

ϕ(T − τ�,z+ τ� −T )1{τ�<T<τ�+z}ν(z)dzd�

)
,

since {(�,τ�) : � ≥ 0} is a Poisson point process with Lévy measure d�dν , and
T is independent of {τ� : � ≥ 0}. Apply next that T is exponentially distributed
to obtain

Q(ϕ) = E0

(∫
R2

+

ν(z)dzd�
∫ τ�+z

τ�

dt α e−αt ϕ(t − τ�,z+ τ� − t)
)

= αE0

(∫
R3

+

ν(z)e−α(x+τ�) ϕ(x,z− x)1{x≤z} dxdzd�

)
,

where we have substituted x = t − τ�. Furthermore, setting y = z− x yields

Q(ϕ) = αE0

(∫
R3

+

ν(y+ x)e−α(x+τ�) ϕ(x,y)dxdyd�

)
= αE0

(∫ ∞

0
e−α τ� d�

)∫
R2

+

ϕ(x,y)e−α x ν(y+ x)dxdy,

and (33) follows now easily from (4). The equality (34) is an immediate conse-
quence of (32) and (33). �

Corollary 15. (i) The densities for T −GT , DT −T , and ΔT are given, respec-
tively, by

P0(T −GT ∈ du)/du =
α

Φ(α)
e−αu

∫ ∞

u
ν(z)dz, (35)

P0(DT −T ∈ dv)/dv =
α

Φ(α)
eαv

∫ ∞

v
e−αzν(z)dz, (36)

and

P0(ΔT ∈ da)/da =
(1− e−αa)ν(a)

Φ(α)
. (37)
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(ii) The joint density of T −GT and ΔT is

P0(T −GT ∈ du, ΔT ∈ da)/duda =
α

Φ(α)
e−αu ν(a), u ≤ a. (38)

(iii) The density of T −GT conditionally on ΔT = a is

P0(T −GT ∈ du |ΔT = a)/du =
α

1− e−αa
e−αu, u ≤ a. (39)

Proposition 16. The joint Laplace transform of GT and DT is given by

E0 (exp(−γ1GT − γ2DT )) =
Φ(γ2 +α)−Φ(γ2)

Φ(γ1 + γ2 +α)
. (40)

In particular,

E0
(
e−γΔT

)
=

Φ(γ +α)−Φ(γ)
Φ(α)

, (41)

and the random variables GT and ΔT are independent. The density of GT is
given by

P0(GT ∈ du)/du = Φ(α)e−αu p(u;0,0). (42)

Proof. The formula (42) for the density of GT is obtained from (6) by integrat-
ing. The independence of GT and ΔT follows easily from (40). To derive the
joint Laplace transform of GT and DT consider

E0 (exp(−γ1GT − γ2DT ))

=
∫ ∞

0
dt α e−αt

∫
u<t<v

e−γ1u−γ2vP0(Gt ∈ du,Dt ∈ dv).

Applying the last exit decomposition formula (6) yields

E0 (exp(−γ1GT − γ2DT ))

=
∫ ∞

0
due−γ1u p(u;0,0)

∫ ∞

u
dve−γ2v

∫ v

u
dt α e−αt

×
∫ ∞

0
m(dy) fy0(t −u) fy0(v− t)

=
∫ ∞

0
due−γ1u p(u;0,0)

∫ ∞

0
dae−γ2(a+u)

∫ a+u

u
dt α e−αt p(u;0,0)

×
∫ ∞

0
m(dy) fy0(t −u) fy0(a+u− t)

=
∫ ∞

0
due−(γ1+γ2)u p(u;0,0)

∫ ∞

0
dae−γ2a

∫ a

0
dbα e−α(b+u)p(u;0,0)

×
∫ ∞

0
m(dy) fy0(b) fy0(a−b)
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= α
∫ ∞

0
due−(γ1+γ2+α)u p(u;0,0)

∫ ∞

0
m(dy)

∫ ∞

0
dae−γ2a

×
∫ a

0
dbe−αb fy0(b) fy0(a−b)

= αRγ1+γ2+α(0,0)
∫ ∞

0
m(dy)Ey

(
e−(γ2+α)H0

)
Ey
(
e−γ2H0

)
.

To proceed, we have∫ ∞

0
m(dy)Ey

(
e−(γ2+α)H0

)
Ey
(
e−γ2H0

)
=

1
Rγ2+α(0,0)Rγ2(0,0)

∫ ∞

0
m(dy)Rγ2+α(y,0)Rγ2(y,0).

The integral term in this expression can be evaluated:∫ ∞

0
m(dy)Rα+γ2(y,0)Rγ2(y,0)

=
∫ ∞

0
m(dy)

∫ ∞

0
dt e−(α+γ2)t p(t;y,0)

∫ ∞

0
dse−γ2s p(s;y,0)

=
∫ ∞

0
dt e−(α+γ2)t

∫ ∞

0
dse−γ2s p(t + s;0,0)

=
∫ ∞

0
dt e−(α+γ2)t

∫ ∞

t
due−γ2(u−t) p(u;0,0)

=
∫ ∞

0
due−γ2u 1− e−αu

α
p(u;0,0),

=
1
α
(
Rγ2(0,0)−Rγ2+α(0,0)

)
.

where the Chapman–Kolmogorov equation and the symmetry of the transition
density p is applied, and, by (26), this completes the proof. �

Remark 17. (i) From Proposition 14 it is seen that the density of ΔT can also be
written in the form

P0(ΔT ∈ da)/da =
α

Φ(α)

∫ ∞

0
m(dy)

∫ a

0
dbe−αb fy0(b) fy0(a−b),

which taking into account (37) leads to the identity

(1− e−αa)
α

ν(a) =
∫ ∞

0
m(dy)

∫ a

0
dbe−αb fy0(b) fy0(a−b).

Let here α → 0 to obtain

ν(a) =
∫ ∞

0
m(dy)

∫ a

0

db
a

fy0(b) fy0(a−b). (43)



118 P. Salminen, P. Vallois and M. Yor

It is interesting to compare this expression with the following one obtained from
(34)

ν(a) =
∫ ∞

0
m(dy) fy0(b) fy0(a−b). (44)

The fact that the right hand sides of (43) and (44) do not depend on b can also
be explained via the Chapman–Kolmogorov equation.
(ii) We may study distributions associated with Gt , Dt and Δt in the stationary
case, i.e., if m(R+) < ∞, by letting α → 0, as observed in Remark 11. From
Proposition 14 and Corollary 15 we deduce the following results:

P(−Gt ∈ du,Dt ∈ dv)/dudv =
1

m(R+)
ν(u+ v).

P(−Gt ∈ du)/du = P(Dt ∈ du)/du =
1

m(R+)

∫ ∞

u
ν(v)dv,

P(Δt ∈ da)/da =
1

m(R+)
aν(a).

Moreover, letting ZT := (T −GT )/ΔT then (ZT ,ΔT ) converges in distribution as
α → 0 to (U,Δ), where U and Δ are independent with U uniformly distributed
on (0,1) and Δ is distributed as Δt (cf. Theorem 7).

4.3. Infinite divisibility

In the paper by Bertoin et al. [2] it is proved that the distribution of ΔT for a
Bessel process with dimension d = 2(1−α),0 < α < 1, is infinitely divisible
(in fact, self-decomposable) and the Lévy measure associated with this distribu-
tion is computed. In this section we show that the distribution of ΔT is infinitely
divisible in general, i.e., for all regular and recurrent diffusions. Moreover, we
also prove that the distributions of T −GT and DT − T have this property. The
key to these results is the Krein representation of the density of the Lévy mea-
sure ν (see Knight [26], Kent [25], Küchler and Salminen [30], and, in general
on Krein’s theory of strings, Kotani and Watanabe [27], Dym and McKean [10])
according to which

ν(a) =
∫ ∞

0
e−azM(dz), (45)

where the measure M has the properties∫ ∞

0

M(dz)
z(z+1)

< ∞ and
∫ ∞

0

M(dz)
z

= ∞.

.

Theorem 18. The distributions of T −GT ,DT −T and ΔT are infinitely divisi-
ble.
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Proof. As seen from (35), (36), and (37), the intrinsic term in the densities of
T −GT , DT −T and ΔT is the density ν(a) of the Lévy measure of the inverse
local time at 0. We consider first the distribution of T −GT . Applying the Krein
representation (45) in (35) yields

P0(T −GT ∈ du)/du =
α

Φ(α)
e−αu

∫ ∞

u
da
∫ ∞

0
M(dz)e−az

=
α

Φ(α)
e−αu

∫ ∞

0

M(dz)
z

e−uz

=
α

Φ(α)

∫ ∞

0

M(dz)
z

e−(α+z)u

=
∫ ∞

0
(α + z)e−(α+z)u M̂α(dz)

with

M̂α(dz) =
α

Φ(α)
M(dz)

z(α + z)
. (46)

The claim of the theorem follows now from the fact that mixtures of exponen-
tial distributions are infinitely divisible (see Bondesson [5]). For DT − T we
compute similarly from (36) via the Krein representation

P0(DT −T ∈ dv)/dv =
α

Φ(α)
eαv

∫ ∞

v
e−αaν(a)da.

=
∫ ∞

0
ze−zv M̂α(dz).

To analyze the distribution of ΔT we use the Krein representation in (37) to
obtain

P0(ΔT ∈ da)/da =
1

Φ(α)

∫ ∞

0

(
e−za − e−(α+z)a

)
M(dz). (47)

Notice that for a ≥ 0

f (a;z,α) =
z(α + z)

α

(
e−za − e−(α+z)a

)
is a probability density as a function of a. In fact, letting T1 and T2 be two inde-
pendent exponentially distributed random variables, with respective parameters
z and α + z, then the sum T1 + T2 has the density f (a;z,α). In particular, the
distribution of T1 + T2 is a gamma convolution (which, by definition, is the law
of finite sum of independent gamma variables). Next we notice that letting

Πz,α(dx) :=
z(α + z)

α
x−2 dx, z < x < α + z
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we may represent the distribution of T1 + T2 as a mixture of Gamma(2)-distri-
butions as follows

f (a;z,α) =
∫ ∞

0
x2 ae−xa Πz,α(dx). (48)

Combining the representation (48) with (47) yields

P0(ΔT ∈ da)/da =
α

Φ(α)

∫ ∞

0

f (a;z,α)
z(α + z)

M(dz)

=
∫ ∞

0
x2 ae−xa Π̂α(dx), (49)

where Π̂α is a probability measure on R+ given for any Borel set A in R+ by

Π̂α(A) =
∫ ∞

0
M̂α(dz)Πz,α(A). (50)

The claim that the distribution of ΔT is infinitely divisible follows now from
(49) by evoking the result that mixtures of Gamma(2)-distributions are infinitely
divisible (see Kristiansen [29]). �
Remark 19. (i) Recall from Bondesson [5] that a probability distribution F on
R+ is called a generalized gamma convolution (GGC) if its Laplace transform
can be written as∫ ∞

0
e−saF(da) = exp

(
−μs+

∫ ∞

0
log

(
t

t + s

)
U(dt)

)
, (51)

where μ ≥ 0 and U is a measure on (0,∞) satisfying∫
(0,1]

| log t|U(dt) < ∞ and
∫

(1,∞)

U(dt)
t

< ∞.

It is known that if β is the total mass of U then the distribution F in (51) is a
mixture of Gamma(β )-distributions (see [5] Theorem 4.1.1 p. 49).
(ii) The distribution of the length Δt of an excursion straddling a fixed time t
for a stationary diffusion (with stationary probability distribution) is given in
Theorem 7 (21) as

P(Δt ∈ da) =
aν(a)
m(R+)

da.

Also in this case the distribution of Δt is a mixture of Gamma(2)-distributions
and, hence, it is infinitely divisible. In fact,

P(Δt ∈ da)/da =
∫ ∞

0
z2 ae−zaM̃(dz).

where the probability measure M̃ is given in terms of the Krein measure M via

M̃(dz) = M(dz)/(m(R+)z2).
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5. Case study: Ornstein–Uhlenbeck processes

In this section we give some explicit formulas for excursions from 0 to 0 associ-
ated with Ornstein–Uhlenbeck processes. It is possible to obtain such formulas
due to the symmetry of the Ornstein–Uhlenbeck process around 0. Analogous
results for excursions from an arbitrary point x to x are less tractable.

5.1. Basics

Let U denote the Ornstein-Uhlenbeck diffusion with parameter γ > 0, i.e., U is
the solution of the SDE

dUt = dBt − γUtdt with U0 = u,

and most of the time, but not always, we take u = 0. Recall that the speed mea-
sure and the scale function of U can be taken to be

m(dx) := 2e−γx2
dx and S(x) :=

∫ x

0
eγy2

dy,

respectively. Moreover, see [6] p. 137, the Green kernel of Ornstein–Uhlenbeck
process with respect to the speed measure is given for x ≥ y by

Rλ (x,y) =
Γ(λ/γ)
2
√γπ

exp

(
γx2

2

)
D−λ/γ

(
x
√

2γ
)

×exp

(
γy2

2

)
D−λ/γ

(
−y
√

2γ
)

,

where D denotes the parabolic cylinder function. In particular, since

D−λ/γ(0) =
√

π
(

2λ/(2γ) Γ((λ + γ)/(2γ))
)−1

,

we have, after some manipulations,

Rλ (0,0) =
√

π Γ(λ/γ)
2
√γ

(
2λ/(2γ) Γ((λ + γ)/(2γ))

)−2
.

Consequently, using the formula

Γ(x) =
2x−1
√

π
Γ((x+1)/2)Γ(x/2)

we obtain

Rλ (0,0) =
1

Φ(λ )
=

Γ(λ/(2γ))
4Γ((λ + γ)/(2γ))

. (52)

We remind also that U can be represented as the deterministic time change
(Doob’s transformation) of Brownian motion via

Ut = e−γt (u+βat) ,

where β is a standard Brownian motion and at := (e2γt −1)/2γ (see Doob [8]).
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5.2. Killed Ornstein–Uhlenbeck processes

We consider now the Ornstein–Uhlenbeck process killed at the first hitting time
of 0, and denote this process by Û . Let Y be the diffusion on R+ satisfying the
SDE

dYt = dBt +
(

1
Yt

− γYt

)
dt, Y0 = y > 0.

Recall that Y may be described as the radial part of the three-dimensional Orn-
stein–Uhlenbeck process. In [6] p. 138 the basic properties of such processes
are presented. In particular, we record that 0 is an entrance-not-exit boundary
point and the process is positively recurrent its stationary distribution being the
Maxwell distribution, i.e., the distribution with the density proportional to the
speed measure of Y , that is,

mY (dx) := 2x2 e−γx2
dx, x > 0.

We remark that there is a misprint in [6] p. 139; the stationary distribution in
the general case is not a χ2-distribution but a generalization of the Maxwell
distribution. The transition density of Y with respect to its speed measure mY is

pY (t;x,y) =
√γ e3γt/2√

2π sinh(γt)xy
exp

(
−γe−γt(x2 + y2)

2sinh(γt)

)
sinh

(
γxy

sinh(γt)

)
,

and can be computed from the transition density of a Bessel process using
Doob’s transform (for an approach via inverting the Laplace transform see Gior-
no et al. [18]). In Salminen [48] it is proved that

Px(Ût ∈ dy) = Px(Ut ∈ dy,t < H0)

= e−γt pY (t;x,y)
ϕγ(y)
ϕγ(x)

mY (dy), (53)

where ϕγ(x) = 1/x is the unique (up to multiplicative constants) decreasing pos-
itive solution of the ODE associated with Y killed at rate γ :

1
2

u′′(x)+
(

1
x
− γx

)
u′(x) = γu(x).

From (53) we obtain

Proposition 20. The transition density (with respect to its speed measure m) of
the Ornstein–Uhlenbeck killed at the first hitting time of 0 is given by

p̂(t;x,y) =
√γ eγt/2√
2πsinh(γt)

exp

(
−γe−γt(x2 + y2)

2sinh(γt)

)
sinh

(
γxy

sinh(γt)

)
. (54)
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Combining the expression of the transition density in (54) with formula (2)
yields the distribution of H0 (see also Sato [50] and Going–Jaeschke and Yor
[19]).

Proposition 21. The density of the first hitting time of 0 for the Ornstein–Uhlen-
beck process {Ut} is given by

fx0(t) =
γ3/2 xeγt/2

√
2π(sinh(γt))3/2

exp

(
− γe−γtx2

2sinh(γt)

)
. (55)

5.3. Lévy measure of inverse local time and densities of ΔT ,T −GT and
DT −T

The density of the Lévy measure of the inverse local time at 0 is obtained by
applying formula (12) (see also Hawkes and Truman [20]). Moreover, using
(52) in formula (4) leads to an explicit expression for the Bernstein function
associated with the inverse local time at 0.

Proposition 22. The density of the Lévy measure of the inverse local time at 0
is

ν(t) =
γ3/2 eγt/2

√
2π(sinh(γt))3/2

=
(2γ)3/2 e2γt

√
2π (e2γt −1)3/2

. (56)

Let {τ� : � ≥ 0} be the inverse local time at 0. Then

E0 (exp(−λτ�)) = exp

(
−�

4Γ((λ + γ)/2γ)
Γ(λ/2γ)

)
.

Next we display the distributions of ΔT ,T −GT , and DT − T . Recall that
these distributions are infinitely divisible and the densities are expressable via
the density of the Lévy measure, as stated in Corollary 15 formulae (35) and
(36), and in Theorem 18. To simply the notation, we take γ = 1.

Proposition 23. With Φ(α) as in (52), the distributions of ΔT ,T −GT and DT −
T are given, respectively, by

P0(ΔT ∈ da)/da =
1− e−αa

Φ(α)
2√
π

e2a
(
e2a −1

)−3/2
, (57)

P0(T −GT ∈ da)/da =
α e−αa

Φ(α)
2√
π
(
e2a −1

)−1/2
, (58)

and

P0(DT −T ∈ da)/da =
α eαa

Φ(α)

∫ ∞

a
due−αu 2√

π
e2u
(
e2u −1

)−3/2
. (59)
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5.4. The Krein measure

As seen in Section 4.3, the Krein representation plays a central rôle in the proof
of infinite divisibility of the distributions of T −GT ,DT −T , and ΔT . Therefore,
it seems motivated to compute the measure M (cf. (45)) in this representation
for Ornstein–Uhlenbeck processes.

To start with, we give the spectral representation of the transition density of
p̂ of the Ornstein–Uhlenbeck process killed at the first hitting time of 0. Instead
of computing from scratch, we exploit the spectral representation for pY (with
γ = 1) as presented in Karlin and Taylor [23] p. 333:

pY (t;x,y) =
∞

∑
n=0

w−1
n,1/2 e−2nt L(1/2)

n (x2)L(1/2)
n (y2), (60)

where {L(1/2)
n : n = 0,1,2, . . .} is the family of Laguerre polynomials with pa-

rameter 1/2 normalized via∫ ∞

0

(
L(1/2)

n (x2)
)2

mY (dx) =
√

π
2

(
n+ 1

2
n

)
=: wn,1/2. (61)

Notice that we consider the symmetric density with respect to the speed mea-
sure mY . From (53) and (60) the spectral representation of p̂ is now obtained
immediately and is given by

p̂(t;x,y) =
∞

∑
n=0

w−1
n,1/2 e−(2n+1)t xL(1/2)

n (x2)yL(1/2)
n (y2). (62)

The normalization (61) coincides with the normalization in Erdelyi et al. [11]
(see formula (2) p. 188 where the notation for the norm is hn). Therefore, from
[11] formula (13) p. 189 we have

L(1/2)
n (0) =

(
n+ 1

2

n

)
(63)

and, consequently (cf. (55)), we obtain the spectral representation for the density
of the first hitting time of 0

fx0(t) =
∞

∑
n=0

w−1
n,1/2 e−(2n+1)t xL(1/2)

n (x2)L(1/2)
n (0).

=
2√
π

∞

∑
n=0

e−(2n+1)t xL(1/2)
n (x2). (64)

To find the spectral representation for the density of the Lévy measure we apply
formula (56) which yields

ν(t) =
2√
π

∞

∑
n=0

(
n+ 1

2
n

)
e−(2n+1)t . (65)
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In view of (45), we have

Proposition 24. The measure M in the Krein representation of ν for the Orn-
stein–Uhlenbeck process is given by

M(dz) =
2√
π

∞

∑
n=0

(
n+ 1

2
n

)
δ{2n+1}(dz),

where δ{a} is the Dirac measure at a.

Note that

ν(t) =
2√
π

e−t (1− e−2t)−3/2
,

and, hence, (65) may also be obtained from the MacLaurin expansion of x �→
(1− x)−3/2 evaluated at x = e−2t .

Acknowledgements. We thank Lennart Bondesson for co-operation concerning gamma convolu-
tions.
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