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Abstract. We present a number of important identities related to the excursion theory of linear
diffusions. In particular, excursions straddling an independent exponential time are studied in
detail. Letting the parameter of the exponential time tend to zero it is seen that these results
connect to the corresponding results for excursions of stationary diffusions (in stationary state).
We characterize also the laws of the diffusion prior and posterior to the last zero before the
exponential time. It is proved using Krein’s representations that, e.g. the law of the length of the
excursion straddling an exponential time is infinitely divisible. As an illustration of the results we
discuss the Ornstein—Uhlenbeck processes.
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1. Introduction and preliminaries

1.1 Throughout this paper, we shall assume that X is a linear regular recurrent
diffusion taking values in Ry with O an instantaneously reflecting boundary.

P. SALMINEN
Abo Akademi University, Mathematical Department, FIN-20500 Abo, Finland
(e-mail: phsalmin@abo.fi)

P. VALLOIS

Université Henri Poincaré, Département de Mathématique, F-54506 Vandoeuvre les Nancy,
France

(e-mail: vallois@iecn.u-nancy.fr)

M. YOR

Université Pierre et Marie Curie, Laboratoire de Probabilités et Modeles aléatoires, 4, Place
Jussieu, Case 188, F-75252 Paris Cedex 05, France

(e-mail: deaproba@proba. jussieu.fr)



98 P. Salminen, P. Vallois and M. Yor

Let P, and E, denote, respectively, the probability measure and the expectation
associated with X when started from x > 0. We assume that X is defined in the
canonical space C of continuous functions ® : R, — R;. Let

6 =oc{w(s):s <t}

denote the smallest o-algebra making the co-ordinate mappings up to time ¢
measurable and take % to be the smallest o-algebra including all o-algebras
%, t>0.

The excursion space for excursions from 0 to 0 associated with X is a subset
of C, denoted by E, and given by

E:={eecC:€(0)=0,3(e) >0suchthate(r) >0Vt e (0,{(¢))
ande(r) =0Vt >{(¢e)}.

The notation &; is used for the trace of %; on E.

As indicated in the title of the paper our aim is to gather a number of funda-
mental results concerning the excursion theory for the diffusion X. In Section 2
the classical descriptions, the first one due to Itd6 and McKean and the second one
due to Williams, are presented. In Section 3 the stationary excursions are dis-
cussed and, in particular, the description due to Bismut is reviewed. After this, in
Section 4, we proceed by analyzing excursions straddling an exponential time.
The paper is concluded with an example on Ornstein—Uhlenbeck processes.

Our motivation for this work arose from different origins:

e First, we would like to contribute to Professor It0’s being awarded the 1st
Gauss prize, by offering some discussion and illustration of K. It6’s excur-
sion theory, see [21], when specialized to linear diffusions. The present paper
also illustrates Pitman and Yor’s discussion (see [42] in this volume) of K.
Itd’s general theory of excursions for a Markov process.

e In the literature there seems to be lacking a detailed discussion on the excur-
sion theory of linear diffusions. Information available has a very scattered
character, see, e.g. Williams [52], Walsh [51], Pitman and Yor [38], [39],
[40], [41], Rogers [46], Salminen [49]. The general theory of excursions has
been developed in It6 [21], Meyer [35], Getoor [13], Getoor and Sharpe [15],
[14], [16], [17], and Blumenthal [4]. Although the case with Brownian mo-
tion is well studied and understood, for textbook treatments see, e.g. Revuz
and Yor [43] and Rogers and Williams [47], we find it important to highlight
the main formulas for more general diffusions using the traditional Fellerian
terminology and language.

e To generalize some recent results (see Winkel [53] and Bertoin, Fujita, Roy-
nette and Yor [2]) on infinite divisibility of the distribution of the length of
the excursion of a diffusion straddling an independent exponential time.
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e The Ornstein—Uhlenbeck process is one of the most essential diffusions. To
present in detail formulae for its excursions is important per se. One of
the key tools hereby is the distribution of the first hitting time H, of the
point y from which the excursions are observed. For y = 0 this distribu-
tion can be derived via Doob’s transform (see Doob [8]) which connects
the Ornstein—Uhlenbeck process with standard Brownian motion (see Sato
[50], and Going—Jaeschke and Yor [19]). For arbitrary y the distribution is
very complicated; for explicit expressions via series expansions, see Riccia-
rdi and Sato [44], Linetsky [32] and Alili, Patie and Pedersen [1]. We will
focus on excursions from 0 to 0 and relate our work to earlier papers by
Hawkes and Truman [20], Pitman and Yor [40], and Salminen [48]. Due
to the symmetry of the Ornstein—Uhlenbeck process around 0, it is sufficient
for our purposes to consider only positive excursions— the treatment of neg-
ative ones is similar— and view the process with values in R, and O being a
reflecting boundary.

1.2 In this subsection we introduce the basic notation and facts concerning lin-
ear diffusions needed in the sequel. A main source of information remains It6
and McKean [22], see also Rogers and Williams [47], and Borodin and Salmi-
nen [6].

(i) Speed measure m associated with X is a measure on R, which satisfies
forall0<a<b <o
0 <m((a,b)) < oo.
For simplicity, it is assumed that m does not have atoms. An important fact

is that X has a jointly continuous transition density p(f;x,y) with respect
to m, 1.e.,

P.(X, € A) = /A p(tix,y)m(dy),

where A is a Borel subset of R;. Moreover, p is symmetric in x and y, that
is, p(t;x,y) = p(t;y,x). The Green or the resolvent kernel of X is defined
for A >0 as

Ry (x,y) :/0 dr e p(t;x,y).

(i1) Scale function § is an increasing and continuous function which can be
defined via the identity
S(b) —S(x)

Px(Ha < Hb) = m,

0<a<x<b, (1)

where H. denotes the first hitting time, i.e.,

Hy,:=inf{t: X, =y}, y>0.
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(iii)

(iv)

We normalize by setting S(0) = 0. Due to the recurrence assumption it
holds S(+4-c0) = +oco. Recall that {S(X;rm,) : t > 0} is a continuous local
P.-martingale for every x > O (see, e.g. Rogers and Williams [47] p. 276).
It is easily proved that S(X) = {S(X;) : t > 0} is a (recurrent) diffusion
taking values in R .. The scale function associated with S(X) is the identity
mapping x — x, x > 0, and we say that S(X) is in natural scale. Clearly,
also for S(X) the boundary point 0 is instantaneously reflecting. Using the
Skorokhod reflection equation it is seen that S(X) is a P,-submartingale
(cf. Meleard [34] Proposition 1.4 where the semimartingale decomposition
is given in case there are two reflecting boundaries).
The infinitesimal generator of X can be expressed as the generalized dif-
ferential operator

_d d

~ dm dS
acting on functions f belonging to the appropriately defined domain Z(¥)
of ¢ (see Itd6 and McKean [22], Freedman [12], Borodin and Salminen
[6]). In particular, since O is assumed to be reflecting then f € Z(¥) im-

plies that
— £(0)
vy i T = 1
S0 = S = s00)
The distribution of the first hitting time of a point y > 0 has a P,-density

P.(Hy € dt) = fy(t)dt.

=0.

This density can be connected with the derivative of the transition density
of a killed diffusion obtained from X. To explain this, introduce the sample
paths

g0 . )X 1<H,
1 T
Jd, t>H,

where d is a point isolated from R (a “cemetary” point). Then {)?,@ )
t > 0} is a diffusion with the same scale and speed as X. Let p denote the
transition density of X ) with respect to m. Then, e.g. for x >y

A

. P(t:x,2)
t) =lim ———.
For a fixed x and y, the mapping ¢ — fy,(¢) is continuous, as follows from
the eigen-differential expansions and discussion in It6 and McKean p. 153
and 217 (see also Kent [24], [25]). Recall also the following formula for
the Laplace transform of H,

2)

Ex (efaHy) — ROC('x7y) (3)
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which leads to

. 1
/0 m(dx) E, (e ) = QAR (y,y)

(v) There exists a jointly continuous family of local times
(LY 11 >0,y >0}

such that X satisfies the occupation time formula

/0 "dsh(X,) = /0 TR m(dy),

where 4 is a nonnegative measurable function (see, e.g. Rogers and Willi-
ams [47] 49.1 Theorem p. 289). Consequently,

1

) . !
Ly =lim 1 X )
! (Sllom((y—é,y+5))/o <y_5’y+5)( s)ds

For a fixed y introduce the inverse of LY via
réy) :=inf{s : Lﬁ” > (}.

Then 70) = {’L‘éy ) :£ >0} is an increasing Lévy process, in other words, a
subordinator and its Lévy exponent is given by

E, (exp(—lféy))> = exp (—{/Rx(,y))

— exp(—¢ /0 VO@)(1—e ), @)

where v is the Lévy measure of 71). The assumption that the speed
measure does not have atoms implies that ) does not have a drift. In
case y = 0 we write simply L, T and V.

1.3 Assuming that X is started from 0 we define for ¢t > 0
G;:=sup{s <r:X;=0} and D,:=inf{s>1:X;=0}. (5)
The last exit decomposition at a fixed time ¢ states that foru <t <v

PQ(G; € du,Xt € dy,Dt € dV)
= p(u;0,0) fyo(t —u) fro(v—1t)dudvm(dy).  (6)

In fact, this trivariate distribution is only the skeleton of a more complete body
of processes:

{XM:MSGt}a {XGt+V:V§t_Gt}7 and {Xt+V:VSDt_t} (7)
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the distributions of which we now characterize following Salminen [49]. For
general approaches, see Getoor and Sharpe [15], [14], and Maisonneuve [33].

Let x,y € Ry and u > 0 be given. Denote by (X**”,P,, ) the diffusion
bridge from x to y of length u constructed from X, i.e., the measure P, , , govern-
ing X" is the conditional measure associated with X started from x and condi-
tioned to be at y at time u. The bridge X" is a strong non-time-homogeneous
Markov process defined on the time axis [0, u]. For the first component in (7),
we have conditionally on G; = u

{X,:0<s<< G} L {x040:0<s<u). (8)

For the second component in (7), consider the process X0 as introduced in
(iv) above with y = 0. We write simply X instead of X, For positive x and y
let X5 denote the bridge from x to y of length u constructed, as above, from
X. The measure Px uy governing XY can be extended by taking (in the weak
sense)

Pouy = ljggpx,u,y-

We let X0 denote the process associated with IA’Q%y. Then, conditionally on
G;=uand X; =y,

(Xg4s:0<s<t—G} L (X0 :0<s<r—u}. 9)

For the final part in (7), by the Markov property, we have conditionally on
Xl‘ =Yy

(Xiuy s <D, —1r £ {X,: 5 < Hy)}, (10)
where Xy = y.

Remark 1. Diffusion bridges can be seen as Doob’s h-transforms of the under-
lying diffusion. Indeed, for the nonnegative functional ¥ on the path space we
have forv < u

= = plu—v;w,,y)
E Y(w,:s< =K, WP (w,:s < )
ey (10,2 0) =B (w0, B0

Letting here y | 0 and using (2) we may describe the measure associated with
the bridge X**? via

Eeo(W(0,:s<v)) =E, (‘P(a)s L5 <) %) . (11)
x0



On the excursion theory for linear diffusions 103

2. Two descriptions of the It6 measure
2.1. Description due to Ito and McKean

We discuss the description of the 1t6 measure n where the excursions are studied
by conditioning with respect to their lifetimes. Let X be as in Section 1.3 and
p(t;x,y) its transition density with respect to the speed measure; in other words,

P.(X, € dy) = Pi(X; € dy;t < Ho) = p(t;x,y) m(dy).

The Lévy measure v of 7 is absolutely continuous with respect to the Lebesgue
measure, and the density— which we also denote by v— is given by

— % v=1lim imM
v(v):=v(dv)/dv = lxw lyw S(x)S(y)

In Section 1.3 we have introduced the bridge X" and the measure IA’XM

=: p!(v;0,0). (12)

associated with it. The family of probability measures {IA’XM :x>0,y>0}is
weakly convergent as y | 0 thus defining lA’x’,,o for all x > 0. Intuitively, this
is the process X conditioned to hit 0 at time t, cf. (11). Moreover, letting now
x | 0 we obtain a measure which we denote by 130,,70 which governs a non-time
homogeneous Markov process X0+.0 starting from 0, staying positive on the time
interval (0,7) and ending at O at time .

Theorem 2. (i) The law of the excursion life time { under the It excursion
measure n is equal to the Lévy measure of the subordinator {7} y>o and is given
by

n(¢ € dv)=v(dv) = p' (v;0,0)dv. (13)
(ii) The Ito measure can be represented as the following integral
n(de) = / n(¢ € dv)Po,o(de). (14)
0

Moreover, the finite dimensional distributions of the excursion are characterized
forO<ti <t < ---<tyandx;>0,i=1,2,....nby

n(&, €dxi, &, €dxy,..., &, € dxy)
=m(dxy) fe0(t1) p(ta — t1;x1,Xx2) m(dxz) (15)
X+ Pty — ty—15Xn—1,Xn) m(dxy).
In particular, the excursion entrance law is given by
n(g € dx) = m(dx) fyo(t),
and it holds

n(c>t):/0°°n(g, edx):/omm(dx)fxg(t). (16)
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Combining the formulas (13) and (14) with the last exit decomposition (6)
leads to a curious relation between the transition densities p and p!.

Proposition 3. The functions p(t;0,0) and p'(t;0,0) satisfy the identity

(oo}

t
/ du p(u;0,0) [ dv p!(v;,0,0) = 1. (17)
0

t—u

Proof. From (13) and (16) we may write

/tmdv ! (1:0,0) =n(f > 1) = /Ooom(dx)fx()(t).

Consequently, identity (17) can be rewritten as

/tdu p(u;0,0) /wm(dx)fxg(t —u) =1, (18)
0 0

but, in view of the last exit decomposition (6), identity (18) states that the last
exit from O when starting from 0 takes place with probability 1 before ¢, in other
words,

Po(G, <1) =1,

which, of course, is trivially true. U]

Remark 4. For another approach to (17), notice that (4) and (12) yield

1 (o]
= [ dvp'(»0,0)(1—-e*).
R;(0,0) /0 v p (0, )( © )

Hence, from the definition of the Green kernel,

1:/ due“‘p(u;o,O)/ dv p!(v;0,0)(1 —e™ ). (19)
0 0

Consequently,

/due " uOO/dve / ds p'(s;0,0)
—/ du/ dve Huty) uOO/ dsp (5;0,0),

from which (17) is easily deduced.
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2.2. Description due to Williams

In the approach via the lengths of the excursions the focus is first on the time
axis. In Williams’ description (see Williams [52], and Rogers [45], [46]) the
starting point of the analysis is on the space axis since the basic conditioning
is with respect to the maximum of an excursion. To formulate the result, let for
ecE

M(e) :=sup{g:0<tr<{(¢e)}.

The key element in Williams’ description is the diffusion X' obtained by con-

ditioning X not to hit 0. We use the notation Pl and E)TC for the measure and
the expectation associated with X! when started from x. To define this process
rigorously set for a bounded F; € %;,t > 0,

El(F) = alTiinwEx(F, .t < H,|H, < Hp)

— Lim E.(F ;t <H, < Hp)

 al+e  P(H, < Hp)

— lim E,(FS(X;);t < Ha/\HO)’
al-+eo S(x)

where the Markov property and formula (1) for the scale function are applied.
The monotone convergence theorem yields

El(F) = —E«(FS(X,):t < Hy),

1
S(x)
in other words, the desired conditioning is realized as Doob’s h-transform of X

by taking / to be the scale function of X. It is easily deduced that the transition
density and the speed measure associated with X! are given by

p(t;x,y)
S»)S(x)’
We remark that the boundary point O is entrance-not-exit for X T and, therefore,

X' can be started from 0 after which it immediately enters (0, c0) and never hits
0.

pl(tx,y) = m'(dy) := S(y)*m(dy).

Theorem 5. (i) The law of the excursion maximum M under the Ito excursion
measure n is given by

n(M>a)= ﬁ.

(ii) The Ito excursion measure n can be represented via

n(de) = /0 “n(M € da) Q) (de),
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where Q™9 is the distribution of two independent X' processes put back to
back and run from 0 until they first hit level a.

As an illustration, we give the following formula

¢
n(1 —exp(—/o dsV(e,)))

_ /Ooon(M € da) (1 - (Eg(exp(—/oH” duV(a)u)))>2> .

If V > 0, this quantity is the Lévy exponent of the subordinator

{[Fasvix o0}

that 1s,

oo o)
— exp {—En (1 —exp (_a/ocdsv(es)» } |

Comparing the descriptions of the 1t6 excursion measure in Theorem 2 (in
particular formula (15)) and in Theorem 5 hints that the processes X and X!
have, in addition to conditioning relationship, also a time reversal relationship.
This is due to Williams [52], who particularized to the case of diffusions the
general time reversal result, obtained by Nagasawa [36]. See also [43] p. 313,
and [6] p. 35.

Proposition 6. Let for a given x > 0

Ay :=sup{r : o(t) =x}

denote the last exit time from x. Then
(X, :0<s<Hy} £ {X] ,:0<s <A, (20)

where )?0 —xand X! = 0.
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3. Stationary excursions; Bismut’s description

Consider the diffusion X with the time parameter ¢ taking values in the whole of
R. In the case m(R) < oo the measure governing X can be normalized to be a
probability measure. Indeed, in this case the distribution of X; is for every t € R
defined to be

P(X; € dx) = m(dx)/m(R;) =: m(dx).

Recall from (5) the definitions of G; and D;, and introduce also A; := D, — G;.

Theorem 7. Assume that m(R.) < oo. Then the joint distribution of t — G, and
D; —t is given by

P@—Gedef4€dWAmmn:AwﬁwwﬁNMAdw
= V(u+v)/mRy).
Consequently, for A, it holds
P(A; €du)/du=uv(u)/mR;). (21)
Moreover, the law of the process {Xg,+,:v < A} is given by
C(e)n(de)/m(R,), @2)

where n(de) is the Ité6 measure, as introduced in Theorems 2 and 5, and §
denotes the length of an excursion.

Proof. The density of (r — G,,D; —t) is derived using the time reversibility of
the diffusion X, i.e.,

(X, :teR} £ {X_, :1€R},

and the conditional independence given X;. The fact that the density can be ex-
pressed via the density of the Lévy measure is stated (and proved) in Proposition
14 below, see formulas (32) and (33). To compute the distribution of A; is el-
ementary from the joint distribution of t — G; and D, — ¢. For these results, we
refer also to Kozlova and Salminen [28]. The statement concerning the law of
{XG,+v : v < A} has been proved in Pitman [37] (see Theorem p. 290 point (iii)
and the formulation for excursions on p. 293 and 294)— all that remains for us
to do is to find the right normalization constant, but this is fairly obvious, e.g.
from the density of A;. 0

If m(R.) = oo the measure associated with X is still well-defined but “only”
o-finite. In this case, the distribution of X; is plainly taken to be m. From (22) it
is seen that we are faced with a representation of the Itd measure via stationary
excursions valid in both cases m(R ) < co and m(R ) = . We focus now on
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this representation as displayed in (23) below, and present a proof of the rep-
resentation using the diffusion theory (this provides, of course, also a proof of
(22)). We remark that in Pitman [37] a more general case concerning homoge-
neous random sets is proved, and, hence, it seems worthwhile to give a “direct”
proof in the diffusion case.

Theorem 8. Let F' be a measurable non-negative functional defined in the ex-
cursion space E. Then up to a normalization

1

n(F(e)) =E (K F(XGs:0<s< A,)) . (23)

t

In particular, the process {X¢,+s: 0 < s < A} conditionally on A, = v is identi-
cal in law with the excursion bridge X 0v0 " as introduced in Section 2.1.

Proof. Without loss of generality, we take t = 0. From (21) we have

D= [ @) via)da = (Aio f(Ao)> ,

where f is a measurable nonnegative function on (0,). Therefore, it is enough
(cf. Theorem 2) to prove that

n(F(e)|8 =u)=E(F (Xgy+s:0<s5s<Ag)|Ao=u). (24)
DefineforO0<s; <s) <---<s,<u
A n = {XG0+Sl € dyl,...,XG0+Sn € dyn},

and consider

P(Al,n\Ao:u):// P (A}, —Go € dv,Xo € dy| Ao = u)
y=

:/ / Aln’A()—I/l Go=-—v,Xo=1Yy)
y=

XP(—G() edv, Xy € dy]A() = u)
From the description of the process X, the conditional independence and the

equality of the laws of the past and future given Xy, and by formula (21) we
obtain

P(—Gopedv,Xp €dy|Ay=u) = fro) fro(w—v)m(dy)dv.  (25)

1
uv(u)
Letting k be such that —v+s; < 0 < —v+ 841, if any, we write applying again
the conditional independence

P(Aljn |A0 =u, G() =V, XQ :y)
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= P(Al,kAk—i-l,n |AQ = Uu, GO =V, X() = y)
=P (B x| Xo=y)P(Bry1,n|Do=u—v,Xo =),

where for 1 <i<j<n
Bi,j = {X—V-i-si - dyi, . 7X—V+Sj - dy]}

Recall from Introduction Section 1.2 (iv) the notation X for the dAiffusion X
killed when it hits 0, and from Remark 1 the definition of the bridge X*»"V. With
these notations we have

P(A1x|Go=—v,Xo=Y)

— Ay,v,() (wv—sk € dyk, e, Wy, € d}’l)
1

B fo(v)

P(v—sk;3, k) m(dyx) p(sk — Sk—15Yk, Vk—1) m(dyg—1)

X ... p(s2—s1;y2,y1)m(dy1) fy,0(s1)
and
P (Bit1n|Do=u—v,Xo=1y)

= Py,ufv,O (Cosk_s_lfv € dyk—i—la ceey Wy, —y € dyn)

1 .
= mp(skﬂ — VY, Yi+1 ) m(dyk+1)
b

X D(Sk+2 = Skt 15 Yk 15 Vir2) m(dyi+2)

X oo D(Sn — Sn—15Yn—1,Yn) M(dyn) fy,0(tt — 8n).

Using now (25) and formulas above we have after some rearranging and after
applying the symmetry of the transition density p

P(Aljn |AQ = u)

— uvl(u) m(dy1) fy,0(s1)P(s2 = s1531,y2) m(dy»)

oo [Cav [ mld) P sy Pl — i)
X o D(Sn = Sn—15Yn—1,Yn) m(dyn) fy,0(tt — $p).
Performing the integration yields

P(Aljn |A() = u)

= ﬁm(dyl)fylo(sl)ﬁ(n —s13y1,y2) m(dy2)

X oo P(Sp = Sn—15Yn—1,Yn) Mm(dyn) fy,0(u —$,).
Consequently, (24) holds, and the proof is complete. 0
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Remark 9. The formula (23) was derived for Brownian motion by Bismut [3].
The connection with the Palm measure and stationary processes is discussed
in Pitman [37]. In fact, Bismut describes in the Brownian case the law of the
process {Xg,+s : 0 < s <A} in terms of two independent 3-dimensional Bessel
processes started from 0 and killed at the last exit time from an independent level
distributed according to the Lebesgue measure (see [3] and [43] for details).

4. On the excursion straddling an independent exponential time

In the literature one can find several papers devoted to the properties of excur-
sions straddling a fixed time ¢; first of all, Lévy’s fundamental paper [31], which
contains a lot about the zero set of Brownian motion, its (inverse) local time, ex-
cursions, and so on. See also Chung [7] starting from Lévy’s paper [31], Durrett
and Iglehart [9], and Getoor and Sharpe [16], [17]. In fact, the last exit decom-
position (6) lies in the heart of these studies (see Getoor and Sharpe [15], [14]).
However, it seems to us that excursions straddling an exponential time are not
so much analyzed. Here we make some remarks on this subject.

Let T be an exponentially distributed random variable with parameter o > 0,
independent of X, and define

Gr:=sup{s <T:X; =0}, Dy :=inf{s > T : X; =0},

and
AT = DT - GT.

The Lévy exponent of the inverse local time at 0 is denoted by @, in other words,
Eo (exp(—A1)) = exp (—£D(4))
Recall the relation (cf. (4) with y = 0)
®d(A)R,(0,0) = 1. (26)

4.1. Last exit decomposition at T

In this subsection we study the distributions of different path segments of the
diffusion X killed at the first hitting time of O after the exponential time 7.

Theorem 10. (i) The processes
{X,:u<Gr} and {Xg,+v:v<Ar}

are independent.
(ii) The law of {X,, : u < Gt} may be described as follows:
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(a) Lt := Lg, is exponentially distributed with mean 1/® ().
(b) The process {X, : u < Gr} conditionally on Ly = { is distributed as {X, :
u < 1} under the probability

exp(—at+{P(a)) Py.

(iii) The law of the process {Xg,+v: v < Ar} is given by

% (1-e7®) n(de). 27)

where n(de€) is the It measure associated with the excursions away from 0 for
X and € denotes the length of an excursion.

Proof. Let F| and F, be two nonnegative functionals on the path space and
consider

EO (F1 (Xu . u S GT)F2(XGT+V Y S AT))
By / dt ¢ “Eq (Fi(Xy : tt < G) Fa(XG,00 - v < AY))
0

T
= oEy (Z/ die ™ "Fi(Xy:u< )Xy v v<T— ’L'g))
Y To—

=E, (/:df e YUF(X, u< ’L'g))
x /n(ds) (1-¢ @) R(e:s < {(e)

where the third equality is based on the properties of the Poisson random mea-
sure associated with the excursions (see Revuz and Yor [43] Master Formula p.
475). ]

Remark 11. Notice that letting @ — 0 in (27) and using

. 104 .
gtlghm = élLI%)OCRa(0,0) =1/m(Ry) (28)

yield the probability law of the excursion straddling a fixed time in the stationary
setting, cf. (22) in Theorem 7.
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As a corollary of Theorem 10 we have the following results which show
that after conditioning the quantities do not depend on ¢. The formulas should
be compared with (8), (9), and (10). The distributions of G and A7 are given,
respectively, in (42) and (37) below.

Corollary 12. For any three nonnegative functionals Fy,F,, and F3 on the path
space it holds
E() (Fl(Xu u S GT) |GT :g) = E() (Fl(Xu u S g) |Xg = 0)
=Eo0(Fi(o,:u<g)), (29)

EQ(Fz(XGT+u:MS T—GT)|T—GT :d,XT :y)
—E (R(X,:u<d)|X;=y)
= E()ﬂ"y(Fz(COS s < d)), (30)

and

Eo (F3(XG, v : v < A7) |Ar = h) = B} (F3(X, : v < h)| X}, = 0)
= EO,h,O(F3(a)s s < I’l)) (31)
Proof. The statements (29) and (30) can be obtained from the corresponding
result for fixed time as presented in (8) and (9), respectively. Also (31) can be

derived from the fixed time result but we prefer to present here a proof based on
the Master Formula. For this consider for 0 < a < b

Eo (FZ(XGT+V v <Ar) l{agAT<b})

1 —e—@&(e)
- /“(de) <<I>(a)> Fa(& 5 < §(€)) Lazg(e)<)-

Using the description (14) of the Itd excursion law we obtain
Eo (F2(Xg,4v 1 v < A7) Lgcn,<py)

b [ —e 2"\
= [ duv ——— | Eouo(Fa (0 : s <u)).
[ v (“5ir ) BowolF@: s <)
Recognizing here the density of the distribution of A7 as given in (37), we obtain
(31). O

In the next proposition we discuss some properties of the processes {X¢, 4 :
u<T-Gr}and {Xr4+y : u < Dr —T}. In particular, it is interesting that the
time reversal of {Xg, 4, : u < T — G} has a clean description, as presented in
point (iii) below.
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Proposition 13. (i) Conditionally on Xr, the processes
{Xg+u :u<T—Gr} and {Xry,:u<Dp—-T}

are independent.

(ii) Given X1 =y, the process {Xr1, : u < Dy — T} is distributed as the process
{X, : u < Hy} when started from y.

(iii) Given X7 =y, the process {Xr_, :u < T — Gy} is distributed as the process
{X,, : u < Hp} conditioned by the event {Hy < T} and started from y.

Proof. The first two claims are easy consequences of the Markov property. To
prove the third claim we compute first the joint distribution of 7 — G and X7.
Letting (u,v) — ¢@(u,v) be a nonnegative measurable function formula (6) yields

Eo(¢(T —Gr,Xr)) = O‘/R4 o (u,y) l{u<t<v} e_wp(t —u;0,0)
+
x fyo(u) fyo(v—1)m(dy)dudvdt.

Integrating with respect to v and ¢ yields

Eo (¢(T — Gr.X1)) = aRa(0,0) [ | 9(u.y)e™™ fo(uym(dy)du.

+

For any pair (¥, y), which consists of a nonnegative functional on path space
and a Borel function, we consider for u, > 0

(Y, y) == Eo (¥ (Xr—u:u <uo) Lyyer—6,) Y(X7))
= a/o e Y E, (‘P (Xt i u <o) Ly -G,y l//(X,)) dt

[e3<] t o)
= a/ dre ™ / / Po(t — G, €dv, X; € dy) y(y)
0 v=0Jy=0
xEo (W (X—u:u <o) Lyy<r—Gy [t =G =v, X; =) .
From (9),

Eg (‘P (Xi—u:u<uy,) Ly <i—G) t—G,=v, X, = y)
=Ko,y (Y (0 u<u,)), ty<v.

By the time reversal property of diffusion bridges (see [49] Proposition 1) it
holds for all u, <v

Eo,y (W (0 4 <1t,)) = Ey 0 (W (01 u < up)).

From (11) we have for u, <v

A~

Eyo (¥ (001 u <o) = By (¥ (X u < uo) fir, 0(v =) / fro(v)
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and, therefore,

O(¥.y) = [ Po(T—Gr € dv. X € dy) w(s) By (¥ (@, 0 < w,))

= aRq(0,0) | dvm(dy) y()
xe ME, (W (X u <o) fx, 0(v—1to))
— 0.R(0,0) /R m(dy) y(y)

+

XEy (W (Xy:u<uy) u,<Hy<T)

by the Markov property. Consequently,

O(¥, ) = aRa(0,0) [ m(dy) y()Py(Ho < T)

XEy (‘P(Xu u< uo) 1{u0<H0} ’H() < T) ,

and this proves the claim since we may identify the distribution of X7 by taking
Y =1 and letting u, | O. O]

4.2. On the distribution of (Gr,Dr)

In this subsection the distributions of T — Gy, Dy — T and Ay := Dy — G are
studied in detail.

Proposition 14. The joint distribution of T — G and Dy — T is given by
P()(T —Gr €du,Dy —T € dv)

— dudv R (0,0) e /0 " m(dy) fo(u) fro(v). (32)
_ae ¥v(u+tv)
B(a) dudv. (33)
In particular, _
Vi) = [ mldy) fo(u) fo(v) (34)

Proof. From (6),
Po(t — G, € du,D, —t € dv)
= dudv p(t — u;0,0) 1<, ,>0) /0 wm(dy) Sro(u) fro(v),
and, hence,

P()(T —Gr €du,Dr—T € dv)
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oo

— dudvol / dte p(t—u:0,0) /0 m(dy) fio(te) fo(v).

from which (32) follows. To derive (33), we apply again the Master Formula
(see Revuz and Yor [43] p. 475). For this, let (u,v) — ¢(u,v) be a non-negative
and Borel measurable function and define

0(¢) :==Eo(@(T — Gr,Dr —T)).
Letting 7, denote the inverse of the local time L at 0 we have

0(9) = Eo (Z o(T -7 ,7—T) 1{1/<T<r/}>

(>0
= EO <A2 (P(T - TE?Z+ T€ T T) 1{1@<T<T5+Z}V(Z) dde) )
+

since {(¢,7¢) : £ > 0} is a Poisson point process with Lévy measure d¢dv, and
T is independent of {7, : £ > 0}. Apply next that T is exponentially distributed
to obtain

Q(‘P)ZEO(/R2

+

— aE, ( /R V(@)e T o(xz—x) 1 ey dxdzde> ,
+

T+2
v(z)dzdé/ dioae ™™ ot — 1,2+ ’Cg—t))
T

where we have substituted x = ¢ — 7,. Furthermore, setting y = z — x yields

Q(p) = oEy </R3 v(y +x)e_05(x+fz) o (x,y) dxdydf)

+

= aE (/ e‘”%lf) /2 o(x,y)e” **v(y+x)dxdy,
0 R2

and (33) follows now easily from (4). The equality (34) is an immediate conse-

quence of (32) and (33). L]
Corollary 15. (i) The densities for T — Gy, Dy — T, and At are given, respec-
tively, by
a (oo}
PO(T G € du)du= e~ / v(2)dz, (35)
a (o]
Po(Dy —T €dv)/dv= “V/ ““y(z2)d 36
o(Dr =T €dv)/dv 30 ) © v(2)dz, (36)
and

(1-e"*)v(a)

Py(Ar €da)/da = B(00)

(37)
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(ii) The joint density of T — Gt and At is

Po(T — Gy € du, Ay € da)/duda = O‘a e v(a), u<a. (38

(iii) The density of T — Gt conditionally on At = a is
a —u
PO(T—GTEdM|AT:(Z)/dM:me Ot, u<a. (39)

Proposition 16. The joint Laplace transform of Gr and Dr is given by

P(p+a)—P
Eo (exp(~1Gr ~ 1Dr) = T FOTL o)
In particular,
> —-d
EO (ef}/AT) — (Y+CI;X()(X) (Y)’ (41)

and the random variables Gt and At are independent. The density of Gt is
given by
Po(Gr € du)/du=®(a)e”* p(u;0,0). (42)

Proof. The formula (42) for the density of Gr is obtained from (6) by integrat-
ing. The independence of Gy and Ar follows easily from (40). To derive the
joint Laplace transform of Gy and D7 consider

Ej (exp(—nGr — »Dr))
—/ dtae” "“/ e NPy (G, € du,Dy € dv).
u<r<v

Applying the last exit decomposition formula (6) yields

Eo (exp(—nGr —»Dr))

—/ due™"" p(u;0,0) / dve” YZV/ dtae ™

< [ mldy) foe =) fo(v=1)
= /Ooodue_””p(u;O,O) /Ooodae_”(””) /uaJrudtoce_mp(u;O,O)
< [ mldy) fole =) fola+u—1)
= /Ooodue_W‘””“p(u;O,O) /Omdae_”“ /Oadbae_“<b+”)p(u;0,0)

< | m(ay) £o(®) fola—b)
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B a/ due” (17 p(1:0,0) / m(dy) / dae
0 0 0
X /0 dbe™* f0(b) fyo(a—b)
- aR?’1+72+a(0,0)/ m(dy)E, (e_(72+0‘)H0> E, (e—YzHo) .
0
To proceed, we have

/mm(dy) Ey (e—(?’2+a)Ho> Ey (e—?’zHo)
0
_ 1
~ Ry+a(0,0

00 Jy ") R 0Rn 0,0).
The integral term in this expression can be evaluated:
| (@) R (0)R (:0)
= /Ooom(dy) /Ooo dre= (%) p(1:y,0) /Ooodseyzsp(s;y, 0)
= /Ooo dte(atn) /Owdse_yzsp(t +5;0,0)
die (@R / " due P p(u:0,0)
t

] —e—Ou
due 7" %p(u;0,0),

ﬁ:ﬁ

_ é (R (0,0) — Ryy+a(0,0)).

where the Chapman—Kolmogorov equation and the symmetry of the transition
density p is applied, and, by (26), this completes the proof. 0

Remark 17. (1) From Proposition 14 it is seen that the density of Ar can also be
written in the form

Po(Ar € da)/da= g | miay) [ dbe10(b) fola- )

which taking into account (37) leads to the identity

(1 —e™ %)
o

v(a) = /0 " m(dy) /0 " dbe fo(b) frola—b).

Let here ¢ — 0 to obtain

v@ = [“mia@n) " folb) fola—b) @3)
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It is interesting to compare this expression with the following one obtained from
(34)

V@) = [ m(dy) fo(b) fola—b). @)

The fact that the right hand sides of (43) and (44) do not depend on b can also
be explained via the Chapman—Kolmogorov equation.

(i1) We may study distributions associated with G;, D; and A; in the stationary
case, i.e., if m(R) < oo, by letting @ — 0, as observed in Remark 11. From
Proposition 14 and Corollary 15 we deduce the following results:

P(—G; € du,D; € dv)/dudv = m(11{+) v(u+v).
1 (o)
P(—G; € du)/du=P(D, € du)/du = R ) /u v(v)dv,
P(A; €da)/da = av(a).

m(R4)
Moreover, letting Zr := (T — Gr)/Ar then (Zr,Ar) converges in distribution as

o — 0to (U,A), where U and A are independent with U uniformly distributed
on (0,1) and A is distributed as A, (¢f. Theorem 7).

4.3. Infinite divisibility

In the paper by Bertoin et al. [2] it is proved that the distribution of Ar for a
Bessel process with dimension d = 2(1 — «),0 < o < 1, is infinitely divisible
(in fact, self-decomposable) and the L.évy measure associated with this distribu-
tion 1s computed. In this section we show that the distribution of Az is infinitely
divisible in general, i.e., for all regular and recurrent diffusions. Moreover, we
also prove that the distributions of 7 — Gy and Dy — T have this property. The
key to these results is the Krein representation of the density of the Lévy mea-
sure V (see Knight [26], Kent [25], Kiichler and Salminen [30], and, in general
on Krein’s theory of strings, Kotani and Watanabe [27], Dym and McKean [10])
according to which

v(a) = /OOO e “M(dz), (45)

where the measure M has the properties

* M(dz) * M(dz) .
/()Z(z+1)<oo and /o z

Theorem 18. The distributions of T — Gp,Dy — T and Ay are infinitely divisi-
ble.



On the excursion theory for linear diffusions 119

Proof. As seen from (35), (36), and (37), the intrinsic term in the densities of
T — Gy, Dy — T and Ay is the density v(a) of the Lévy measure of the inverse
local time at 0. We consider first the distribution of 7 — G7. Applying the Krein
representation (45) in (35) yields

PO(T G € du)du = g /da/ M(dz)e ™

:q)(a)e_ /O ZZ) uz

_ (04 /oo M(dZ) e*(OH‘Z)M
P(a) Jo  z
(

- /o (o0 +z)e” (@4 Mg (dz)

with

o M(dz)
d(o) z(a+z)°
The claim of the theorem follows now from the fact that mixtures of exponen-

tial distributions are infinitely divisible (see Bondesson [5]). For Dr — T we
compute similarly from (36) via the Krein representation

My (dz) = (46)

CIDEXOC) eav/v e *v(a)da.

= /0 26 My (d).

Po(Dr —T €dv)/dv=

To analyze the distribution of Ar we use the Krein representation in (37) to
obtain

1 )
_ —za _ —(o+z)a
Po(Ar € da)/da= @ /0 (e e ) M(dz). 47)

Notice that fora > 0

fla;z,a) = (o t2) (e—za _ e—(a—i—z)a)

(04

is a probability density as a function of a. In fact, letting 77 and 75 be two inde-
pendent exponentially distributed random variables, with respective parameters
z and o + z, then the sum 77 + 75 has the density f(a;z, o). In particular, the
distribution of 77 + 7> is a gamma convolution (which, by definition, is the law
of finite sum of independent gamma variables). Next we notice that letting

(04
do+2) xfzdx, 7<x<a+z

HZ,(X (dx) =
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we may represent the distribution of 77 4+ 7, as a mixture of Gamma(2)-distri-
butions as follows

flasz,@) = [ Pae T, a(dx) (48)

0
Combining the representation (48) with (47) yields
fla;z,a
Po(Ar € da)/da = /
0(Ar @)/da = Oc—l—z 4z)
:/ x>ae Ty (dx), (49)
0

where ﬁa is a probability measure on R given for any Borel set A in R, by

A) = /0 " Ma(d2)TL o (A). (50)

The claim that the distribution of Az is infinitely divisible follows now from
(49) by evoking the result that mixtures of Gamma(2)-distributions are infinitely
divisible (see Kristiansen [29]). ]

Remark 19. (1) Recall from Bondesson [5] that a probability distribution F' on
R, is called a generalized gamma convolution (GGC) if its Laplace transform
can be written as

= —sa _ . - L
/Oe F(da)—exp( ,us+/0 10g<t+S>U(dt)>, (51)

where p > 0 and U is a measure on (0, o) satisfying

/ |logt|U(dt) <o and / Uar)
(0.1] (1,00)

It is known that if B is the total mass of U then the distribution F in (51) is a
mixture of Gamma(f)-distributions (see [5] Theorem 4.1.1 p. 49).

(i1) The distribution of the length A; of an excursion straddling a fixed time ¢
for a stationary diffusion (with stationary probability distribution) is given in
Theorem 7 (21) as

< oo,

av(a)

m(R.)
Also in this case the distribution of A; is a mixture of Gamma(2)-distributions
and, hence, it is infinitely divisible. In fact,

P(A, €da) = da.

P(A; €da)/da = / Zae “M(dz).
0

where the probability measure M is given in terms of the Krein measure M via

M(dz) = M(dz)/(m(R+)2%).
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5. Case study: Ornstein—-Uhlenbeck processes

In this section we give some explicit formulas for excursions from 0 to 0 associ-
ated with Ornstein—Uhlenbeck processes. It is possible to obtain such formulas
due to the symmetry of the Ornstein—Uhlenbeck process around 0. Analogous
results for excursions from an arbitrary point x to x are less tractable.

5.1. Basics

Let U denote the Ornstein-Uhlenbeck diffusion with parameter y > 0, 1.e., U is
the solution of the SDE

and most of the time, but not always, we take u = 0. Recall that the speed mea-
sure and the scale function of U can be taken to be

m(dx) :=2¢ "™ dx and S(x) ::/ e”” dy,
0

respectively. Moreover, see [6] p. 137, the Green kernel of Ornstein—Uhlenbeck
process with respect to the speed measure is given for x > y by

Ry (x,y) = 2(:7_}/) <yx )D Ay (x\/—i’)
X exp (%2) D )y (—NTY) :

where D denotes the parabolic cylinder function. In particular, since

D) = VE (20T (4 1)/ 1)

we have, after some manipulations,

VEL(4/7) -2
Ra(0,0) = 255 (VBT () 2n) )
Consequently, using the formula
2x—1
['(x)= NG ['((x+1)/2)T(x/2)
we obtain
Ry(0.0) = — 1 — I'(A/(27)) (52)

D(A)  4T((A+7)/(27)
We remind also that U can be represented as the deterministic time change
(Doob’s transformation) of Brownian motion via

Ur=e " (u+pa,),

where f8 is a standard Brownian motion and a; := (e*"" — 1) /2 (see Doob [8]).
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5.2. Killed Ornstein—-Uhlenbeck processes

We consider now the Ornstein—Uhlenbeck process killed at the first hitting time
of 0, and denote this process by U. Let Y be the diffusion on R satisfying the
SDE

dY; = dB; + (%—yn) dt, Yy=y>0.
t

Recall that ¥ may be described as the radial part of the three-dimensional Orn-

stein—Uhlenbeck process. In [6] p. 138 the basic properties of such processes

are presented. In particular, we record that O is an entrance-not-exit boundary

point and the process is positively recurrent its stationary distribution being the

Maxwell distribution, i.e., the distribution with the density proportional to the

speed measure of Y, that is,
m" (dx) =22 ™ dx, x> 0.

We remark that there is a misprint in [6] p. 139; the stationary distribution in
the general case is not a y2-distribution but a generalization of the Maxwell
distribution. The transition density of ¥ with respect to its speed measure m" is

n/2 —Y (2 2
vve exp (_Ve 4y )) Sinh( Yy )
2w sinh(yr) xy 2sinh(y) sinh(yr)

and can be computed from the transition density of a Bessel process using

Doob’s transform (for an approach via inverting the Laplace transform see Gior-
no et al. [18]). In Salminen [48] it is proved that

pY(t:x,y) =

P.(U, € dy) =Py (U, € dy,t < Hy)

oyt Y, oy(y) y
=e "p (t;x,y) (Py(x)m (dy), (53)

where @y(x) = 1/x is the unique (up to multiplicative constants) decreasing pos-
itive solution of the ODE associated with Y killed at rate :

%u,,(x) + G - yx> W (x) = yu(x).

From (53) we obtain

Proposition 20. The transition density (with respect to its speed measure m) of
the Ornstein—Uhlenbeck killed at the first hitting time of 0 is given by

yt/2 —yt(,2 2
—ﬂe ex <— e .(x ) )> sinh( - a4 > (54)
2msinh(yr) 2sinh(yt) sinh(yr)

ptsx,y) =
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Combining the expression of the transition density in (54) with formula (2)
yields the distribution of Hy (see also Sato [50] and Going—Jaeschke and Yor

[19D).

Proposition 21. The density of the first hitting time of 0 for the Ornstein—Uhlen-
beck process {U,} is given by

B y3/2xeyt/2 },e—ytx2
frolt) = V2m(sinh(y0))?2 <_25inh(yt)) ' (53)

5.3. Lévy measure of inverse local time and densities of Ar,T — Gr and
Dr—T

The density of the Lévy measure of the inverse local time at O is obtained by
applying formula (12) (see also Hawkes and Truman [20]). Moreover, using
(52) in formula (4) leads to an explicit expression for the Bernstein function
associated with the inverse local time at 0.

Proposition 22. The density of the Lévy measure of the inverse local time at 0
is

}’3/2 eyt/z _ (2}’)3/2 e2v
V2r(sinh(yr))3/2  \2m (e2 —1)3/2°

Let {ty: £ > 0} be the inverse local time at 0. Then

4F((7L+7)/27))
[(4/2y) '

Next we display the distributions of A7,7 — Gr, and D7 — T. Recall that
these distributions are infinitely divisible and the densities are expressable via
the density of the Lévy measure, as stated in Corollary 15 formulae (35) and
(36), and in Theorem 18. To simply the notation, we take y = 1.

v(t) = (56)

Eo (exp(—A1,)) =exp <—£

Proposition 23. With ® () as in (52), the distributions of Ay, T — G and Dy —
T are given, respectively, by
l—e * 2

PolAr € da)/da =~ e (2 —1) ", (57)

Pyo(T — Gr €da)/da =

(2 —1)""", (58)

and

PO(DT —T € da)/da =

(047} oo
gfa)/a due @ _2 (2 — 1) (59
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5.4. The Krein measure

As seen in Section 4.3, the Krein representation plays a central rdle in the proof
of infinite divisibility of the distributions of T — G7,D7 — T, and Ay. Therefore,
it seems motivated to compute the measure M (cf. (45)) in this representation
for Ornstein—Uhlenbeck processes.

To start with, we give the spectral representation of the transition density of
p of the Ornstein—Uhlenbeck process killed at the first hitting time of 0. Instead
of computing from scratch, we exploit the spectral representation for p¥ (with
Y =1) as presented in Karlin and Taylor [23] p. 333:

pr(xy) = Y w i, e L) L o), (60)
n=0

where {Lfll/ 2 ip = 0,1,2,...} is the family of Laguerre polynomials with pa-
rameter 1/2 normalized via

= 2 Nz nt 1
/0 (L,(ql/z)(xz)) mY (dx) = 5 ( ; 2) =Wy 1/2: (61)

Notice that we consider the symmetric density with respect to the speed mea-
sure m’. From (53) and (60) the spectral representation of p is now obtained
immediately and is given by

p(tsx.y) = anl/z @0 12 (2) yr 12 (). (62)

The normalization (61) coincides with the normalization in Erdelyi et al. [11]
(see formula (2) p. 188 where the notation for the norm is 4,,). Therefore, from
[11] formula (13) p. 189 we have

1
L0/ () = <n+ 5) 63)

n

and, consequently (cf. (55)), we obtain the spectral representation for the density
of the first hitting time of 0

n 1/2 1/2
fao(t) anl/Z V2 () 12)(0).

\/_ Z - (2n+1)t L’(ll/z)(XZ). (64)

To find the spectral representation for the density of the Lévy measure we apply
formula (56) which yields

2 & (43 ey
‘ﬁn;o( e (©
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In view of (45), we have

Proposition 24. The measure M in the Krein representation of v for the Orn-
stein—Uhlenbeck process is given by

1

M(dZ) = %’; <n: 2> 5{2n+1}(dz)a

where S{a} is the Dirac measure at a.

Note that 5
v(it) = —e ' (1 —e ¥ 73/2,
0=z )

and, hence, (65) may also be obtained from the MacLaurin expansion of x —
(1 —x)~3/2 evaluated at x = e~ 2.

Acknowledgements. We thank Lennart Bondesson for co-operation concerning gamma convolu-
tions.
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