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Abstract. We describe a setting where convergence to consensus in a population of autonomous
agents can be formally addressed and prove some general results establishing conditions under
which such convergence occurs. Both continuous and discrete time are considered and a number
of particular examples, notably the way in which a population of animals move together, are
considered as particular instances of our setting.
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1. A basic example: flocking

A common situation occurring in a number of disciplines is that in which a
number of autonomous agents reach a consensus without a central direction.
An example of this is the emergence of a common belief in a price system
when activity takes place in a given market. Another example is the emergence
of common languages in primitive societies, or the dawn of vowel systems.
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Yet a third example is the way in which populations of animals move together
(referred as “schooling”, “flocking”, or “herding” depending on the considered
animals).

As a motivating example in this introduction we consider a population, say
of birds, whose members are moving in E = R

3. This situation has been recently
studied in [6] and in what follows we freely draw from this paper.

It has been observed that under some initial conditions, for example on the
positions and velocities of the birds, the state of the flock converges to one in
which all birds fly with the same velocity. A way to justify this observation is
to postulate a model for the evolution of the flock and exhibit conditions on the
initial state under which a convergence as above is established. In case these
conditions are not satisfied, dispersion of the flock may occur.

The model proposed in [6] postulates the following behavior: every bird ad-
justs its velocity by adding to it a weighted average of the differences of its
velocity with those of the other birds. That is, at time t ∈ N, and for bird i,

vi(t +h)− vi(t) = h
k

∑
j=1

ai j(v j(t)− vi(t)). (1)

Here h is the magnitude of the time step and the weights {ai j} quantify the way
the birds influence each other. It is reasonable to assume that this influence is
a function of the distance between birds. This assumption is given form via a
non-increasing function η : R+ → R+ such that the adjacency matrix Ax has
entries

ai j =
H

(1+‖xi − x j‖2)β (2)

for some fixed H > 0 and β ≥ 0.
We can write the set of equalities (1) in a more concise form. Let Ax be the

k×k matrix with entries ai j, Dx be the k×k diagonal matrix whose ith diagonal
entry is di = ∑ j≤k ai j and Lx = Dx−Ax the Laplacian of Ax (a matrix increasingly
considered in the study of graphs and weighted graphs [3,12]). Then

vi(t +h)− vi(t) = −h
n

∑
j=1

ai j(vi(t)− v j(t))

= −h
( n

∑
j=1

ai j

)
vi(t)+h

n

∑
j=1

ai jv j(t)

= −h[Dxv(t)]i +h[Axv(t)]i
= −h[Lxv(t)]i.

Note that the matrix notation Axv(t) does not have the usual meaning of a
k × k matrix acting on Rk. Instead, the matrix Ax is acting on Ek by mapping
(v1, . . . ,vk) to (ai1v1 + · · ·+aikvk)i≤k. The same applies to Lx.
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Adding a natural equation for the change of positions we obtain the system

x(t +h) = x(t)+hv(t) (3)

v(t +h) = (Id−hLx)v(t).

We will consider evolution for continuous time. That is, x,v∈E are functions
of t ∈ R. The corresponding model is obtained by letting h tend to zero and is
given by the system of differential equations

x′ = v (4)

v′ = −Lxv.

One of the main results in [6] (Theorem 2 there) can be restated as follows
(and is a particular case of one of the main results in this paper, Theorem 2
below).

Theorem 1. Let x0,v0 ∈ E. Then, there exists a unique solution (x(t),v(t)) of
(4), defined for all t ∈ R, with initial conditions x(0) = x0 and v(0) = v0. If
β < 1/2 then, when t → ∞ the velocities vi(t) tend to a common limit v̂ ∈ E and
the vectors xi − x j tend to a limit vector x̂i j, for all i, j ≤ k. The same happens if
β ≥ 1/2 provided the initial values x0 and v0 satisfy a given, explicit, relation.

2. A more general setting

In what follows we extend the situation considered in Section 1 to a more gen-
eral setting.

We consider two variables: vvv —describing the object whose emergence is of
interest— and x —describing other features of the agents— both varying with
time. We assume the existence of two inner product spaces X and F such that
x ∈ X and vvv ∈ F.

When we talk of convergence of (vvv1(t), . . . ,vvvk(t)) to a common value we
mean the existence of a point v̂vv ∈ F such that, when t → ∞, (vvv1(t), . . . ,vvvk(t)) →
(v̂vv, . . . , v̂vv).

Let ΔF denote the diagonal of Fk, i.e.,

ΔF = {(vvv, . . . ,vvv) | vvv ∈ F}.

Then, convergence to a common value means convergence to the diagonal or, if
we let V = Fk/ΔF, convergence to 0 in this quotient space. To establish such a
convergence we need a norm in V . In the following, we will fix an inner product
〈 , 〉 in V and we will consider its induced norm ‖ ‖. We will often write Λ(v)
for ‖v‖2 and Γ(x) for ‖x‖2.
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We next give an extension of system (4) in Section 1. We will assume a
(Lipschitz or � 1) function

F : X ×V →V

satisfying, for some C,δ > 0 and 0 ≤ γ < 1, that

for x ∈ X , v ∈V , ‖F(x,v)‖ ≤ C(1+‖x‖2)
γ
2‖v‖δ . (5)

Let� (k× k) be the space of k× k real matrices. We consider (Lipschitz or
� 1) maps

L : X →� (k× k)
x 
→ Lx

satisfying that Lx(1,1, . . . ,1) = 0. Note that any such Lx induces a linear operator
on V which, abusing language, we will also denote by Lx.

To a pair (F,L) as above, we will associate the system of differential equa-
tions

x′ = F(x,v) (6)

v′ = −Lxv.

Our first main result deals with convergence to consensus for (6). To state it,
we need to impose a hypothesis on L. We next describe this hypothesis.

For x ∈ X define

ξx = min
v∈V
v�=0

〈Lxv,v〉
‖v‖2 . (7)

In what follows we fix a map L satisfying that there exists K,β > 0 such that,

for all x ∈ X , ξx ≥ K

(1+Γ(x))β . (8)

For a solution (x,v) of (6), at a time t ∈ R+, x(t) and v(t) are elements in X and
V , respectively. In particular, x(t) determines a matrix Lx(t) and an associated
real ξx(t). For notational simplicity we will denote them by Lt and ξt . Similarly,
we will write Λ(t) and Γ(t) for the values of Λ and Γ, at v(t) and x(t), respec-
tively. Finally, we will write Γ0 for Γ(0) and similarly for Λ0.

The following quantities, independent of t, will repeatedly occur in our ex-
position:

α =
2β

1− γ
, aaa = 2

1+γ
1−γ

((1− γ)C)
2

1−γ Λ
δ

1−γ
0

(δK)
2

1−γ
, and bbb = 2

1+γ
1−γ (1+Γ0).

Note that α varies in (0,+∞).
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Theorem 2. Assume that F satisfies condition (5) and that L satisfies condi-
tion (8). Let x0 ∈ X and v0 ∈ V. Then, there exists a unique solution (x(t),v(t))
of (6) for all t ∈ R. Furthermore, assume that one of the three following hy-
potheses hold:

(i) β < 1−γ
2 ,

(ii) β = 1−γ
2 and Λδ

0 < (δK)2

21+γ ((1−γ)C)2 ,

(iii) β > 1−γ
2 and (

1
aaa

) 1
α−1

[(
1
α

) 1
α−1

−
(

1
α

) α
α−1

]
> bbb

Then there exists a constant B0 (independent of t, made explicit in the proof of
each of the three cases) such that Γ(t) ≤ B0 for all t ∈ R+. In addition, for all
t ≥ 0,

Λ(t) ≤ Λ0e
−2 K

B
β
0

t

and therefore Λ(t)→ 0 when t →∞. Finally, there exists x̂∈X such that x(t)→ x̂
when t → ∞ and there exists B1 > 0 such that, for every t ≥ 0,

‖x(t)− x̂‖ ≤ B1e
−2 K

B
β
0

t
.

Remark 1. (i) Write

aaa′ = 2
1+γ
1−γ

((1− γ)C)
2

1−γ

(δK)
2β

1−γ

so that aaa = aaa′Λ
δ

1−γ
0 , and let

A = 2
1+γ
γ−1

(
1
aaa′

) 1
α−1

[(
1
α

) 1
α−1

−
(

1
α

) α
α−1

]
.

In contrast with Γ0 and Λ0, which describe the initial state of the system, the
constant A is a constant associated to the model (i.e., to (6) only). The condition
in Theorem 2(iii) can now be written as

Λ
− δ

(2β+γ)−1

0 A > 1+Γ0.

This expression exhibits a neat trade-off between the initial values v(0) and
x(0). If Γ0 is large (i.e., under the assumption that x represents positions, if the
population is dispersed) then Λ0 needs to be small to ensure convergence to
consensus (i.e., the original k values of vvv need to be clustered). Conversely, if
Λ0 is large then Γ0 needs to be small but note that there is a critical value for
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Λ0, namely A
(2β+γ)−1

δ , above which convergence to consensus is not guaranteed
for any initial value of xxx.

(ii) We note that Theorem 1 follows from Theorem 2. We will see this in
§3.2 below.

3. Some examples

In this section we give substance to the general setting we just developed by
describing how it applies in several examples (and, in particular, how assump-
tions (5) and (8) are checked). Before doing so, we describe some features of
the matrix Lx we associated to Ax in Section 1.

3.1. On Laplacians of non-negative, symmetric matrices

The most interesting instances of the map L are those for which, as in Section 1,
Lx depends on an adjacency matrix. We define adjacency functions to be smooth
functions

A : X →� (k× k)
x 
→ Ax.

Given a k× k matrix Ax the Laplacian Lx of Ax is defined to be

Lx = Dx −Ax

where Dx = diag(d1, . . . ,dk) and d� = ∑k
j=1 a� j. Note that Lx does not depend

on the diagonal entries of Ax. Note also that, in contrast with the contents of
Section 1, we did not require here that Ax is symmetric, or even non-negative,
let alone be defined by a distance function in Euclidean 3-space. Our use of the
word “Laplacian” in this context follows the one in [1] rather than the one in [4].

The Laplacian of a non-negative, symmetric matrix Ax, however, has a num-
ber of properties which deserve attention. Therefore, for some time to come,
we assume that Ax is non-negative and symmetric. In this context the Laplacian
has its origins in graph theory where the matrix Ax is the adjacency matrix of a
(possibly weighted) graph G and many of the properties of G can be read out
from Lx (see [12]).

The space F
k inherits an inner product from that of F. Moreover, the Lapla-

cian Lx acts on Fk and satisfies the following:

(a) For all vvv ∈ F, Lx(vvv, . . . ,vvv) = 0.
(b) If λ1, . . . ,λk are the eigenvalues of Lx then

0 = λ1 ≤ λ2 ≤ ·· · ≤ λk = ‖Lx‖ ≤ k.
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(c) For all vvv ∈ F
k,

〈Lxvvv,vvv〉 =
1
2

k

∑
i, j=1

ai j‖vvvi − vvv j‖2.

A proof for (c) can be found in [3]. The other two properties are easy to prove
(but see [12, Theorem 2.2(c)] for the inequality λk ≤ k). Note that (b) implies
Lx is positive semidefinite.

The second eigenvalue λ2 of Lx is called the Fiedler number of Ax. We denote
the Fiedler number of Ax by φx. Note that, since Lx(ΔF) = 0, Lx induces an
endomorphism on V which we will also denote by Lx. In addition, since Lx is
positive semidefinite it follows that

φx = min
v∈V
v�=0

〈Lxv,v〉
‖v‖2 . (9)

That is (when Ax is non-negative and symmetric), φx coincides with ξx as de-
fined in (7). Note also that since φx is the second smallest eigenvalue of Lx (the
smallest being 0) one has that

φx = min
vvv∈Δ⊥

F
vvv�=0

〈Lxvvv,vvv〉
‖vvv‖2 (10)

where now 〈 , 〉 is the inner product in Fk induced by that on F and Δ⊥
F

is the
orthogonal subspace to ΔF (and hence the eigenspace of λ2, . . . ,λk).

In all the examples in this section, the matrix Lx is obtained, given an adja-
cency function A, by taking the Laplacian of Ax. We have just seen that when
Ax is non-negative and symmetric all the eigenvalues of Lx (as an element in
� (k × k)) are non-negative, and that the number ξx is the second smallest of
these eigenvalues, the smallest being 0. Therefore, in this case, to check con-
dition (8) amounts to prove a lower bound on the Fiedler number. This is not
necessarily true when Ax is non-symmetric.

3.2. The basic flocking situation

We refer here to the flocking situation considered in Section 1. In this case we
have spaces E = F = R3 and the space X is defined as V , by letting X = Ek/ΔE.
We next need to define inner products in X and V . While we could use those
induced by the inner products of E and F, respectively, it appears to be more
convenient to proceed differently.

We let QF : F
k ×F

k → R defined by

QF(uuu,vvv) =
1
2

k

∑
i, j=1

〈uuui −uuuj,vvvi − vvv j〉.
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Then QF is bilinear, symmetric, and, when restricted to V ×V , positive definite.
It follows that it defines an inner product 〈 , 〉V on V . In a similar way we define
QE and its induced inner product 〈 , 〉X on X . Since the norms ‖ ‖V and ‖ ‖X are
the only ones we consider on V and X , respectively, we will drop the subscript
in what follows.

Recall, given xxx ∈ Ek, the matrix Ax has entries

ai j =
H

(1+‖xxxi − xxx j‖2)β

for some H > 0 and β ≥ 0. Note that the dependence of the elements ai j on xxx is
only through the class x of xxx in X . Hence the notation Ax. A key feature of this
matrix is that it is non-negative and symmetric. We are therefore interested in a
lower bound on φx. The following result, which we will prove in §3.3, provides
such a bound.

Proposition 1. Let A be a nonnegative, symmetric matrix, L = D−A its Lapla-
cian, φ its Fiedler number, and

μ = min
i�= j

ai j.

Then φ ≥ kμ .

The following corollary shows that condition (8) holds in the basic flocking
situation.

Corollary 1. If ai j = H
(1+‖xi−x j‖2)β then φx ≥ kH

(1+Γ(x))β .

Proof. We apply Proposition 1 and use that μ ≥ H
(1+Γ(x))β . �

Corollary 1 shows that condition (8) holds with K = kH. Also, F : X×V →V
is given by F(x,v) = v which satisfies condition (5) with C = 1, γ = 0, and δ = 1
due to the choice of norms in V and X . In this case α = 2β and

A =
(

K
2

) α
α−1

[(
1
α

) 1
α−1

−
(

1
α

) α
α−1

]
.

We can therefore apply Theorem 2 to obtain, as a special case, Theorem 1.

3.3. Flocking with unrelated pairs: I

We next extend the basic flocking situation to one where some pairs of birds
do not communicate. We do require, however, that there is “sufficient connec-
tion” between the birds. To do so, we recall a few relations between graphs and
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matrices. Any k× k symmetric matrix S with entries in {0,1} induces a (undi-
rected) graph G(S) with vertex set {1, . . . ,k} and edge set E = {(i, j) | ai j = 1}.
Conversely, any graph G with k vertices induces a k× k symmetric matrix S(G)
with entries in {0,1}. Furthermore, these constructions are inverse to each other
in the sense that G(S(G)) = G and S(G(S)) = S. One can extend these consid-
erations to nonnegative matrices. A non-negative symmetric matrix A induces a
matrix A over {0,1} by replacing each non-zero entry of A by a 1, and hence, a
graph G(A).

Fix a k× k symmetric matrix M = (mi j) over {0,1} such that G(M) is con-
nected. Given xxx ∈ E

k we take the adjacency matrix Ax given by

ai j = mi j
H

(1+‖xxxi − xxx j‖2)β . (11)

Since the actual value of the diagonal elements aii of Ax are irrelevant (they do
not affect Lx) in the sequel we assume, without loss of generality, that mii = 0
for all 1 ≤ i ≤ k, and therefore, that aii = 0 as well. The matrix Ax thus defined is
symmetric and G(Ax) coincides with G(M). In particular, G(Ax) is connected.

Now let A be a nonnegative symmetric matrix. Denote by φ its Fiedler num-
ber and by φA the Fiedler number of A. It is well known [12, Theorem 2.1(c)]
that G(A) is connected if and only if the Fiedler number φA of A is positive. This
gives context to the next result (extending Proposition 1).

Proposition 2. Let A be a nonnegative, symmetric matrix, L = D−A its Lapla-
cian, φ its Fiedler number, and

μ = min
ai j �=0
i�= j

ai j.

Then φ ≥ φAμ .

Proof. For all vvv ∈ Fk, using (c) above twice,

〈Lvvv,vvv〉 =
1
2 ∑

ai j �=0
i�= j

ai j‖vvvi − vvv j‖2 ≥ 1
2

μ ∑
ai j �=0
i�= j

‖vvvi − vvv j‖2 = μ〈Lvvv,vvv〉

with L the Laplacian of A. Therefore, using (10) twice,

φ = min
vvv∈Δ⊥

F
vvv�=0

〈Lvvv,vvv〉
‖vvv‖2 ≥ μ min

vvv∈Δ⊥
F

vvv�=0

〈Lvvv,vvv〉
‖vvv‖2 = μφA.

�
Note that Proposition 2 factors a lower bound for the Fiedler number φx of Ax

as a product of two quantities, one related with the size of the non-zero entries
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in Ax and the other to “how much connected” is G(Ax) = G(M). Proposition 1
can be now easily proved.

Proof of Proposition 1. It is well known (take, e.g. G to be the graph with k
isolated points in [12, Theorem 3.6]) that the Fiedler number of the complete
graph Kk with k vertices is k. Now apply Proposition 2. �

Let φM be the Fiedler number of M, which coincides with that of Ax for all
x ∈ X . We can also use Proposition 2 to deduce that condition (8) holds with
K = φMH, since, for all x ∈ X ,

min
v�=0

〈Lxv,v〉
‖v‖2 = φx ≥ φL min

ai j �=0
ai j ≥ φM

H

(1+Γ(x))β .

Remark 2. One could define

ΓM(x) =
1
2 ∑

mi j �=0

‖xxxi − xxx j‖2

and the reasoning above would yield minv�=0
〈Lxv,v〉
‖v‖2 ≥ φM

H
(1+ΓM(x))β , an inequality

stronger than (8).

We have seen that condition (8) holds with K = φMH. As in §3.2, F(x,v) = v
which satisfies condition (5) with C = 1, γ = 0, and δ = 1. The following result
thus follows from Theorem 2.

Proposition 3. Let M be a k× k symmetric matrix such that G(M) is connected
and, for xxx ∈ E

k, let Ax be given by

ai j = mi j
H

(1+‖xxxi − xxx j‖2)β .

Let x0 ∈ X and v0 ∈V and (x(t),v(t)) be the unique solution of

x′ = v

v′ = −Lxv

where Lx is the Laplacian of Ax. Furthermore, assume that one of the three
following hypotheses hold:

(i) β < 1
2 ,

(ii) β = 1
2 and Λ0 < (φMH)2

2C2 ,
(iii) β > 1

2 and (
1
aaa

) 1
α−1

[(
1
α

) 1
α−1

−
(

1
α

) α
α−1

]
> bbb
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where

α = 2β , aaa =
2C2Λ0

(φMH)2 , and bbb = 2(1+Γ0).

Then there exists a constant B0 such that Γ(t) ≤ B0 for all t ∈ R+. In addition,
for all t ≥ 0,

Λ(t) ≤ Λ0e
−2 φM H

B
β
0

t

and therefore Λ(t)→ 0 when t →∞. Finally, there exists x̂∈X such that x(t)→ x̂
when t → ∞ and there exists B1 > 0 such that, for every t ≥ 0,

‖x(t)− x̂‖ ≤ B1e
−2 φM H

B
β
0

t
.

Proposition 3 provides an extension of Theorem 1 which models a situation
in which not all birds necessarily communicate, no matter what their distance
is.

3.4. Flocking with unrelated pairs: II

We can further extend the contents of §3.3 to model a situation where the flock
remains connected all time but the connection pattern (which birds communi-
cate with which others) changes.

Proposition 4. Let A : E
k →� (k× k) be an adjacency matrix, H > 0, β ≥ 0,

and S : Ek →{0,1}k×k given by

si j(xxx) =

⎧⎨⎩1 if ai j(xxx) ≥ H

(1+‖xxxi(t)− xxx j(t)‖2)β

0 otherwise.

Let x0 ∈ X and v0 ∈V and (x(t),v(t)) be the unique solution of

x′ = v

v′ = −Lxv

where Lx is the Laplacian of Ax and assume that the graph G(Sx(t)) is connected
for all t ≥ 0. Furthermore, assume that one of the three following hypotheses
holds:

(i) β < 1
2 ,

(ii) β = 1
2 and Λ0 < (4H)2

2(k(k−1)C)2 ,

(iii) β > 1
2 and (

1
aaa

) 1
α−1

[(
1
α

) 1
α−1

−
(

1
α

) α
α−1

]
> bbb
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where

α = 2β , aaa =
2(k(k−1)C)2Λ0

(4H)2 , and bbb = 2(1+Γ0).

Then there exists a constant B0 such that Γ(t) ≤ B0 for all t ∈ R+. In addition,
for all t ≥ 0,

Λ(t) ≤ Λ0e
−2 4H

k(k−1)Bβ
0

t

and therefore Λ(t)→ 0 when t →∞. Finally, there exists x̂∈X such that x(t)→ x̂
when t → ∞ and there exists B1 > 0 such that, for every t ≥ 0,

‖x(t)− x̂‖ ≤ B1e
−2 4H

k(k−1)Bβ
0

t
.

Proof. For xxx ∈ Ek let B ∈� (k× k) be defined by

bi j(xxx) =

⎧⎨⎩ai j if ai j(xxx) ≥ H

(1+‖xxxi(t)− xxx j(t)‖2)β

0 otherwise

and R = A−B. Then, B and R are both non-negative and symmetric and their
Laplacians LB

x and LR
x satisfy Lx = LB

x + LR
x (here Lx is the Laplacian of Ax).

Therefore,

ξx = min
v∈V
v�=0

〈Lxv,v〉
‖v‖2 = min

v∈V
v�=0

〈LB
x v,v〉+ 〈LR

x v,v〉
‖v‖2

≥ min
v∈V
v�=0

〈LB
x v,v〉
‖v‖2 +min

v∈V
v�=0

〈LR
x v,v〉
‖v‖2 ≥ φB ≥ 4H

k(k−1)(1+‖xxxi − xxx j‖2)β

where the last inequality is derived as follows. One has G(B) = G(S) which is
connected. Therefore, its diameter is at most k−1 and hence (see [12, (6.10)]),
φS ≥ 4

k(k−1) . Now apply Proposition 2.

Condition (8) therefore holds with K = 4H
k(k−1) and we can apply Theorem 2

to obtain convergence to the diagonal. �

Proposition 4 extends both Theorem 1 and (a continuous time version of)
Theorem 1 in [10]. In the former, birds influence one each other always but their
influence decreases with their distance. In the latter, non-zero influences have a
lower bound of 1 (in the adjacency matrix) but zero influences are allowed as
long as the associated graph G(A) remains connected.
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3.5. Other extensions with symmetric Ax

(i) In all the situations considered so far, we have taken X = E
k/ΔE and a specific

norm in X , namely, that induced by QE. We now note that we could take as X any
Euclidean space R

� and, for x∈X , a symmetric matrix Ax such that condition (8)
is satisfied. In particular, entries ai j may be functions of x ∈ X which are not
necessarily functions of the distance between birds i and j. Theorem 2 will
apply provided that, for some H > 0 and β ≥ 0, and for all x ∈ X ,

ai j(x) = a ji(x) ≥ H

(1+‖x‖2)β .

(ii) Also, in all the previous examples, we have considered matrices Ax which
are nonnegative. For (8) to hold this need not to be the case. For instance, let

Ax =

⎡⎣0 3 2
3 0 −1
2 −1 0

⎤⎦
for all x ∈ X . Then

Lx =

⎡⎣ 5 −3 −2
−3 2 1
−2 1 1

⎤⎦
whose characteristic polynomial is χ(λ ) = λ 3 − 8λ 2 + 3λ . The roots of this
polynomial are 0, 4−√

13, and 4 +
√

13. Therefore, condition (8) holds with
K = 4−√

13 and β = 0. Thus, Theorem 2 applies.

3.6. Three birds with a leader

Now consider a set of three birds and the communication scheme given by the
(non-symmetric) matrix

M =

⎡⎣0 0 0
1 0 0
1 0 0

⎤⎦ .

This matrix models a situation in which bird 1 influences birds 2 and 3 and
no other influence between different birds occur. In this situation birds 2 and 3
follow bird 1, the leader. To simplify ideas, we assume that E = F = R. Given
xxx ∈ E3 we take as adjacency matrix

Ax =

⎡⎣ 0 0 0
a21 0 0
a31 0 0

⎤⎦
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with ai j = H
(1+‖xxxi−xxx j‖2)β . We consider again the Laplacian

Lx =

⎡⎣ 0 0 0
−a21 a21 0
−a31 0 a31

⎤⎦
whose eigenvalues are 0, a21, and a31. Their corresponding eigenvectors are
w1 = (1,1,1), w2 = (0,1,0), and w3 = (0,0,1). In this case we have

V = F
3/ΔF � span{w2,w3} = {(0,y,z) | y,z ∈ F}.

In contrast with the situation in the two previous cases, we take in V the inner
product induced by that in F. Then, for v = (0,y,z) ∈V , Lv = (0,a21y,a31z), and
〈Lv,v〉 = a21y2 +a31z2. This implies

ξx = min
v�=0

〈Lv,v〉
‖v‖2 = min

(y,z)�=0

a21y2 +a31z2

y2 + z2 ≥ min{a21,a31}.

Now, taking the norm on X considered in the previous situations (i.e., that in-
duced by QE) we have

‖xxx1 − xxx2‖2 ≤ ‖x‖2 = Γ(x)

and the same for ‖xxx1 − xxx3‖2. This shows that condition (8) holds with K = H.
On the other hand, since x′ = v,

‖x′‖2 = QE(x′,x′) = QF(v,v) ≤ 18‖v‖2

which shows that condition (5) holds with C = 3
√

2, γ = 0, and δ = 1.
The situation we just considered trivially extends to an arbitrary number k of

birds.

3.7. A different leadership structure

Now consider a set of three birds and the communication scheme given by the
matrix

M =

⎡⎣0 0 0
1 0 0
0 1 0

⎤⎦ .

In this situation bird 1 influences bird 2 and bird 2 influences bird 3 but bird 1
has no direct influence over bird 3. Given x ∈ X we take

Ax =

⎡⎣0 0 0
a 0 0
0 b 0

⎤⎦
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with a,b functions of x satisfying

a ≥ b ≥ H

(1+Γ(x))β .

We consider again the Laplacian

Lx =

⎡⎣ 0 0 0
−a a 0
0 −b b

⎤⎦
whose eigenvalues are 0, a, and b, and, as in §3.6,

V = F
3/ΔF � {(0,y,z) | y,z ∈ F}

and we take in V the inner product induced by that in F. Then, for v = (0,y,z) ∈
V , Lv = (0,ay,b(z− y)) and

〈Lv,v〉 = ay2 +bz2 −bzy

≥ b(y2 + z2 − zy)

=
1
2

b
(
(y2 + z2)+(y− z)2)

≥ 1
2

b(y2 + z2).

This implies

ξx = min
v�=0

〈Lv,v〉
‖v‖2 ≥ min

(y,z)�=0

1
2

b
y2 + z2

y2 + z2 =
1
2

b.

This shows that condition (8) holds with K = H
2 and Theorem 2 applies.

The situations considered here and in §3.6 extend to more general leader-
ship structures, giving rise to triangular Laplacian matrices. Jackie Shen (in a
personal communication) told us that he has proved convergence results in this
extended setting.

4. Proof of Theorem 2

Denote Θt = min
τ∈[0,t]

ξτ .

Proposition 5. For all t ≥ 0

Λ(t) ≤ Λ0e−2tΘt .
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Proof. Let τ ∈ [0,t]. Then

Λ′(τ) =
d

dτ
〈v(τ),v(τ)〉

= 2〈v′(τ),v(τ)〉
= −2〈Lτv(τ),v(τ)〉
≤ −2ξτΛ(τ).

Using this inequality,

ln(Λ(τ))
∣∣∣∣t
0
=

∫ t

0

Λ′(τ)
Λ(τ)

dτ ≤
∫ t

0
−2ξτdτ ≤−2tΘt

i.e.,
ln(Λ(t))− ln(Λ0) ≤−2tΘt

from which the statement follows. �

Proposition 6. For T > 0 and γ < 1

Γ(T ) ≤ 2
1+γ
1−γ

⎛⎝(1+Γ0)+
((1− γ)C)

2
1−γ Λ

δ
1−γ
0

(δΘT )
2

1−γ

⎞⎠−1.

Proof. We have

|Γ′(t)| = |2〈F(x(t),v(t)),x(t)〉| ≤ 2‖F(x(t),v(t))‖‖x(t)‖
≤ 2C(1+‖x(t)‖2)

γ
2‖v(t)‖δ ‖x(t)‖ ≤ 2C(1+‖x(t)‖2)

1+γ
2 ‖v(t)‖δ .

But 1 + ‖x(t)‖2 = 1 + Γ(t) and ‖v(t)‖2 = Λ(t) ≤ Λ0e−2tΘt , by Proposition 5.
Therefore,

Γ′(t) ≤ |Γ′(t)| ≤ 2C(1+Γ(t))
1+γ

2
(
Λ0e−2tΘt

) δ
2 (12)

and, using that t 
→ Θt is non-increasing,∫ T

0

Γ′(t)

(1+Γ(t))
1+γ

2

dt ≤ 2C
∫ T

0

(
Λ0e−2tΘt

) δ
2 dt

≤ 2C
∫ T

0
Λδ/2

0 e−tδΘT dt

= 2CΛδ/2
0

(
− 1

δΘT

)
e−tδΘT

∣∣∣∣T
0
≤ 2CΛδ/2

0

δΘT

which implies, since γ < 1,

(1+Γ(t))
1−γ

2

∣∣∣∣T
0
=

1− γ
2

∫ T

0

Γ′(t)

(1+Γ(t))
1+γ

2

dt ≤ (1− γ)CΛδ/2
0

δΘT
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from which it follows that

Γ(T ) ≤
(

(1+Γ0)
1−γ

2 +
(1− γ)CΛδ/2

0

δΘT

) 2
1−γ

−1.

The statement now follows from the elementary inequality, for s≥ 2, (α +β )s ≤
2s−1(αs +β s). �

A proof of the following lemma is in [5, Lemma 7].

Lemma 1. Let c1,c2 > 0 and s > q > 0. Then the equation

F(z) = zs − c1zq − c2 = 0

has a unique positive zero z∗. In addition

z∗ ≤ max
{
(2c1)

1
s−q ,(2c2)

1
s

}
and F(z) ≤ 0 for 0 ≤ z ≤ z∗. �

Remark 3. Although we will not use this in what follows, we mention here that
it is possible to prove a lower bound for z∗ in Lemma 1 namely,

z∗ ≥ max

{
c

1
s−q

1 ,c
1
s
2

}
.

Proof of Theorem 2. The existence and uniqueness of a solution under assump-
tions (5) and (8) follows from [9, Chapter 8].

Let t > 0 and t∗ ∈ [0,t] be the point maximizing Γ in [0,t]. Then, by (8),

Θt = min
τ∈[0,t]

ξτ ≥ min
τ∈[0,t]

K

(1+Γ(τ))β =
K

(1+Γ(t∗))β .

Using this bound on Θt and Proposition 6 we deduce

Γ(t) ≤ 2
1+γ
1−γ

⎛⎝(1+Γ0)+
((1− γ)C)

2
1−γ Λ

δ
1−γ
0

(δK)
2

1−γ
(1+Γ(t∗))

2β
1−γ

⎞⎠−1. (13)

Since t∗ maximizes Γ in [0,t] it also does so in [0,t∗]. Thus, for t = t∗, (13) takes
the form

(1+Γ(t∗))−2
1+γ
1−γ

((1− γ)C)
2

1−γ Λ
δ

1−γ
0

(δK)
2

1−γ
(1+Γ(t∗))

2β
1−γ −2

1+γ
1−γ (1+Γ0) ≤ 0. (14)

Let z = 1+Γ(t∗). Then (14) can be rewritten as F(z) ≤ 0 with

F(z) = z−aaazα −bbb.
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(i) Assume β < 1−γ
2 . By Lemma 1, F(z) ≤ 0 implies that z = 1 + Γ(t∗) ≤ B0

with

B0 = max
{

(2aaa)
1−γ

1−γ−2β ,2bbb
}

.

Since B0 is independent of t, we deduce that, for all t ∈ R+, 1+Γ(t) ≤ B0. But
this implies that ξt ≥ K

Bβ
0

for all t ∈ R+ and therefore, the same bound holds for

Θt . By Proposition 5,

Λ(t) ≤ Λ0e
−2 K

B
β
0

t
(15)

which shows that Λ(t) → 0 when t → ∞. Finally, for all T > t,

‖x(T )− x(t)‖ =
∥∥∥∥∫ T

t
F(x(s),v(s))ds

∥∥∥∥ ≤
∫ T

t
‖F(x(s),v(s))‖ds

≤
∫ T

t
C(1+‖x(s)‖2)

γ
2 ‖v(s)‖δ ds =

∫ T

t
C(1+Γ(s))

γ
2 Λ(s)

δ
2

≤
∫ T

t
CB

γ
2
0 Λδ/2

0 e
− δK

B
β
0

s
ds = CB

γ
2
0 Λδ/2

0

(
− Bβ

0

δK
e
− δK

B
β
0

s
)∣∣∣∣T

t

=
CΛδ/2

0 B
γ
2 +β
0

δK

(
e
− K

B
β
0

t
− e

− K

B
β
0

T
)

≤ CΛδ/2
0 B

γ
2 +β
0

δK
e
− K

B
β
0

t
.

Since the last tends to zero with t and is independent of T we deduce that there
exists x̂ ∈ X such that, x → x̂.

(ii) Assume now β = 1−γ
2 . Then (14) takes the form

(1+Γ(t∗))

⎛⎝1−2
1+γ
1−γ

((1− γ)C)
2

1−γ Λ
δ

1−γ
0

(δK)
2

1−γ

⎞⎠−2
1+γ
1−γ (1+Γ0) ≤ 0.

Since Λδ
0 < (δK)2

21+γ ((1−γ)C)2 , the expression between parenthesis is positive, and
therefore

1+Γ(t∗) ≤ B0 =
2

1+γ
1−γ (1+Γ0)(

1−2
1+γ
1−γ ((1−γ)C)

2
1−γ Λ

δ
1−γ
0

(δK)
2

1−γ

) .

We now proceed as in case (i).
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(iii) Assume finally β > 1−γ
2 (i.e., that α > 1). The derivative F ′(z) = 1 −

αaaazα−1 has a unique zero at z∗ =
(

1
αaaa

) 1
α−1 and

F(z∗) =
(

1
αaaa

) 1
α−1

−aaa

(
1

αaaa

) α
α−1

−bbb

=
(

1
α

) 1
α−1

(
1
aaa

) 1
α−1

−
(

1
α

) α
α−1

(
1
aaa

) 1
α−1

−bbb

=
(

1
aaa

) 1
α−1

[(
1
α

) 1
α−1

−
(

1
α

) α
α−1

]
−bbb

≥ 0

the last by our hypothesis. Since F(0) = −bbb < 0 and F(z) →−∞ when z → ∞
we deduce that the shape of F is as follows:

Fig. 1.

Even though t∗ is not continuous as a function of t, the mapping t 
→ 1+Γ(t∗) is
continuous and therefore, so is the mapping t 
→F(1+Γ(t∗)). This fact, together
with (14), shows that, for all t ≥ 0, F(1 + Γ(t∗)) ≤ 0. In addition, when t = 0
we have t∗ = 0 as well and

1+Γ0 ≤ 2
1+γ
1−γ (1+Γ0) = bbb

<

(
1
aaa

) 1
α−1

[(
1
α

) 1
α−1

−
(

1
α

) α
α−1

]
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<

(
1
aaa

) 1
α−1

(
1
α

) 1
α−1

= z∗.

This implies that 1+Γ0 < z� (the latter being the smallest zero of F on R+, see
the figure above) and the continuity of the map t 
→ 1 + Γ(t∗) implies that, for
all t ≥ 0,

1+Γ(t∗) ≤ z� ≤ z∗.

Therefore

1+Γ(t∗) ≤ B0 =
(

1
αaaa

) 1
α−1

.

We now proceed as in case (i). �

5. Emergence with discrete time

We next extend system (3) in Section 1. Similarly to our development in Sec-
tion 2, for discrete time now, we assume a map � : X → End(V ) and consider
the dynamics

x(t +h) = x(t)+hF(x(t),v(t)) (16)

v(t +h) = � (x(t))v(t).

We assume that� satisfies, for some G > 0 and β ≥ 0, that

for all x ∈ X , ‖� (x)‖ ≤ 1− hG

(1+Γ(x))β . (17)

We also assume that 0 < h < 1
G which makes sure that the quantity in the right-

hand side above is in the interval (0,1).

Remark 4. We note that, in contrast with the contents of Section 2, for Theo-
rem 3 below to hold, we do not require an inner product structure in neither X
nor V . Only that they will be endowed with a norm. In this sense, the expression
‖� (x)‖ above referes to the operator norm of � (x) with respect to the norm
on V .

Theorem 3. Assume that F satisfies condition (5), � satisfies condition (17),
and 0 < h < 1

G . Assume also that one of the three following hypothesis hold:

(i) β < 1−γ
2 ,

(ii) β = 1−γ
2 and Λ0 <

(
G

CR(δ )

)2/δ
.
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(iii) β > 1−γ
2 , (

1
aaa

) 1
α−1

[(
1
α

) 1
α−1

−
(

1
α

) α
α−1

]
> bbb (18)

and

h <

([
1− 1

α

]
−
(

1
αaaa

)− 2
α−1

bbb

)(
R(δ )

2R(δ )+aaa

)
R(δ )
aaaG

. (19)

Here α = 2β + γ , R(δ ) = max{1, 1
δ }, and

aaa =
Λδ/2

0 CR(δ )
G

and bbb = 1+Γ1/2
0 .

Then there exists a constant B0 (independent of t, made explicit in the proof
of each of the three cases) such that ‖x(t)‖2 ≤ B0 for all t ∈ N. In addition,
‖v(t)‖ → 0 when t → ∞. Finally, there exists x̂ ∈ X such that x(t) → x̂ when
t → ∞.

Remark 5. Note that, besides the hypothesis h < 1
G which is assumed in all three

cases, case (iii) also requires an additional condition on h. Furthermore, this
extra condition depends on the initial state of the system and this dependence is
clear: the larger Γ0 and Λ0 are the smaller h needs to be.

In the sequel we assume a solution (x,v) of (16). To simplify notation we
write v(n) for v(nh) and the same for x(n). In addition, we will write Γ(n) in-
stead of Γ(x(n)).

Proof of Theorem 3. First note that, for all n ∈ N,

‖v(n)‖δ = ‖� (x(n−1))v(n)‖δ ≤
(

1− hG

(1+Γ(n))β

)δ
‖v(n−1)‖δ

and therefore,

‖v(n)‖δ ≤ ‖v(0)‖δ
n−1

∏
i=0

(
1− hG

(1+Γ(i))β

)δ
. (20)

Let n ≥ 0 and n∗ be the point maximizing Γ(i) in {0,h,2h, . . . ,nh}. Then,
for all τ ≤ n,

‖x(τ)‖ ≤ ‖x(0)‖+
τ−1

∑
j=0

‖x( j +1)− x( j)‖

≤ ‖x(0)‖+
τ−1

∑
j=0

hC(1+‖x( j)‖2)
γ
2 ‖v( j)‖δ
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≤ ‖x(0)‖+‖v(0)‖δ hC
τ−1

∑
j=0

(1+Γ( j))
γ
2

j−1

∏
i=0

(
1− hG

(1+Γ(i))β

)δ

≤ ‖x(0)‖+‖v(0)‖δ hC(1+Γ(n∗))
γ
2

τ−1

∑
j=0

(
1− hG

(1+Γ(n∗))β

) jδ

≤ ‖x(0)‖+‖v(0)‖δ hC(1+Γ(n∗))
γ
2

1

1−
(

1− hG
(1+Γ(n∗))β

)δ

≤ ‖x(0)‖+‖v(0)‖δ C(1+Γ(n∗))
γ
2
(1+Γ(n∗))β

G
R(δ )

where R(δ ) = max{1, 1
δ }. For τ = n∗, the inequality above takes the following

equivalent form

‖x(n∗)‖ ≤ ‖x(0)‖+‖v(0)‖δ C(1+Γ(n∗))
γ
2
(1+Γ(n∗))β

G
R(δ )

which implies

(1+Γ(n∗))
1
2 ≤ 1+Γ(n∗)

1
2 ≤ (1+Γ1/2

0 )+Λδ/2
0 C(1+Γ(n∗))

γ
2
(1+Γ(n∗))β

G
R(δ )

or yet

(1+Γ(n∗))
1
2 ≤ (1+Γ1/2

0 )+
Λδ/2

0 CR(δ )
G

(1+Γ(n∗))β+ γ
2 . (21)

Let z = (1+Γ(n∗))1/2,

aaa =
Λδ/2

0 CR(δ )
G

and bbb = 1+Γ1/2
0 .

Then (21) can be rewritten as F(z) ≤ 0 with

F(z) = z−aaaz2β+γ −bbb.

(i) Assume β < 1−γ
2 . By Lemma 1, F(z) ≤ 0 implies that (1 + Γ(n∗))1/2 ≤ U0

with
U0 = max

{
(2aaa)

1−γ
1−γ−2β ,2bbb

}
.

Since U0 is independent of n we deduce that, for all n ≥ 0,

‖x(n)‖2 ≤ B0 = U2
0 −1

and therefore, using (20),

‖v(n)‖ ≤ ‖v(0)‖
(

1− hG

(1+B0)β

)n
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and this expression tends to zero when n → ∞.

(ii) Assume β = 1−γ
2 . Then the inequality F(z) ≤ 0 takes the form

z

(
1− Λδ/2

0 CR(δ )
G

)
≤ 1+Γ1/2

0 .

Since, by hypothesis, the expression between parenthesis is positive we deduce
that

z ≤U0 =
1+Γ1/2

0

1− Λδ/2
0 CR(δ )

G

.

We now proceed as in case (i).

(iii) Assume finally β > 1−γ
2 . Letting α = 2β + γ we have F ′(z) = 1−αaaazα−1

and the arguments in the proof of Theorem 2 show that F ′(z) has a unique

zero at z∗ =
(

1
αaaa

) 1
α−1 and that F(z∗) =

(
1
aaa

) 1
α−1

[(
1
α
) 1

α−1 − (
1
α
) α

α−1

]
− bbb. Our

hypothesis (18) then implies that F(z∗) > 0. Since F(0) =−bbb < 0, we have that
the graph of F is as in Fig. 1.

For n ∈ N let z(n) = (1+Γ(n∗))1/2. When n = 0 we have n∗ = 0 as well and

z(0) = (1+Γ0)1/2 ≤ 1+Γ1/2
0 = bbb <

(
1
aaa

) 1
α−1

(
1
α

) 1
α−1

= z∗.

This actually implies that z(0) ≤ z�. Assume that there exists n ∈ N such that
z(n) ≥ zu and let N be the first such n. Then N = N∗ ≥ 1 and, for all n < N

(1+Γ(n))1/2 ≤ z(N −1) ≤ z�.

This shows that, for all n < N,

Γ(n) ≤ B0 = z2
� −1.

In particular,
Γ(N −1) ≤ z2

� −1.

For N instead, we have
Γ(N) ≥ z2

u −1.

This implies

Γ(N)−Γ(N −1) ≥ z2
u − z2

� ≥ z2
∗ − z2

� ≥ (z∗ − z�)z∗. (22)

From the intermediate value theorem, there is ζ ∈ [z�,z∗] such that F(z∗) =
F ′(ζ )(z∗ − z�). But F ′(ζ ) ≥ 0 and F ′(ζ ) = 1−aaaαζ α−1 ≤ 1. Therefore,

z∗ − z� ≥ F(z∗)
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and it follows from (22) that

Γ(N)−Γ(N −1) ≥ z∗F(z∗). (23)

But

‖x(N)‖−‖x(N −1)‖ ≤ ‖x(N)− x(N −1)‖
= hC(1+‖x(N −1)‖2)

γ
2‖v(N −1)‖δ

≤ hC(1+‖x(N−1)‖2)
γ
2 ‖v(0)‖δ

t−1

∏
i=0

(
1− hG

(1+Γ(i))β

)δ

≤ hC(1+B0)
γ
2 Λδ/2

0 .

Therefore,

‖x(N)‖2−‖x(N −1)‖2 = (‖x(N)‖+‖x(N −1)‖)(‖x(N)‖−‖x(N −1)‖)
= (2‖x(N −1)‖+‖x(N)‖−‖x(N −1)‖)(‖x(N)‖−‖x(N −1)‖)
≤ (2B1/2

0 +hC(1+B0)
γ
2 Λδ/2

0 )hC(1+B0)
γ
2 Λδ/2

0 .

Putting this inequality together with (23) shows that

z∗F(z∗) ≤ (2B1/2
0 +hC(1+B0)

γ
2 Λδ/2

0 )hC(1+B0)
γ
2 Λδ/2

0

or equivalently, using that B0 ≤ z2∗ −1,(
1
aaa

) 2
α−1

[(
1
α

) 2
α−1

−
(

1
α

) α+1
α−1

]
−bbb

≤ (2B1/2
0 +hC(1+B0)

γ
2 Λδ/2

0 )hC(1+B0)
γ
2 Λδ/2

0

≤
(

2z∗ +
Czγ

∗Λδ/2
0

G

)
hCzγ

∗Λδ/2
0 ≤

(
2+

CΛδ/2
0

G

)
hCz2

∗Λδ/2
0

or yet, since z∗ =
(

1
αaaa

) 1
α−1 ,(

1
aaa

) 2
α−1

[(
1
α

) 2
α−1

−
(

1
α

) α+1
α−1

]
−bbb ≤

(
2+

CΛδ/2
0

G

)
hCΛδ/2

0

(
1

αaaa

) 2
α−1

which is equivalent to[
1− 1

α

]
−
(

1
αaaa

)− 2
α−1

bbb ≤
(

2+
aaa

R(δ )

)
haaaG
R(δ )

,

which contradicts hypothesis (19).
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We conclude that, for all n ∈ N, z(n) ≤ z� and hence, Γ(n) ≤ B0. We now
proceed as in case (i). �

In our central example, we take� (x) = Id−hLx where Lx is the Laplacian of
the matrix Ax for some adjacency function A. One is then interested in conditions
on A and h which would ensure that (17) is satisfied. The following result gives
such conditions under assumption (8) (with G ≤ K

2 ). Note that to do that, we
need to assume an inner product 〈 , 〉 in V w.r.t. which the norm on V is the
associated norm.

Proposition 7. Assume that there exists U > 0 such that, for all x∈X, ‖Lx‖≤U.
Then Theorem 3 holds with hypothesis (17) replaced by condition (8) with any
G satisfying G ≤ K

2 , and the inequality

h <
K

U2(1+B0)β

where B0 is the constant in Theorem 3 (and therefore depends on the initial state
(x(0),v(0)) of the system).

Proof. The proof follows the steps of that of Theorem 3 using an additional
induction argument to show that if Γ(i) ≤ B0 for all i ≤ n then Γ(n + 1) ≤ B0.
The only thing we need to do is to show that the new hypothesis, i.e., the bound
U , (8), and the additional bound on h, imply (17).

By hypothesis, for all i ≤ n,

h <
K

U2(1+B0)β ≤ K

U2(1+Γ(i))β .

Now use Lemma 2 below with ξ = K
(1+Γ(i))β (note that (8) ensures that the hy-

pothesis of the lemma are satisfied) to deduce that

‖Id−hL‖ ≤ 1−h
ξ
2

= 1− hK

2(1+Γ(i))β ≤ 1− hG

(1+Γ(i))β

i.e., condition (17). �

Lemma 2. Let L : V →V be such that ‖L‖ ≤U and

min
v∈V
v�=0

〈Lv,v〉
‖v2‖ ≥ ξ > 0.

Then, for all h ≤ ξ
U2 ,

‖Id−hL‖ ≤ 1−h
ξ
2
.
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Proof. Take v ∈V such that ‖v‖ = 1 and ‖Id−hL‖ = ‖(Id−hL)v‖. Then

‖Id−hL‖2 = ‖(Id−hL)v‖2

= 〈(Id−hL)v,(Id−hL)v〉
= ‖v‖2 −2h〈Lv,v〉+h2〈Lv,Lv〉
≤ 1−2hξ +h2U2

≤ 1−2hξ +hξ
= 1−hξ

from which it follows that ‖Id−hL‖ ≤ 1− h
2 ξ . �

6. On variations of Vicsek’s model

The goal of this section is to give a proof, from our Theorem 3, of a result in [10,
page 993]. Namely, we prove the following.

Proposition 8. For g > k
2 consider the system

x(n+1) = x(n)+ v(n)
v(n+1) = (Id−g−1Lx)v(n)

where Lx is the Laplacian of Ax(n) given by

ai j =
{

1 if ‖xxxi(n)− xxx j(n)‖ ≤ r
0 otherwise

for some fixed r > 0. If the graphs G(Ax(n)) are connected for all n ∈ N then the
sequence {v(n)}n∈N converges to an element in the diagonal ΔF. �

We provide some background for Proposition 8. Very recently [10], con-
vergence to consensus was proved in some situations for a (flocking) model
proposed in [19], which we will call Vicsek’s model, and some variations of it.

This is a discrete time model based upon adjacency matrices Ax = (ai j) with
ai j = η(‖xxxi − xxx j‖2) but where now

η(y) =
{

1 if y ≤ r2

0 otherwise

for some fixed r > 0. For such a matrix Ax, one considers its associated diagonal
matrix Dx and Laplacian Lx. Then, matrices � (x) of the form

� (x) = Id−M−1
x Lx
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are considered for various choices of Mx (cf. [10, Equations (20) to (24)]) and
convergence to consensus is proved for some choices of Mx under certain con-
ditions on the sequence of subjacent graphs G(Ax(n)), n ∈ N. The simplest of the
conditions considered in [10] requires the graphs G(Ax(n)) to be connected for
all n ∈ N.

Vicsek’s model corresponds to the choice Mx = (Id + Dx) (this follows im-
mediately from [10, Equation (3)]). A variation of Vicsek’s model considered
in [10] (see Equation (27) therein) consists on taking Mx = g, with g ∈ R, g > k,
for all x ∈ X . As a simple application of Theorem 3 we next show that for this
choice of Mx, if G(Ax(n)) is connected for all n ∈ N, there is convergence to a
common vvv ∈ Fk. We will actually show this with a slightly weaker condition,
namely g > k

2 .
Indeed, we have seen in §3.1 that the eigenvalues of Lx lie in the interval [0,k]

and we know that, since G(Ax(n)) is connected its eigenvalues of the restriction

of Lx(n) to V lie on the interval
[

4
k(k−1) ,k

]
(see §3.4). Therefore, those of 1

g Lx(n)

lie on the interval
[

4
gk(k−1) ,

k
g

]
and those of � (x(n)) = Id − g−1Lx(n) on the

interval
[
1− k

g ,1− 4
gk(k−1)

]
. It follows that

‖� (x(n))‖ ≤W := max

{∣∣∣∣1− k
g

∣∣∣∣ ,1− 4
gk(k−1)

}
< 1

and therefore, that condition (17) holds with β = 0 and G = 1−W . Note that
G ∈ (0,1) and therefore, part (i) of Theorem 3 applies with h = 1 (which is the
time step considered in [10]).

7. On bounds for ξx and ‖� (x)‖
The inclusion R ↪→ C and the inner product in Rk induce a Hermitian product
〈 , 〉 and a norm ‖ ‖ in C

k which we will consider in what follows.
Let L : Ck−1 → Ck−1 be a linear operator with eigenvalues λ1, . . . ,λk−1. As-

sume that there exists a basis of eigenvectors w1, . . . ,wk−1 ∈ C
k−1 for λ1, . . . ,

λk−1. Without loss of generality we assume ‖wi‖ = 1 for i = 1, . . . ,k − 1. Let
bi j = 〈wi,w j〉, the distortion matrix B = (bi j), and B̂ = B− Id. Also, let

ζ = min{Reλ | λ ∈ Spec(L)} > 0

and |λmax| = maxi≤k−1{|λi|}.

Lemma 3. Let L : Rk−1 → Rk−1 be a linear operator with k−1 different eigen-
values. Then, for all v ∈ R

k−1,

〈v,Lv〉
〈v,v〉 ≥ ζ −|λmax|‖B̂‖

‖B‖ .
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Proof. Let v ∈ R
k−1. For some μi ∈ C, i = 1, . . . ,k−1,

v =
k−1

∑
i=1

μiwi.

Since the left-hand side of the inequality in the statement is homogeneous of
degree 0 in v, by scaling v if necessary, we may assume ‖μ‖2 = ∑k−1

i=1 μiμi = 1.
Then

Lv =
k−1

∑
i=1

λiμiwi

and therefore

〈v,Lv〉 =

〈
k−1

∑
i=1

λiμiwi,
k−1

∑
j=1

μ jw j

〉
=

k−1

∑
i=1

λiμiμi‖wi‖2 + ∑
i�= j

λiμiμ j〈wi,w j〉.

We now take real parts in the right-hand side. For its first term we have

Re

(
k−1

∑
i=1

λiμiμi‖wi‖2

)
=

k−1

∑
i=1

Re(λi)μiμi ≥ ζ
k−1

∑
i=1

μiμi = ζ .

For the second term,

Re

(
∑
i�= j

λiμiμ j〈wi,w j〉
)

≤
∣∣∣∣∣∑i�= j

λiμiμ jbi j

∣∣∣∣∣
≤

∣∣∣∣∣k−1

∑
i=1

λiμi ∑
j �=i

bi jμ j

∣∣∣∣∣
=

∣∣∣∣∣k−1

∑
i=1

λiμi

(
B̂μ

)
i

∣∣∣∣∣
≤ ‖λmaxμ‖

∥∥∥B̂μ
∥∥∥

≤ |λmax|
∥∥∥B̂

∥∥∥ .

Similarly, 〈v,v〉 ≤
〈

∑k−1
i=1 μiwi,∑k−1

j=1 μ jw j

〉
≤ ‖B‖. It follows that

〈v,Lv〉
〈v,v〉 ≥ ζ −|λmax|‖B̂‖

‖B‖ .

�

We next consider bounds for ‖� (x)‖. Let λ1, . . . ,λk−1 be the eigenvalues of
a linear operator S : Rk−1 → Rk−1. Assume that there exists a basis of eigenvec-
tors w1, . . . ,wk−1 ∈ C

k−1 for λ1, . . . ,λk−1. Without loss of generality we assume
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‖wi‖ = 1 for i = 1, . . . ,k. Let bi j = 〈wi,w j〉, and the distortion matrix B = (bi j).
Also, let |λmax| = maxi≤k{|λi|}.

Lemma 4. Let S : Rk−1 → Rk−1 be a linear operator with k−1 different eigen-
values. Then ‖S‖ ≤ (‖B‖‖B−1‖)1/2|λmax|.
Proof. Let v ∈ Rk−1, v �= 0. For some μi ∈ C, i = 1, . . . ,k,

v =
k−1

∑
i=1

μiwi.

Without loss of generality, we may assume ‖μ‖2 = ∑k−1
i=1 μiμi = 1. Then

Sv =
k−1

∑
i=1

λiμiwi

and therefore

〈Sv,Sv〉 =

〈
k−1

∑
i=1

λiμiwi,
k−1

∑
j=1

λ jμ jw j

〉
= ∑

i, j

λiμiλ jμ jbi j

≤ (λ1μ1, . . . ,λk−1μk−1)∗B(λ1μ1, . . . ,λk−1μk−1)
≤ |λmax|2‖B‖.

Similarly, since B is self-adjoint, 〈v,v〉 ≥ ‖B−1‖−1. It follows that

〈Sv,Sv〉
〈v,v〉 ≤ ‖B‖‖B‖−1|λmax|2

from where the statement follows. �

Corollary 2. For all � ∈ N, ‖S�‖ ≤ (‖B‖‖B−1‖)1/2|λmax|�.
Proof. The eigenvectors of S� are those of S. Therefore, S and S� have the same
distortion matrix B. Also, λmax(S�) = (λmax(S))�. �

8. A last example

Let A = (ai j) be a fixed k× k non-negative real matrix. Let L be the Laplacian
of A and 0,λ1, . . . ,λk−1 its eigenvalues, which we assume are different. It is
known [1] that Re(λi) > 0, for i = 1, . . . ,k−1.

For every g ∈ R, g > 0, the linear map gL has eigenvalues 0,gλ1, . . . ,gλk−1.
In addition, a basis of eigenvectors for L is also a basis of eigenvectors for gL.
Therefore, the distortion matrix B associated with the matrices gL is indepen-
dent of g.
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Assume that A satisfies ζ > |λmax|‖B̂‖ where ζ , λmax and B̂ are as in Sec-
tion 7 and let

Z =
ζ −|λmax|‖B̂‖

‖B‖ > 0.

Note, this quantity depends only on A. We now make g a function of x ∈ X .
More precisely, for some H > 0 and β ≥ 0, we define

g(x) =
H

(1+Γ(x))β .

We finally define the adjacency function A : X →� (k× k) given by

Ax = g(x)A.

If we denote by Lx the linear operator on V induced by the Laplacian of Ax we
can apply Lemma 3 to deduce that

ξx = min
v∈V
v�=0

〈v,v〉
‖v‖2 ≥ g(x)Z.

Therefore, condition (8) holds with K = HZ and Theorem 2 applies.

9. Relations with previous work

Literature on emergence is as scattered as the disciplines where emergence is
considered. Our first interest in the subject was raised by the problem of the
emergence of common languages in primitive human societies as described
in [11]. Some results in this direction were worked out in [7]. The recent mono-
graph by Niyogi [13] gives a detailed picture of the subject of language evolu-
tion and lists many of the different contributions.

Flocking, herding and schooling have been also the subject of much research
in recent years. Computer simulations have been particularly adapted to test
models for these problems.

Yet another area where emergence is paramount is distributed computing
(see, e.g. the PhD thesis of Tsitsiklis [17]) where the reaching of consensus is
of the essence.

This paper is an extension of [6], where we proposed and analyzed a model
for flocking. A starting point for [6] was the model proposed in [19], which
we mentioned in Section 6 as Vicsek’s model. Its analytic behavior was subse-
quently studied in [10] (but convergence could be simply deduced from previous
work [17], [18, Lemma 2.1]) and this paper, brought to our attention by Ali Jad-
babaie, was helpful for us. Other works related to ours are [2,8,14–16,18].

Acknowledgements. We are grateful to Jackie Shen for discussions in the late stages of this pa-
per.
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