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Abstract. In this survey, we report on the state of the art of some of the fundamental problems
in the Lie theory of Lie groups modeled on locally convex spaces, such as integrability of Lie
algebras, integrability of Lie subalgebras to Lie subgroups, and integrability of Lie algebra ex-
tensions to Lie group extensions. We further describe how regularity or local exponentiality of
a Lie group can be used to obtain quite satisfactory answers to some of the fundamental prob-
lems. These results are illustrated by specialization to some specific classes of Lie groups, such
as direct limit groups, linear Lie groups, groups of smooth maps and groups of diffeomorphisms.
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Introduction

Symmetries play a decisive role in the natural sciences and throughout math-
ematics. Infinite-dimensional Lie theory deals with symmetries depending on
infinitely many parameters. Such symmetries may be studied on an infinitesi-
mal, local or global level, which amounts to studying Lie algebras, local Lie
groups and global Lie groups, respectively. Here the passage from the infinites-
imal to the local level requires a smooth structure on the symmetry group (such
as a Lie group structure as defined below), whereas the passage from the local
to the global level is purely topological.
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Finite-dimensional Lie theory was created about 130 years ago by Marius
Sophus Lie and Friedrich Engel, who showed that in finite dimensions the local
and the infinitesimal theory are essentially equivalent ([Lie80/95]). The differ-
ential geometric approach to finite-dimensional global Lie groups (as smooth or
analytic manifolds) is naturally complemented by the theory of algebraic groups
with which it interacts most fruitfully. A crucial point of the finite-dimensional
theory is that finiteness conditions permit to develop a powerful structure the-
ory of finite-dimensional Lie groups in terms of the Levi splitting and the fine
structure of semisimple Lie groups ([Ho65], [Wa72]).

A substantial part of the literature on infinite-dimensional Lie theory ex-
clusively deals with the level of Lie algebras, their structure, and their rep-
resentations (cf. [Ka90], [Neh96], [Su97], [AABGP97], [DiPe99], [ABG00]).
However, only special classes of groups, such as Kac–Moody groups, can be
approached with success by purely algebraic methods ([KP83], [Ka85]); see
also [Rod89] for an analytic approach to Kac–Moody groups. In mathematical
physics, the infinitesimal approach dealing mainly with Lie algebras and their
representations is convenient for calculations, but a global analytic perspective
is required to understand global phenomena (cf. [AI95], [Ot95], [CVLL98],
[EMi99], [Go04], [Sch04]). A similar statement applies to non-commutative
geometry, throughout of which derivations and covariant derivatives are used. It
would be interesting to understand how global symmetry groups and the asso-
ciated geometry fit into the picture ([Co94], [GVF01]).

In infinite dimensions, the passage from the infinitesimal to the local and
from there to the global level is not possible in general, whence Lie theory splits
into three properly distinct levels. It is a central point of this survey to explain
some of the concepts and the results that can be used to translate between these
three levels.

We shall use a Lie group concept which is both simple and very general:
A Lie group is a manifold, endowed with a group structure such that multipli-
cation and inversion are smooth maps. The main difference, compared to the
finite-dimensional theory, concerns the notion of a manifold: The manifolds we
consider are modeled on arbitrary locally convex spaces. As we shall see later,
it is natural to approach Lie groups from such a general perspective, because it
leads to a unified treatment of the basic aspects of the theory without unnatural
restrictions on model spaces or the notion of a Lie group. Although we shall
simply call them Lie groups, a more specific terminology is locally convex Lie
groups. Depending on the type of the model spaces, we obtain in particular the
classes of finite-dimensional, Banach–, Fréchet–, LF– and Silva–Lie groups.
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The fundamental problems of Lie theory

As in finite dimensions, the Lie algebra L(G) of a Lie group G is identified
with the tangent space T1(G), where the Lie bracket it obtained by identifica-
tion with the space of left invariant vector fields. This turns L(G) into a locally
convex (topological) Lie algebra. Associating, furthermore, to a morphism ϕ of
Lie groups its tangent map L(ϕ) := T1(ϕ), we obtain the Lie functor from the
category of (locally convex) Lie groups to the category of locally convex topo-
logical Lie algebras. The core of Lie theory now consists in determining how
much information the Lie functor forgets and how much can be reconstructed.
This leads to several integration problems such as:

(FP1) When does a continuous homomorphism L(G)→ L(H) between Lie
algebras of connected Lie groups integrate to a (local) group homomor-
phism G→ H?

(FP2) Integrability Problem for subalgebras: Which Lie subalgebras h of
the Lie algebra L(G) of a Lie group G correspond to Lie group mor-
phisms H→ G with L(H) = h?

(FP3) Integrability Problem for Lie algebras (LIE III): For which locally
convex Lie algebras g does a local/global Lie group G with L(G) = g
exist?

(FP4) Integrability Problem for extensions: When does an extension of the
Lie algebra L(G) of a Lie group G by the Lie algebra L(N) of a Lie
group N integrate to a Lie group extension of G by N?

(FP5) Subgroup Problem: Which subgroups of a Lie group G carry natural
Lie group structures?

(FP6) When does a Lie group have an exponential map expG : L(G)→ G?
(FP7) Integrability Problem for smooth actions: When does a homomor-

phism g→ V (M) into the Lie algebra V (M) of smooth vector fields
on a manifold M integrate to a smooth action of a corresponding Lie
group?

(FP8) Small Subgroup Problem: Which Lie groups have identity neighbor-
hoods containing no non-trivial subgroup?

(FP9) Locally Compact Subgroup Problem: For which Lie groups are lo-
cally compact subgroups (finite-dimensional) Lie groups?

(FP10) Automatic Smoothness Problem: When are continuous homomorphi-
sms between Lie groups smooth?

An important tool in the finite-dimensional and Banach context is the expo-
nential map, but as vector fields on locally convex manifolds need not possess
integral curves, there is no general theorem that guarantees the existence of a
(smooth) exponential map, i.e., a smooth function

expG : L(G)→ G,
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for which the curves γx(t) := expG(tx) are homomorphisms (R,+)→ G with
γ ′x(0) = x. Therefore the existence of an exponential function has to be treated
as an additional requirement (cf. (FP6)). Even stronger is the requirement of
regularity, meaning that, for each smooth curve ξ : [0,1]→ L(G), the initial
value problem

γ ′(t) = γ(t).ξ (t) := T1(λγ(t))ξ (t), γ(0) = 1

has a solution γξ : [0,1]→ G and that γξ (1) depends smoothly on ξ . Regularity
is a natural assumption that provides a good deal of methods to pass from the in-
finitesimal to the global level. This regularity concept is due to Milnor ([Mil84]).
It weakens the μ-regularity (in our terminology) introduced by Omori et al. in
[OMYK82/83a] (see [KYMO85] for a survey), but it is still strong enough for
the essential Lie theoretic applications. Presently, we do not know of any Lie
group modeled on a complete space which is not regular. For all major concrete
classes discussed below, one can prove regularity, but there is no general theo-
rem saying that each locally convex Lie group with a complete model space is
regular or even that it has an exponential function. To prove or disprove such a
theorem is another fundamental open problem of the theory. An assumption of
a different nature than regularity, and which can be used to develop a profound
Lie theory, is that G is locally exponential in the sense that it has an exponential
function which is a local diffeomorphism in 0. Even stronger is the assumption
that, in addition, G is analytic and that the exponential function is an analytic lo-
cal diffeomorphism in 0. Groups with this property are called BCH–Lie groups,
because the local multiplication in canonical local coordinates is given by the
Baker–Campbell–Hausdorff series. This class contains in particular all Banach–
Lie groups.

Important classes of infinite-dimensional Lie groups

Each general theory lives from the concrete classes of objects it can be applied
to. Therefore it is good to have certain major classes of Lie groups in mind
to which the general theory should apply. Here we briefly describe four such
classes:

Linear Lie groups: Loosely speaking, linear Lie groups are Lie groups of
operators on locally convex spaces, but this has to be made more precise.

Let E be a locally convex space and L (E) the unital associative algebra of
all continuous linear endomorphisms of E. Its unit group is the general linear
group GL(E) of E. If E is not normable, there is no vector topology on L (E),
for which the composition map is continuous ([Mais63, Satz 2]). In general,
the group GL(E) is open for no vector topology on L (E), as follows from the
observation that if the spectrum of the operator D is unbounded, then 1 + tD
is not invertible for arbitrarily small values of t. Therefore we need a class of
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associative algebras which are better behaved than L (E) to define a natural
class of linear Lie groups.

The most natural class of associative algebras for infinite-dimensional Lie
theory are continuous inverse algebras (CIAs for short), introduced in [Wae54a/
b/c] by Waelbroeck in the context of commutative spectral theory. A CIA is a
unital associative locally convex algebra A with continuous multiplication, for
which the unit group A× is open and the inversion A× → A,a �→ a−1 is a con-
tinuous map. As this implies the smoothness of the inversion map, A× carries a
natural Lie group structure. It is not hard to see that the CIA property is inherited
by matrix algebras Mn(A) over A ([Swa62]), so that GLn(A) = Mn(A)× also is a
Lie group, and under mild completeness assumptions (sequential completeness)
on A, the Lie group A× is regular and locally exponential ([Gl02b], [GN06]).
This leads to natural classes of Lie subgroups of CIAs and hence to a natural
concept of a linear Lie group.

Mapping groups and gauge groups: There are many natural classes of
groups of maps with values in Lie groups which can be endowed with Lie
group structures. The most important cases are the following: If M is a compact
manifold and K a Lie group (possibly infinite-dimensional) with Lie algebra
L(K) = k, then the group C∞(M,K) always carries a natural Lie group struc-
ture such that C∞(M,k), endowed with the pointwise bracket, is its Lie algebra
([GG61], [Mil82/84]; see also [Mi80]). A prominent class of such groups are
the smooth loop groups C∞(S1,K), which, for finite-dimensional simple groups
K, are closely related to Kac–Moody groups ([PS86], [Mick87/89]).

If, more generally, q : P→M is a smooth principal bundle over a compact
manifold M with locally exponential structure group K, then its gauge group

Gau(P) := {ϕ ∈ Diff(P) : q◦ϕ = q,(∀p ∈ P,k ∈ K) ϕ(p.k) = ϕ(p).k}
also carries a natural Lie group structure. For trivial bundles, we obtain the map-
ping groups C∞(M,K) as special cases. Natural generalizations are the groups
C∞c (M,K) of compactly supported smooth maps on a σ -compact finite-dimen-
sional manifold ([Mi80], [Gl02c]) and also Sobolev completions of the groups
C∞(M,K) ([Sch04]).

Direct limit groups: A quite natural method to obtain infinite-dimensional
groups from finite-dimensional ones is to consider a sequence (Gn)n∈N of finite-
dimensional Lie groups and morphisms ϕn : Gn→Gn+1, so that we can define a
direct limit group G := lim−→ Gn whose representations correspond to compatible

sequences of representations of the groups Gn. According to a recent theorem
of Glöckner ([Gl05]), generalizing previous work of J. Wolf and his coauthors
([NRW91/93]), the direct limit group G can always be endowed with a natural
Lie group structure. Its Lie algebra L(G) is the countably dimensional direct
limit space lim−→ L(Gn), endowed with the finest locally convex topology. This

provides an interesting class of infinite-dimensional Lie groups which is still
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quite close to finite-dimensional groups and has a very rich representation theory
([DiPe99], [NRW99], [Wol05]).

Groups of diffeomorphisms: In a similar fashion as linear Lie groups arise
as symmetry groups of linear structures, such as bilinear forms on modules of
CIAs, Lie groups of diffeomorphisms arise as symmetry groups of geometric
structures on manifolds, such as symplectic structures, contact structures or vol-
ume forms.

A basic result is that, for any compact manifold M, the group Diff(M) can be
turned into a Lie group modeled on the Fréchet space V (M) of smooth vector
fields on M (cf. [Les67], [Omo70], [EM69/70], [Gu77], [Mi80], [Ham82]).

If M is non-compact and finite-dimensional, but σ -compact, then there is no
natural Lie group structure on Diff(M) such that smooth actions of Lie groups G
on M correspond to Lie group homomorphisms G→Diff(M). Nevertheless, it is
possible to turn Diff(M) into a Lie group with Lie algebra Vc(M), the Lie alge-
bra of all smooth vector fields with compact support, endowed with the natural
test function topology, turning it into an LF space (cf. [Mi80], [Mil82], [Gl02d]).
If M is compact, this yields the aforementioned Lie group structure on Diff(M),
but if M is not compact, then the corresponding topology on Diff(M) is so fine
that the global flow generated by a vector field whose support is not compact
does not lead to a continuous homomorphism R→ Diff(M). For this Lie group
structure, the normal subgroup Diffc(M) of all diffeomorphisms which coincide
with idM outside a compact set is an open subgroup.

By groups of diffeomorphisms we mean groups of the type Diffc(M), as
well as natural subgroups defined as symmetry groups of geometric structures,
such as groups of symplectomorphisms, groups of contact transformations and
groups of volume preserving diffeomorphisms. Of a different nature, but also
locally convex Lie groups, are groups of formal diffeomorphism as studied by
Lewis ([Lew39]), Sternberg ([St61]) and Kuranishi ([Kur59]), groups of germs
of smooth and analytic diffeomorphisms of Rn fixing 0 ([RK97], [Rob02]), and
also germs of biholomorphic maps of Cn fixing 0 ([Pis76/77/79]).

As the discussion of these classes of examples shows, the concept of a locally
convex Lie group subsumes quite different classes of Lie groups: Banach–Lie
groups, groups of diffeomorphisms (modeled on Fréchet and LF spaces), groups
of germs (modeled on Silva spaces) and formal groups (modeled on Fréchet
spaces such as RN).

In this survey article, we present our personal view of the current state of
several aspects of the Lie theory of locally convex Lie groups. We shall focus on
the general structures and concepts related to the fundamental problems (FP1)-
(FP10) and on what can be said for the classes of Lie groups mentioned above.

Due to limited space and time, we had to make choices, and as a result,
we could not take up many interesting directions such as the modern theory
of symmetries of differential equations as exposed in Olver’s beautiful book



Towards a Lie theory of locally convex groups 297

[Olv93] and the fine structure and the geometry of specific groups of diffeo-
morphisms, such as the group Diff(M,ω) of symplectomorphisms of a sym-
plectic manifold (M,ω) ([Ban97], [MDS98], [Pol01] are recent textbooks on
this topic). We do not go into (unitary) representation theory (cf. [AHMTT93],
[Is96], [DP03], [Pic00a/b], [Ki05]) and connections to physics, which are nicely
described in the recent surveys of Goldin [Go04] and Schmid [Sch04]. Other
topics are only mentioned very briefly, such as the ILB and ILH-theory of Lie
groups of diffeomorphisms which plays an important role in geometric analysis
(cf. [AK98], [EMi99]) and the group of invertible Fourier integral operators of
order zero, whose Lie group property was the main goal of the series of papers
[OMY80/81], [OMYK81/82/83a/b], completed in [MOKY85]. An alternative
approach to these groups is described in [ARS84,86a/b]. More recently, very
interesting results concerning diffeomorphism groups and Fourier integral oper-
ators on non-compact manifolds (with bounded geometry) have been obtained
by Eichhorn and Schmid ([ES96/01]).

Some history

To put the Lie theory of locally convex groups into proper perspective, we take
a brief look at the historical development of infinite-dimensional Lie theory.
Infinite-dimensional Lie algebras, such as Lie algebras of vector fields, where
present in Lie theory right from the beginning, when Sophus Lie started to study
(local) Lie groups as groups “generated” by finite-dimensional Lie algebras
of vector fields ([Lie80]). The general global theory of finite-dimensional Lie
groups started to develop in the late 19th century, driven substantially by É. Car-
tan’s work on symmetric spaces ([CaE98]). The first exposition of a global the-
ory, including the description of all connected groups with a given Lie algebra
and analytic subgroups, was given by Mayer and Thomas ([MaTh35]). After
the combination with the structure theory of Lie algebras, the theory reached its
mature form in the middle of the 20th century, which is exposed in the funda-
mental books of Chevalley ([Ch46]) and Hochschild ([Ho65]) (see also [Po39]
for an early textbook situated on the borderline between topological groups and
Lie groups).

Already in the work of S. Lie infinite-dimensional groups show up as groups
of (local) diffeomorphisms of open domains in Rn (cf. [Lie95]) and later É. Car-
tan undertook a more systematic study of certain types of infinite-dimensional
Lie algebras, resp., groups of diffeomorphisms preserving geometric structures
on a manifold, such a symplectic, contact or volume forms (cf. [CaE04]). On
the other hand, the advent of Quantum Mechanics in the 1920s created a need
to understand the structure of groups of operators on Hilbert spaces, which is a
quite different class of infinite-dimensional groups (cf. [De32]).
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The first attempt to deal with infinite-dimensional groups as Lie groups, i.e.,
as smooth manifolds, was undertaken by Birkhoff in [Bir36/38], where he de-
veloped the local Lie theory of Banach–Lie groups, resp., Banach–Lie algebras
(see also [MiE37] for first steps in extending Lie’s theory of local transforma-
tion groups to the Banach setting). In particular, he proved that (locally) C1-
Banach–Lie groups admit exponential coordinates which leads to analytic Lie
group structures, that continuous homomorphisms are analytic and that, for ev-
ery Banach–Lie algebra, the BCH series defines an analytic local group struc-
ture. He also defines the Lie algebra of such a local group, derives its func-
toriality properties and establishes the correspondence between closed subal-
gebras/ideals and the corresponding local subgroups. Even product integrals,
which play a central role in the modern theory, appear in his work as solu-
tions of left invariant differential equations. The local theory of Banach–Lie
groups was continued by Dynkin ([Dy47/53]) who developed the algebraic the-
ory of the BCH series further and by Laugwitz ([Lau55/56]) who developed
a differential geometric perspective, which is quite close in spirit to the the-
ory of locally exponential Lie groups described in Section IV below. Put in
modern terms, he uses the Maurer–Cartan form and integrability conditions on
(partial) differential equations on Banach space, developed by Michal and El-
conin ([MiE37], [MicA48]), to derive the existence of the local group structure
from the Maurer–Cartan form, which in turn is obtained from the Lie bracket.
In the finite-dimensional case, this strategy is due to F. Schur ([SchF90a]) and
quite close to Lie’s original approach. In [Lau55], Laugwitz shows in particular
that the center and any locally compact subgroup of a Banach–Lie group is a
Banach–Lie subgroup. Formal Lie groups of infinitely many parameters were
introduced by Ritt a few years earlier ([Ri50]).

The global theory of Banach–Lie groups started in the early 1960s with
Maissen’s paper [Mais62] which contains the first basic results on the Lie func-
tor on the global level, such as the existence of integral subgroups for closed Lie
subalgebras and the integrability of Lie algebra homomorphisms for simply con-
nected groups. Later van Est and Korthagen studied the integrability problem for
Banach–Lie algebras and found the first example of a non-integrable Banach–
Lie algebra ([EK64]). Based on Kuiper’s Theorem that the unitary group of an
infinite-dimensional Hilbert space is contractible ([Ku65]), simpler examples
were given later by Douady and Lazard ([DL66]). Chapters 2 and 3 in Bour-
baki’s “Lie groups and Lie algebras” contain in particular the basic local theory
of Banach–Lie groups and Lie algebras and also some global aspects ([Bou89]).
Although most of the material in Hofmann’s Tulane Lecture Notes ([Hof68]),
approaching the subject from a topological group perspective, was never pub-
lished until recently ([HoMo98]), it was an important source of information for
many people working on Banach–Lie theory (see also [Hof72/75]).
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In the early 1970s, de la Harpe extended É. Cartan’s classification of Rie-
mannian symmetric spaces to Hilbert manifolds associated to a certain class of
Hilbert–Lie algebras, called L∗-algebras, and studied different classes of opera-
tor groups related to Schatten ideals. Another context where a structure-theoretic
approach leads quite far is the theory of bounded symmetric domains in Banach
spaces and the related theory of (normed) symmetric spaces, developed by Kaup
and Upmeier (cf. [Ka81/83a/b], [Up85]). For a more general approach to Banach
symmetric spaces in the sense of Loos ([Lo69]), extending the class of all finite-
dimensional symmetric spaces, not only Riemannian ones, we refer to [Ne02c]
(cf. also [La99] for the corresponding basic differential geometry). In the con-
text of symplectic geometry, resp., Hamiltonian flows, Banach manifolds were
introduced by Marsden ([Mar67]), and Weinstein obtained a Darboux Theorem
in this context ([Wei69]). Schmid’s monograph [Sch87] provides a nice intro-
duction to infinite-dimensional Hamiltonian systems. For more recent results on
Banach–Kähler manifolds and their connections to representation theory, we re-
fer to ([Ne04b], [Bel06]) and for Banach–Poisson manifolds to the recent work
of Ratiu, Odzijewicz and Beltita ([RO03/04], [BR05a/b]).

Although Birkhoff was already aware of the fact that his theory covered
groups of operators on Banach spaces, but not groups of diffeomorphisms, it
took 30 years until infinite-dimensional Lie groups modeled on (complete) lo-
cally convex spaces occurred for the first time, as an attempt to understand the
Lie structure of the group Diff(M) of diffeomorphisms of a compact manifold
M, in the work of Leslie ([Les67]) and Omori ([Omo70]). This theory was devel-
oped further by Omori in the context of strong ILB–Lie groups (cf. [Omo74]).
A large part of [Omo74] is devoted to the construction of a strong ILB–Lie
group structure on various types of groups of diffeomorphisms. In the 1980s,
this theory was refined substantially by imposing and proving additional reg-
ularity conditions for such groups ([OMYK82/83a], [KYMO85]). A different
type of Lie group was studied by Pisanelli in [Pis76/77/79], namely the group
Ghn(C) of germs of biholomorphic maps of Cn fixing 0. This group carries the
structure of a Silva–Lie group and is one of the first non-Fréchet–Lie groups
studied systematically in a Lie theoretic context. In [BCR81], Boseck, Czi-
chowski and Rudolph approach infinite-dimensional Lie groups from a topo-
logical group perspective. They use the same concept of an infinite-dimensional
manifold as we do here, but a stronger Lie group concept. This leads them to
a natural setting for mapping groups on non-compact manifolds modeled on
spaces of rapidly decreasing functions.

In his lecture notes [Mil84], Milnor undertook the first attempt to develop
a general theory of Lie groups modeled on complete locally convex spaces,
which already contained important cornerstones of the theory. This paper and
the earlier preprint [Mil82] had a strong influence on the development of the
theory. Both contain precise formulations of several problems, some of which
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have been solved in the meantime and some of which are still open, as we shall
see in more detail below (see also [Gl06b] for the state of the art on some of
these problems).

In the middle of the 1980s, groups of smooth maps, and in particular groups
of smooth loops became popular because of their intimate connection with Kac–
Moody theory and topology (cf. [PS86], [Mick87/89]). The interest in direct
limits of finite-dimensional Lie groups grew in the 1990s (cf. [NRW91/93/94/
99]). They show up naturally in the structure and representation theory of Lie
algebras (cf. [Ne98/01b], [DiPe99], [NRW99], [NS01], [Wol05]). The general
Lie theory of these groups was put into its definitive form by Glöckner in [Gl05].

There are other, weaker, concepts of Lie groups, resp., infinite-dimensional
manifolds. One is based on the “convenient setting” for global analysis devel-
oped by Frölicher, Kriegl and Michor ([FB66], [Mi84], [FK88] and [KM97]).
In the context of Fréchet manifolds, this setting leads to Milnor’s concept of a
regular Lie group, but for more general model spaces, it provides a concept of a
smooth map which does not imply continuity, hence leads to Lie groups which
are not topological groups. Another approach, due to Souriau, is based on the
concept of a diffeological space ([So84/85], [DoIg85], [Los92]; see [HeMa02]
for applications to diffeomorphism groups) which can be used to study spaces
like quotients of R by non-discrete subgroups in a differential geometric con-
text. On the one hand, it has the advantage that the category of diffeological
spaces is cartesian closed and that any quotient of a diffeological space car-
ries a natural diffeology. But on the other hand, this incredible freedom makes
it harder to distinguish “regular” objects from “non-regular” ones. Our discus-
sion of smoothness of maps with values in diffeomorphism groups of (possibly
infinite-dimensional) manifolds is inspired by the diffeological approach. We
shall see in particular, that, to some extent, one can use differential methods
to deal with groups with no Lie group structure, such as groups of diffeomor-
phisms of non-compact manifolds or groups of linear automorphisms of locally
convex spaces, and that this provides a natural framework for a Lie theory of
smooth actions on manifolds and smooth linear representations.

There are other purposes, for which a Lie group structure on an infinite-
dimensional group G is indispensable. The most crucial one is that without
the manifold structure, there is simply not enough structure available to pass
from the infinitesimal level to the global level. For instance, to integrate abelian
or central extensions of Lie algebras to corresponding group extensions, the
manifold structure on the group is of crucial importance (cf. (FP4)). To deal
with these extension problems, one is naturally lead to certain classes of closed
differential 2-forms on Lie groups, which in turn leads to infinite-dimensional
symplectic geometry and Hamiltonian group actions. Although we do not know
which coadjoint orbits of an infinite-dimensional Lie group carry manifold struc-
tures, for any such orbit, we have a natural Hamiltonian action of the group G



Towards a Lie theory of locally convex groups 301

on itself with respect to a closed invariant 2-form which in general is degener-
ate; so the reduction of free actions of infinite-dimensional Lie groups causes
similar difficulties as singular reduction does in finite-dimensions; but still all
the geometry is visible in the non-reduced system. It is our hope that this kind of
symplectic geometry will ultimately lead to a more systematic “orbit method”
for infinite-dimensional Lie groups, in the sense that it paves the way to a better
understanding of the unitary representations of infinite-dimensional Lie groups,
based on symplectic geometry and Hamiltonian group actions (cf. [Ki05] for a
recent survey on various aspects of the orbit method).
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([HoMo06]) and it would be of some interest to develop a theory of projective
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ρg : G→ G,x �→ xg for the right multiplication by g,
mG : G×G→ G,(x,y) �→ xy for the multiplication map, and
ηG : G→ G,x �→ x−1 for the inversion.
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I. Locally convex manifolds

In this section, we briefly explain the natural setup for manifolds modeled on lo-
cally convex spaces, vector fields and differential forms on these manifolds. An
essential difference to the finite-dimensional, resp., the Banach setting is that we
use a Ck-concept which on Banach spaces is slightly weaker than Fréchet dif-
ferentiability, but implies Ck−1 in the Fréchet sense, so that we obtain the same
class of smooth functions. The main point is that, for a non-normable locally
convex space E, the space L (E,F) of continuous linear maps to some locally
convex space F does not carry any vector topology for which the evaluation
map is continuous ([Mais63]). Therefore it is more natural to develop calcu-
lus independently of any topology on spaces of linear maps and thus to deal
instead with the differential of a function as a function of two arguments, not
as an operator-valued function of one variable. One readily observes that once
the Fundamental Theorem of Calculus is available, which is not in general the
case beyond locally convex spaces, most basic calculus results can simply be
reduced to the familiar finite-dimensional situation. This is done by restricting
to finite-dimensional subspaces and composing with linear functionals, which
separate the points due to the Hahn–Banach Theorems.

The first steps towards a calculus on locally convex spaces have been taken
by Michal (cf. [MicA38/40]), whose work was developed further by Bastiani in
[Bas64], so that the calculus we present below is named after Michal–Bastiani,
and the Ck-concept is denoted Ck

MB accordingly (if there is any need to dis-
tinguish it from other Ck-concepts). Keller’s comparative discussion of various
notions of differentiability on topological vector spaces ([Ke74]) shows that the
Michal–Bastiani calculus is the most natural one since it does not rely on con-
vergence structures or topologies on spaces of linear maps. Streamlined discus-
sions of the basic results of calculus, as we use it, can be found in [Mi80] and
[Ham82]. In [Gl02a], Glöckner treats real and complex analytic functions over
not necessarily complete spaces, which presents some subtle difficulties. Be-
yond Fréchet spaces, it is more convenient to work with locally convex spaces
which are not necessarily complete because quotients of complete non-metrizable
locally convex spaces need not be complete (cf. [Kö69], §31.6). Finally we men-
tion that the MB-calculus can even be developed for topological vector spaces
over general non-discrete topological fields (see [BGN04] for details).

One of the earliest references for smooth manifolds modeled on (complete)
locally convex spaces is Eell’s paper [Ee58], but he uses a different smoothness
concept, based on the topology of bounded convergence on the space of linear
maps (cf. also [Bas64] and [FB66]). Lie groups in the context of MB-calculus
show up for the first time in Leslie’s paper on diffeomorphism groups of com-
pact manifolds ([Les67]).
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I.1. Locally convex spaces

Definition I.1.1. A topological vector space E is said to be locally convex if
each 0-neighborhood in E contains a convex one. Throughout, topological vec-
tor spaces E are assumed to be Hausdorff. �

It is a standard result in functional analysis that local convexity is equivalent
to the embeddability of E into a product of normed spaces. This holds if and
only if the topology can be defined by a family (pi)i∈I of seminorms in the
sense that a subset U of E is a 0-neighborhood if and only if it contains a finite
intersection of sets of the form

V (pi,εi) := {x ∈ E : pi(x) < εi}, i ∈ I,εi > 0.

Definition I.1.2. (a) A locally convex space E is called a Fréchet space if there
exists a sequence {pn : n ∈ N} of seminorms on E, such that the topology on E
is induced by the metric

d(x,y) := ∑
n∈N

2−n pn(x− y)
1+ pn(x− y)

,

and the metric space (E,d) is complete. Important examples of Fréchet spaces
are Banach spaces, which are the ones where the topology is defined by a single
(semi-)norm.

(b) Let E be a vector space which can be written as E =
⋃∞

n=1 En, where
En ⊆ En+1 are subspaces of E, endowed with structures of locally convex spaces
in such a way that the inclusion mappings En→ En+1 are continuous.

Then we obtain a locally convex vector topology on E by defining a semi-
norm p on E to be continuous if and only if its restriction to all the subspaces
En is continuous. We call E the inductive limit (or direct limit) of the spaces
(En)n∈N.

If all maps En ↪→ En+1 are embeddings, we speak of a strict inductive limit.
If, in addition, the spaces En are Fréchet spaces, then each En is closed in En+1

and E is called an LF space. If the spaces En are Banach spaces and the inclu-
sion maps En→ En+1 are compact, then E is called a Silva space. �

Examples I.1.3. To give an impression of the different types of locally convex
spaces occurring below, we take a brief look at function spaces on the real line.

(a) For r ∈ N0 and a < b, the spaces Cr([a,b],R) of r-times continuously
differentiable functions on [a,b] form a Banach space with respect to the norms

‖ f ‖r :=
r

∑
k=0

‖ f (k)‖∞
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and C∞([a,b],R) is a Fréchet space with respect to the topology defined by the
sequence (‖ · ‖r)r∈N0 of norms.

(b) For each fixed r ∈N0, the space Cr(R,R) is a Fréchet space with respect
to the sequence of seminorms pn( f ) := ‖ f |[−n,n]‖r. It is the projective limit of
the Banach spaces Cr([−n,n],R). On C∞(R,R) we also obtain a Fréchet space
structure defined by the countable family of seminorms pn,r( f ) := ‖ f |[−n,n]‖r,
n,r ∈ N.

(c) For each r ∈ N0 ∪{∞}, the space Cr
c(R,R) of compactly supported Cr-

functions on R is the union of the subspaces Cr
[−n,n](R,R) of all those functions

supported by the interval [−n,n]. As a closed subspace of the Fréchet space
Cr([−n,n],R), Cr

[−n,n](R,R) inherits a Fréchet space structure, so that we obtain
on Cr

c(R,R) the structure of an LF space.
(d) For each r > 0, the space of all sequences (an)n∈N0 for which ∑∞n=0 |an|rn

converges can be identified with the space Er of all functions f : [−r,r]→ R

which can be represented by a power series, uniformly convergent on [−r,r].
This is a Banach space with respect to the norm ‖ f ‖r := ∑∞n=0

| f (n)(0)|
n! rn. The

direct limit space E :=
⋃∞

r>0 Er is the space of germs of analytic function in 0.
Since the inclusion maps E 1

n
→ E 1

n+1
are compact operators, E carries a natural

Silva space structure. Note that the subspaces Er, r > 0, are dense and not closed,
so that E is not an LF space. �

The natural completeness requirement for calculus on locally convex spaces
is the following:

Definition I.1.4. A locally convex space E is said to be Mackey complete if for
each smooth curve ξ : [0,1]→ E there exists a smooth curve η : [0,1]→ E with
η ′ = ξ . �

For each continuous linear functional λ : E → R on a locally convex space
E and each continuous curve ξ : [0,1]→ E, we have a continuous real-valued
function λ ◦ξ : [0,1]→ R which we may integrate to obtain a linear functional

Iξ : E ′ → R, λ �→
∫ 1

0
λ (ξ (t))dt,

called the weak integral of ξ . On the other hand, we have a natural embedding

ηE : E→ (E ′)∗, ηE(x)(λ ) := λ (x)

which is injective, because E ′ separates the points of E by the Hahn–Banach
Theorem. Therefore Mackey completeness means that for each smooth curve ξ
the weak integral Iξ is represented by an element of E, i.e., contained in ηE(E).
If this is the case, we simply write

∫ 1
0 ξ (t)dt for the representing element of E.

The curve η(s) :=
∫ s

0 ξ (t)dt then is differentiable and satisfies η ′ = ξ .
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For a more detailed discussion of Mackey completeness and equivalent con-
ditions, we refer to [KM97, Th. 2.14], where it is shown in particular that inte-
grals exist for Lipschitz curves and in particular for each η ∈C1([0,1],E).

I.2. Calculus on locally convex spaces

The following notion of Ck-maps is also known as Ck
MB (Ck in the Michal–

Bastiani sense) ([MicA38/40], [Bas64]) or Keller’s Ck
c -maps ([Ke74]). Its main

advantage is that it does not refer to any topology on spaces of linear maps or
any quasi-topology (cf. [Bas64]).

Definition I.2.1. (a) Let E and F be locally convex spaces, U ⊆ E open and
f : U → F a map. Then the derivative of f at x in the direction h is defined as

df (x)(h) := (Dh f )(x) :=
d
dt t=0

f (x+ th) = lim
t→0

1
t
( f (x+ th)− f (x))

whenever it exists. The function f is called differentiable at x if df (x)(h) exists
for all h ∈ E. It is called continuously differentiable, if it is differentiable at all
points of U and

df : U×E → F, (x,h) �→ df (x)(h)

is a continuous map. It is called a Ck-map, k ∈ N∪{∞}, if it is continuous, the
iterated directional derivatives

d jf (x)(h1, . . . ,h j) := (Dh j · · ·Dh1 f )(x)

exist for all integers j≤ k, x∈U and h1, . . . ,h j ∈E, and all maps d jf : U×E j→
F are continuous. As usual, C∞-maps are called smooth.

(b) If E and F are complex vector spaces, then a map f is called complex
analytic if it is continuous and for each x ∈U there exists a 0-neighborhood V
with x+V ⊆U and continuous homogeneous polynomials βk : E→ F of degree
k such that for each h ∈V we have

f (x+h) =
∞

∑
k=0

βk(h),

as a pointwise limit ([BoSi71]).
If E and F are real locally convex spaces, then we call f real analytic,

resp., Cω , if for each point x ∈U there exists an open neighborhood V ⊆ EC

and a holomorphic map fC : V → FC with fC |U∩V = f |U∩V (cf. [Mil84]). The
advantage of this definition, which differs from the one in [BoSi71], is that it
works nicely for non-complete spaces, any analytic map is smooth, and the cor-
responding chain rule holds without any condition on the underlying spaces,
which is the key to the definition of analytic manifolds (see [Gl02a] for details).
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The map f is called holomorphic if it is C1 and for each x ∈ U the map
df (x) : E→ F is complex linear (cf. [Mil84, p.1027]). If F is sequentially com-
plete, then f is holomorphic if and only if it is complex analytic (cf. [Gl02a],
[BoSi71, Ths. 3.1, 6.4], [Mil82, Lemma 2.11]). �

Remark I.2.2. If E and F are Banach spaces, then the Michal–Bastiani C1
MB-

concept from above is weaker than continuous Fréchet differentiability, which
requires that the map x �→ df (x) is continuous with respect to the operator norm
(cf. [Mil82, Ex. 6.8]). Nevertheless, one can show that Ck+1

MB implies Ck in the
sense of Fréchet differentiability, which in turn implies Ck

MB. Therefore the
different Ck-concepts lead to the same class of smooth functions (cf. [Mil82,
Lemma 2.10], [Ne01a, I.6 and I.7]). �

After clarifying the Ck-concept, we recall the precise statements of the most
fundamental facts from calculus on locally convex spaces.

Proposition I.2.3. Let E and F be locally convex spaces, U ⊆E an open subset,
and f : U → F a continuously differentiable function.

(i) For any x ∈U, the map df (x) : E→ F is real linear and continuous.
(ii) (Fundamental Theorem of Calculus) If x+[0,1]h⊆U, then

f (x+h) = f (x)+
∫ 1

0
df (x+ th)(h)dt.

In particular, f is locally constant if and only if df = 0.
(iii) f is continuous.
(iv) If f is Cn, n ≥ 2, then the functions dnf (x), x ∈U, are symmetric n-linear

maps.
(v) If x+[0,1]h⊆U and f is Cn, then we have the Taylor Formula

f (x+h) = f (x)+df (x)(h)+ · · ·+ 1
(n−1)!

dn−1f (x)(h, . . . ,h)

+
1

(n−1)!

∫ 1

0
(1− t)n−1dnf (x+ th)(h, . . . ,h)dt.

(vi) (Chain Rule) If, in addition, Z is a locally convex space, V ⊆ F is open,
and f1 : U →V , f2 : V → Z are C1, then f2 ◦ f1 : U → Z is C1 with

d( f2 ◦ f1)(x) = df 2

(
f1(x)

)◦df 1(x) for x ∈U.

If f1 and f2 are Ck, k ∈N∪{∞}, the Chain Rule implies that f2 ◦ f1 is also
Ck. �
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Remark I.2.4. A continuous k-linear map m : E1×···×Ek→ F is continuously
differentiable with

dm(x)(h1, . . . ,hk) = m(h1,x2, . . . ,xk)+ · · ·+m(x1, . . . ,xk−1,hk).

Inductively, one obtains that m is smooth with dk+1m = 0. �

Example I.2.5. The following example shows that local convexity is crucial for
the validity of the Fundamental Theorem of Calculus.

Let E denote the space of measurable functions f : [0,1]→ R for which

| f | :=
∫ 1

0
| f (x)| 12 dx

is finite and identify functions that coincide on a set whose complement has
measure zero. Then d( f ,g) := | f − g| defines a metric on E. We thus obtain a
metric topological vector space (E,d).

For a subset S⊆ [0,1], let χS denote its characteristic function. Consider the
curve

γ : [0,1]→ E, γ(t) := χ[0,t].

Then |h−1
(
γ(t + h)− γ(t))| = |h|− 1

2 |h| → 0 for each t ∈ [0,1] as h→ 0. Hence
γ is continuously differentiable with γ ′ = 0. Since γ is not constant, the Funda-
mental Theorem of Calculus does not hold in E.

The defect in this example is caused by the non-local convexity of E. In fact,
one can even show that all continuous linear functionals on E vanish. �

The preceding phenomenon could also be excluded by requiring that the
topological vector spaces under consideration have the property that the con-
tinuous linear functionals separate the points, which is automatic for locally
convex spaces. Another reason for working with locally convex spaces is that
local convexity is also crucial for approximation arguments, more specifically to
approximate continuous maps by smooth ones in the same homotopy class (cf.
[Ne04c], [Wo05a]). Local convexity it also crucial for the continuous parameter-
dependence of integrals which in turn goes into the proof of the Chain Rule.

One frequently encounters situations where it is convenient to describe mul-
tilinear maps m : E1× ·· · × Ek → F as continuous linear maps on the tensor
product space E1⊗·· ·⊗Ek, endowed with a suitable topology. For locally con-
vex spaces, there is a natural such topology, the projective tensor topology, and
it has the nice property that projective tensor products are associative. That this
is no longer true for more general topological vector spaces is one more reason
to work in the locally convex setting (cf. [Gl04a]).

Remark I.2.6. (Inverse Function Theorems) In the context of Banach spaces,
one has an Inverse Function Theorem and also an Implicit Function Theorem
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(cf. [La99]). Such results cannot be expected in general for Fréchet spaces. One
of the simplest examples demonstrating this fact arises from the algebra A :=
C(R,R) of all continuous functions on R, endowed with the topology of uniform
convergence on compact subsets, turning A into a Fréchet space on which the
algebra multiplication is continuous. We have a smooth exponential map

expA : A→ A, f �→ e f

with T0(expA) = idA. Since the range of expA lies in the unit group A× =
C(R,R×), which apparently is not a neighborhood of the constant function 1,
the Inverse Function Theorem fails in this case (cf. [Ee66, p.761]).

In Example II.5.9 below, we shall even encounter examples of exponential
functions of Lie groups which, in spite of T1(expG) = idL(G), are not a local dif-
feomorphism in 0. In view of these examples, the usual Inverse Function The-
orem cannot be generalized in any straightforward manner to arbitrary Fréchet
spaces.

Nevertheless, Glöckner ([Gl03a]) obtained a quite useful Implicit Function
Theorem for maps of the type f : E×F → F , where F is a Banach space and
E is locally convex. These results have many interesting applications, even in
the case where F is finite-dimensional. Similar results have been achieved by
Hiltunen in [Hi99], but he uses a different notion of smoothness.

A complementary Inverse Function Theorem is due to Nash and Moser
(cf. [Mo61] and [Ham82] for a nice exposition). This is a variant that can be
applied to Fréchet spaces endowed with an additional structure, called a grad-
ing, and to smooth maps which are “tame” in the sense that they are compatible
with the grading.

Another variant based on compatibility with a projective limit of Banach
spaces is the ILB-Implicit Function Theorem to be found in Omori’s book
([Omo97]). �

Remark I.2.7. (Non-complemented subspaces) Another serious pathology oc-
curring already for Banach spaces is that a closed subspace F of a locally convex
space E need not have a closed complement. A simple example is the subspace
F := c0(N,R) of the Banach space E := �∞(N,R) (cf. [Wer95, Satz IV.6.5] for
an elementary proof).

This implies that if q : E→ E/F is a quotient map of locally convex spaces,
there need not be any continuous linear map σ : E/F → E with q◦σ = idE/F .
If such a map σ exists, then

F×E/F → E, (x,y) �→ x+σ(y)

is a linear isomorphism of topological vector spaces, which implies that σ(E/F)
is a closed complement of F in E. We then call the quotient map q, resp., the
subspace F , topologically split. If E is a Fréchet space, then the Open Mapping
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Theorem implies that the existence of a closed complement for F is equivalent
to the existence of a splitting map σ .

For Fréchet spaces, it is quite easy to find natural examples of non-splitting
quotient maps: Let E := C∞([0,1],R) be the Fréchet space of smooth functions
on the unit interval and

q : E→ RN, q( f ) = ( f (n)(0))n∈N.

In view of E. Borel’s Theorem, this map is surjective, hence a quotient map
by the Open Mapping Theorem. Since every 0-neighborhood in RN contains
a non-trivial subspace, there is no continuous norm on RN, hence there is no
continuous linear cross section σ : RN→ E for q because the topology on E is
defined by a sequence of norms.

If a continuous linear cross section σ does not exist, then q has no smooth
local sections either, because for any such section σ : U → E, U open in E/F ,
the differential of σ in any point would be a continuous linear section of q.
If E is Fréchet, then q has a continuous global section by Michael’s Selection
Theorem ([MicE59], [Bou87]), and the preceding argument shows that no such
section is continuously differentiable.

For more detailed information on splitting conditions for extensions of Fré-
chet spaces, we refer to [Pala71] and [Vo87]. �

I.3. Smooth manifolds

Since the Chain Rule is valid for smooth maps between open subsets of locally
convex spaces, we can define smooth manifolds as in the finite-dimensional case
(see [Ee58] for one of the first occurrences of manifolds modeled on complete
locally convex spaces).

Definition I.3.1. Let M be a Hausdorff space and E a locally convex space. An
E-chart of M is a pair (ϕ ,U) of an open subset U ⊆M and a homeomorphism
ϕ : U → ϕ(U) ⊆ E onto an open subset ϕ(U) of E. For k ∈ N0 ∪{∞,ω}, two
E-charts (ϕ ,U) and (ψ ,V ) are said to be Ck-compatible if the maps

ψ ◦ϕ−1 |ϕ(U∩V ) : ϕ(U ∩V )→ ψ(U ∩V )

and ϕ ◦ψ−1 are Ck, where k = ω stands for analyticity. Since compositions of
Ck-maps are Ck-maps, Ck-compatibility of E-charts is an equivalence relation.
An E-atlas of class Ck of M is a set A := {(ϕi,Ui) : i∈ I} of pairwise compatible
E-charts of M with

⋃
iUi = M. A smooth/analytic E-structure on M is a maximal

E-atlas of class C∞/Cω , and a smooth/analytic E-manifold is a pair (M,A ),
where A is a maximal smooth/analytic E-atlas on M.

We call a manifold modeled on a locally convex, resp., Fréchet, resp., Banach
space a locally convex, resp., Fréchet, resp., Banach manifold. �
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We do not make any further assumptions on the topology of smooth locally
convex manifolds, such as regularity (as in [Mil84]) or paracompactness. But we
impose the Hausdorff condition, an assumption not made in some textbooks (cf.
[La99], [Pa57]). We refer to Example 6.9 in [Mil82] for a non-regular manifold.

Remark I.3.2. If M1, . . . ,Mn are smooth manifolds modeled on the spaces Ei,
i = 1, . . . ,n, then the product set M := M1×·· ·×Mn carries a natural manifold
structure with model space E =∏n

i=1 Ei. �

Smooth maps between smooth manifolds are defined as usual.

Definition I.3.3. For p ∈M, tangent vectors v ∈ Tp(M) are defined as equiva-
lence classes of smooth curves γ : ]−ε,ε [→M with ε > 0 and γ(0) = p, where
the equivalence relation is given by γ1 ∼ γ2 if (ϕ ◦ γ1)′(0) = (ϕ ◦ γ2)′(0) holds
for a chart (ϕ ,U) with p∈U. Then Tp(M) carries a natural vector space struc-
ture such that for any E-chart (ϕ ,U), the map Tp(M)→ E, [γ ] �→ (ϕ ◦ γ)′(0) is
a linear isomorphism. We write T (M) :=

⋃
p∈M Tp(M) for the tangent bundle of

M. The map πT M : T (M)→ M mapping elements of Tp(M) to p is called the
bundle projection.

If f : M→N is a smooth map between smooth manifolds, we obtain for each
p ∈M a linear tangent map

Tp( f ) : Tp(M)→ Tf (p)(N), [γ ] �→ [ f ◦ γ ],

and these maps combine to the tangent map T ( f ) : T (M)→ T (N). On the tan-
gent bundle T (M) we obtain for each E-chart (ϕ ,U) of M an E×E-chart by

T (ϕ) : T (U) :=
⋃
p∈U

Tp(M)→ T (ϕ(U))∼= ϕ(U)×E.

Endowing T (M) with the topology for which O ⊆ T (M) is open if and only if
for each E-chart (ϕ ,U) of M the set T (ϕ)(O∩ T (U)) is open in ϕ(U)×E,
we obtain on T (M) the structure of an E ×E-manifold defined by the charts
(T (ϕ),T (U)), obtained from E-charts (ϕ ,U) of M. This leads to an endofunc-
tor T on the category of smooth manifolds, preserving finite products (cf. Re-
mark I.3.2).

If f :M→V is a smooth map into a locally convex space, then T ( f ):T (M)→
T (V )∼=V×V is smooth, and can be written as T ( f )=( f ,df ), where df :T (M)→
V is called the differential of f . �

As a consequence of Proposition I.2.3(ii), we have:

Proposition I.3.4. A smooth map f : M→ N is locally constant if and only if
T ( f ) = 0. �
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Definition I.3.5. Let M be a smooth manifold modeled on the space E, and
N ⊆M a subset.

(a) N is called a submanifold of M if there exists a closed subspace F ⊆
E and for each n ∈ N there exists an E-chart (ϕ ,U) of M with n ∈ U and
ϕ(U ∩N) = ϕ(U)∩F.

(b) N is called a split submanifold of M if, in addition, there exists a subspace
G ⊆ E for which the addition map F ×G→ E,( f ,g) �→ f + g is a topological
isomorphism. �

Definition I.3.6. A (smooth) vector field X on M is a smooth section of the
tangent bundle πTM : T M→M, i.e., a smooth map X : M→ T M with πT M ◦X =
idM. We write V (M) for the space of all vector fields on M. If f ∈ C∞(M,V )
is a smooth function on M with values in some locally convex space V and
X ∈ V (M), then we obtain a smooth function on M via

X . f := df ◦X : M→V.

For X ,Y ∈ V (M), there exists a unique vector field [X ,Y ] ∈ V (M) deter-
mined by the property that on each open subset U ⊆M we have

(1.3.1) [X ,Y ]. f = X .(Y. f )−Y.(X . f )

for all f ∈C∞(U,R). We thus obtain on V (M) the structure of a Lie algebra. �

Remark I.3.7. If M = U is an open subset of the locally convex space E, then
TU = U × E with the bundle projection πTU : U × E → U,(x,v) �→ x. Each
smooth vector field is of the form X(x) = (x, X̃(x)) for some smooth function
X̃ : U → E, and we may thus identify V (U) with the space C∞(U,E). Then the
Lie bracket satisfies

[X ,Y ]̃ (p) = dỸ (p)X̃(p)−dX̃(p)Ỹ (p) for each p ∈U. �

Definition I.3.8. Let M be a smooth E-manifold and F a locally convex space.
A smooth vector bundle of type F over M is a pair (π ,F,F), consisting of a
smooth manifold F, a smooth map π : F→ M and a locally convex space F,
with the following properties:

(a) For each m ∈ M, the fiber Fm := π−1(m) carries a locally convex vector
space structure isomorphic to F.

(b) Each point m ∈ M has an open neighborhood U for which there exists a
diffeomorphism

ϕU : π−1(U)→U×F

with ϕU = (π |U ,gU), where gU : π−1(U)→ F is linear on each fiber Fm,
m ∈U.
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We then call U a trivializing subset of M and ϕU a bundle chart. If ϕU and
ϕV are two bundle charts and U ∩V �= /0, then we obtain a diffeomorphism

ϕU ◦ϕ−1
V : (U ∩V )×F → (U ∩V )×F

of the form (x,v) �→ (x,gVU(x)v). This leads to a map

gUV : U ∩V → GL(F)

for which it does not make sense to speak about smoothness because GL(F) is
not a Lie group if F is not a Banach space. This is a major difference between
the Banach and the locally convex context. Nevertheless, gUV is smooth in the
sense that the map

ĝUV :(U∩V )×F→F×F, (x,v) �→(gUV (x)v,gUV (x)−1v)=(gUV (x)v,gVU(x)v)

is smooth (cf. Definition II.3.1 below). �
Obviously, the tangent bundle T (M) of a smooth (locally convex) manifold

is an example of a vector bundle, but the cotangent bundle is more problematic:

Remark I.3.9. We define for each E-manifold M the cotangent bundle by
T ∗(M) :=

⋃
m∈M Tm(M)′ and observe that, as a set, it carries a natural structure

of a vector bundle over M, but to endow it with a smooth manifold structure we
need a locally convex topology on the dual space E ′ such that for each local dif-
feomorphism f : U→ E, U open in E, the map U×E ′ → E ′,(x,λ ) �→ λ ◦df (x)
is smooth. If E is a Banach space, then the norm topology on E ′ has this prop-
erty, but in general this property fails for non-Banach manifolds.

Indeed, let E be a locally convex space which is not normable and pick a
non-zero α0 ∈ E ′. We consider the smooth map

f : E→ E, x �→ x+α0(x)x = (1+α0(x))x.

Then df (x)v = (1+α0(x))v+α0(v)x implies that df (x) = (1+α0(x))1+α0⊗x,
which is invertible for α0(x) �∈ {−1,−1

2}. If ϕ : ]−1
4 ,∞[→R is the inverse func-

tion of ψ(x) = x + x2 on ]−1
2 ,∞[, then an easy calculation gives on

{y ∈ E : α0(y) > −1
4} the inverse function f−1(y) = (1 +ϕ(α0(y)))−1 · y. We

conclude that f is a local diffeomorphism on some 0-neighborhood of E.
On the other hand, the map U×E ′ → E ′,(x,λ ) �→ λ ◦df (x) satisfies

λ ◦df (x) = (1+α0(x))λ +λ (x)α0.

Since the evaluation map E ′ ×E→R is discontinuous in 0 for any vector topol-
ogy on E ′ ([Mais63]), f does not induce a continuous map on T ∗(E)∼= E×E ′
for any such topology. Hence there is no natural smooth vector bundle structure
on T ∗(M) if E is not normable. �

In view of the difficulties caused by the cotangent bundle, we shall introduce
differential forms directly, not as sections of a vector bundle.
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I.4. Differential forms

Differential forms play a significant role throughout infinite-dimensional Lie
theory. In the present subsection, we describe a natural approach to differen-
tial forms on manifolds modeled on locally convex spaces. A major difference
to the finite-dimensional case is that in local charts there is no natural coordi-
nate description of differential forms in terms of basic forms, that differential
forms cannot be defined as the smooth sections of a natural vector bundle (Re-
mark I.3.9), and that, even for Banach manifolds, smooth partitions of unity
need not exist, so that one has to be careful with localization arguments.

In [KM97], one finds a discussion of various types of differential forms,
containing in particular those introduced below, which are also used by Beggs
in [Beg87].

Definition I.4.1. (a) If M is a differentiable manifold and E a locally convex
space, then an E-valued p-form ω on M is a function ω which associates to
each x ∈M a p-linear alternating map ωx : Tx(M)p→ E such that in local co-
ordinates the map (x,v1, . . . ,vp) �→ωx(v1, . . . ,vp) is smooth. We writeΩp(M,E)
for the space of E-valued p-forms on M and identify Ω0(M,E) with the space
C∞(M,E) of smooth E-valued functions on M.

(b) Let E1,E2,E3 be locally convex spaces and β : E1×E2→ E3 be a con-
tinuous bilinear map. Then the wedge product

Ωp(M,E1)×Ωq(M,E2)→Ωp+q(M,E3), (ω ,η) �→ ω ∧η
is defined by (ω ∧η)x := ωx∧ηx, where

(ωx∧ηx)(v1, . . . ,vp+q)

:=
1

p!q! ∑σ∈Sp+q

sgn(σ)β
(
ωx(vσ(1), . . . ,vσ(p)),ηx(vσ(p+1), . . . ,vσ(p+q))

)
.

Important special cases, where such wedge products are used, are:

(1) β : R×E → E is the scalar multiplication of E.
(2) β : A×A→ A is the multiplication of an associative algebra.
(3) β : g×g→ g is the Lie bracket of a Lie algebra. In this case, we also write

[ω ,η ] := ω ∧η . �

The definition of the exterior differential d : Ωp(M,E)→Ωp+1(M,E) is a bit
more subtle than in finite dimensions, where one usually uses local coordinates
to define it in charts. Here the exterior differential is determined uniquely by the
property that for each open subset U ⊆M we have for X0, . . . ,Xp ∈ V (U) in the
space C∞(U,E) the identity

(dω)(X0, . . . ,Xp) :=
p

∑
i=0

(−1)iXi.ω(X0, . . . , X̂i, . . . ,Xp)
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+∑
i< j

(−1)i+ jω([Xi,Xj],X0, . . . , X̂i, . . . , X̂ j, . . . ,Xp).

The main point is to show that in a point x ∈ U the right hand side only de-
pends on the values of the vector fields Xi in x. The exterior differential has the
usual properties, such as d2 = 0 and the compatibility with pullbacks: ϕ∗(dω) =
d(ϕ∗ω).

Extending d to a linear map on the space Ω(M,E) :=
⊕

p∈N0
Ωp(M,E) of

all E-valued differential forms on M, the relation d2 = 0 implies that the space

Zp
dR(M,E) := ker(d |Ωp(M,E))

of closed p-forms contains the space Bp
dR(M,E) := d(Ωp−1(M,E)) of exact p-

forms, so that we may define the E-valued de Rham cohomology space by

H p
dR(M,E) := Zp

dR(M,E)/Bp
dR(M,E).

For finite-dimensional manifolds, one usually defines the Lie derivative of
a differential form in the direction of a vector field X by using its local flow
t �→ FlXt :

LXω :=
d
dt t=0

(FlX−t)
∗ω .

Since vector fields on infinite-dimensional manifold need not have a local flow
(cf. Example II.3.11 below), we introduce the Lie derivative more directly.

Definition I.4.2. (a) For any smooth manifold M and each locally convex space,
we have a natural representation of the Lie algebra V (M) on the space
Ωp(M,E) of E-valued p-forms on M, given by the Lie derivative, which for
Y ∈ V (M) is uniquely determined by

(LYω)(X1, . . . ,Xp) = Y.ω(X1, . . . ,Xp)−
p

∑
j=1

ω(X1, . . . , [Y,Xj], . . . ,Xp)

for Xi ∈ V (U), U ⊆M open. Again one has to verify that the value of the right
hand side in some x ∈M only depends on the values of the vector fields Xi in x.

(b) We further obtain for each X ∈ V (M) and p≥ 1 a unique linear map

iX : Ωp(M,E)→Ωp−1(M,E) with (iXω)x = iX(x)ωx,

where (ivωx)(v1, . . . ,vp−1) := ωx(v,v1, . . . ,vp−1). For ω ∈ Ω0(M,E) =
C∞(M,E), we put iXω := 0. �
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Proposition I.4.3. For X ,Y ∈V (M), we have onΩ(M,E) the Cartan formulas:

[LX , iY ] = i[X ,Y ], LX = d ◦ iX + iX ◦d and LX ◦d = d ◦LX . �

Remark I.4.4. Clearly integration of differential forms ω ∈ Ωp(M,E) only
makes sense if M is a p-dimensional compact oriented manifold (possibly
with boundary) and E is Mackey complete (Definition I.1.4). We need the
Mackey completeness to ensure that each smooth function f : Q→ E on a cube
Q :=∏p

i=1[ai,bi]⊆ Rp has an iterated integral∫
Q

f dx :=
∫ b1

a1

· · ·
∫ bp

ap

f (x1, . . . ,xp)dxp · · ·dx1. �

Remark I.4.5. (a) We call a smooth manifold M smoothly paracompact if ev-
ery open cover has a subordinated smooth partition of unity. De Rham’s Theo-
rem holds for every smoothly paracompact manifold (cf. [Ee58], [KM97, Thm.
34.7], [Beg87]). Smoothly Hausdorff second countable manifolds modeled on
a smoothly regular space are smoothly paracompact ([KM97, Cor. 27.4]). Typ-
ical examples of smoothly regular spaces are nuclear Fréchet spaces ([KM97,
Th. 16.10]).

(b) Examples of Banach spaces which are not smoothly paracompact are
C([0,1],R) and �1(N,R). On these spaces, there exists no non-zero smooth
function supported in the unit ball ([KM97, 14.11]). �

I.5. The topology on spaces of smooth functions

In this subsection, we describe a natural topology on spaces of smooth maps
which is derived from the compact open topology, the compact open Cr-topol-
ogy (cf. [Mil82, Ex. 6.10] for a comparison of different topologies on spaces of
smooth maps). Unfortunately, this topology has certain defects for functions on
infinite-dimensional manifolds.

Definition I.5.1. (a) If X and Y are topological Hausdorff spaces, then the com-
pact open topology on the space C(X ,Y ) is defined as the topology generated
by the sets of the form

W (K,U) := { f ∈C(X ,Y ) : f (K)⊆U},
where K is a compact subset of X and U an open subset of Y . We write C(X ,Y )c

for the topological space obtained by endowing C(X ,Y ) with the compact open
topology.

(b) If G is a topological group and X is Hausdorff, then C(X ,G) is a group
with respect to the pointwise product. Then the compact open topology on
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C(X ,G) coincides with the topology of uniform convergence on compact subsets
of X, for which the sets W (K,U), K ⊆ X compact and U ⊆G a 1-neighborhood,
form a basis of 1-neighborhoods. In particular, C(X ,G)c is a topological group.

(c) If Y is a locally convex space, then C(X ,Y ) is a vector space with respect
to the pointwise operations. In view of the preceding remark, the topology on
C(X ,Y )c is defined by the seminorms

pK( f ) := sup{p( f (x)) : x ∈ K},
where K ⊆ X is compact and p is a continuous seminorm on Y . It follows in
particular that C(X ,Y )c is a locally convex space.

(d) If M and N are smooth (possibly infinite-dimensional) manifolds, then
every smooth map f : M→ N defines a sequence of smooth maps T k f : T kM→
T kN on the iterated tangent bundles. We thus obtain for r ∈ N0 ∪{∞} an em-
bedding

Cr(M,N) ↪→
r

∏
k=0

C(T kM,T kN)c,

into a topological product space, that we use to define a topology on Cr(M,N),
called the compact open Cr-topology. For r < ∞, it suffices to consider the em-
bedding Cr(M,N) ↪→ C(T r(M),T r(N))c. On the set C∞(M,N), the compact
open C∞-topology is the common refinement of all Cr-topologies for r < ∞.
Since every compact subset of M is contained in a finite union of chart do-
mains, the topology on Cr(M,N) is generated by sets of the form W (K,U) in
C(T k(M),T k(N)), where K lies in T k(U) for a chart (ϕ ,U) of M.

If E is a locally convex space, then all spaces C(T kM,T kE) are locally con-
vex, by (c) above. Therefore the corresponding product topology is locally con-
vex, and hence C∞(M,E) is a locally convex space. If M is finite-dimensional,
for each chart (ϕ ,U) of M, the topology on C∞(U,E) coincides with the topol-
ogy of uniform convergence of all partial derivatives on each compact subset of
U. �

Definition I.5.2. Since smooth vector fields are smooth functions X : M→ T M,
we have a natural embedding V (M) ↪→ C∞(M,T M), defining a topology on
V (M). If (ϕ ,U) is an E-chart of M, then TU ∼= U×E, and smooth vector fields
on U correspond to smooth functions U → E. This shows that, endowed with its
natural topology, V (M) is a locally convex space. �

Remark I.5.3. As a consequence of Remark I.3.7, the bracket on V (M) is con-
tinuous if M is finite-dimensional.

It is interesting to observe that, in general, the bracket on V (M) is not
continuous if M is infinite-dimensional. To see this, we assume that M = U
is an open subset of a locally convex space E and consider the subalgebra
aff(E)∼= E �gl(E) of affine vector fields XA,b with XA,b(v) = Av+b. It is easy to
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see that the natural topology on V (U) induces on aff(E) the product topology of
the original topology on E and the compact open topology on gl(E)∼= L (E)c.
In view of

[XA,b,XA′,b′ ] = X[A′,A],A′b−Ab′ ,

it therefore suffices to show that the bilinear evaluation map L (E)c×E → E
is not continuous if dimE = ∞. Pick 0 �= v ∈ E and embed E ′c ↪→ L (E)c by
assigning to α ∈ E ′ the operator v⊗α : x �→ α(x)v. Hence it suffices to see that
the evaluation map

ev: E ′c×E→ R, (α ,v) �→ α(v)

is not continuous. Basic neighborhoods of (0,0) in E ′c × E are of the form
K̂ ×UE , where UE ⊆ U is a 0-neighborhood, K ⊆ E is compact, and K̂ :=
{ f ∈ E ′ : (∀k ∈ K) | f (k)| ≤ 1} is the polar set of K. On K̂×UE the evaluation
map is bounded if and only if UE is contained in some multiple of the bipo-

lar ̂̂K, which, according to the Bipolar Theorem, coincides with the balanced

convex closure of K, which is pre-compact ([Tr67, Prop. 7.11]). Then ̂̂K is a
pre-compact 0-neighborhood in E, so that E is finite-dimensional (cf. [Ru73,
proof of Th. 1.22]). A similar argument shows that, if we endow E ′ with the
finer topology of uniform convergence on bounded subsets of E, then the evalu-
ation map is continuous if and only if E is normable, which is equivalent to the
existence of a (weakly) bounded 0-neighborhood ([Ru73]). �

Remark I.5.4. The fact that for an infinite-dimensional locally convex space E
the evaluation map ev: E ′c×E→R is not continuous also causes trouble if one
wants to associate to transformation groups corresponding continuous, resp.,
smooth representations on function spaces.

A very simple example of a smooth group action is the translation action of
E on itself. The corresponding representation of (E,+) on the space of smooth
functions on E is given by (x. f )(y) := f (x + y). Clearly, the subspace of affine
functions in C∞(E,R) is isomorphic to R×E ′c as a locally convex space, and on
this subspace the representation of E is given by x.(t,α) = (t +α(x),α), which
is discontinuous because ev(α ,x) = α(x) is not continuous (Remark I.5.3). In
view of [Mais63], the same pathology occurs for any locally convex topology
on C∞(E,R) if E is not normable. �

II. Locally convex Lie groups

In this section, we give the definition of a locally convex Lie group. We explain
how its Lie algebra and the corresponding Lie functor are defined and describe
some basic properties. In our discussion of Lie groups, we essentially follow
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[Mil82/84], but, as for manifolds, we do not assume that the model space of
a Lie group is complete ([Gl02a]). The natural strategy to endow groups with
(infinite-dimensional) Lie group structures is to construct a chart around the
identity in which the group operations are smooth. As we shall see in Subsection
II.2, this suffices in many situations to specify a global Lie group structure.

In Subsection II.3, we discuss a smoothness concept for maps with values in
diffeomorphism groups of locally convex manifolds. This specializes in partic-
ular to maps into general linear groups of locally convex spaces. The main point
of this subsection is to obtain uniqueness results for solutions of certain ordinary
differential equations on locally convex manifolds. In Subsection II.4, we apply
all this to smooth maps with values in Lie groups, where it shows in particular
that morphisms of connected Lie groups are determined by their differential in
1.

We conclude this section with some basic results on the behavior of the ex-
ponential function (Subsection II.5), and a discussion of the concept of an initial
Lie subgroup in Subsection II.6.

II.1. Infinite-dimensional Lie groups and their Lie algebras

Definition II.1.1. A locally convex Lie group G is a locally convex manifold
endowed with a group structure such that the multiplication map mG : G×G→
G and the inversion map ηG : G→ G are smooth.

A morphism of Lie groups is a smooth group homomorphism. In the follow-
ing, we call locally convex Lie groups simply Lie groups. �

Example II.1.2. (Vector groups) Each locally convex space E is an abelian Lie
group with respect to addition and the obvious manifold structure. �

Vector groups (E,+) form the most elementary Lie groups. The next natural
class are unit groups of algebras. This leads us to the concept of a continuous
inverse algebra, which came up in the 1950s (cf. [Wae54a/b] and [Wae71]):

Definition II.1.3. (a) A locally convex algebra is a locally convex space A,
endowed with an associative continuous bilinear multiplication A× A → A,
(a,b) �→ ab. A unital locally convex algebra A is called a continuous inverse
algebra (CIA for short) if its unit group A× is open and the inversion is a con-
tinuous map A× → A,a �→ a−1.

(b) If A is a locally convex algebra which is not unital, then we obtain a
monoid structure on A by x∗y := x+y+xy for which 0 is the identity element. In
this case, we write A× for the unit group of (A,∗) and say that A is a non-unital
CIA if A× is open and the (quasi-)inversion map ηA : A× → A is continuous.

If A+ := A×K is the unital locally convex algebra with the multiplication
(x,t)(x′, t ′) := (xx′+ tx′+ t ′x,tt ′), then the map (A,∗)→ A×{1},a �→ (a,1) is
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an isomorphism of monoids, and it is easy to see that A+ is a CIA if and only if
A is a (not necessarily unital) CIA. �

Example II.1.4. Let A be a continuous inverse algebra over K and A× its unit
group. As an open subset of A, the group A× carries a natural manifold struc-
ture. The multiplication on A is bilinear and continuous, hence a smooth map
(Remark I.2.4). Therefore the multiplication of A× is smooth. One can further
show quite directly that the continuity of the inversion ηA : A× → A× implies
that dηA(x)(y) =−x−1yx−1 exists for each pair (x,y), and this formula implies
inductively that ηA is smooth and hence that A× is a Lie group.

In some cases, it is also possible to obtain a Lie group structure on the unit
group A× of a unital locally convex algebra if A× is not open (cf. Remark II.2.10
below). �

Definition II.1.5. A vector field X on the Lie group G is called left invariant if

X ◦λg = T (λg)◦X : G→ T (G)

holds for each g ∈ G, i.e., X is λg-related to itself for each g ∈ G. We write
V (G)l for the set of left invariant vector fields in V (G). The left invariance of a
vector field X implies in particular that for each g ∈G, we have X(g) = g.X(1),
where G×T (G)→ T (G),(g,v) �→ g.v denotes the smooth action of G on T (G),
induced by the left multiplication action of G on itself. For each x ∈ g, we have
a unique left invariant vector field xl ∈ V (G)l defined by xl(g) := g.x, and the
map

ev1 : V (G)l → T1(G), X �→ X(1)

is a linear bijection. If X ,Y are left invariant, then they are λg-related to them-
selves, and their Lie bracket [X ,Y ] inherits this property. We thus obtain a
unique Lie bracket [·, ·] on T1(G) satisfying

(2.1.1) [x,y]l = [xl,yl] for all x,y ∈ T1(G),

and from the formula for the bracket in local coordinates, it follows that it is
continuous (cf. Remark II.1.8 below). �

Remark II.1.6. The tangent map T (mG) : T (G×G) ∼= T (G)× T (G)→ T (G)
defines on the tangent bundle T (G) of G the structure of a Lie group with inver-
sion map T (ηG).

In fact, let εG : G→ G,g �→ 1, be the constant homomorphism. Then the
group axioms for G are encoded in the relations

(1) mG ◦ (mG× idG) = mG ◦ (idG×mG) (associativity),
(2) mG ◦ (ηG, idG) = mG ◦ (idG,ηG) = εG (inversion), and
(3) mG ◦ (εG, idG) = mG ◦ (idG,εG) = idG (unit element).
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Applying the functor T to these relations, it follows that T (mG) defines a Lie
group structure on T (G) for which T (ηG) is the inversion and 01 ∈ T1(G) is the
identity. �

Definition II.1.7. (The Lie functor) For a Lie group G, the locally convex Lie
algebra L(G) := (T1(G), [·, ·]) is called the Lie algebra of G.

To each morphism ϕ : G→ H of Lie groups we further associate its tangent
map

L(ϕ) := T1(ϕ) : L(G)→ L(H),

and the usual argument with related vector fields implies that L(ϕ) is a homo-
morphism of Lie algebras. �

This means that the assignments G �→ L(G) and ϕ �→ L(ϕ) define a functor
L from the category of (locally convex) Lie groups to the category of locally
convex Lie algebras. Since each functor maps isomorphisms to isomorphisms,
for each isomorphism ϕ : G→ H of Lie groups, the map L(ϕ) is an isomor-
phism of locally convex Lie algebras.

The following remark describes a convenient way to calculate the Lie alge-
bra of a given group.

Remark II.1.8. For each chart (ϕ ,U) of G with 1 ∈U and ϕ(1) = 0, we iden-
tify g := T1(G) via the topological isomorphism T1(ϕ) with the corresponding
model space. Then the second order Taylor expansion in (0,0) of the multipli-
cation x∗ y := ϕ(ϕ−1(x)ϕ−1(y)) (cf. Proposition I.2.3) is of the form

x∗ y = x+ y+b(x,y)+higher order terms,

where b : g×g→ g is a continuous bilinear map satisfying

(2.1.2) [x,y] = b(x,y)−b(y,x).

Using the chain rule for Taylor polynomials, it is easy to show that the second
order Taylor polynomial of the commutator map x∗ y∗x−1 ∗ y−1 is given by the
Lie bracket:

x∗ y∗ x−1 ∗ y−1 = [x,y]+higher order terms �
We now take a look at the Lie algebras of the Lie groups from Exam-

ples II.1.2/4.

Examples II.1.9. (a) If G is an abelian Lie group, then the map b : g×g→ g in
Remark II.1.8 is symmetric, which implies that L(G) is abelian. This applies in
particular to the additive Lie group (E,+) of a locally convex space E.

(b) Let A be a CIA. Then the map ϕ : A× → A,x �→ x−1 is a global chart of
A×, satisfying ϕ(1) = 0. In this chart, the group multiplication is given by

x∗ y := ϕ(ϕ−1(x)ϕ−1(y)) = (x+1)(y+1)−1 = x+ y+ xy.
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In the terminology of Remark II.1.8, we then have b(x,y) = xy and therefore
L(A×) = (A, [·, ·]), where [x,y] = xy−yx is the commutator bracket on the asso-
ciative algebra A. �

We conclude this subsection with the observation that the passage from
groups to Lie algebras can also be established on the local level.

Definition II.1.10. (The Lie algebra of a local Lie group) There is a natural
notion of a local Lie group. The corresponding algebraic concept is that of a
local group: Let G be a set and D ⊆ G×G a subset on which we are given a
map

mG : D→ G, (x,y) �→ xy.

We say that the product xy of two elements x,y ∈ G is defined if (x,y) ∈ D. The
quadruple (G,D,mG,1), where 1 is a distinguished element of G, is called a
local group if the following conditions are satisfied:

(1) Suppose that xy and yz are defined. If (xy)z or x(yz) is defined, then the
other product is also defined and both are equal.

(2) For each x ∈ G, the products x1 and 1x are defined and equal to x.
(3) For each x ∈ G, there exists a unique element x−1 ∈ G such that xx−1 and

x−1x are defined and xx−1 = x−1x = 1.
(4) If xy is defined, then y−1x−1 is defined.

If (G,D,mG,1) is a local group and, in addition, G has a smooth manifold
structure, D is open, and the maps

mG : D→ G and ηG : G→ G,x �→ x−1

are smooth, then G, resp., (G,D,mG,1) is called a local Lie group.
Let G be a local Lie group and T1(G) its tangent space in 1. For each x ∈

T1(G), we then obtain a left invariant vector field xl(g) := g.x := 0g · x. The Lie
bracket of two left invariant vector fields is left invariant and we thus obtain on
T1(G) a locally convex Lie algebra structure. We call L(G) := L(G,D,mG,1) :=
(T1(G), [·, ·]) the Lie algebra of the local group G. For more details on local Lie
groups, we refer to [GN06]. �

Remark II.1.11. If G is a Lie group and U = U−1 ⊆ G an open identity neigh-
borhood, then U carries a natural local Lie group structure with D := {(x,y) ∈
U×U : xy ∈U} and mU := mG |D. Clearly U and G have the same Lie algebras.

Local groups of this type are called enlargeable. As we shall see in Ex-
ample VI.1.7 below, not all local Lie groups are enlargeable because not all
Banach–Lie algebras are integrable (Example VI.1.16). �
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II.2. From local data to global Lie groups

We now give the precise formulation of an elementary but extremely useful
tool which helps to construct Lie group structures on groups containing a local
Lie group. This theorem directly carries over from the finite-dimensional case,
which can be found in [Ch46, §14, Prop. 2] or [Ti83, p.14]. In [GN06], it is our
main method to endow groups with Lie group structures.

Theorem II.2.1. Let G be a group and U =U−1 a symmetric subset. We further
assume that U is a smooth manifold such that

(L1) there exists an open symmetric 1-neighborhood V ⊆U with V ·V ⊆U such
that the group multiplication mV : V ×V →U is smooth,

(L2) the inversion map ηU : U →U,u �→ u−1 is smooth, and
(L3) for each g ∈ G there exists an open symmetric 1-neighborhood Ug ⊆ U

with cg(Ug) ⊆ U, and such that the conjugation map cg : Ug → U,x �→
gxg−1 is smooth.

Then there exists a unique Lie group structure on G for which there exists
an open 1-neighborhood U0 ⊆U such that the inclusion map U0→G induces a
diffeomorphism onto an open subset of G.

If the group G is generated by V , then condition (L3) can be omitted. �
If V is as above, then D := {(x,y) ∈V ×V : xy ∈V} defines on V the struc-

ture of a local Lie group, and the preceding theorem implies that the smooth
structure of this local Lie group, together with the group structure of G, deter-
mines the global Lie group structure of G. The subtlety of condition (L3) is that
it mixes local and global objects because it requires that each element of G in-
duces an isomorphism of the corresponding germ of local groups. The following
corollary is a converse of Remark II.1.11 (cf. [Swi65]). It is the central tool to
pass from local to global subgroups of Lie groups.

Corollary II.2.2. Let (U,D,mU ,1) be a local Lie group, G a group, and η :
U →G an injective morphism of local groups. Then the subgroup H := 〈η(U)〉
⊆ G generated by η(U) carries a unique Lie group structure for which η is a
diffeomorphism onto an open subset of H. �

The preceding corollary shows in particular that if, in addition to the assump-
tions of Theorem II.2.1, the group multiplication of G restricts to a smooth map
on the domain DU := {(x,y) ∈U ×U : xy ∈U}, then the inclusion U ↪→ G is a
diffeomorphism onto an open subset of G, endowed with the Lie group structure
determined by U .

Corollary II.2.3. Let G be a group and N � G a normal subgroup that carries
a Lie group structure. Then there exists a Lie group structure on G for which
N is an open subgroup if and only if for each g ∈ G, the restriction cg |N is a
smooth automorphism of N. �



Towards a Lie theory of locally convex groups 325

The preceding corollary is of particular interest for abelian groups. In this
case, it leads for each Lie group structure on any subgroup N ⊆ G to a Lie
group structure on G for which N is an open subgroup.

The following corollary implies in particular that quotients of Lie groups by
discrete normal subgroups are Lie groups.

Corollary II.2.4. Let ϕ : G→H be a covering of topological groups. If G or H
is a Lie group, then the other group has a unique Lie group structure for which
ϕ is a morphism of Lie groups which is a local diffeomorphism. �

Remark II.2.5. (a) (Lie subgroups) If G is a Lie group with Lie algebra g and
H ⊆ G is a submanifold which is a group, then H inherits a Lie group structure
from G. Moreover, there exists a closed subspace h ⊆ g ∼= T1(G) and a chart
(ϕ ,U) of G with 1 ∈U = U−1, ϕ(1) = 0 and

ϕ(U ∩H) = ϕ(U)∩h.

The local multiplication x∗ y := ϕ(ϕ−1(x)ϕ−1(y)) on

D := {(x,y) ∈ ϕ(U)×ϕ(U) : ϕ−1(x)ϕ−1(y) ∈U}

then satisfies

(2.2.1) x∗ y ∈ h for (x,y) ∈ D∩ (h×h)

and

(2.2.2) x−1 ∈ h for x ∈ h∩ϕ(U).

In view of Remark II.1.8, this implies that h is a closed Lie subalgebra of g.
If, conversely, h ⊆ g is a closed Lie subalgebra for which there is a chart

(ϕ ,U) as above, satisfying (2.2.1/2), then ϕ(U)∩ h carries a local Lie group
structure and we can apply Corollary II.2.2 to the embedding ϕ−1 : ϕ(U)∩h→
G, which leads to a Lie group structure on the subgroup H := 〈ϕ−1(ϕ(U)∩h)〉
of G. We know already from the finite dimensional theory that, in general, this
does not lead to a submanifold of G.

(b) A weaker concept of a “Lie subgroup” is obtained by requiring only that
H ⊆ G a subgroup, for which there exists an identity neighborhood UH whose
smooth arc-component UH

0 of 1 is a submanifold of G (cf. [KYMO85, p.45]).
Then we can use Theorem II.2.1 to obtain a Lie group stucture on H for which
some identity neighborhood is diffeomorphic to an identity neighborhood in
UH

0 . �
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Remark II.2.6. Since it also makes sense to consider manifolds without assum-
ing that they are Hausdorff (cf. [Pa57], [La99]), it is worthwhile to observe that
this does not lead to a larger class of Lie groups.

In fact, let G be a Lie group which is not necessarily Hausdorff. Then G
is in particular a topological group which possesses an identity neighborhood
U homeomorphic to an open subset of a locally convex space. As U is Haus-
dorff, and since the subgroup {1} of G coincides with the intersection of all
1-neighborhoods, the closedness of {1} in U implies that {1} is a closed sub-
group of G and hence that G is a Hausdorff topological group. �

To see how Theorem II.2.1 can be applied, we now take a closer look at
groups of differentiable maps. First we introduce a natural topology on these
groups.

Definition II.2.7. (Groups of differentiable maps as topological groups) Let M
be a smooth manifold (possibly infinite-dimensional), K a Lie group with Lie al-
gebra k and r ∈N0∪{∞}. We endow the group G :=Cr(M,K) with the compact
open Cr-topology (Definition I.5.1).

We know already that the tangent bundle T K of K is a Lie group (Re-
mark II.1.6). Iterating this procedure, we obtain a Lie group structure on all
higher tangent bundles T nK. For each n∈N0, we thus obtain topological groups
C(T nM,T nK)c by using the topology of uniform convergence on compact sub-
sets of T nM, which coincides with the compact open topology (Definition I.5.1).
We also observe that for two smooth maps f1, f2 : M→ K, the functoriality of T
yields

T ( f1 · f2) = T (mG ◦ ( f1× f2)) = T (mG)◦ (T f1×T f2) = T f1 ·T f2.

Therefore the inclusion map

Cr(M,K) ↪→
r

∏
n=0

C(T nM,T nK)c, f �→ (T n f )0≤n≤r

is a group homomorphism, so that the inverse image of the product topology
from the right hand side is a group topology on Cr(M,K). Hence the compact
open Cr-topology turns Cr(M,K) into a topological group, even if M and K are
infinite-dimensional. �

We define the support of a Lie group-valued map f : M→ G by

supp( f ) := {x ∈M : f (x) �= 1},
for a closed subset X ⊆M we put

Cr
X (M,K) := { f ∈Cr(M,K) : supp( f )⊆ X},

and write Cr
c(M,K) for the subgroup of compactly supported Cr-maps.
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Theorem II.2.8. Let K be a Lie group with Lie algebra k, M a finite-dimension-
al manifold (possibly with boundary), and r ∈ N0∪{∞}.

(a) If M is compact, then Cr(M,K) carries a Lie group structure compatible
with the compact open Cr-topology, and its Lie algebra is Cr(M,k), endowed
with the pointwise bracket.

(b) If M is σ -compact, then Cr
c(M,k), endowed with the locally convex direct

limit topology of the spaces Cr
X(M,k), X ⊆ M compact, is a topological Lie

algebra and Cr
c(M,K) carries a natural Lie group structure with Lie algebra

Cr
c(M,k).

Proof. (Sketch) (a) Let G := Cr(M,K) and g := Cr(M,k). The Lie group struc-
ture on G can be constructed with Theorem II.2.1 as follows. Let ϕK : UK → k
be a chart of K. Then the set UG := { f ∈ G : f (M) ⊆UK} is an open subset of
G. Assume, in addition, that 1 ∈UK and ϕK(1) = 0. Then the map

ϕG : UG→ g, f �→ ϕK ◦ f

defines a chart (ϕG,UG) of G. To apply Theorem II.2.1, one has to verify that in
this chart the inversion is a smooth map, that the multiplication map

DG := {( f ,g) ∈UG×UG : f g ∈UG}→UG

is smooth and that conjugation maps are smooth in some 1-neighborhood of UG.
For details, we refer to [Gl02c], resp., [GN06].

To calculate the Lie algebra of this group, we observe that for m ∈ M, we
have for the multiplication in local coordinates

( f ∗G g)(m) := ϕG

(
ϕ−1

G ( f )ϕ−1
G (g)

)
(m) = ϕK

(
ϕ−1

K ( f (m))ϕ−1
K (g(m))

)
= f (m)∗K g(m) = f (m)+g(m)+bk( f (m),g(m))+ · · · .

In view of Remark II.1.8, this implies that bg( f ,g)(m) = bk( f (m),g(m)), and
hence that

[ f ,g](m) = bg( f ,g)(m)−bg(g, f )(m) = bk( f (m),g(m))−bk(g(m), f (m)) = [ f (m),g(m)].

Therefore L(Cr(M,K)) = Cr(M,k), endowed with the pointwise defined Lie
bracket.

(b) is proved along the same lines. Note that it is not obvious that the Lie
bracket on Cr

c(M,k) is continuous because it is a bilinear map. �
If K is finite-dimensional, then the preceding Lie group construction can be

found in Michor’s book [Mi80], and also in [AHMTT93] (which basically deals
with the topological level). In [BCR81], one finds interesting variants of groups
of smooth maps on open subsets U ⊆ Rn which are rapidly decreasing at the
boundary with respect to certain weight functions. In particular, there is a Lie
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group S (Rn,K) whose Lie algebra is the space S (Rn,k) of k-valued Schwartz
functions on Rn.

Remark II.2.9. (a) If M is a non-compact finite-dimensional manifold, then one
cannot expect the topological groups Cr(M,K) to be Lie groups. A typical ex-
ample arises for M = N (a 0-dimensional manifold) and K = T := R/Z. Then
Cr(M,K)∼= TN is a compact topological group for which no 1-neighborhood is
contractible, so that it carries no smooth manifold structure.

(b) Non-linear maps on spaces of compactly supported functions such as
E := C∞c (R,R) (Examples I.1.3) require extreme caution. E.g. the map

f : C∞c (R,R)→C∞c (R,R), γ �→ γ ◦ γ− γ(0)

is smooth on each closed Fréchet subspace En := C∞[−n,n](R,R), but it is discon-
tinuous in 0 ([Gl06a]). Therefore the LF space E = lim−→ En is a direct limit in the

category of locally convex spaces, but not in the category of topological spaces.
�

Remark II.2.10. (a) Let A be a commutative unital locally convex algebra with
a smooth exponential function

expA : A→ A×,

i.e., expA : (A,+)→ (A×, ·) is a group homomorphism with T0(expA) = idA.
Then ΓA := ker(expA) is a closed subgroup of A not containing any line.

Suppose that ΓA is discrete. Then N := A/ΓA carries a natural Lie group struc-
ture (Corollary II.2.4) and the exponential function factors through an injection
N ↪→ A×. We may therefore use Corollary II.2.3 to define a Lie group structure
on the group A× for which the identity component is expA(A)∼= N.

(b) If M is a σ -compact finite-dimensional manifold, then A := C∞(M,C) is
a complex locally convex algebra with respect to the compact open C∞ topology,
and

expA : A→ A× = C∞(M,C×), f �→ e f

is a smooth exponential function.
If M is non-compact, then A× is not open because for each unbounded func-

tion f : X → C the element 1 +λ f is not invertible for λ ∈ C arbitrarily close
to 0. It follows that A is a CIA if and only if M is compact.

The closed subgroup ΓA = ker(expA) =C∞(M,2π iZ)∼=C∞(M,Z) is discrete
if and only if M has only finitely many connected components. In this case, (a)
implies that A× carries a Lie group structure for which expA is a local diffeo-
morphism.

A typical example is M = R and A = C∞(R,C) with

A× = C∞(R,C×)∼= C∞∗ (R,C×)×C× ∼= C∞∗ (R,C)×C×
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as topological groups, where C∞∗ denotes functions mapping 0 to 1, resp., to 0.
For M = N, we have A∼= CN, and ΓA

∼= ZN is not discrete.
If M is connected, it is not hard to see that the map

δ : A× ∼= C∞(M,C×)→ Z1
dR(M,C), f �→ df

f

induces a topological isomorphism of A×/C× onto the group Z1
dR(M,Z) of

closed 1-forms whose periods are contained in 2π iZ, and the arc-component
A×a of the identity is mapped onto the set of exact 1-forms. We conclude that, as
topological groups,

π0(A×)∼= A×/A×a ∼= H1
dR(M,Z)∼= Hom(π1(M),Z)∼= Hom(H1(M),Z),

and this group is discrete if and only if H1
sing(M,Z)∼= Hom(H1(M),Z) is finitely

generated (cf. [NeWa06b]). This shows that the arc-component of the identity
in A× is open if and only if H1

sing(M,Z) is finitely generated.

For M := C \N, the group H1(M) ∼= Z(N) is of infinite rank, H1
sing(M,Z) ∼=

ZN is not discrete, but M is connected, so that A× carries a Lie group structure
whose underlying topology is finer than the original topology of A× induced
from A. �

II.3. Smoothness of maps into diffeomorphism groups

Although the notion of a smooth manifold provides us with a natural notion of
a smooth map between such manifolds, it turns out to be convenient to have a
notion of a smooth map of a manifold into spaces of smooth maps which do
not carry a natural manifold structure. In this subsection, we discuss this notion
of smoothness with an emphasis on maps with values in groups of diffeomor-
phisms of locally convex manifolds.

Definition II.3.1. Let M be a smooth locally convex manifold and Diff(M) the
group of diffeomorphisms of M. Further let N be a smooth manifold. Although,
in general, Diff(M) has no natural Lie group structure, we call a map ϕ : N→
Diff(M) smooth if the map

ϕ̂ : N×M→M×M, (n,x) �→ (ϕ(n)(x),ϕ(n)−1(x))

is smooth. If N is an interval in R, we obtain in particular a notion of a smooth
curve. �
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To discuss derivatives of such smooth map, we take a closer look at the
“tangent bundle” of Diff(M), which can be done without a Lie group structure
on Diff(M) (which does not exist in a satisfactory fashion for non-compact M;
cf. Theorem VI.2.6). We think of the set

T (Diff(M)) := {X ∈C∞(M,T M) : πTM ◦X ∈ Diff(M)}
as the tangent bundle of Diff(M), with the map

π : T (Diff(M))→ Diff(M), X �→ πT M ◦X

as the bundle projection, and Tϕ(Diff(M)) := π−1(ϕ) is considered as the tan-
gent space in ϕ ∈Diff(M). We have natural left and right actions of Diff(M) on
T (Diff(M)) by

ϕ .X = T (ϕ)◦X and X .ϕ := X ◦ϕ .

The action

Ad: Diff(M)×V (M)→V (M), (ϕ ,X) �→ϕ∗X :=Ad(ϕ).X :=T (ϕ)◦X ◦ϕ−1

is called the adjoint action of Diff(M) on V (M).
Smooth curves ϕ : J ⊆ R→ Diff(M) have (left) logarithmic derivatives

δ (ϕ) : J→ V (M), δ (ϕ)t := ϕ(t)−1.ϕ ′(t)

which are smooth curves in the Lie algebra V (M) of smooth vector fields on M,
i.e., time-dependent vector fields. For general N, the logarithmic derivatives are
V (M)-valued 1-forms on N, defined as follows:

If ϕ : N → Diff(M) is smooth and ϕ̂1 : N×M→M,(n,x) �→ ϕ(n)(x), then
we have a smooth tangent map

T (ϕ̂1) : T (N×M)∼= T (N)×T (M)→ T (M),

and for each v ∈ Tp(N) the partial map

Tp(ϕ)v : M→ T (M), m �→ T(p,m)(ϕ̂1)(v,0)

is an element of Tϕ(p)(Diff(M)). We thus obtain a tangent map

T (ϕ) : T (N)→ T (Diff(M)), v ∈ Tp(N) �→ Tp(ϕ)v.

Definition II.3.2. We define the (left) logarithmic derivative of ϕ in p by

δ (ϕ)p : Tp(N)→ V (M), v �→ ϕ(p)−1.Tp(ϕ)(v) = T (ϕ(p)−1)◦Tp(ϕ)(v).

It can be shown that δ (ϕ) is a smooth V (M)-valued 1-form on N (see [GN06]
for details), but recall that V (M) need not be a topological Lie algebra if M is
not finite-dimensional (Remark I.5.3). �
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For calculations, it is convenient to observe the Product- and Quotient Rule,
both easy consequences of the Chain Rule:

Lemma II.3.3. For two smooth maps f ,g : N → Diff(M), define ( f g)(n) :=
f (n)◦g(n) and ( f g−1)(n) := f (n)◦g(n)−1. Then we have the
(1) Product Rule: δ ( f g) = δ (g)+Ad(g−1).δ ( f ), and the
(2) Quotient Rule: δ ( f g−1) = Ad(g).(δ ( f )−δ (g)),
where we write (Ad( f ).α)n := Ad( f (n)).αn for a V (M)-valued 1-form α on
N. �

Remark II.3.4. Although we shall only use the left logarithmic derivative, we
note that one can also define the right logarithmic derivative of a smooth map
ϕ : N→ Diff(M) by

δ r(ϕ)p(v) =
(
Tp(ϕ)v

)◦ϕ(p)−1,

which also defines an element of Ω1(N,V (M)), satisfying δ r(ϕ) =
Ad(ϕ).δ (ϕ) =−δ (ϕ−1).

We then have for two smooth maps f ,g : N→ Diff(M) the
(1) Product Rule: δ r( f g) = δ r( f )+Ad( f ).δ r(g), and the
(2) Quotient Rule: δ r( f g−1) = δ r( f )−Ad( f g).δ r(g). �

The following lemma generalizes Lemma 7.4 in [Mil84] which deals with
Lie group-valued curves.

Lemma II.3.5. (Uniqueness Lemma) Suppose that N is connected. For two
smooth maps f ,g : N→ Diff(M), the relation δ ( f ) = δ (g) is equivalent to the
existence of ϕ ∈ Diff(M) with g(p) = ϕ ◦ f (p) for all p ∈ N. In particular,
g(p0) = f (p0) for some p0 ∈ N implies f = g.

Proof. If g(p) = ϕ ◦ f (p) for each p ∈ N, then Tp(g) = ϕ(p).Tp( f ), and there-
fore δ (g) = δ ( f ).

If, conversely, δ (g) = δ ( f ) and γ := g f−1, then the Quotient Rule implies
δ (γ) = δ (g f−1) = 0, which in turn implies that for each x ∈ M the map p �→
γ(p)(x) has vanishing derivative, hence is locally constant (Proposition I.3.4).
Since N is connected, γ is constant. We conclude that g = ϕ ◦ f for some ϕ ∈
Diff(M). �

The Uniqueness Lemma is a key tool which implies in particular that so-
lutions to certain initial value problems are unique whenever they exist (which
need not be the case). In this generality, this is quite remarkable because there
are ordinary linear differential equations with constant coefficients on Fréchet
spaces E for which solutions are not unique (cf. Example II.3.11 below). Nev-
ertheless, the Uniqueness Lemma implies that solutions of the corresponding
operator-valued initial value problems on the group GL(E)⊆Diff(E) are unique
whenever they exist.
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Remark II.3.6. Smooth maps with values in Diff(M) can be specialized in sev-
eral ways:

(a) Let E be a locally convex space and GL(E) the group of linear topo-
logical automorphisms of E. Then GL(E) consists of all diffeomorphisms of
E commuting with the scalar multiplications μt(v) = tv, t ∈ K×, and gl(E) =
(L (E), [·, ·]) can be identified with the Lie subalgebra of V (E) consisting of
linear vector fields which can be characterized in a similar way. This observa-
tion implies that the logarithmic derivative of a smooth map ϕ : N→ GL(E) is
a gl(E)-valued 1-form on N and that the Uniqueness Lemma applies to GL(E)-
valued smooth maps.

(b) If K is a Lie group with Lie algebra k, then we consider the group
C∞(M,K) of smooth maps, endowed with the pointwise bracket, as a subgroup
of Diff(M×K), by letting f ∈C∞(M,K) act on M×K by f̃ (m,k) := (m, f (m)k).
The corresponding Lie algebra of vector fields on M×K is C∞(M,k), where
ξ ∈C∞(M,k) corresponds to the vector field given by

ξ̃ (m,k) = T1(ρk)ξ (m) ∈ Tk(K)⊆ T(m,k)(M×K).

A map ϕ : N→C∞(M,K) is smooth as a map into Diff(M×K) if and only
if the map

N×M×K→ (M×K)2, (n,m,k) �→ (
(m,ϕ(n)(m)k),(m,ϕ(n)(m)−1k)

)
is smooth, which in turn means that the map ϕ̂ : N×M→ K,(n,m) �→ ϕ(n)(m)
is smooth. Hence the Uniqueness Lemma also applies to functions ϕ : N →
C∞(M,K) which are smooth in the sense that ϕ̂ is smooth. Their logarithmic
derivatives δ (ϕ) can be viewed as C∞(M,k)-valued 1-forms on N.

(c) If G is a Lie group, then G itself can be identified with the subgroup
{λg : g ∈ G} of Diff(G), consisting of all left translations. On the Lie algebra
level, this corresponds to the embedding L(G) ↪→ V (G) as the right invariant
vector fields. Then a map ϕ : N → G ⊆ Diff(G) is smooth if and only if it is
smooth as a G-valued map, and we thus obtain a Uniqueness Lemma for G-
valued smooth maps and L(G)-valued 1-forms. �

Remark II.3.7. (a) The Uniqueness Lemma implies in particular that a smooth
left action of a connected Lie group G on a smooth manifold M, given by a
homomorphism σ : G→Diff(M), is uniquely determined by the corresponding
homomorphism of Lie algebras

σ̇ :=−δ (σ)1 : L(G)→ V (M)

because δ (σ) is a left invariant V (M)-valued 1-form on G, hence determined
by its value in 1.
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(b) It likewise follows that any smooth representation π : G→ GL(E) of a
connected Lie group G on some locally convex space E is uniquely determined
by its derived representation

L(π) := δ (π)1 : L(G)→ gl(E)⊆ V (E). �

Remark II.3.8. (Complete vector fields) (a) Another consequence of the U-
niqueness Lemma is that we may define a complete vector field X on M as a vec-
tor field for which there exists a smooth one-parameter group γX : R→Diff(M)
with γ ′X(0) = X . In this sense, we consider the complete vector fields as the
domain of the exponential function exp(X) := γX(1) of Diff(M).

(b) Likewise, the domain of the exponential function of GL(E), E a locally
convex space, is the set of all continuous linear operators D on E for which
the corresponding linear vector field XD(v) = Dv is complete, i.e., there exists a
smooth representation α : R→GL(E) with α ′(0) = D. We call these operators
D integrable.

(c) We may further define for each Lie group G the domain of the exponen-
tial function of G as those elements x ∈ L(G) for which the corresponding left
invariant vector field xl is complete. �

Example II.3.9. (The adjoint representation of a Lie group) The adjoint action
encodes a good deal of structural information of a Lie group G. It provides a
linearized picture of the non-commutativity of G.

For each g ∈ G, the map cg : G→ G,x �→ gxg−1, is a smooth automorphism
of G, hence induces a continuous linear automorphism

Ad(g) := L(cg) : L(G)→ L(G).

We thus obtain a smooth action G×L(G)→ L(G),(g,x) �→Ad(g).x, called the
adjoint action of G on L(G). By considering the Taylor expansion of the map
(g,h) �→ ghg−1, one shows that the derived representation of L(G) on L(G)
satisfies

(2.3.1) L(Ad) = ad, i.e., L(Ad)(x)(y) = [x,y] for x,y ∈ L(G).

If L(G)′ := L (L(G),K) denotes the topological dual of L(G), then we also
obtain a representation of G on L(G)′ by Ad∗(g). f := f ◦Ad(g)−1, called the
coadjoint action. Since we do not endow L(G)′ with a topology, we will not
specify any smoothness or continuity properties of this action. �

The following lemma shows that, whenever there is a smooth curve γ : J→
Diff(M) satisfying the initial value problem

(2.3.2) γ(0) = idM and γ ′(t) = Xt ◦ γ(t)



334 K.-H. Neeb

for a time-dependent vector field X : J → V (M), then all integral curves of X
on M are of the form

(2.3.3) η(t) = γ(t)(m),

hence unique. It follows in particular, that the existence of multiple integral
curves of X implies that (2.3.2) has no solution. Below we shall see examples
where this situation arises, even for linear differential equations.

Lemma II.3.10. Let J ⊆ R be an interval containing 0 and γ : J→ Diff(M) be
a smooth curve with γ(0) = idM. Let Xt := δ r(γ)t be the corresponding time-
dependent vector field on M with Xt ◦ γ(t) = γ ′(t), m0 ∈ M, and assume that
η : J→M is a solution of the initial value problem:

η(0) = m0 and η ′(t) = Xt(η(t)) for t ∈ J.

Then η(t) = γ(t)(m0) holds for all t ∈ J.

Proof. The smooth curve α : J→M, t �→ γ(t)−1(η(t)) satisfies α(0) = m0 and

α ′(t) = (γ−1)′(η(t))+T (γ(t)−1)(η ′(t)) = T (γ(t)−1)
(
δ (γ−1)t(η(t))+η ′(t)

)
= T (γ(t)−1)

(−δ r(γ)t(η(t))+η ′(t)
)

= T (γ(t)−1)
(−Xt(η(t))+η ′(t)

)
= 0.

Hence α is constant m0, and the assertion follows. �
In [OMYK82], one finds the particular version of the preceding lemma deal-

ing with solutions of the initial value problem

η ′(t) = [η(t),ξ (t)]+η(t), η(0) = x

in the Lie algebra of a regular Lie group (see also [KYMO85, 2.5/2/6]).

Example II.3.11. (A linear ODE with multiple solutions) (cf. [Ham82, 5.6.1],
[Mil84]) We give an example of a linear ODE for which solutions to initial
value problems exist, but are not unique. We consider the Fréchet space E :=
C∞([0,1],R) of smooth functions on the closed unit interval, and the continuous
linear operator D f := f ′ on E. We are asking for solutions of the initial value
problem

(2.3.4) γ̇(t) = Dγ(t), γ(0) = v0, γ : I ⊆ R→ E.

As a consequence of E. Borel’s Theorem that each power series is the Taylor
series of a smooth function, each v0 ∈ E has an extension to a smooth function
on R. Let h be such a function and consider the curve

γ : R→ E, γ(t)(x) := h(t + x).

Then γ(0) = h |[0,1] = v0 and γ̇(t)(x) = h′(t + x) = γ(t)′(x) = (Dγ(t))(x). It is
clear that these solutions of (2.3.4) depend on the choice of the extension h of
v0.
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Lemma II.3.10 and the discussions preceding it now imply that D is not
integrable. In fact, for any smooth homomorphismα : R→GL(E) with α ′(0) =
D, we would have δ r(α) = D, so that any solution of (2.3.4) is of the form
γ(t) = α(t).v0, contradicting the existence of multiple solutions. �

Example II.3.12. (A linear ODE without solutions; [Mil84]) We identify E :=
C∞(S1,C) with the space of 2π-periodic smooth functions on the real line. We
consider the linear operator D f := − f ′′ and the equation (2.3.4), which in this
case is the heat equation with reversed time. If γ is a solution of (2.3.4) and
γ(t)(x) = ∑n∈Z an(t)einx its Fourier expansion, then a′n(t) = n2an(t) for each
n ∈ Z leads to an(t) = an(0)etn2

. If the Fourier coefficients an(0) of γ0 do not
satisfy∑n |an(0)|eεn2

<∞ for any ε > 0 (which need not be the case for a smooth
function γ0), then (2.3.4) does not have a solution on [0,ε ].

As a consequence, the operator exp(tD) is not defined in GL(E) for any
t > 0. Nevertheless, we may use the Fourier series expansion to see that β (t) :=
(1+ it2)1+tD defines a smooth curve β : R→GL(E). We further have β ′(0) =
D, so that D arises as the tangent vector of a smooth curve in GL(E), but not of
any smooth one-parameter group. �

The following example is of some interest for the integrability of Lie alge-
bras of formal vector fields (Example VI.2.8).

Example II.3.13. We consider the space E := R[[x]] of formal power series
∑∞n=0 anxn in one variable. We endow it with the Fréchet topology for which the
map RN0 →R[[x]],(an) �→∑n anxn is a topological isomorphism. Then D f := f ′
with f ′(x) := ∑∞n=1 annxn−1 = ∑∞n=0 an+1(n+1)xn for f (x) = ∑∞n=0 anxn defines
a continuous linear operator on E. We claim that this operator is not integrable.

We argue by contradiction, and assume that α : R→ GL(E) is a smooth
R-action of E with α ′(0) = D. For each n ∈ N, the curve γ : R→ E,γ(t) :=
(x + t)n, satisfies γ̇(t) = n(x + t)n−1 = Dγ(t), so that Lemma II.3.10 implies
that α(t)xn = (x + t)n for all t ∈ R. Then we obtain α(1)xn = 1 + nx + · · · . In
view of limn→∞ xn→ 0 in E, this contradicts the continuity of the operator α(1).
Therefore D is not integrable. �

Example II.3.14. Let M be a compact manifold and g = V (M), the Lie algebra
of smooth vector fields on M. We now sketch how the group G := Diff(M) can
be turned into a Lie group, modeled on V (M), endowed with its natural Fréchet
topology (Definition I.5.2) ([Les67]).

If FlX : R×M → M,(t,m) �→ FlXt (m) denotes the flow of the vector field
X , then the exponential function of the group Diff(M) should be given by the
time-1-map of the flow of a vector field:

expDiff(M) : V (M)→ Diff(M), X �→ FlX1 .
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For the Lie group structure described below, this is indeed the case. Unfortu-
nately, it is not a local diffeomorphism of a 0-neighborhood in V (M) onto any
identity neighborhood in Diff(M). Therefore we cannot use it to define a chart
around 1 = idM (cf. [Grab88], [Pali68/74], and also [Fre68], which deals with
local smooth diffeomorphisms in two dimensions).

Fortunately, there is an easy way around this problem. Let g be a Riemannian
metric on M and Exp: T M→M be its exponential function, which assigns to
v ∈ Tm(M) the point γv(1), where γv : [0,1]→M is the geodesic segment with
γv(0) = m and γ ′v(0) = v. We then obtain a smooth map

Φ : T M→M×M, v �→ (m,Expv), v ∈ Tm(M).

There exists an open neighborhood U ⊆ T M of the zero section such that Φ
maps U diffeomorphically onto an open neighborhood of the diagonal in M×M.
Now

Ug := {X ∈ V (M) : X(M)⊆U}
is an open subset of the Fréchet space V (M), and we define a map

ϕ : Ug→C∞(M,M), ϕ(X)(m) := Exp(X(m)).

It is clear that ϕ(0) = idM . One can show that after shrinking Ug to a sufficiently
small 0-neighborhood in the compact open C1-topology on V (M), we achieve
that ϕ(Ug) ⊆ Diff(M). To see that Diff(M) carries a Lie group structure for
which ϕ is a chart, one has to verify that the group operations are smooth in a
0-neighborhood when transferred to Ug via ϕ , so that Theorem II.2.1 applies.
We thus obtain a Lie group structure on Diff(M) (cf. [Omo70], [GN06]).

From the smoothness of the map Ug ×M → M,(X ,m) �→ ϕ(X)(m) =
Exp(X(m)) it follows that the canonical left action σ : Diff(M)×M→M,(ϕ ,
m) �→ϕ(m) is smooth in an identity neighborhood of Diff(M), and hence smooth,
because it is an action by smooth maps. The corresponding homomorphism of
Lie algebras σ̇ : L(Diff(M))→ V (M) (Remark II.3.7(a)) is given by

σ̇(X)(m) =−Tσ(X ,0m) =−X(m),

i.e., σ̇ =− idV (M), which leads to

L(Diff(M)) = (V (M), [·, ·])op,

where gop is the opposite of the Lie algebra g with the bracket [x,y]op := [y,x].
This “wrong” sign is caused by the fact that we consider Diff(M) as a

group acting on M from the left. If we consider it as a group acting on the
right, we obtain the opposite multiplication ϕ ∗ψ :=ψ ◦ϕ and L(Diff(M)op)∼=
(V (M), [·, ·]). Here we write Gop for the opposite group with the order of multi-
plication reversed. �
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II.4. Applications to Lie group-valued smooth maps

In this subsection, we describe some applications of the Uniqueness Lemma to
Lie group-valued smooth maps (cf. Remark II.3.6(c)).

Let G be a Lie group with Lie algebra g = L(G). The Maurer–Cartan form
κG ∈ Ω1(G,g) is the unique left invariant 1-form on G with κG,1 = idg, i.e.,
κG(v) = g−1.v for v ∈ Tg(G). In various disguises, this form plays a central role
in the approach to (local) (Banach–)Lie groups via partial differential equations
([Mau88], [CaE01], [Lie95], [Bir38], [MicA48], [Lau56]).

Identifying G with the subgroup of left translations in Diff(G), the con-
cepts of the preceding subsection apply to any smooth map f : M → G (Re-
mark II.3.6(c)). The logarithmic derivative of f can be described as a pull-back
of the Maurer–Cartan form:

δ ( f ) = f ∗κG ∈Ω1(M,g).

Proposition II.4.1. Let G and H be Lie groups.

(1) If ϕ : G→ H is a morphism of Lie groups, then δ (ϕ) = L(ϕ)◦κG.
(2) If G is connected and ϕ1,ϕ2 : G→ H are morphisms of Lie groups with

L(ϕ1) = L(ϕ2), then ϕ1 = ϕ2.
(3) For a smooth function f : G→ H with f (1) = 1, the following are equiva-

lent:
(a) δ ( f ) is a left invariant 1-form.
(b) f is a group homomorphism.

Proof. (1) is a simple computation, and (2) follows with (1) and the Uniqueness
Lemma (cf. Remark II.3.6(c)).

The proof of (3) follows a similar pattern, applying the Uniqueness Lemma
to the relations λ ∗g δ ( f ) = δ ( f ). �

Applying (2) to the conjugation automorphisms cg ∈ Aut(G), we obtain:

Corollary II.4.2. If G is a connected Lie group, then kerAd = Z(G). �
It follows in particular, that the adjoint action of a connected Lie group G is

trivial if and only if G is abelian. In view of Remark II.3.6(b), this is equivalent
to the triviality of the corresponding derived action, which is the adjoint action
of L(G) (Example II.3.9). We thus obtain the following affirmative answer to a
question of J. Milnor ([Mil84]):

Proposition II.4.3. A connected Lie group is abelian if and only if its Lie alge-
bra is abelian. �

This argument can be refined by investigating the structure of logarithmic
derivatives of iterated commutators of smooth curves in a Lie group G. A sys-
tematic use of the Uniqueness Lemma then leads to the following result (see
[GN06]):
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Theorem II.4.4. A connected Lie group G is nilpotent, resp., solvable, if and
only if its Lie algebra L(G) is nilpotent, resp., solvable. �

II.5. The exponential function and regularity

In the Lie theory of finite-dimensional and Banach–Lie groups, the exponential
function is a central tool used to pass information from the group to the Lie al-
gebra and vice versa. Unfortunately, the exponential function is less powerful in
the context of locally convex Lie groups. Here we take a closer look at its basic
properties, and in Section IV below we study the class of locally exponential
Lie groups for which the exponential function behaves well in the sense that it
is a local diffeomorphism in 0.

Definition II.5.1. For a Lie group G with Lie algebra g = L(G), we call a
smooth function expG : g→ G an exponential function for G if for each x ∈ g
the curve γx(t) := expG(tx) is a one-parameter group with γ ′x(0) = x. �

It is easy to see that any such curve is a solution of the initial value problem
(IVP)

γ(0) = 1, δ (γ) = x,

so that the Uniqueness Lemma implies that solutions are unique whenever they
exist. Hence a Lie group G has at most one exponential function.

The question for the existence of an exponential function leads to the more
general question when for a smooth curve ξ ∈ C∞(I,g) (I = [0,1]), the initial
value problem (IVP)

(2.5.1) γ(0) = 1, δ (γ) = ξ ,

has a solution. If this is the case for constant functions ξ (t) = x, the correspond-
ing solutions are the curves γx required to obtain an exponential function. The
solutions of (2.5.1) are unique by the Uniqueness Lemma (Remark II.3.6(c)).

Definition II.5.2. A Lie group G is called regular if for each ξ ∈C∞(I,g), the
initial value problem (2.5.1) has a solution γξ ∈C∞(I,G), and the evolution map

evolG : C∞(I,g)→ G, ξ �→ γξ (1)

is smooth. �

Remark II.5.3. (a) If G is regular, then G has a smooth exponential function,
given by

expG(x) := evolG(ξx),

where ξx(t) = x for t ∈ I.
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(b) For any Lie group G, the logarithmic derivative

δ : C∞∗ ([0,1],G)→C∞(I,L(G))∼=Ω1(I,L(G))

is a smooth map with T1(δ )ξ = ξ ′. If G is regular, this fact can be used to show
that T1(δ ) is surjective, hence that L(G) is Mackey complete (cf. [GN06]). �

Remark II.5.4. As a direct consequence of the existence of solutions to ordinary
differential equations on open domains of Banach spaces and their smooth de-
pendence on parameters (cf. [La99]), every Banach–Lie group is regular. �

All Lie groups known to the author which are modeled on Mackey complete
spaces are regular. In concrete situations, it is sometimes hard to verify regular-
ity, and in some case it is not known if the Lie groups under consideration are
regular. We shall take a closer look at criteria for regularity in Section III be-
low. In particular, we shall see that essentially all groups belonging to the major
classes discussed in the introduction are in fact regular.

Example II.5.5. If the model space is no longer assumed to be Mackey com-
plete, one can construct non-regular Lie groups as follows (cf. [Gl02b, Sect. 7]):
Let A⊆C([0,1],R) denote the unital subalgebra of all rational functions, i.e., of
all quotients p(x)/q(x), where q(x) is a polynomial without zeros in [0,1]. We
endow A with the induced norm ‖ f ‖ := sup0≤t≤1 | f (t)|. If an element f ∈ A is
invertible in C([0,1],R), then it has no zero in [0,1], which implies that it is also
invertible in A, i.e.,

A× = C([0,1],R)×∩A.

This shows that A× is open in A, and since the Banach algebra C([0,1],R) is
a CIA, the continuity of the inversion is inherited by A, so that A is a CIA. In
particular, A× is a Lie group (Example II.1.4).

Let f ∈A and assume that there exists a smooth homomorphism γ f : R→A×
with γ ′f (0) = f . Then Proposition II.4.1, applied to γ f as a map R →
C([0,1],R)×, leads to γ f (t) = et f for each t ∈ R. Since e f is not rational if f
is not constant, we conclude that f is constant. Therefore the Lie group A× does
not have an exponential function and in particular it is not regular. �

The following proposition illustrates the relation between regularity and
Mackey completeness.

Proposition II.5.6. The additive Lie group (E,+) of a locally convex space E
is regular if and only if E is Mackey complete.

Proof. For a smooth curve ξ : I → E, any solution γξ : I → E of (2.5.1) sat-
isfies γ ′ξ = ξ and vice versa. Therefore regularity implies that E is Mackey
complete (Definition I.1.4). Conversely, Mackey completeness of E implies that
evolG(ξ ) :=

∫ 1
0 ξ (s)ds defines a continuous linear map evolG : C∞(I,E)→ E,

so that it is in particular smooth. �
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Proposition II.5.7. Suppose that the Lie group G has a smooth exponential
function expG : g→ G. Then its logarithmic derivative is given by

(2.5.2) δ (expG)(x) =
∫ 1

0
Ad(expG(−tx))dt,

where the operator-valued integral is defined pointwise, i.e.,

δ (expG)(x)y =
∫ 1

0
Ad(expG(−tx))ydt for each y ∈ g.

Proof. ([Grab93]) For t,s ∈ R, we consider the three smooth functions
f , ft , fs : g→ G, given by

f (x) := expG((t + s)x), ft(x) := expG(tx) and fs(x) := expG(sx),

satisfying f = ft fs pointwise on g. The Product Rule (Lemma II.3.3) implies
that

δ ( f ) = δ ( fs)+Ad( fs)−1δ ( ft).

For the smooth curve ψ : R→ g,ψ(t) := δ (expG)tx(ty), we therefore obtain
(2.5.3)
ψ(t + s) = δ ( f )x(y) = δ ( fs)x(y)+Ad( fs)−1.δ ( ft)x(y) = ψ(s)+Ad(expG(−sx)).ψ(t).

We have ψ(0) = 0 and ψ ′(0) = limt→0 δ (expG)tx(y) = δ (expG)0(y) = y, so that
taking derivatives with respect to t in 0, (2.5.3) leads toψ ′(s) = Ad(expG(−sx)).y.
Now the assertion follows by integration from δ (expG)x(y)=ψ(1)=

∫ 1
0 ψ ′(s)ds.

�

If g is integrable to a group with exponential function, then the one-parame-
ter groups Ad(expG(tx)) have the infinitesimal generator adx (Remark II.3.7(b),
Example II.3.9), so that we may also write

(2.5.4) Ad(expG(tx)) = et adx.

If, in addition, g is Mackey complete, then the operator-valued integral

(2.5.5) κg(x) :=
∫ 1

0
e−t adx dt

exists pointwise because the curves t �→ e−t adxy are smooth, and the preceding
theorem states that for each x ∈ g:

(2.5.6) δ (expG)x = κg(x).

The advantage of κg(x) is that it is expressed completely in Lie algebraic terms.
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Remark II.5.8. If g is a Banach–Lie algebra, then κg(x) can be represented by a
convergent power series

κg(x) =
∫ 1

0
e−t adx dt =

1− e−adx

adx
=

∞

∑
k=0

(−1)k

(k +1)!
(adx)k.

This means that κg(x) = f (adx) holds for the entire function

f (z) :=
∞

∑
k=0

(−1)k

(k +1)!
zk =

1− e−z

z
.

As f−1(0) = 2π iZ\{0}, and Spec(κg(x)) = f (Spec(adx)) by the Spectral Map-
ping Theorem, we see that κg(x) is invertible if and only if Spec(adx)∩2π iZ⊆
{0}.

Part of this observation can be saved in the general case. If g is Mackey
complete one can show that κg(x) is not injective if and only if there exists
some n ∈ N with

ker((adx)2 +4π2n21) �= {0}.
If g is a complex Lie algebra, this means that some 2π in ∈ 2π iZ \ {0} is an
eigenvalue of adx (cf. [GN06] for details). �

Examples II.5.9. Let α : R→ GL(E) be a smooth representation of R on the
Mackey complete locally convex space E with the infinitesimal generator D =
α ′(0). Then the semi-direct product group

G := E �α R, (v, t)(v′, t ′) = (v+α(t)v′, t + t ′)

is a Lie group with Lie algebra g = E �D R and exponential function

expG(v,t)=
(
β (t)v,t

)
with β (t) =

∫ 1

0
α(st)ds=

{
idE for t =0
1
t

∫ t
0 α(s)ds for t �=0.

From this formula it is clear that (w, t)∈ im(expG) is equivalent to w∈ im(β (t)).
We conclude that expG is injective on some 0-neighborhood if and only if β (t)
is injective for t close to 0, and it is surjective onto some 1-neighborhood in G
if and only if β (t) is surjective for t close to 0 (cf. Problem IV.4 below).

Note that the eigenvector equation Dv = λv for tλ �= 0 implies that

β (t)v =
∫ 1

0
estλvds =

etλ −1
tλ

v,

so that β (t)v = 0 is equivalent to tλ ∈ 2π iZ\{0}.
(a) For the Fréchet space E = CN and the diagonal operator D given by

D(zn) = (2π inzn), we see that β ( 1
n)en = 0 holds for en = (δmn)m∈N, and en �∈
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im
(
β ( 1

n)
)
. We conclude that (en,

1
n) is not contained in the image of expG, and

since (en,
1
n)→ (0,0), the identity of G, im(expG) does not contain any identity

neighborhood of G. Hence the exponential function of the Fréchet–Lie group
G = E �α R is neither locally injective nor locally surjective in 0.

(b) For the Fréchet space E = RN and the diagonal operator D given by
D(zn) = (nzn), it is easy to see that all operators β (t) are invertible and that
β : R→ GL(E) is a smooth map. This implies that expG : g→ G is a diffeo-
morphism. �

Remark II.5.10. If G is the unit group A× of a Mackey complete CIA, then we
identify T (G) ⊆ T (A) ∼= A×A with A× ×A and note that adx = λx− ρx and
eadxy = exye−x. Therefore (2.5.2) can be written as

Tx(expG)y = ex
∫ 1

0
e−txyetx dt =

∫ 1

0
e(1−t)xyetx dt

(cf. [MicA45] for the case of Banach algebras). �
A closer investigation of (2.5.5) leads to the following results on the behavior

of the exponential function (cf. [GN06]; and [LaTi66] for the finite-dimensional
case):

Proposition II.5.11. Let G be a Lie group with Lie algebra g and a smooth
exponential function. Then the following assertions hold for x,y ∈ g:

(1) If κg(x)y = 0, then

expG(et ady.x) = expG(x) for all t ∈ R.

(2) If κg(x) is not injective and g is Mackey complete, then expG is not injective
in any neighborhood of x.

(3) If κg(x) is injective, then
(a) expG(y) = expG(x) implies [x,y] = 0 and expG(x− y) = 1.
(b) expG(x) ∈ Z(G) implies x ∈ z(g) and equivalence holds if G is con-

nected.
(c) expG(x) = 1 implies x ∈ z(g).

(4) Suppose that 0 is isolated in exp−1
G (1). Then x is isolated in exp−1

G (expG(x))
if and only if κg(x) is injective.

(5) If a ⊆ g is an abelian subalgebra, then expa := expG |a : a→ G is a mor-
phism of Lie groups. Its kernel Γa := ker(expa) is a closed subgroup of a in
which all C1-curves are constant. It intersects each finite-dimensional sub-
space of a in a discrete subgroup. �

Remark II.5.12. (a) Let U ⊆ g be a 0-neighborhood with the property that κg(z)
is injective for each z∈U−U . Then the preceding proposition implies for x,y∈
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U with expG x = expG y that expG(x− y) = 1, [x,y] = 0, and since x− y ∈ U ,
it further follows that x− y ∈ z(g). If we assume, in addition, that the closed
subgroup Γz(g) := ker(expz(g)) intersects U−U only in {0}, expG is injective on
U .

(b) If G is a Banach–Lie group and g = L(G) carries a norm with ‖[x,y]‖ ≤
‖x‖ · ‖y‖, then ‖adx‖ ≤ ‖x‖. Therefore ‖x‖ < 2π implies that κg(x) is invert-
ible (Remark II.5.8). If expG |z(g) is injective, i.e., Z(G) is simply connected,
the preceding remark implies that expG is injective on the open ball Bπ :=
{x ∈ g : ‖x‖< π} (cf. [LaTi66]). In general, we may put

δG := inf{‖x‖ : 0 �= x ∈ Γz(g)}

to see that expG is injective on the ball of radius r := min{π , δG
2 } (cf. [GN03],

[Bel04, Rem. 2.3]). �

Example II.5.13. In [Omo70], [Ham82] and [Mil84], it is shown that for the
group G := Diff(S1) of diffeomorphisms of the circle, the image of the expo-
nential function is not a neighborhood of 1 (cf. also [KM97, Ex. 43.2], [PS86,
p.28]). Small perturbations of rigid rotations of order n lead to a sequence of dif-
feomorphisms converging to idS1 which do not lie on any one-parameter group.

More generally, for any compact manifold M, the image of the exponential
function of Diff(M) does not contain any identity neighborhood (cf. [Grab88],
[Pali68/74], and [Fre68] for some 2-dimensional cases).

Identifying the Lie algebra g := V (S1) of Diff(S1) with smooth 2π-periodic
functions on R, the Lie bracket corresponds to

[ f ,g] = f g′ − f ′g.

For the constant function f0 = 1 and cn(t) := cos(nt) and sn(t) = sin(nt), this
leads to

[ f0,sn] = ncn and [ f0,cn] =−nsn,

so that span{ f0,sn,cn} ⊆ V (S1) is a Lie subalgebra isomorphic to sl2(R). It
further follows that ((ad f0)2 + n21)sn = 0, so that κg( 2π

n f0)sn = 0 implies that
expG is not injective in any neighborhood of 2π

n f0 (Proposition II.5.11(1)) (cf.
[Mil82, Ex. 6.6]). Therefore expG is neither locally surjective nor injective. �

Remark II.5.14. (Surjectivity of expG) The global behavior of the exponential
function and in particular the question of its surjectivity is a quite complicated
issue, depending very much on specific properties of the groups under consid-
eration (cf. [Wü03/05]).

(a) For finite-dimensional Lie groups, the most basic general result is that if
G is a connected Lie group with compact Lie algebra g, then expG is surjective.
Since the compactness of g is equivalent to the existence of an Ad(G)-invariant
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scalar product, which in turn leads to a biinvariant Riemannian metric on G, the
surjectivity of expG can be derived from the Hopf–Rinow Theorem in Rieman-
nian geometry.

(b) A natural generalization of the notion of a compact Lie algebra to the
Banach context is to say that a real Banach–Lie algebra (g,‖ · ‖) is elliptic if
the norm on g is invariant under the group Inn(g) := 〈eadg〉 ⊆ Aut(g) of inner
automorphisms (cf. [Ne02c, Def. IV.3]). A finite-dimensional Lie algebra g is
elliptic with respect to some norm if and only if it is compact. In this case, the re-
quirement of an invariant scalar product leads to the same class of Lie algebras,
but in the infinite-dimensional context this is different. Here the existence of an
invariant scalar product turning g into a real Hilbert space leads to the structure
of an L∗-algebra. Simple L∗-algebras can be classified, and each L∗-algebra is a
Hilbert space direct sum of simple ideals and its center (cf. [Sc60/61], [dlH72],
[CGM90], [Neh93], [St99]). In particular, the classification shows that every
L∗-algebra can be realized as a closed subalgebra of the L∗-algebra B2(H) of
Hilbert–Schmidt operators on a complex Hilbert space H. Therefore the require-
ment of an invariant scalar product on g leads to the embeddability into the Lie
algebra u2(H) of skew-hermitian Hilbert–Schmidt operators on a Hilbert space
H.

The class of elliptic Lie algebras is much bigger. It contains the algebra u(A)
of skew-hermitian elements of any C∗-algebra A and in particular the Lie algebra
u(H) of the full unitary group U(H) of a Hilbert space H.

Although finite-dimensional connected Lie groups with compact Lie alge-
bra have a surjective exponential function, this is no longer true for connected
Banach–Lie groups with elliptic Lie algebra. This is a quite remarkable phe-
nomenon discovered by Putnam and Winter in [PW52]: the orthogonal group
O(H) of a real infinite-dimensional Hilbert space is a connected Banach–Lie
group with elliptic Lie algebra, but its exponential function is not surjective.
This contrasts the fact that the exponential function of the unitary group U(H)
of a complex Hilbert space is always surjective, as follows from the spectral
theory of unitary operators. �

II.6. Initial Lie subgroups

It is one of the fundamental problems of Lie theory (FP5) to understand to which
extent subgroups of Lie groups carry natural Lie group structures. In this sub-
section, we briefly discuss the rather weak concept of an initial Lie subgroup.
As a consequence of the universal property built into its definition, such a struc-
ture is unique whenever it exists. As the discussion in Remark II.6.5 and further
results in Section IV below show, it is hard to prove that a subgroup does not
carry any initial Lie group structure (cf. Problem II.6).



Towards a Lie theory of locally convex groups 345

Definition II.6.1. An injective morphism ι : H → G of Lie groups is called an
initial Lie subgroup if L(ι) : L(H)→ L(G) is injective, and for each Ck-map
f : M → G (k ∈ N∪ {∞}) from a Ck-manifold M to G with im( f ) ⊆ H, the
corresponding map ι−1 ◦ f : M→ H is Ck. �

The following lemma shows that the existence of an initial Lie group struc-
ture only depends on the subgroup H, considered as a subset of G.

Lemma II.6.2. Any subgroup H of a Lie group G carries at most one structure
of an initial Lie subgroup.

Proof. If ι ′ : H ′ ↪→ G is another initial Lie subgroup with the same range as
ι : H → G, then ι−1 ◦ ι ′ : H ′ → H and ι ′−1 ◦ ι : H → H ′ are smooth morphisms
of Lie groups, so that H and H ′ are isomorphic. �

A priori, any subgroup H of a Lie group G can be an initial Lie subgroup.
A first step to a better understanding of initial subgroups is to find a natural
candidate for the Lie algebra of such a subgroup. In the following, we write
C1∗(I,G) for the set of all C1-curves γ : I = [0,1]→ G with γ(0) = 1. Then the
following definition works well for all subgroups (cf. [Lau56]; see also [vN29;
pp.18/19]):

Proposition II.6.3. Let H ⊆ G be a subgroup of the Lie group G. Then the
differential tangent set

Ld(H) := {α ′(0) ∈ L(G) = T1(G) : α ∈C1
∗([0,1],G), im(α)⊆ H}

is a Lie subalgebra of L(G). If, in addition, H carries the structure ιH : H→ G
of an initial Lie subgroup, then Ld(H) = im(L(ιH)).

Proof. If α ,β ∈C1∗(I,G), then (αβ )′(0) = α ′(0)+β ′(0), (α−1)′(0) =−α(0),
and for 0 ≤ λ ≤ 1 the curve αλ (t) := α(λ t) satisfies α ′λ (0) = λα ′(0). This
implies that Ld(H) is a real linear subspace of L(G).

Next we recall that [x,y] is the lowest order term in the Taylor expansion
of the commutator map (x,y) �→ xyx−1y−1 in any local chart around 1 (Re-
mark II.1.8). This implies that the curve

γ(t) := α(
√

t)β (
√

t)α(
√

t)−1β (
√

t)−1

with γ(0) = 1 is C1 with γ ′(0) = [α ′(0),β ′(0)].1 We conclude that Ld(H) is a
Lie subalgebra of L(G).

If, in addition, H is initial, then C1∗([0,1],H) = {α ∈C1∗([0,1],G) : im(α)⊆
H} implies that L(ιH)(L(H)) = Ld(H). �

1 Note that in general this curve is not twice differentiable.
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We put the superscript d (for differentiable) to distinguish Ld(H) from the
Lie algebra of a Lie group. Later, we shall encounter another approach to the
Lie algebra of a subgroup which works well for closed subgroups of locally
exponential Lie groups.

Remark II.6.4. Let α ∈C1∗([0,1],G) and H ⊆ G be a subgroup. If im(α) ⊆ H,
then the image of the continuous curve δ (α) ∈ C([0,1],L(G)) is contained in
Ld(H). If, conversely, im(δ (α)) ⊆ Ld(H), then it is not clear why this should
imply that im(α) ⊆ H. We shall see below that the concept of regularity helps
to deal with this problem. �

Remark II.6.5. The following facts demonstrate that it is not easy to find sub-
groups with no initial Lie subgroup structure ([Ne05, Lemma I.7]):

(a) Let H ⊆ G be a subgroup such that all C1-arcs in H are constant. Then
the discrete topology defines on H an initial Lie subgroup structure.

(b) If dimG <∞, then any subgroup H ⊆G carries an initial Lie group struc-
ture: According to Yamabe’s Theorem ([Go69]), the arc-component Ha of G is
of the form 〈exph〉 for some Lie subalgebra h⊆ L(G), which can be identified
with Ld(H). To obtain the initial Lie group structure on H, we endow Ha with
its intrinsic Lie group structure and extend it with Corollary II.2.3 to all of H.

(c) If the connected Lie group G has a smooth exponential function, the cen-
ter z(g) of g = L(G) is Mackey complete, and the subgroup Γz(g) := exp−1

G (1)∩
z(g) is discrete, then Z(G) carries an initial Lie group structure with Lie algebra
z(g).

We endow expG(z(g)) ∼= z(g)/Γz(g) with the quotient Lie group structure
(Corollary II.2.4) and use Corollary II.2.3 to extend it to all of Z(G). �

Remark II.6.6. If H ⊆ G is a Lie subgroup in the sense of Remark II.2.5(b),
then some identity neighborhood of H is a submanifold of G and its intrinsic
Lie group structure turns H into an initial Lie subgroup of G. �

Open Problems for Section II

Problem II.1. Show that every Lie group G modeled on a Mackey complete lo-
cally convex space has a smooth exponential function, or find a counterexample
(cf. Example II.5.5). �

The following assertion is even stronger:

Problem II.2. ([Mil84]) Show that every Lie group G modeled on a Mackey
complete locally convex space is regular, or find a counterexample.
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The assumption of Mackey completeness of L(G) is necessary because for
any regular Lie group the differential of the evolution map evolG : C∞([0,1],g)
→ G is given by

T0(evolG)ξ =
∫ 1

0
ξ (t)dt.

Therefore the regularity of G implies the Mackey completeness of L(G) (cf.
Proposition II.5.6). �

Problem II.3. ([Mil84]) Show that two 1-connected Lie groups G with isomor-
phic Lie algebras are isomorphic. For groups with Mackey complete Lie alge-
bras, this would follow from Theorem III.1.5 and a positive solution to Prob-
lem II.2. �

Problem II.4. Prove or disprove the following claims for all Lie groups G with
a smooth exponential function expG : g = L(G)→ G:

(1) 0 is isolated in exp−1
G (1).

(2) 0 is isolated in Γz(g) := exp−1
G (1)∩ z(g), where z(g) denotes the center of g.

In view of Remark II.6.5(c), a solution of (2) would be of particular inter-
est to classify classes of extensions of Lie groups by non-abelian Lie groups
(cf. Theorem V.1.5). Note that (2) is equivalent to the discreteness of the group
Γz(g). We know that all C1-curves in this closed subgroup of z(g) are constant
and that all intersections with finite-dimensional subspaces are discrete (Propo-
sition II.5.11(5)). �

Problem II.5. (Small Torsion Subgroup Problem; (FP8)) Show that for any Lie
group G there exists an identity neighborhood U such that 1 is the only element
of finite order generating a subgroup lying in U .

If the answer to Problem II.4(1) is negative for some Lie group G, then each
identity neighborhood contains the range of a homomorphism T ∼= R/Z→ G
obtained by expG(Rx) for x ∈ exp−1

G (1) sufficiently close to 0. This implies
in particular that each identity neighborhood contains non-trivial torsion sub-
groups.

It is a classical result that Banach–Lie groups do not contain small sub-
groups, i.e., there exists a 1-neighborhood U for which {1} is the only subgroup
contained in U . This is no longer true for locally convex vector groups, such as
G = RN, with the product topology. Then each 0-neighborhood contains non-
zero vector subspaces, so that G has small subgroups. However, G is torsion
free.

For a locally convex space E, the non-existence of small subgroups is equiv-
alent to the existence of a continuous norm on E. Every locally exponential Lie
group G for which L(G) has a continuous norm has no small subgroups (cf. Sec-
tion IV). Since any real vector space is torsion free, this implies that no locally
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exponential Lie group contains small torsion subgroups. For strong ILB–Lie
groups, it is also known that they do not contain small subgroups (cf. Theo-
rem III.2.3), and this implies in particular that for each compact manifold M
the group Diff(M) does not contain small subgroups. We also know that direct
limits of finite-dimensional Lie groups do not contain small subgroups (Theo-
rem VII.1.3). �

Problem II.6. (Initial Subgroup Problem) Give an example of a subgroup H
of some infinite-dimensional Lie group which does not possess any initial Lie
subgroup structure.

We think that such examples exist, but in view of Remark II.6.5(b), there
is no such example in any finite-dimensional Lie group. Moreover, Theo-
rem IV.4.17 below implies that all closed subgroups of Banach–Lie groups carry
initial Lie subgroup structures. Therefore the most natural candidates of groups
to consider are (non-closed) subgroups of Banach spaces which are connected
by smooth arcs. For E := C([0,1],R), the subgroup H ⊆ E generated by the
smooth curve γ : [0,1]→ E,γ(t)(x) := etx− 1 is a natural candidate. Since the
values γ(t) for t > 0 are linearly independent, H =∑t∈]0,1] Zγ(t) is a free abelian
group. �

Problem II.7. (Canonical factorization for Lie groups) Let ϕ : G → H be a
morphism of Lie groups. Does the quotient group G/kerϕ ∼= ϕ(G) ⊆ H carry
a natural Lie group structure for which the induced map G/ker(ϕ) → H is
smooth and each other morphismψ : G→H ′ with kerϕ ⊆ kerψ factors through
G/ker(ϕ)? Does ϕ(G) carry the structure of an initial Lie subgroup of H?
Maybe it helps to assume that G is a regular Lie group (cf. Section III below).�

Problem II.8. (Locally Compact Subgroup Problem; (FP9)) Show that any lo-
cally compact subgroup of a Lie group G is a (finite-dimensional) Lie group.
Since locally compact subgroups are Lie groups if and only if they have no
small subgroups, this is closely related to Problem II.5. We shall see below that
this problem has a positive solution for most classes of concrete groups (cf. The-
orem IV.3.15 for locally exponential Lie groups; [MZ55, Th. 5.2.2, p.208] for
the Lie group Diff(M) of diffeomorphisms of a compact manifold, and Theorem
VII.1.3 for direct limits of finite-dimensional Lie groups). �

Problem II.9. (Completeness of Lie groups) Suppose that the Lie algebra L(G)
of the Lie group G is a complete locally convex space. Does this imply that the
group G is complete with respect to the left, resp., right uniform structure? �

Problem II.10. (Large tori in Lie groups) Suppose that G is a Lie group with a
smooth exponential function and that a ⊆ L(G) is a closed abelian subalgebra
for which the closed subgroup Γa := exp−1

G (1)∩ a spans a dense subspace of
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a. Then the exponential function Expa := expG |a : a → G factors through a
continuous map a/Γa → G. Characterize the groups A := a/Γa for which this
may happen.

If a is finite-dimensional, then A is a torus (Proposition II.5.11(5)), so that
we may think of these groups A as generalized tori. If Γa is discrete, then A is a
Lie group. If, in addition, a is separable, then Γa is a free group ([Ne02a, Rem.
9.5(c)]). If Problem II.4 has a positive solution, then Γa is always discrete.

An interesting example in this context is E = RN with the closed subgroup
ΓE := ZN. In this case, the quotient E/ΓE

∼= TN is the compact torus which is not
a Lie group because it is not locally contractible. Do pairs (a,Γa) ∼= (RN,ZN)
occur? For the free vector space E = R(N) over N, the subgroup ΓE := Z(N) is
discrete and E/ΓE is a Lie group, a direct limit of finite-dimensional tori (cf.
Theorem VII.1.1). �

Problem II.11. Does the adjoint group Ad(G) ⊆ Aut(L(G)) of a Lie group G
always carry a natural Lie group structure for which the adjoint representation
Ad: G→ Ad(G) is a quotient morphism of topological groups? Since, in gen-
eral, the group Aut(L(G)) is not a Lie group if L(G) is not Banach, this does not
follow from a positive solution of Problem II.7. Closely related is the question
if expG x ∈ Z(G) for x small enough implies x ∈ z(g). �

Problem II.12. Let G be a connected Lie group with a smooth exponential
function and a ⊆ L(G) a Mackey complete abelian subalgebra for which the
group Γa := exp−1

G (1)∩a is discrete. Then expG |a factors through an injective
smooth map A := a/Γa ↪→G and A carries a natural Lie group structure (Corol-
lary II.2.4). Is this Lie group always initial? According to Remark II.6.5(c), this
is the case for a = z(g). �

III. Regularity

In this section, we discuss regularity of Lie groups in some more detail. In
particular, we shall see how regularity of a Lie group can be used to obtain a
Fundamental Theorem of Calculus for Lie group-valued smooth functions. This
implies solutions to many integrability questions. For example, for each homo-
morphismψ : L(G)→L(H) from the Lie algebra of a 1-connected Lie group G
into the Lie algebra of a regular Lie group H, there exists a unique morphism of
Lie groups ϕ with L(ϕ) = ψ . In Section III.2, we turn to the concepts of strong
ILB–Lie groups and μ-regularity and their relation to our context. In the re-
maining two subsections III.3 and III.4, we discuss some applications to groups
of diffeomorphisms and groups of smooth maps, resp., gauge groups.
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III.1. The Fundamental Theorem for Lie group-valued functions

Definition III.1.1. Let G be a Lie group with Lie algebra g = L(G). We call
a g-valued 1-form α ∈ Ω1(M,g) integrable if there exists a smooth function
f : M→ G with δ ( f ) = α . The 1-form α is said to be locally integrable if each
point m ∈M has an open neighborhood U such that α |U is integrable. �

We recall from Definition I.4.1(b) the brackets Ωp(M,g)×Ωq(M,g)→
Ωp+q(M,g). If f is a solution of the equation δ ( f ) = f ∗κG = α ∈ Ω1(M,g),
then the fact that κG satisfies the Maurer–Cartan equation dκG + 1

2 [κG,κG] = 0
implies that so does α :

(MC) dα+
1
2
[α ,α ] = 0.

The following theorem is a version of the Fundamental Theorem of Calculus
for functions with values in regular Lie groups ([GN06]).

Theorem III.1.2. (Fundamental Theorem for Lie group-valued functions) Let
M be a smooth manifold, G a Lie group and α ∈Ω1(M,L(G)). Then the follow-
ing assertions hold:

(1) If G is regular and α satisfies the Maurer–Cartan equation, then α is locally
integrable.

(2) If M is 1-connected and α is locally integrable, then it is integrable.
(3) If M is connected, m0 ∈M, and α is locally integrable, then there exists a

homomorphism
perα : π1(M,m0)→ G

that vanishes if and only if α is integrable. For a piecewise smooth repre-
sentative σ : [0,1]→ M of a loop in M, the element perα([σ ]) is given by
γ(1) for γ : [0,1]→ G satisfying δ (γ) = σ ∗α . �

Remark III.1.3. If M is one-dimensional, then each g-valued 2-form on M van-
ishes, so that [α ,β ] = 0 = dα for α ,β ∈ Ω1(M,g). Therefore all 1-forms triv-
ially satisfy the Maurer–Cartan equation. �

This remark applies in particular to the manifold with boundary M = I =
[0,1]. The requirement that for each smooth curve ξ ∈C∞(I,g)∼= Ω1(I,g), the
IVP

γ(0) = 1, γ ′(t) = γ(t).ξ (t) for t ∈ I,

has a solution depending smoothly on ξ leads to the concept of a regular Lie
group.

Remark III.1.4. (a) If M is a complex manifold, G is a complex Lie group and
α ∈Ω1(M,g) is a holomorphic 1-form, then for any smooth function f : M→G
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with δ ( f ) = α , the differential of f is complex linear in each point, so that
f is holomorphic. Conversely, the logarithmic derivative of any holomorphic
function f is a holomorphic 1-form.

If, in addition, M is a one-dimensional complex manifold, then for each
holomorphic 1-form α ∈Ω1(M,g) the 2-forms dα and [α ,α ] are holomorphic,
which implies that they vanish. Therefore the Maurer–Cartan equation is auto-
matically satisfied by all holomorphic 1-forms. �

The following theorem is one of the main motivations for introducing the
notion of regularity. It was proved in [OMYK82] under the stronger assumption
of μ-regularity (cf. Subsection III.2 below) and by Milnor (who attributed it to
Thurston) in the following form ([Mil82/84]):

Theorem III.1.5. If H is a regular Lie group, G is a 1-connected Lie group, and
ϕ : L(G)→ L(H) is a continuous homomorphism of Lie algebras, then there
exists a unique Lie group homomorphism f : G→ H with L( f ) = ϕ .

Proof. This is Theorem 8.1 in [Mil84] (see also [KM97, Th. 40.3]). The unique-
ness assertion follows from Proposition II.4.1 and does not require the regularity
of H.

On G, we consider the smooth L(H)-valued 1-form α := ϕ ◦ κG and it is
easily verified that α satisfies the MC equation. Therefore the Fundamental
Theorem implies the existence of a unique smooth function f : G→ H with
δ ( f ) = α and f (1G) = 1H . In view of Proposition II.4.1(3), the function f is a
homomorphism of Lie groups with L( f ) = α1 = ϕ . �

Corollary III.1.6. If G1 and G2 are regular 1-connected Lie groups with iso-
morphic Lie algebras, then G1 and G2 are isomorphic. �

Corollary III.1.7. Let G be a connected Lie group with Lie algebra g and n � g
a closed ideal which is not Ad(G)-invariant. Then the quotient Lie algebra g/n
is not integrable to a regular Lie group.

Proof. If Q is a regular Lie group with Lie algebra q := g/n, then the quotient
map q : g→ n integrates to a morphism of Lie groups ϕ : G̃→Q with L(ϕ) = q
(Theorem III.1.5), so that n = ker(L(ϕ)), contradicting its non-invariance under
Ad(G̃) = Ad(G). �

Remark III.1.8. Let G be a regular Lie group and h ⊆ L(G) a closed Lie sub-
algebra. Let ι : H → G be a regular connected initial Lie subgroup of G with
Ld(H) = h. Then for each smooth curve γ : I → H the curve δ (γ) has values
in h, and, conversely, for any smooth curve ξ : I → h, the regularity of H and
the Uniqueness Lemma imply that the corresponding curve γξ has values in H.
Hence H coincides with the set of endpoints of all curves γξ , ξ ∈ C∞(I,h). In
particular, H is uniquely determined by the Lie algebra h. �
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For the groups of smooth maps on a compact manifold, it is quite easy to find
charts of the corresponding mapping groups, such as C∞(M,K), by composing
with charts of K (Theorem II.2.8). This does no longer work for non-compact
manifolds, as the discussion in Remark II.2.9(a) shows. The Fundamental Theo-
rem implies that for any regular Lie group K with Lie algebra k, any 1-connected
manifold M, m0 ∈M and

C∞∗ (M,K) := { f ∈C∞(M,K) : f (m0) = 1},
the map

δ : C∞∗ (M,K)→{α ∈Ω1(M,k) : dα+ 1
2 [α ,α ] = 0}

is a bijection, which can be shown to be a homeomorphism. If the solution set
of the MC equation carries a natural manifold structure, we thus obtain a man-
ifold structure on the group C∞∗ (M,K) and hence on C∞(M,K). This is the case
if K is abelian, M is one-dimensional (all 2-forms vanish), and for holomorphic
1-forms on complex one-dimensional manifolds (cf. Remark III.1.4). Follow-
ing this strategy and using Glöckner’s Implicit Function Theorem to take care
of the period conditions if M is not simply connected, we get the following re-
sult ([NeWa06b]). To formulate the real and complex case in one statement, let
K ∈ {R,C}, K be a K-Lie group, and C∞K(M,K) be the group of K-smooth K-
valued maps. For K = C, these are the holomorphic maps, and in this case the
smooth C∞-topology on C∞C(M,K) = O(M,K) coincides with the compact open
topology.

Theorem III.1.9. Let K be a regular K-Lie group and M a finite-dimensional
connected σ -compact K-manifold. We endow the group C∞K(M,K) with the com-
pact open C∞-topology, turning it into a topological group. This topology is
compatible with a Lie group structure if

(1) dimK M = 1, π1(M) is finitely generated and K is a Banach–Lie group.
(2) H1

sing(M,Z) is finitely generated and K is abelian.

(3) H1
sing(M,Z) is finitely generated and K is finite-dimensional and solvable.

(4) K is diffeomorphic to a locally convex space. �

III.2. Strong ILB–Lie groups and μ-regularity

An important criterion for regularity of a Lie group rests on the concept of a
(strong) ILB–Lie group, a concept developed by Omori by abstracting a com-
mon feature from groups of smooth maps and diffeomorphism groups ([Omo
74]). The bridge from ILB–Lie groups to Milnor’s regularity concept was built
in [OMYK82], where even a stronger regularity concept, called μ-regularity
below, is used. In this subsection, we explain some of the key results concern-
ing μ-regularity and how they apply to diffeomorphism groups. In his book
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[Omo97], Omori works with a slight variant of the axiomatics of μ-regularity,
as defined below, but since it is quite close to the original concept, we shall not
go into details on this point.

Definition III.2.1. (ILB–Lie groups; [Omo74, p.2])
(a) An ILB chain is a sequence (En)n≥d, d ∈ N, of Banach spaces with con-

tinuous dense inclusions ηn : En ↪→ En+1. The projective limit E := lim←− En of

this system is a Fréchet space.
Realizing E as {(xn)n≥d ∈ ∏n≥d En : (∀n) ηn(xn) = xn+1}, we see that for

each k ≥ d the projection map

qk : E→ Ek, (xn) �→ xk

is injective. We may therefore think of E and all spaces En as subspaces of Ed,
which leads to the identification of E with the intersection

⋂
n≥d En.

(b) A topological group G is called an ILB–Lie group modeled on the ILB
chain (En)n≥d if there exists a sequence of topological groups Gn, n≥ d, satisfy-
ing the conditions (G1)–(G7) below. If, in addition, (G8) holds, then G is called
a strong ILB–Lie group.

(G1) Gn is a smooth Banach manifold modeled on En.
(G2) Gn+1 is a dense subgroup of Gn and the inclusion map Gn+1 ↪→ Gn is

smooth.
(G3) G = lim←− Gn as topological groups, so that we may identify G with⋂

n≥d Gn ⊆ Gd.

(G4) The group multiplication of G extends to a C�-map μn,�
G : Gn+�×Gn→Gn.

(G5) The inversion map of G extends to a C�-map Gn+�→ Gn.
(G6) The right translations in the groups Gn are smooth.
(G7) The tangent map T (μn,�

G ) induces a C�-map T1(Gn+�)×Gn→ T (Gn).
(G8) There exists a chart (ϕd,Ud) of Gd with 1 ∈Ud and ϕd(1) = 0 such that

Un := Ud ∩Gn and ϕn := ϕd |Un define an En-chart (ϕn,Un) of Gn.

If all spaces En are Hilbert, we call (En)n≥d an ILH chain and G an ILH–Lie
group. �

Remark III.2.2. (Omori) Every strong ILB–Lie group G carries a natural
Fréchet–Lie group structure with L(G) ∼= ⋂

n≥d En = E. A chart (ϕ ,U) in the
identity is obtained by U := G∩Ud and ϕ := ϕd |U (notation as in (G8)). �

A complete solution to (FP8) for a large class of Lie groups is provided by:

Theorem III.2.3. ([Omo74, Th.1.4.2]) Strong ILB-Lie groups have no small
subgroups, i.e., there exists an identity neighborhood containing no non-trivial
subgroups. �
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We now give the slightly involved definition of the regularity concept intro-
duced in [OMYK82/83a].

Definition III.2.4. Let G be a Lie group with Lie algebra g and Δ := {t0, . . . , tm}
a division of the real interval J := [a,b] with a = t0 and b = tm. We write

|Δ| := max{t j+1− t j : j = 0, . . . ,m−1}.
For |Δ| ≤ ε , a pair (h,Δ) is called a step function on [0,ε ]×J if h : [0,ε ]×J→G
is a map satisfying

(1) h(0, t) = 1 for all t ∈ J and all maps ht(s) := h(s, t) are C1.
(2) h(s,t) = h(s,t j) for t j ≤ t < t j+1.

For a step function (h,Δ), we define the product integral ∏t
a(h,Δ) ∈ G by

t

∏
a

(h,Δ) := h(t− tk, tk)h(tk− tk−1, tk−1) · · ·h(t1− t0, t0) for tk ≤ t < tk+1.

Now let (hn,Δn) be a sequence of step functions with |Δn| → 0 for which the
sequence(hn,

∂hn
∂ s )converges uniformly to a pair(h, ∂h

∂ s ) for a function h: [0,ε ]×J
→ G. Then the limit function h is a C1-hair in 1, i.e., it is continuous, differen-
tiable with respect to s, and ∂h

∂ s is continuous on [0,ε ]× J.
The Lie group G is called μ-regular2(called “regular” in [OMYK82/83a])

if the product integrals ∏t
a(hn,Δn) converges uniformly on J for each sequence

(hn,Δn) converging in the sense explained above to some C1-hair in 1. Then the
limit is denoted ∏t

a(h,dτ) and called the product integral of h. �

Remark III.2.5. The First Fundamental Theorem in [OMYK82] asserts that the
product integral ∏t

a(h,dτ) is C1 with respect to t and satisfies

d
dt

t

∏
a

(h,dτ) = u(t) ·
t

∏
a

(h,dτ) for u(t) =
∂h
∂ s

(0,t),

where u∈C(J,g) is a continuous curve. Hence the product integral is the unique
C1-curve γu : J→ G with γu(a) = 1 and δ r(γu) = u. The Second Fundamental
Theorem in [OMYK82] is that the right logarithmic derivative

δ r : C1
∗(J,G)→C(J,g)

is a C∞-diffeomorphism, where C1∗(J,G) is the group of C1-paths γ : J→G with
γ(a) = 1, endowed with the compact open C1-topology (cf. Theorem II.2.8).

Since the inclusion map C∞([0,1],g)→ C0([0,1],g) is continuous and the
evaluation map ev1 : C1∗([0,1],G)→G,γ �→ γ(1) is smooth, it follows in partic-
ular that each μ-regular Lie group is regular. �

2 μ stands for “multiplicative.”



Towards a Lie theory of locally convex groups 355

Theorem III.2.6. ([OMYK82, Th. 6.9]) Strong ILB-Lie groups are μ-regular,
hence in particular regular. �

Lemma III.2.7. ([OMYK83a, Lemma 1.1]) In each μ-regular Fréchet–Lie
group G, we have for each C1-curve γ : [0,1]→ G with γ(0) = 1 the relation

lim
n→∞γ

(
t
n

)n = expG(tγ ′(0)) for 0≤ t ≤ 1. �

Theorem III.2.8. ([OMYK83a, Th. 4.2]) Let G be a μ-regular Fréchet–Lie
group. For each closed finite-codimensional subalgebra h⊆L(G), there exists a
connected Lie group H with L(H) = h and an injective morphism of Lie groups
ηh : H→ G for which L(ηh) : L(H)→ L(G) is the inclusion of h. �

Theorem III.2.9. ([OMYK83a, Prop. 6.6]) Let M be a compact manifold, G a
locally exponential μ-regular Fréchet–Lie group, r ∈N0∪{∞}, and q : G→M
a smooth fiber bundle whose fibers are groups isomorphic to G, for which the
transition functions are group automorphisms. Then the group Cr(M,G) of Cr-
sections of this bundle is a group with respect to pointwise multiplication, and
it carries a natural Lie group structure, turning it into a μ-regular Fréchet–Lie
group. �

A slightly weaker version of the preceding theorem can already be found
in [Les68]. Note that it applies in particular to gauge groups of G-bundles over
M. We have added the assumption that G is locally exponential because this
is needed for the standard constructions of charts of the group Cr(M,G) (cf.
Theorem IV.1.12 below for gauge groups).

Theorem III.2.10. ([OMYK83a, Prop. 2.4]) Let G be a μ-regular Fréchet–Lie
group and H ⊆ G a subgroup for which there exists an identity neighborhood
UH whose smooth arc-component of 1 is a submanifold of G. Then H carries
the structure of an initial Lie subgroup (Remark II.6.6) which is μ-regular. �

III.3. Groups of diffeomorphisms

As an important consequence of Theorem III.2.6, several classes of groups of
diffeomorphisms are regular:

Theorem III.3.1. Let M be a compact smooth manifold. Then the following
groups carry natural structures of strong ILH–Lie groups, and hence are μ-
regular:

(1) Diff(M).
(2) Diff(M,ω) := {ϕ ∈ Diff(M) : ϕ∗ω = ω}, where ω is a symplectic 2-form

on M.
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(3) Diff(M,μ), where μ is a volume form on M.
(4) Diff(M,α), where α is a contact form on M.

The corresponding Lie algebras are V (M), V (M,ω) := {X ∈ V (M) :
LXω = 0}, V (M,μ), resp., V (M,α). �

The preceding results on the Lie group structure of groups of diffeomor-
phisms have a long history. The Lie group structure on Diff(M) for a com-
pact manifold M has first been constructed by J. Leslie in [Les67], and Omori
proved in [Omo70] that Diff(M) can be given the structure of a strong ILH–Lie
group (cf. also [Eb68] for the ILH structure). Ebin and Marsden extended the
ILH results to compact manifolds with boundary ([EM69/70]). Later exposi-
tions of this result can be found in [Gu77], [Mi80] and [Ham82]. The regularity
of Diff(M) is proved in [Mil84/82] with direct arguments, not using ILB tech-
niques.

In [Arn66], Arnold studies the group Diff(M,μ), where μ is a volume form
on the compact manifold M, as the configuration space of a perfect fluid. Ar-
guing by analogy with finite-dimensional groups, he showed that, for a suitable
right invariant Riemannian metric on this group, the Euler equation of a perfect
fluid corresponds to the geodesic equation for a left invariant Riemannian met-
ric on Diff(M,μ). This was made rigorous by Marden and Abraham in [MA70].
For a more recent survey on this circle of ideas, we refer to [EMi99].

Using Hodge theory, Ebin and Marsden show in [EM70] that if ω either is a
volume form or a symplectic form on a compact manifold M, then Diff(M,ω)
carries the structure of an ILH–Lie group (see also [Wei69]). They further show
that the group Diff+(M) of orientation preserving diffeomorphisms of M is dif-
feomorphic to the direct product Diff(M,μ)×Vol1(M), where Vol1(M) denotes
the convex set of volume forms of total mass 1 on M. This refines a result of
Omori on the topological level (cf. [KM97, Th. 43.7]). For the symplectic case, a
more direct proof of the regularity assertion can be found in [KM97, Th. 43.12],
where it is also shown that Diff(M,ω) is a submanifold of Diff(M).

In [EM70], one also finds that the following groups are ILH–Lie groups:

(1) Diff(M,N) := {ϕ ∈ Diff(M) : ϕ(N) = N} and DiffN(M) := {ϕ ∈
Diff(M) : ϕ |N = idN}, where N ⊆M is a closed submanifold and M com-
pact without boundary.

(2) Diff∂M(M) := {ϕ ∈ Diff(M) : (∀x ∈ ∂M) ϕ(x) = x}, if M has a boundary.
(3) Diff(M,μ) and Diff∂M(M,μ) := Diff(M,μ)∩Diff∂M(M) for any volume

form μ on M.
(4) If, in addition, ω = dθ is an exact symplectic 2-form on M, then

Diff∂M(M,ω) and

Ham(M,ω) := {ϕ ∈ Diff∂M(M) : ϕ∗θ −θ ∈ B1
dR(M,R)}

are ILH–Lie groups (see also Remark V.2.14(c)).



Towards a Lie theory of locally convex groups 357

The following result of Michor ([Mi91]) concerns the Lie group structure
of a gauge group in a setting where the gauge group is a Lie subgroup of a
diffeomorphism group of a compact manifold.

Theorem III.3.2. If q : B→M is a locally trivial fiber bundle over the compact
manifold M with compact fiber F, then the gauge group Gau(B) is a split sub-
manifold of the regular Fréchet–Lie group Diff(B). �

III.4. Groups of compactly supported smooth maps and diffeomorphisms

In the preceding subsection, we discussed diffeomorphisms of compact mani-
folds. We now briefly take a look at the corresponding picture for compactly
supported maps on σ -compact manifolds.

It is interesting that if M is a σ -compact finite-dimensional manifold, then
for each locally convex space E, the space C∞c (M,E) has two natural topologies.
The first one is the locally convex direct limit structure

C∞c (M,E) = lim−→ C∞Mn
(M,E),

where (Mn)n∈N is an exhaustion of M, which for the case that E is Fréchet,
defines an LF space structure on C∞c (M,E) (cf. Examples I.1.3 and Theorem
II.2.8). The other locally convex topology is obtained by endowing for each
r ∈N the space Cr

c(M,E) with the direct limit structure lim−→ Cr
Mn

(M,E) and then

topologize C∞c (M,E) as the projective limit lim←− Cr
c(M,E) of these spaces. These

two topologies do not coincide (cf. [Gl02b], see also [Gl06a]).
Similar phenomena occur for the space C∞c (M,E) of smooth compactly sup-

ported sections of a vector bundle E → M whose fibers are locally convex
spaces. In the context of Lie algebras, this problem affects the model spaces
C∞c (M,k) of the Lie groups C∞c (M,K) and the space Vc(M) of compactly sup-
ported vector fields on M. For the natural LF space structure on Vc(M), the cor-
responding Lie group structure on Diffc(M) has been constructed by Michor in
[Mi80, pp.39, 197], where he even endows Diff(M) with the Lie group structure
for which Diffc(M) is an open subgroup (Corollary II.2.3).

The following theorem complements Theorem II.2.8 in a natural way
(cf. [GN06], based on [Gl02d]).

Theorem III.4.1. Let M be a σ -compact finite-dimensional smooth manifold
and K a regular Lie group. Both natural topologies turn C∞c (M,L(K)) into a
topological Lie algebra. Accordingly, the group C∞c (M,K) carries two regular
Lie group structures for which the Lie algebra is C∞c (M,L(K)), endowed with
these two topologies. If M is non-compact, these two regular Lie groups are not
isomorphic. �
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The corresponding result for diffeomorphism groups is proved by Glöckner
in [Gl02b] (for corresponding statements without proof see also [Mil82]).

Theorem III.4.2. Let M be a σ -compact finite-dimensional manifold. Both
natural topologies turn Vc(M) into a topological Lie algebra, and the group
Diffc(M)op carries two corresponding regular Lie group structure turningVc(M)
into its Lie algebra. For M non-compact, these two regular Lie groups are not
isomorphic. �

Open Problems for Section III

Problem III.1. Show that every abelian Lie group G modeled on a Mackey
complete locally convex space g is regular.

We may w.l.o.g. assume that G is 1-connected (cf. Theorem V.1.8 below).
Then the regularity of the additive group of g = L(G) (Proposition II.5.6)
implies that idg integrates to a smooth homomorphism LogG : G→ g (Theo-
rem III.1.5), so that the assumption implies the existence of a logarithm func-
tion, but it is not clear how to get an exponential function (cf. [Mil82, p.36]).
One would like to show that LogG is an isomorphism of Lie groups, but also
weaker information would be of interest: Is LogG surjective or injective?

If H := im(LogG) were a proper subgroup of g, it would be a strange
object: Since L(LogG) = idg, we have Ld(H) = g (Remark II.6.4). For any
α ∈ C1∗([0,1],H), the relation α ′(0) = limn→∞ nα( 1

n) implies that H is dense
in g. Is H a vector space? Let

P := {ξ ∈C∞([0,1],g) : (∃γ ∈C∞([0,1],G)δ (γ) = ξ}.
For γ(0) = 1 and δ (γ) = ξ , we then have LogG(γ(1)) =

∫ 1
0 ξ (t)dt. Therefore

H is the image of the additive group P under the integration map. Is P a vector
subspace of C∞([0,1],g)? �

Problem III.2. Let G be a regular Lie group (not necessarily Fréchet or μ-
regular). Show that for each closed finite-codimensional subalgebra h ⊆ L(G)
there exists a connected Lie group H with L(H) = h and an injective morphism
of Lie groups ηh : H → G for which L(ηh) : L(H)→ L(G) is the inclusion of
h (cf. Theorem III.2.8). �

Problem III.3. Let K ∈ {R,C}, M be a σ -compact finite-dimensiomal K-
manifold, and K a (finite-dimensional) K-Lie group. We endow the group
C∞K(M,K) of K-valued K-smooth functions M→ K with the compact open C∞-
topology, turning it into a topological group. For K = C, this is the group of
holomorphic functions and the compact open C∞-topology coincides with the
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compact open topology (cf. [NeWa06b]). When is this topology on the group
C∞K(M,K) compatible with a Lie group structure? See Theorem III.1.9, for par-
tial results in this direction. �

Problem III.4. Consider a topological group G = lim←− G j which is a projective

limit of the Banach–Lie groups Gj (or more general locally exponential groups).

(1) Characterize the situations where G is locally exponential in the sense that it
carries a (locally exponential) Lie group structure (cf. Remark IV.1.22). For
the case where all G j are finite-dimensional, this is done in [HoNe06] (cf.
Theorem X.1.9).

(2) Can we say more in the special case G =∏ j∈J G j?
(3) Suppose that G carries a compatible Fréchet–Lie group structure. Does this

imply that G is regular? (cf. [Ga97] for some results in this direction). �

Problem III.5. Let ι j : Hj→G, j = 1,2, be two initial Lie subgroups of the Lie
group G with Ld(H1) = Ld(H2). Which additional assumptions are necessary to
conclude that H1 = H2 as subgroups of G, hence that H1 and H2 are isomorphic
as Lie groups? Note that Remark III.1.8 implies that this is the case if H1 and
H2 are μ-regular or at least if the maps δ : C1∗([0,1],Hj)→ C0([0,1],Ld(Hj))
are surjective. �

IV. Locally exponential Lie groups

In this section, we turn to Lie groups with an exponential function
expG : L(G) → G which is well-behaved in the sense that it maps a 0-
neighborhood in L(G) diffeomorphically onto a 1-neighborhood in G. We call
such Lie groups locally exponential.

This class of Lie groups has been introduced by Milnor in [Mil84]3, where
one finds some of the basic results explained below. In [GN06], we devote a
long chapter to this important class of infinite-dimensional Lie groups, which
properly contains the class of BCH–Lie groups as those for which the BCH–
series defines an analytic local multiplication on a 0-neighborhood in L(G)
(cf. [Gl02c] for basic results in the BCH context). In particular, it contains all
Banach–Lie groups, but also many other interesting types of groups such as unit
groups of Mackey complete CIAs, groups of the form C∞c (M,K), where M is
σ -compact and K is locally exponential, and moreover, all projective limits of
nilpotent Lie groups. It therefore includes many classes of “formal” Lie groups.
The appeal of this class is due to its large scope and the strength of the general

3 In [Rob96/97], these groups are called “of the first kind.”



360 K.-H. Neeb

Lie theoretic results that can be obtained for these groups. Up to certain refine-
ments of assumptions, a substantial part of the theory of Banach–Lie groups
carries over to locally exponential groups.

One of the most important structural consequences of local exponentiality is
that it provides canonical local coordinates given by the exponential function.
This in turn permits us to develop a good theory of subgroups and there even
is a characterization of those subgroups for which we may form Lie group quo-
tients. Moreover, we shall see in Section VI below that integrability of a locally
exponential Lie algebra (to be defined below) can be characterized similarly as
for Banach algebras.

Not all regular Lie groups are locally exponential. The simplest examples
can be found among groups of the form G = E �α R for a smooth R-action on
E (Example II.5.9). Another prominent example of a regular Lie group which
is not locally exponential is the group Diff(S1) of diffeomorphisms of the circle
(Example II.5.13).

IV.1. Locally exponential Lie groups and BCH–Lie groups

Definition IV.1.1. We call a Lie group G locally exponential if it has a smooth
exponential function expG : L(G)→ G which is a local diffeomorphism in 0,
i.e., there exists an open 0-neighborhood U ⊆ L(G) mapped diffeomorphically
onto an open 1-neighborhood of G.

A Lie group is called exponential if, in addition, expG is a global diffeomor-
phism. �

If expG : L(G)→ G is an exponential function, then T0(expG) = idL(G) by
definition. This observation is particularly useful in the finite-dimensional or
Banach context, where it follows from the Inverse Function Theorem that expG
is a local diffeomorphism in 0, so that we can use the exponential function to
obtain charts around 1:

Proposition IV.1.2. Banach–Lie groups are locally exponential. �

We shall see below that a similar conclusion does not work for general
Fréchet–Lie groups, because in this context there is no general Inverse Function
Theorem. From that it follows that to integrate a Lie algebra homomorphism
ϕ : L(G)→ L(H) to a group homomorphisms, it is in general not enough to
start with the prescription expG x �→ expH ϕ(x) to obtain a local homomorphism,
because expG(L(G)) need not be a 1-neighborhood in G (cf. Example II.5.9).

For Banach–Lie groups, the existence of “canonical” coordinates provided
by the exponential map leads to a description of the local multiplication in a
canonical form, given by the BCH series:
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Definition IV.1.3. For two elements x,y in a Lie algebra g, we define

H1(x,y) := x+ y, H2(x,y) :=
1
2
[x,y],

and for n≥ 3:

Hn(x,y) := ∑
k,m≥0

pi+qi>0

(−1)k

(k +1)(q1 + · · ·+qk +1)
(adx)p1(ady)q1 · · ·(adx)pk(ady)qk(adx)m

p1!q1! · · · pk!qk!m!
y,

where the sum is extended over all summands with p1 +q1 + · · ·+ pk +qk +m+
1 = n. The formal series ∑∞n=1 Hn(x,y) is called the Baker–Campbell–Hausdorff
series. �

There are many different looking ways to write the polynomials Hn(x,y). We
have chosen the one obtained from the integral formula

(4.1.1) x∗ y = x+
∫ 1

0
ψ(eadxet ady)ydt,

where ψ denotes the analytic function ψ(z) := z
z−1 logz, defined in a neighbor-

hood of 1. Formula (4.1.1) is valid for sufficiently small elements x and y in a
Banach–Lie algebra, because we may use functional calculus in Banach alge-
bras to make sense of ψ(eadxeady) for x,y close to 0. Then the explicit expansion
of the BCH series is obtained from the series expansion ofψ and the exponential
series of eadx and ead ty.

Remark IV.1.4. (History of the BCH series) In [SchF90a], F. Schur derived re-
cursion formulas for the summands of the series describing the multiplication
of a Lie group in canonical coordinates (i.e., in an exponential chart). He also
proved the local convergence of the series given by this recursion relations,
which can in turn be used to obtain the associativity of the BCH multiplica-
tion (cf. [BCR81, p.93], [Va84, Sect. 2.15]). His approach is quite close to our
treatment of locally exponential Lie algebras in the sense that he derived the
series from the Maurer–Cartan form by integration of a partial differential equa-
tion of the form f ∗κg = κg with f (0) = x, whose unique solution is the left
multiplication f = λx in the local group.

The BCH series was made more explicit by Campbell in [Cam97/98], and in
[Hau06] Hausdorff approached the BCH series on a formal level, showing that
the formal expansion of log(exey) can be expressed in terms of Lie polynomials.
Part of his results had been obtained earlier by Baker ([Bak01/05]). See [Ei68]
for a more recent short argument that all terms in the BCH series are Lie brack-
ets. �
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Definition IV.1.5. A topological Lie algebra g is called BCH–Lie algebra if
there exists an open 0-neighborhood U ⊆ g such that for x,y ∈ U the BCH
series

∞

∑
n=1

Hn(x,y)

converges and defines an analytic function U ×U → g,(x,y) �→ x ∗ y (cf. Defi-
nition I.2.1). In view of [Gl02a, 2.9], the analyticity of the product x∗ y is auto-
matic if g is a Fréchet space. �

Example IV.1.6. (a) If g is a nilpotent locally convex Lie algebra of nilpotency
class m, then the BCH series defines a polynomial multiplication

x∗ y = x+ y+
1
2
[x,y]+ ∑

n≤m
Hn(x,y)

on g. From the structure of the series it follows immediately that for t,s∈R and
x ∈ g we have

tx∗ sx = (t + s)x,

so that (g,∗) is an exponential nilpotent Lie group.
(b) If g is a Banach–Lie algebra whose norm is submultiplicative in the sense

that ‖[x,y]‖ ≤ ‖x‖ · ‖y‖ for x,y ∈ g, then the BCH series x ∗ y = ∑∞n=1 Hn(x,y)
converges for ‖x‖,‖y‖< 1

3 log( 3
2) ([Bir38]). �

The following result is quite useful to show that certain Lie algebras are not
BCH:

Theorem IV.1.7. (Robart’s Criterion; [Rob04]) If g is a sequentially complete
BCH–Lie algebra, then there exists a 0-neighborhood U ⊆ g such that f (x,y) :=
∑∞n=0(adx)ny converges and defines an analytic function on U×g. �

On the global level we have the following result whose proof requires the
uniqueness assertion from Theorem IV.2.8 below:

Theorem IV.1.8. For a Lie group G the following are equivalent:

(1) G is analytic with an analytic exponential function which is a local analytic
diffeomorphism in 0.

(2) G is locally exponential and L(G) is BCH. �

In Examples IV.1.14(b) and IV.1.16 below, we describe an analytic Lie group
with an analytic exponential function which is a smooth diffeomorphism, but
such that L(G) is not BCH. This is a negative answer to a question raised in
[Mil84, p.31].

Definition IV.1.9. A group satisfying the equivalent conditions of the preceding
theorem is called a BCH–Lie group. �
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Our introductory discussion now can be stated as:

Corollary IV.1.10. Each Banach–Lie group is BCH. �
The Lie group concept used in [BCR81] is stronger than our concept of a

BCH–Lie group because additional properties of the Lie algebra are required,
namely that it is a so-called AE–Lie algebra, a property which encodes the ex-
istence of certain seminorms, compatible with the Lie bracket.

The following two theorems show that many interesting classes of Lie groups
are in fact BCH.

Theorem IV.1.11. If A is a Mackey complete CIA, then its unit group A× is
BCH. If, in addition, A is sequentially complete, then A× is regular.

Proof. (Sketch) If A is a Mackey complete complex CIA, then the fact that A×
is open implies that for each a ∈ A the spectrum Spec(a) is a compact subset of
C, and the holomorphic functional calculus works as for Banach algebras (cf.
[Wae54a/b]4, [Al65], [Gl02b]). This provides an analytic exponential function,
and on the open star-like subset

U := {a ∈ A : Spec(a)∩]−∞,0] = /0} ⊆ A×

we likewise obtain an analytic logarithm function log: U → A. From that, local
exponentiality for complex CIAs follows easily.

That the multiplication on A× is analytic follows from its bilinearity on A,
and the analyticity of the inversion is obtained from functional calculus, which
in turn leads to the expansion by the Neumann series (1− x)−1 = ∑∞n=0 xn. We
conclude that A× is a BCH–Lie group.

The real case can be reduced to the complex case, because for each real CIA
A its complexification AC is a complex CIA ([Gl02b]).

Now assume that A is sequentially complete. For u ∈C([0,1],A) we want to
solve the linear initial value problem

(4.1.2) γ(0) = 1, γ ′(t) = γ(t)u(t).

According to an idea of T. Robart ([Rob04]), the BCH property of A× implies
that this can be done by Picard iteration:

γ0(t) := 1, γn+1(t) := 1+
∫ t

0
γn(τ)u(τ)dτ ,

which leads to

γn(t) = 1+
n

∑
k=1

∫ t

0

∫ τn

0
· · ·
∫ τ2

0
u(τ1)u(τ2) · · ·u(τn) dτ1 dτ2 · · ·dτn.

4 Waelbroeck even introduces a functional calculus in several variables for tuples in complete
locally convex algebras which are not necessarily CIAs, but where spectra and resolvents satisfy
certain regularity conditions.
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Now one argues that the analyticity of the function (1− x)−1 = ∑∞n=0 xn implies
that all sums of the form ∑∞n=0 xn1 · · ·xnn converge for xi j in some sufficiently
small 0-neighborhood. A closer inspection of the limiting process implies that
the limit curve γ := limn→∞ γn is C1, solves the initial value problem (4.1.2), and
depends analytically on u. This implies the regularity of A×. �

Theorem IV.1.12. If K is a locally exponential Lie group and q : P→ M a
smooth K-principal bundle over the σ -compact finite-dimensional manifold M,
then the group Gauc(P) of compactly supported gauge transformations is a lo-
cally exponential Lie group. In particular, the Lie group C∞c (M,K) is locally
exponential.

If, in addition, K is regular, then Gauc(P) is regular and if K is BCH, then
so is Gauc(P).
Proof. (Sketch; cf. [GN06] and Theorem II.2.8) Let expK : L(K)→ K be the
exponential function of K and realize Gau(P) as the subgroup C∞(P,K)K of
K-fixed points in C∞(P,K) with respect to the K-action given by (k. f )(p) :=
k f (p.k)k−1. Then we put

gau(P) := C∞(P,L(K))K

= {ξ ∈C∞(M,L(K)) : (∀p ∈ P)(∀k ∈ K) Ad(k).ξ (p.k) = ξ (p)},
and observe that for the group G := Gauc(P) the map

expG : g := gauc(P)→ G, ξ �→ expK ◦ξ
is a local homeomorphism in 0. Using Theorem II.2.1, this can be used to define
a Lie group structure on G. Then expG is an exponential function of G, and, by
construction, it is a local diffeomorphism in 0. �

Various special cases of the preceding theorem can be found in the literature:
[OMYK82], [Sch04] (for M compact, K finite-dimensional), [Mil84] (without
proofs), [KM97, 42.21] (in the convenient setting), and [Gl02c], [Wo05a]). That
Gau(P) is μ-regular if K is μ-regular follows from Theorem III.2.9.

Example IV.1.13. (Pro-nilpotent Lie groups) If g = lim←− g j is a projective limit of

a family of nilpotent Lie algebras (g j) j∈J (a so-called pro-nilpotent Lie algebra),
then the corresponding connecting homomorphisms of Lie algebras are also
morphisms for the corresponding group structures (Example IV.1.6(a)), so that
(g,∗) := lim←− (g j,∗) defines on g a Lie group structure with L(g,∗) = g. We

thus obtain an exponential Lie group G := (g,∗) with expG = idg. This group is
pro-nilpotent in the sense that it is a projective limit of nilpotent Lie groups.

Example IV.1.14. (Formal diffeomorphisms) (a) Important examples of pro-
nilpotent Lie groups arise as certain groups of formal diffeomorphisms. We
write Gfn(K) for the group of formal diffeomorphisms of Kn fixing 0, where
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K ∈ {R,C}. The elements of this group are represented by formal power series
of the form

ϕ(x) = gx+ ∑
|m|>1

cmxm,

where g ∈ GLn(K),

m = (m1, . . . ,mn)∈Nn
0, |m| := m1 + · · ·+mn, xm := xm1

1 · · ·xmn
n , cm ∈Kn,

and the group operation is given by composition of power series. We call ϕ
pro-unipotent if g = 1. It is easy to see that the pro-unipotent formal diffeo-
morphisms form a pro-nilpotent Lie group Gfn(K)1 = lim←− Gk, where Gk is the

finite-dimensional nilpotent group obtained by composing polynomials of the
form

ϕ(x) = x+ ∑
1<|m|≤k

cmxm

modulo terms of order > k. The group Gfn(K) of all formal diffeomorphisms of
Kn fixing 0 is a semidirect product

(4.1.3) Gfn(K)∼= Gfn(K)1 �GLn(K),

where the group GLn(K) of linear automorphisms acts by conjugation. As this
action is smooth, Gfn(K) is a Fréchet–Lie group.

These groups are μ-regular Lie groups (cf. [Omo80]): In view of the semidi-
rect decomposition and the fact that μ-regularity is an extension property (The-
orem V.1.8), it suffices to observe that pro-nilpotent Lie groups are μ-regular,
which follows by an easy projective limit argument.

The group Gfn(K) has been studied by Sternberg in [St61], where he shows
in particular that for K = C and n = 1 the elements

ϕm(x) = e
2π i
m x+ pxm+1, m ∈ N\{1}, p ∈ C×,

are not contained in the image of the exponential function. This is of particu-
lar interest because ϕm → 1 in the Lie group Gfn(C), so that the image of the
exponential function in this group is not an identity neighborhood. A detailed
analysis of the exponential function of this group can also be found in Lewis’s
paper [Lew39].

To see that ϕm is not in the image of the exponential function of Gfn(C), it
suffices to verify this in the finite-dimensional solvable quotient group
Gm+1 � C×, i.e., modulo terms of order m + 2. The subgroup Cxm+1 � C× is
isomorphic to C �C× with the multiplication

(z,w)(z′,w′) = (z+wmz′,ww′)



366 K.-H. Neeb

and the exponential function

exp(z,w) =
(ewm−1

wm
z,ew

)
=
((ew)m−1

wm
z,ew

)
,

showing that ϕm is not contained in the exponential image of this subgroup.
However, one can use Proposition II.5.11(3) to see that any element ξ with
expξ = ϕm must be contained in the plane span{x,xm+1}. This completes the
proof.

(b) For K = R the identity component Gf1(R)0 is exponential and analytic,
but not BCH. For n≥ 2 the group Gfn(R) is analytic, but not locally exponential.
If a subgroup H ⊆ GLn(R) consists of matrices with real eigenvalues, then the
subgroup Gfn(R)1 �H ⊆ Gfn(R) is locally exponential ([Rob02, Ths. 6/7]). �

Example IV.1.15. Let F = K[x1, . . . ,xn] be the free associative algebra in n gen-
erators S := {x1, . . . ,xn}. Then F has a natural filtration

Fk := span{s1 · · ·sm : si ∈ S,m≥ k}.
Each quotient F/Fm is a finite-dimensional unital algebra, hence a CIA. There-
fore the algebra F̂ := lim←− F/Fn, which can be identified with the algebra of

non-commutative formal power series in the generators x1, . . . ,xn, is a complete
CIA ([GN06]).

We conclude that the unit group F̂× is a BCH–Lie group (Theorem IV.1.11).
Let ε : F̂→K denote the homomorphism sending each xi to 0. Then the normal
subgroup U := 1 + kerε is a pro-nilpotent Lie group and F̂× ∼= U � K×. In
particular, the exponential function

Exp: kerε →U = 1+kerε , x �→
∞

∑
k=0

xk

k!

is an analytic diffeomorphism with the analytic inverse Log(x) :=

∑∞k=1
(−1)k−1

k (x−1)k. We thus obtain on kerε a global analytic multiplication

x∗ y := Log(ExpxExpy)

given by the BCH series, so that its values lie in the completion L̂ of the free Lie
algebra L generated by x1, . . . ,xn, which is a closed Lie subalgebra of F̂ . �

In Section XI below, we shall discuss more aspects of projective limits of
finite- and infinite-dimensional Lie groups.

Example IV.1.16. We recall the group G = E �α R from Example II.5.9(b),
where E = RN and α(t) = etD with the diagonal operator D(zn) = (nzn). Then
the Lie group structure on G is analytic and the explicit formula shows that

expG : L(G)→ G, (v,t) �→ (β (t)v,t)
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is analytic. Further, it is a smooth diffeomorphism whose inverse

logG : G→ L(G), (v, t) �→ (β (t)−1v, t)

is smooth but not analytic. In fact, β (t)−1en = tn
ent−1en, and for n fixed, the radius

of convergence of the Taylor series of this function in 0 is 2π
n . A similar argu-

ment shows that the corresponding global multiplication x ∗ y :=
logG(expG(x)expG(y)) on L(G) is smooth but not analytic. With Robart’s Cri-
terion (Theorem IV.1.7), this follows from the fact that the power series

∞

∑
k=0

tkDken = (1− tn)−1en

is not convergent for |t|> 1
n . �

For details concerning the following results, we refer to [GN06] (see also
[Mil82, 4.3] for some of the statements). Minor modifications of the corre-
sponding argument for finite-dimensional, resp., Banach–Lie groups lead to the
following lemma, which in turn is the key to the following theorem:

Lemma IV.1.17. Let G be a locally exponential Lie group. For x,y ∈ L(G), we
have the Trotter Product Formula

expG(x+ y) = lim
n→∞

(
expG

( x
n

)
expG

( y
n

))n

and the Commutator Formula

expG([x,y]) = lim
n→∞

(
expG

( x
n

)
expG

( y
n

)
expG

(− x
n

)
expG

(− y
n

))n2

. �

Theorem IV.1.18. (Automatic Smoothness Theorem) Each continuous homo-
morphism ϕ : G→ H of locally exponential (BCH) Lie groups is smooth (ana-
lytic). �

For (local) Banach–Lie groups, Theorem IV.1.18 can already be found in
[Bir38], and for BCH–Lie groups in [Gl02c] (see also [Mil84] for the statement
without proof). The special case of one-parameter groups R→ A×, where A is
a Banach algebra is due to Nagumo ([Nag36]) and Nathan ([Nat35]). Mostly
such “automatic smoothness” theorems concern continuous homomorphisms
ϕ : G→ H of Lie groups, where H is a Lie group with an exponential function
for which each continuous one-parameter group is of the form γx(t) = expH(tx)
and G is locally exponential. We then obtain a map L(ϕ) : L(G)→ L(H) by
ϕ(expG(tx)) = expH(t L(ϕ)x) for t ∈ R and x ∈ L(G), and then it remains to
show that L(ϕ) is continuous and linear.

The following theorem is due to Maissen for Banach–Lie groups ([Mais62,
Satz 10.3]):
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Theorem IV.1.19. Let G and H be Lie groups and ψ : L(G)→ L(H) a contin-
uous homomorphism of Lie algebras. Assume that G is locally exponential and
1-connected and that H has a smooth exponential function. Then there exists a
unique morphism of Lie groups ϕ : G→ H with L(ϕ) = ψ .

Proof. (Idea) Let Ug⊆ g = L(G) be a convex balanced 0-neighborhood mapped
diffeomorphically by the exponential function to an open subset UG of G.

First one observes that ψ∗κL(H) = ψ ◦κL(G) (cf. (2.5.5)). For the map

f : UG→ H, expG(x) �→ expH(ψ(x)),

this leads to δ ( f ) = f ∗κH = ψ ◦ κG, showing that the L(H)-valued 1-form
ψ ◦ κG is locally integrable. Since this form on G is left invariant and G is
1-connected, it is globally integrable to a function ϕ : G→ H with ϕ(1) = 1
and δ (ϕ) = ψ ◦κG (Theorem III.1.2). Now Proposition II.4.1 implies that ϕ is
a group homomorphism, and by construction L(ϕ) = α1 = ψ . �

Since we do not know if all Lie groups with an exponential function are
regular, the preceding theorem is not a consequence of Theorem III.1.5.

Corollary IV.1.20. If G1 and G2 are locally exponential 1-connected Lie groups
with isomorphic Lie algebras, then G1 and G2 are isomorphic. �

Remark IV.1.21. It is instructive to compare Corollary IV.1.20 with the corre-
sponding statement for regular Lie groups (Corollary III.1.6). They imply that
there exists for each locally convex Lie algebra g at most one 1-connected Lie
group G which is regular and at most one 1-connected locally exponential Lie
group H with L(G) = L(H) = g. The regularity of G implies that idg integrates
to a smooth homomorphism ϕ : H → G, but we do not know if there is a mor-
phism ψ : G→ H with L(ψ) = idg (cf. Problem III.1).

Presently we do not know if all locally exponential Lie groups (modeled
on Mackey complete spaces) are regular, therefore it is still conceivable that
there might be locally exponential Lie algebras which are the Lie algebra of a
1-connected regular Lie group and a non-isomorphic 1-connected locally expo-
nential Lie group which is not regular. �

Remark IV.1.22. Theorem IV.1.18 implies in particular that being a locally ex-
ponential Lie group is a topological property: Any topological group G carries
at most one structure of a locally exponential Lie group. We thus adjust our ter-
minology in the sense that we call a topological group locally exponential if it
carries a locally exponential Lie group structure compatible with the topology.

Forgetting the differentiable structure on G, it becomes an interesting issue
how to recover it. In view of Theorem IV.1.18, we recover the Lie algebra L(G),
as a set, by identifying x∈L(G)∼= T1(G) with the corresponding one-parameter
group γx(t) = expG(tx). Starting from G, as a topological group, we may then
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put L(G) := Homc(R,G), the set of continuous homomorphisms R→ G. The
scalar multiplication of L(G) can be written as

(4.1.4) (λα)(t) := α(λ t), λ ∈ R,α ∈ Homc(R,G),

and, in view of Lemma IV.1.17, addition and Lie bracket may be written on the
level of one-parameter groups by

(4.1.5) (α+β )(t) := lim
n→∞

(
α(

t
n
)β (

t
n
)
)n

and

(4.1.6) [α ,β ](t2) := lim
n→∞

(
α(

t
n
)β (

t
n
)α(− t

n
)β (− t

n
)
)n2

.

We can also recover the topology on L(G) as the compact open topology on
L(G), and the exponential function as the evaluation map

(4.1.7) expG : Homc(R,G)→ G, γ �→ γ(1).

�
In [HoMo05/06], Hofmann and Morris use (4.1.4-7) as the starting point in

the investigation of a remarkable class of topological groups:

Definition IV.1.23. Let G be a topological group and L(G) := Homc(R,G) the
set of one-parameter groups, endowed with the compact open topology. Then G
is said to be a topological group with Lie algebra if the limits in (4.1.5/6) exist
for α ,β ∈ Homc(R,G) and define elements of L(G), addition and bracket are
continuous maps L(G)×L(G)→ L(G), and L(G) is a real Lie algebra with
respect to the scalar multiplication (4.1.4), the addition (4.1.5), and the bracket
(4.1.6). This implies that L(G) is a topological Lie algebra. The exponential
function of G is defined by (4.1.7). �

In [BCR81], Boseck, Czichowski and Rudolph define smooth functions on a
topological group in terms of restrictions to one-parameter groups, which leads
them to (4.1.4-7), together with the assumption that L(G) can be identified with
the set of derivations of the algebra of germs of smooth functions in 1 ([BCR81,
Sect. 1.5]).

We have just seen that any locally exponential Lie group is a topological
group with Lie algebra. Since R is connected, a topological group G has a Lie
algebra if and only if its identity component G0 does. In [HoMo05, Th. 2.3], it
is also observed that any abelian topological group is a group with Lie algebra,
where the addition on L(G) is pointwise multiplication and the bracket is trivial
(cf. Problem IV.7).

Theorem IV.1.24. Each 2-step nilpotent topological group has a Lie algebra.
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Proof. (Sketch) The commutator map c : G×G→ Z(G) is an alternating biho-
momorphism. Then direct calculations lead to the formulas

(α+β )(t) = α(t)β (t)c(α(t),β (− t
2)) and [α ,β ](t) = c(α(1),β (t)),

which can be used to verify all requirements. �
We shall return to topological groups with Lie algebras in our discussion of

projective limits in Section X.

Remark IV.1.25. We have seen in Corollary IV.1.20 that a 1-connected locally
exponential Lie group G is completely determined up to isomorphism (as a topo-
logical group) by its Lie algebra.

If G is connected but not simply connected, then we have a universal cov-
ering morphism qG : G̃→ G and kerqG

∼= π1(G) is a discrete central subgroup
of G̃ with G ∼= G̃/kerqG. It is easy to see that two discrete central subgroups
Γ1,Γ2 ⊆ Z(G̃) lead to isomorphic quotient groups G̃/Γ1 and G̃/Γ2 if and only
if there exists an automorphism ϕ ∈ Aut(G̃) ∼= Aut(L(G)) with ϕ(Γ1) = Γ2.
Therefore the isomorphism classes of connected Lie groups G with a given Lie
algebra g∼= L(G) are parametrized by the orbits of Aut(g)∼= Aut(G̃) in the set
of discrete central subgroup of G̃.

If G0 and a discrete group Γ are given, then the determination of all Lie
groups G with identity component G0 and component group π0(G) ∼= Γ corre-
sponds to the classification of all Lie group extensions

1→ G0 ↪→G→→ Γ→ 1,

i.e., to a description of the set Ext(Γ,G0). Extension problems of this type are
discussed in Section V.1 below. �

IV.2. Locally exponential Lie algebras

We now turn to the Lie algebras which are candidates for Lie algebras of locally
exponential Lie groups. We call these Lie algebras “locally exponential”. They
are defined by the requirement that some 0-neighborhood carries a local group
structure in “canonical” coordinates, i.e., the additive one-parameter groups t �→
tx, should also be one-parameter groups for the local group structure (cf. [Bir38],
[Lau55]).

Definition IV.2.1. A locally convex Lie algebra g is called locally exponential
if there exists a circular convex open 0-neighborhood U ⊆ g and an open subset
D⊆U ×U on which we have a smooth map

mU : D→U, (x,y) �→ x∗ y

such that (U,D,mU ,0) is a local Lie group (Definition II.1.10) satisfying:
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(E1) For x∈U and |t|, |s|, |t +s| ≤ 1, we have (tx,sx)∈D with tx∗sx = (t +s)x.
(E2) The second order term in the Taylor expansion of mU is b(x,y) = 1

2 [x,y].

The Lie algebra g is called exponential if U = g and D = g×g. �

Since any local Lie group on an open subset of a locally convex space V
leads to a Lie algebra structure on V (Definition II.1.10), condition (E2) only
ensures that g is the Lie algebra of the local group (cf. Remark II.1.8).

Using exponential coordinates, we directly get:

Lemma IV.2.2. The Lie algebra L(G) of a locally exponential Lie group G is
locally exponential. �

Definition IV.2.3. We call a locally exponential Lie algebra g enlargeable if it is
integrable to a locally exponential Lie group G. As we shall see in Remark IV.2.5
below, this is equivalent to the enlargeability of some associated local group in
g. �

Examples IV.2.4. (a) All BCH–Lie algebras, hence in particular all Banach–Lie
algebras and therefore all finite-dimensional Lie algebras are locally exponential
(Example IV.1.6).

A different existence proof for the local multiplication on a Banach–Lie al-
gebra g is given by Laugwitz ([Lau56]): As a first step, we observe that κg(x) :=
1−e−adx

adx defines a smooth map κg : g→L (g) with κg(0) = idg, so that its values
are invertible on some 0-neighborhood. We consider κg as a g-valued 1-form on
g. Then one verifies that κg satisfies the Maurer–Cartan equation, which implies
the existence of an open 0-neighborhood U such that for each x ∈U the (partial
differential) equation

f ∗κg = κg, f (0) = x

has a unique solution fx on U . For x,y close to 0, the composition fx ◦ fy is
then defined on some 0-neighborhood and satisfies fx ◦ fy(0) = fx(y) = f fx(y)(0)
as well as ( fx ◦ fy)∗κg = f ∗y f ∗x κg = κg, which implies fx ◦ fy = f fx(y) on some
0-neighborhood. For x∗ y := fx(y), this leads to the associativity condition

x∗ (y∗ z) = (x∗ y)∗ z

on some 0-neighborhood in g, hence to a local group structure. As κg satisfies
κg(x)x = x for each x ∈ g, the curves t �→ tx are local one-parameter groups.
This corresponds to condition (E1).

(b) If g is locally exponential and M a compact manifold, then C∞(M,g) is
also locally exponential with respect to (x∗ y)(m) := x(m)∗ y(m) for all m ∈M
and x,y close to 0. �
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Remark IV.2.5. A similar reasoning as in the proof of Theorem IV.1.19 im-
plies that any morphism f : g→ h of locally exponential Lie algebras satisfies
f (x∗y) = f (x)∗ f (y) for x,y close to 0. Applying this to f = idg shows in par-
ticular that the Lie algebra g determines the germ of the local multiplication x∗y
(cf. [Lau56] for the Banach case). We know that this multiplication need not be
analytic, not even if it is defined on all of g×g (Example IV.1.16). �

Suppose that g is an exponential Lie algebra for which the group (g,∗)
is regular. Then (g,∗) is the unique 1-connected regular Lie group with Lie
algebra g. If G is any 1-connected Lie group (regular or not) with L(G) =
g, and G has an exponential function expG : L(G) = g→ G, then expG is a
group homomorphism (g,∗)→ G (cf. Propositions II.4.1 and II.5.7). The reg-
ularity of (g,∗) implies the existence of a unique homomorphism LogG : G→
(g,∗) with L(LogG) = idg, and the uniqueness assertion of Proposition II.4.1
yields LogG ◦expG = idg and expG ◦LogG = idG. Since on any Mackey com-
plete nilpotent Lie algebra g, the BCH multiplication defines a regular Lie group
structure ([GN06]), these arguments lead to the following theorem:

Theorem IV.2.6. If G is a connected nilpotent Lie group with a smooth expo-
nential function and L(G) is Mackey complete, then the exponential function

expG : (L(G),∗)→ G

is a covering morphism of Lie groups. In particular, G ∼= (L(G),∗)/Γ for a
discrete subgroup Γ ⊆ z(g), isomorphic to π1(G). Moreover, G is regular and
locally exponential. �

This generalizes a result of Michor and Teichmann who showed in [MT99]
that any connected regular abelian Lie group G is of the form L(G)/Γ for a
discrete subgroup Γ ∼= π1(G) of L(G). Related results can be found in [Ga96],
where locally exponential abelian Fréchet–Lie groups are studied as projective
limits of Banach–Lie groups.

Without any completeness assumption we obtain the following very natural
intrinsic characterization of the BCH series as the only Lie series which leads
on nilpotent Lie algebras to a group multiplication satisfying (E1).

Proposition IV.2.7. If G is a 1-connected exponential nilpotent Lie group, then
G∼= (L(G),∗), where ∗ denotes the (polynomial) BCH multiplication on L(G).

�
We have already seen that the Lie bracket on a locally exponential Lie al-

gebra g determines the germ of the corresponding local multiplication (Re-
mark IV.2.5), hence in particular its Taylor series in (0,0). The preceding propo-
sition is the key step to the following theorem, identifying this series as the
BCH series. In the Banach context, the corresponding result is due to Birkhoff
([Bir38]). Its statement can be found in [Mil82] as Lemma 4.4, with the hint
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that it can be proved with the methods used in [HS68] in the finite-dimensional
case, which is based on formula (4.1.1). Since the spectra of the operators adx
and ady are possibly unbounded, formula (4.1.1) makes no sense for general
locally exponential Lie algebras. The situation is much better if g is nilpotent.
In this case, the operators eadx are unipotent, so that ψ(eadxeady) is a polynomial
in x and y. The reduction to this case is a key point in the proof of the following
theorem.

Theorem IV.2.8. (Universality Theorem) If g is locally exponential, then the
Taylor series of the local multiplication x∗ y in (0,0) is the BCH series.

Proof. (Sketch) A central idea is the following. For each Lie algebra we obtain
by extension of scalars from R to the two-dimensional algebra R[ε ] of dual
numbers (ε2 = 0), the Lie algebra T (g) := g⊗R R[ε ]. One can show that T (g) is
also locally exponential. The local multiplication mT (g) is the tangent map of the
local multiplication mg of g and UT (g) = T (Ug) = Ug× g is the tangent bundle
of Ug ⊆ g.

Iterating this procedure, we obtain a sequence of locally exponential Lie
algebras

T n(g) := g⊗R[ε1, . . . ,εn] with εiε j = ε jεi, ε2
i = 0,

whose local multiplication T n(mg) induces a global multiplication on the nilpo-
tent ideal J � T n(g) which is the kernel of the augmentation map T n(g)→ g.
Applying Proposition IV.2.7 to (J,T n(mg)) now shows that the n-th order Taylor
polynomial of mg in (0,0) is given by the BCH series. �

For the discussion of quotients of locally exponential groups below, the fol-
lowing theorem is crucial:

Theorem IV.2.9. (Quotient Theorem for locally exponential Lie algebras) Let g
be a locally exponential Mackey complete Lie algebra and n � g a closed ideal.
Then g/n is locally exponential if and only if

(1) n is stable, i.e., eadx(n) = n for each x ∈ g, and
(2) κg(x)n = n for each x in some 0-neighborhood of g.

If n is the kernel of a morphism ϕ : g→ h of locally exponential Lie algebras,
then n is locally exponential and both conditions are satisfied, so that ϕ factors
through the quotient map q : g→ g/n to an injective morphism ϕ : g/n→ h of
locally exponential Lie algebras. �

The preceding result is nicely complemented by the following observation
on extensions:

Theorem IV.2.10. ([GN07]) Let g be a locally exponential Lie algebra and
q : ĝ→ g be a central extension, i.e., a quotient morphism with central kernel z.
If z is Mackey complete, then ĝ is locally exponential. �
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Remark IV.2.11. In [Hof72/75], K. H. Hofmann advocates an approach to
Banach–Lie groups by defining a Banach–Lie group as a topological group pos-
sessing an identity neighborhood isomorphic (as a topological local group) to
the local group defined by the BCH multiplication in a 0-neighborhood of a
Banach–Lie algebra. A key point of this perspective is that Banach–Lie groups
form a full sub-category of the category of topological groups (Theorem IV.1.18,
Remark IV.1.22). Due to the analyticity of the BCH multiplication, this ap-
proach works quite well for Banach–Lie groups, and also for the larger class of
BCH Lie groups which behave in almost all respects like Banach–Lie groups.
Although one may think that one can adopt a similar point of view for locally
exponential Lie groups, a closer analysis of the arguments used in this theory
to pass from infinitesimal to local information shows that the behavior of lo-
cally exponential groups is far from being controlled by topology. Actually the
arguments we use are much closer to the original approach to Lie theory via
differential equations (cf. Examples IV.2.4).

Giving up the analyticity requirement of the local multiplication in an iden-
tity neighborhood implies that we have to work in a smooth category to prove
uniqueness assertions. The Maurer–Cartan form and the Uniqueness Lemma are
the fundamental tools. In the analytic context, one can often argue quite directly
by analytic continuation. �

IV.3. Locally exponential Lie subgroups

It is a well-known result in finite-dimensional Lie theory that each closed sub-
group H of a Lie group G carries a natural Lie group structure turning it into a
submanifold of G (see [vN29] for closed subgroups of GLn(R)). This becomes
already false for closed subgroups of infinite-dimensional Hilbert spaces, which
contain contractible subgroups not containing any smooth arc. Therefore ad-
ditional assumptions on closed subgroups are needed to make them accessible
by Lie theoretic methods. Since we already know that each topological group
carries at most one locally exponential Lie group structure, it is clear that a
closed subgroup deserves to be called a Lie subgroup if it is a locally exponen-
tial Lie group with respect to the induced topology. For Banach–Lie groups, this
is precisely Hofmann’s approach, and for several of the results described below,
Banach versions can be found in [Hof75].

Lie subgroups and factor groups

Lemma IV.3.1. For every closed subgroup H of the locally exponential Lie
group G, we have

Ld(H) = Le(H) := {x ∈ L(G) : expG(Rx)⊆ H},
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and this is a closed Lie subalgebra of L(G).

Proof. The equality Le(H) = Ld(H) follows from limn→∞ γ
(

t
n

)n =expG(tγ ′(0))
for each curve γ : [0,1]→ H with γ(0) = 1 which is differentiable in 0 because
we can write it on some interval [0,ε ] as γ = expG ◦η with some C1-curve η
in L(G) with η(0) = 0. The closedness follows from the obvious closedness of
Le(H). �

In the following we shall keep the notation Le(H)={x ∈ L(G): expG(Rx)⊆
H} for a subgroup H of a Lie group G with an exponential function, because
if H is not closed or G is not locally exponential, it is not clear that this set
coincides with Ld(H)

Definition IV.3.2. A closed subgroup H of a locally exponential Lie group G
is called a locally exponential Lie subgroup, or simply a Lie subgroup, if H is
a locally exponential Lie group with respect to the induced topology (cf. Re-
mark IV.1.22). �

A Banach version of the following theorem is Proposition 3.4 in [Hof75].

Theorem IV.3.3. For a closed subgroup H of the locally exponential Lie group
G the following are equivalent:

(1) H is a locally exponential Lie group.
(2) There exists an open 0-neighborhood V ⊆ L(G) such that expG |V is a dif-

feomorphism onto an open 1-neighborhood in G and expG(V ∩Le(H)) =
expG(V )∩H.

In particular, each locally exponential Lie subgroup is a submanifold of G.�

Proposition IV.3.4. If ϕ : G′ → G is a morphism of locally exponential Lie
groups and H ⊆ G is a locally exponential Lie subgroup, then H ′ := ϕ−1(H)
is a locally exponential Lie subgroup. In particular, kerϕ is a locally exponen-
tial Lie subgroup of G′. �

The preceding proposition implies in particular that if a quotient G/N by a
closed normal subgroup N is locally exponential, then N is a locally exponential
Lie subgroup. But the converse is more subtle:

Theorem IV.3.5. (Quotient Theorem for locally exponential groups) For a
closed normal subgroup N � G the following are equivalent:

(1) G/N is a locally exponential Lie group.
(2) N is a locally exponential Lie subgroup and L(G)/Le(N) is a locally expo-

nential Lie algebra.
(3) N is a locally exponential Lie subgroup and κL(G)(x)(Le(N)) = Le(N) for

x ∈ L(G) sufficiently close to 0.
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If N is the kernel of a morphism ϕ : G → H of locally exponential Lie
groups, then G/kerϕ is a Lie group, so that ϕ factors through a quotient map
G→G/kerϕ and an injective morphism ϕ : G/kerϕ of locally exponential Lie
groups. �

Since quotients of BCH–Lie algebras are BCH–Lie algebras, no matter
whether they are complete or not ([Gl02c, Th. 2.20]), we get the following
corollary, whose Banach version is also contained in [Hof75, Prop. 3.6] and
[GN03].

Corollary IV.3.6. (Quotient Theorem for BCH–Lie groups) A closed normal
subgroup N of a BCH–Lie group G is a BCH–Lie group if and only if the quo-
tient G/N is a BCH–Lie group. �

If ϕ : G→H is an injective morphism of locally exponential Lie groups, then
the preceding theorem provides no additional information. In Section IV.4, we
shall encounter this situation for integral subgroups of G. The following exam-
ple provides a bijective morphism ϕ for which L(ϕ) is not surjective. The only
way to avoid this pathology is to assume that L(G) is separable (cf. Theorems
IV.4.14/15 below). That not all surjective morphisms of locally exponential Lie
groups are quotient morphisms can already be seen for surjective continuous
linear maps between non-Fréchet spaces.

Example IV.3.7. We give an example of a proper closed subalgebra h of the Lie
algebra L(G) of some Banach–Lie group G for which 〈exph〉 = G ([HoMo98,
p.157]).

We consider the abelian Lie group g := �1(R,R)×R, where the group struc-
ture is given by addition. We write (er)r∈R for the canonical topological ba-
sis elements of �1(R,R). Then the subgroup D generated by the pairs (er,−r),
r ∈ R, is closed and discrete, so that G := g/D is an abelian Lie group. Now
we consider the closed subalgebra h := �1(R,R) of g. As h+ D = g, we have
H := expG h = G, and therefore (0,1) ∈ Le(H)\h.

The map ϕ := expG |h : (h,+)→ G is a surjective morphism of Lie groups
for which L(ϕ) is the inclusion of the proper subalgebra h. �

That for connected Banach–Lie groups G the center Z(G) = kerAd is a lo-
cally exponential Lie subgroup follows immediately from Proposition IV.3.4 (cf.
[Lau55]). For non-Banach–Lie algebras g, Aut(g) carries no natural Lie group
structure, so that Proposition IV.3.4 does not apply. This makes the following
theorem quite remarkable. The crucial point in its proof is to show that for the
exponential function

(4.3.1) Exp: g/z(g)→ Aut(g), x �→ eadx,

the point 0 is isolated in Exp−1(idg) (cf. Problems II.4 and IX.1).
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Theorem IV.3.8. Let g be a locally exponential Lie algebra. Then the adjoint
group Gad := 〈eadg〉 ⊆ Aut(g) carries the structure of a locally exponential Lie
group whose Lie algebra is the quotient gad := g/z(g) and (4.3.1) its exponential
function. �

Combining the preceding theorem with Proposition IV.3.4, we get:

Corollary IV.3.9. If G is a connected locally exponential Lie group, then its
center Z(G) = kerAd is a locally exponential Lie subgroup. �

Algebraic subgroups

The concept of an algebraic subgroup of a Banach–Lie algebra, introduced by
Harris and Kaup ([HK77]), provides very convenient criteria which in many
concrete cases can be used to verify that a closed subgroup H of a Banach–Lie
group is a Banach–Lie subgroup.

Definition IV.3.10. Let A be a unital Banach algebra. A subgroup G ⊆ A× is
called algebraic if there exists a d ∈ N0 and a set F of Banach space-valued
polynomial functions on A×A of degree ≤ d such that

G = {g ∈ A× : (∀ f ∈F ) f (g,g−1) = 0}. �

Theorem IV.3.11. ([HK77], [Ne04b, Prop. IV.14]) Every algebraic subgroup
G⊆ A× of the unit group A× of a Banach algebra A is a Banach–Lie subgroup.

�

Corollary IV.3.12. Let E be a Banach space and F ⊆ E a closed subspace.
Then

GL(E,F) := {g ∈ GL(E) : g(F) = F}
is a Banach–Lie subgroup of GL(E). �

Corollary IV.3.13. Let E be a Banach space and v ∈ E. Then

GL(E)v := {g ∈ GL(E) : g(v) = v}
is a Banach–Lie subgroup of GL(E). �

Corollary IV.3.14. For each continuous bilinear map β : E×E → E on a Ba-
nach space E, the group

Aut(E,β ) := {g ∈ GL(E) : β ◦ (g×g) = g◦β}
is a Banach–Lie subgroup of GL(E) with Lie algebra

der(E,β ) := {D ∈ gl(E) : (∀v,w ∈ E) D.β (v,w) = β (D.v,w)+β (v,D.w)}. �
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Corollary IV.3.15. For each bilinear map β : E×E→K, the group

O(E,β ) := {g ∈ GL(E) : β ◦ (g×g) = β}
is a Banach–Lie subgroup of GL(E) with Lie algebra

o(E,β ) := {D ∈ gl(E) : (∀v,w ∈ E) β (D.v,w)+β (v,D.w) = 0}. �

Closed subgroups versus Lie subgroups

For finite-dimensional Lie groups, closed subgroups are Lie subgroups (cf.
[vN29]), but for Banach–Lie groups this is no longer true. What remains true is
that locally compact subgroups (which are closed in particular) are Lie sub-
groups. For subgroups of Banach algebras the following theorem is due to
Yosida ([Yo36]) and for general Banach–Lie groups to Laugwitz ([Lau55],
[Les66]). Although the arguments in the Banach case do not immediately carry
over because unit spheres for seminorms are no longer bounded, one can use
Glöckner’s Implicit Function Theorem ([Gl03a]) to get:

Theorem IV.3.16. ([GN06]) Each locally compact subgroup of a locally expo-
nential Lie group is a finite-dimensional Lie subgroup. �

Remark IV.3.17. How bad closed subgroups may behave is illustrated by the
following example ([Hof75, Ex. 3.3(i)]): We consider the real Hilbert space
G := L2([0,1],R) as a Banach–Lie group. Then the subgroup H := L2([0,1],Z)
of all those functions which almost everywhere take values in Z is a closed sub-
group. Since the one-parameter subgroups of G are of the form R f , f ∈ G, we
have Le(H) = {0}. On the other hand, the group H is arc-wise connected. It is
contractible, because the map F : [0,1]×H→ H given by

F(t, f )(x) :=

{
f (x) for 0≤ x≤ t

0 for t < x≤ 1

is continuous with F(1, f ) = f and F(0, f ) = 0. �

IV.4. Integral subgroups

It is a well-known result in finite-dimensional Lie theory that for each subalge-
bra h of the Lie algebra g = L(G) of a finite-dimensional Lie group G, there
exists a Lie group H with Lie algebra h together with an injective morphism of
Lie groups ι : H → G for which L(ι) : h→ g is the inclusion map. As a group,
H coincides with 〈exph〉, the analytic subgroup corresponding to h, and h can
be recovered from this subgroup as the set Le(H) = {x∈L(G) : exp(Rx)⊆H}.
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This nice and simple theory of analytic subgroups and integration of Lie algebra
inclusions h ↪→ L(G) becomes much more subtle for infinite-dimensional Lie
groups. Even for Banach–Lie groups some pathologies arise. Here any inclusion
h ↪→L(G) of Banach–Lie algebras integrates to an “integral” subgroup H ↪→G,
but if the Banach–Lie algebra h is not separable, then it may happen that h can-
not be recovered from the abstract subgroup H of G. In Example IV.3.7, it even
occurs that h �= L(G) and H = G.

Definition IV.4.1. Let G be a Lie group with an exponential function, so that we
obtain for each x ∈ L(G) an automorphism eadx := Ad(expG x) ∈Aut(L(G)). A
subalgebra h⊆ L(G) is called stable if

eadx(h) = Ad(expG x)(h) = h for all x ∈ h.

An ideal n � L(G) is called a stable ideal if eadx(n) = n for all x ∈ L(G). �
The following lemma shows that stability of kernel and range is a necessary

requirement for the integrability of a homomorphism of Lie algebras.

Lemma IV.4.2. If ϕ : G→ H is a morphism of Lie groups with an exponential
function, then im(L(ϕ)) is a stable subalgebra of L(H), and ker(L(ϕ)) is a
stable ideal of L(G).
Proof. We have ϕ ◦ expG = expH ◦L(ϕ), which leads to

L(ϕ)◦ eadx = L(ϕ)◦Ad(expG x) = L(ϕ ◦ cexpG x) = L(cϕ(expG x) ◦ϕ)

= Ad(expH L(ϕ)x)◦L(ϕ) = eadL(ϕ)(x) ◦L(ϕ).

We conclude in particular that im(L(ϕ)) is a stable subalgebra and that
ker(L(ϕ)) is a stable ideal. �

Lemma IV.4.3. (a) Each closed subalgebra which is finite-dimensional or fi-
nite-codimensional is stable.

(b) Let g be a BCH Lie algebra. Then each closed subalgebra h ⊆ g and
each closed ideal n � g is stable.

(c) If h ↪→ g is a continuous inclusion of locally convex Lie algebras such
that for each x ∈ h the operators adh x and adg x are integrable on h, resp., g,
then h is a stable subalgebra of g.

Proof. (a) (cf. [Omo97, Lemma III.4.8]) If h is finite-dimensional, then the
Uniqueness Lemma implies for x ∈ h the relation eadx |h = eadx|h. If h is finite-
codimensional and q : g → g/h the projection map, then the curve γ(t) :=
q(et adxy) satisfies the linear ODE γ ′(t) = adg/h(x)γ(t), hence vanishes for y∈ h.

(b) Since g is BCH, the map x �→ eadxy = x∗y∗(−x) is analytic on some open
0-neighborhood, hence given by the power series ∑∞n=0

1
n!(adx)ny. Therefore the

closedness of h implies that for x close to 0 we have eadx(h) ⊆ h. This implies
stability. A similar argument yields the stability of closed ideals.
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(c) We apply Lemma II.3.10 to see that eadg xy = eadh xy∈ h holds for x,y∈ h.
�

In view of the preceding lemma, stability causes no problems for BCH–Lie
algebras, but the condition becomes crucial in the non-analytic context.

Example IV.4.4. The first example of a closed Lie subalgebra h of some L(G)
which does not integrate to any group homomorphism is due to H. Omori (cf.
[Mil84, 8.5]).

We consider the group G := Diff(T2) of diffeomorphisms of the 2-dimen-
sional torus and use coordinates (x,y) ∈ [0,1]2 corresponding to the identifica-
tion T2 ∼= R2/Z2. Then

h :=
{

f
∂
∂x

+g
∂
∂y

:
1
2
≤ x≤ 1⇒ g(x,y) = 0

}
is easily seen to be a closed Lie subalgebra of g = V (T2). The vector field
X := ∂

∂x generates the smooth action α : T→ Diff(T2) of T on T2 given by
[z].([x], [y]) = ([x+ z], [y]). This vector field is contained in h, but

e
1
2 adXh = Ad(α( 1

2))h =
{

f
∂
∂x

+g
∂
∂y

: 0≤ x≤ 1
2
⇒ g(x,y) = 0

}
�= h.

This shows that h is not stable and hence that it does not integrate to any sub-
group of Diff(T2) with an exponential function. �

Example IV.4.5. Let E := C∞(R,R) and consider the one-parameter group
α : R→ GL(E) given by α(t)( f )(x) = f (x + t). Then R acts smoothly on E,
so that we can form the corresponding semi-direct product group G := E �α R.
This is a Lie group with a smooth exponential function given by

expG(v,t) =
(∫ 1

0
α(st).vds, t

)
, where

(∫ 1

0
α(st).vds

)
(x) =

∫ 1

0
v(x+ st)ds.

The Lie algebra g = L(G) has the corresponding semi-direct product structure
g = E �D R with Dv = v′, i.e.,

[( f , t),(g,s)] = (tg′ − s f ′,0).

In g, we now consider the subalgebra h := E[0,1] �R, where

E[0,1] := { f ∈ E : supp( f )⊆ [0,1]}.
Then h is a closed subalgebra of g. It is not stable because α(−t)E[0,1] = E[t,t+1].
The subgroup of G generated by expG h contains {0}� R, E[0,1], and hence all
subspaces E[t,t+1], which implies that 〈expG h〉= C∞c (R)�R.

Lemma IV.4.2 implies that the inclusion h ↪→ g does not integrate to a ho-
momorphism ϕ : H→ G for any Lie group H with an exponential function and
L(H) = h. �
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Example IV.4.6. Let E ⊆C∞(R,C) be the closed subspace of 1-periodic func-
tions, μ ∈ R×, and consider the homomorphism α : R→ GL(E) given by

(α(t) f )(x) := eμt f (x+ t).

That the corresponding R-action on E is smooth follows from the smoothness
of the translation action and one can show that the group G := E �α R is expo-
nential with Lie algebra g = E �D R and D f = μ f + f ′ ([GN06]). In particular,
the product x∗ y := exp−1

G (expG(x)expG(y)) is globally defined on g.
Let M ⊆ [0,1] be an open subset which is not dense and put

EM := { f ∈ E : f |M = 0}.
Then EM is a closed subspace of E with DEM ⊆ EM but α(t)(EM) = EM−t �⊆ EM

for some t ∈R. Therefore hM := EM �D R⊆ g = E �D R is a closed subalgebra
of the exponential Fréchet–Lie algebra g which is not stable. Since eadxy =
x ∗ y ∗ (−x) for all x,y ∈ g, this implies in particular that h is not closed under
the ∗-multiplication. �

Definition IV.4.7. Let G be a Lie group. An integral subgroup is an injective
morphism ι : H→G of Lie groups such that H is connected and the differential
L(ι) : L(H)→ L(G) is injective. �

Remark IV.4.8. Let ι : H → G be an integral subgroup and assume that H and
G have exponential functions. Then the relation

(4.4.1) expG ◦L(ι) = ι ◦ expH

implies that ker(L(ι)) = L(ker ι) = {0}, so that L(ι) : L(H)→ L(G) is an in-
jective morphism of topological Lie algebras, which implies in particular that
h := im(L(ι)) is a stable subalgebra of L(G) (Lemma IV.4.2). Moreover, (4.4.1)
shows that the subgroup ι(H) of G coincides, as a set, with the subgroup〈expG h〉
of G generated by expG h. Therefore a locally exponential integral subgroup can
be viewed as a locally exponential Lie group structure on the subgroup of G
generated by expG h. �

Theorem IV.4.9. (Integral Subgroup Theorem) Let G be a Lie group with a
smooth exponential function and α : h→ L(G) an injective morphism of topo-
logical Lie algebras, where h is locally exponential. We assume that the closed
subgroup

Γ := {x ∈ z(h) : expG(α(x)) = 1}
is discrete. Then there exists a locally exponential integral subgroup ι : H→ G
with L(H) = h and L(ι) = α . In particular, h is integrable to a locally expo-
nential Lie group. �
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The discreteness of Γ is automatic in the following two special cases (cf.
Problem II.4).

Corollary IV.4.10. Let G be a Lie group with a smooth exponential function
and h locally exponential. Then any injective morphism α : h→L(G) integrates
to a locally exponential integral subgroup if one of the following two conditions
is satisfied:

(1) z(h) is finite-dimensional.
(2) G is locally exponential. �

Corollary IV.4.10(1) is a substantial generalization of the main result of
[Pe95b] which assumes that G is regular and h is Banach. Other special cases
can be found in many places in the literature, such as [MR95, Th. 2]. The ver-
sions given in [RK97, Th. 2] and [Rob97, Cor. 2] contradict the existence of un-
stable closed subalgebras in locally exponential Lie algebras (Example IV.4.6).
For Banach–Lie groups it is contained in [EK64], and for BCH–Lie groups in
[Rob97].

Remark IV.4.11. (a) In [Rob97], Robart gives a criterion for the existence of in-
tegral subgroups of a locally exponential Lie group G for a prescribed injective
morphism α : h→ g = L(G): The Lie algebra morphism α can be integrated to
an integral subgroup if and only if h/z(h) is the Lie algebra of a locally exponen-
tial Lie group isomorphic to Had := 〈eadh〉 ⊆ Aut(h) with exponential function
as in (4.3.1). In view of Theorems IV.2.10 and IV.3.8, for Mackey complete
Lie algebras, this condition is equivalent to h being locally exponential. This
argument shows in particular, that Robart’s concept of a Lie algebra of the first
kind coincides with our concept of a locally exponential Lie algebra. In the light
of this remark, Theorem 5 in [Rob97] can be read as a version of our Corol-
lary IV.4.10(2), whereas Corollary IV.4.10(1) corresponds to his Theorem 8.
We do not understand the precise meaning of his remark concerning a gener-
alization to the case where z(h) is infinite-dimensional by simply refining the
topology.

(b) Even for a closed subalgebra h ⊆ g := L(G), the condition that it is
locally exponential is quite subtle. It means that for x,y sufficiently close to 0
in h, we have x∗ y ∈ h. If g is BCH and h is closed, this is clearly satisfied, but
if g is not BCH, not every closed subalgebra satisfies this condition because it
implies stability (Example IV.4.5). �

To verify this condition, one would like to show that the integral curve
γ(t) := x ∗ ty of the left invariant vector field yl through x does not leave the
closed subspace h of g. This leads to the necessary condition T0(λx)(h) ⊆ h,
which, under the assumption that h is stable, means that the operator κg(x) =∫ 1

0 e−t adx dt satisfies κg(x)(h) = h for x ∈ h sufficiently close to 0 (cf. Theo-
rem IV.3.8 and Problem IV.5 below).
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Example IV.4.12. (a) Applying Corollary IV.4.10 to the CIA F̂ obtained by com-
pleting the free associative algebra in n generators x1, . . . ,xn (Example IV.1.15),
it follows that the closed Lie subalgebra generated by x1, . . . ,xn, i.e., the com-
pletion of the free Lie algebra, integrates to a subgroup. As F̂ is topologi-
cally isomorphic to RN, each closed subspace is complemented ([HoMo98,
Th. 7.30(iv)]), so that the existence of the corresponding integral subgroup could
also be obtained by the methods developed in [Les92, Sect. 4] which require
complicated assumptions on groups and Lie algebras.

(b) If K is a Banach–Lie group with Lie algebra k and M a compact manifold,
then the group C∞(M,K) is BCH (Theorem IV.1.12), so that the Integral Sub-
group Theorem also applies to each closed subalgebra h⊆C∞(M,k) (cf. [Les92,
Sect. 4]). �

Remark IV.4.13. (a) In [La99], S. Lang calls a subgroup H of a Banach–Lie
group G a “Lie subgroup” if H carries a Banach–Lie group structure for which
there exists an immersion η : H → G. This requires the Lie algebra L(H) of
H to be a closed subalgebra of L(G) which is complemented in the sense that
there exists a closed vector space complement (cf. Remark I.2.7). From that, it
follows that his Lie subgroups coincide with the integral subgroups with closed
complemented Lie algebra (cf. Corollary IV.4.10).

The advantage of Lang’s more restrictive concept is that for a closed com-
plemented Lie subalgebra h⊆ L(G) one obtains the existence of corresponding
integral subgroups from the Frobenius Theorem for Banach manifolds ([La99,
Th. VI.5.4]). But it excludes in particular closed non-complemented subspaces
of Banach spaces.

(b) The most restrictive concept of a Lie subgroup is the one used in [Bou89,
Ch. 3], where a “Lie subgroup” of a Banach–Lie group G is a Banach–Lie sub-
group H with the additional property that L(H) is complemented, i.e., H is
required to be a split submanifold of G. This concept has the advantage that
it implies that the quotient space G/H carries a natural manifold structure for
which the quotient map q : G→ G/H is a submersion ([Bou89, Ch. 3, §1.6,
Prop. 11]). However, the condition that L(H) is complemented is very hard to
check in concrete situations and, as the Quotient Theorem and the Integral Sub-
group Theorem show, not necessary.

(c) For closed subalgebras which are not necessarily complemented, the In-
tegral Subgroup Theorem can already be found in [Mais62] who also shows
that kernels are Banach–Lie subgroups and that G/N is a Lie group if N is a
Banach–Lie subgroup with complemented Lie algebra as in (b). This case is
also dealt with in [Hof68], [Hof75, Th. 4.1], and a local version can be found in
[Lau56]. �
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The following theorem generalizes [Hof75, Prop. 4.3] from Banach–Lie
groups to locally exponential ones, which is quite straightforward ([GN06]).
The necessity of the separability assumption follows from Example IV.3.7.

Theorem IV.4.14. (Initiality Theorem for integral subgroups) Let G be a Lie
group with a smooth exponential function expG : L(G)→ G which is injective
on some 0-neighborhood. Further let ιH : H ↪→G be a locally exponential inte-
gral subgroup whose Lie algebra L(H) is separable. Then the subgroup ιH(H)
of G satisfies

Le(ιH(H)) = {x ∈ L(G) : expG(Rx)⊆ ιH(H)}= im(L(ιH)).

In particular, the surjectivity of ιH implies the surjectivity of L(ιH).
If, in addition, G is locally exponential and L(H) is a closed subalgebra of

L(G), then ιH : H→ G is an initial Lie subgroup of G. �

Theorem IV.4.15. ([Hof75, Prop. 4.6]) Let G be a separable Banach–Lie group
and assume that ιH : H→ G is an integral subgroup with closed range. Then ιH
is an embedding. In particular, H is a Banach–Lie subgroup of G. �

We conclude this section with a discussion of initial Lie subgroup structures
on closed subgroups of Banach–Lie groups and locally convex spaces.

Theorem IV.4.16. (Initiality Theorem for closed subgroups of Banach–Lie
groups) Let G be a Banach–Lie group and H ⊆ G a closed subgroup. Then H
carries the structure of an initial Lie subgroup with Lie algebra Le(H) = Ld(H).
Its identity component is an integral Lie subgroup for the closed Lie subalgebra
Le(H) of L(G).
Proof. (Idea) We know from Lemma IV.3.1 that Ld(H) = Le(H) is a closed Lie
subalgebra of L(G). Let ι : H0→G be the corresponding integral Lie subgroup.
Since each smooth curve γ : [0,1]→ ι(H0) ⊆ H satisfies δ (γ)(t) ∈ Ld(H) for
each t and H0 is regular (Remark II.5.4), γ is smooth as a curve to H0, and this
further permits us to conclude that H0 is initial and coincides with the smooth
arc–component of H. Now one uses Corollary II.2.3 to extend the Lie group
structure to all of H. �

Theorem IV.4.17. (Initiality Theorem for closed subgroups of locally convex
spaces) Let E be a locally convex space and H ⊆ (E,+) a closed subgroup.
Then H carries an initial Lie group structure, for which H0 = Ld(H) = Le(H)
is the largest vector subspace contained in H.

Proof. (Idea) For each curve α ∈ C1∗(I,E) with im(α) ⊆ H we have tx =
limn→∞ nα( t

n)∈H, which leads to Ld(H) = Le(H), a closed subspace of E. For
each C1-curve γ : [0,1]→ E with range in H, all tangent vectors lie in Ld(H).
This implies that γ lies in a coset of Ld(H). Defining the Lie group structure in
such a way that Ld(H) becomes an open subgroup of H, it follows easily that H
is initial (Corollary II.2.3). �
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Remark IV.4.18. (Stability and distributions) (a) For a subset D ⊆ V (M), we
call the subset ΔD ⊆ T (M) defined by ΔD(m) := span{X(m) : X ∈ D} the cor-
responding smooth distribution. Conversely, we associate to a (smooth) distri-
bution Δ⊆ T (M) the subspace DΔ := {X ∈ V (M) : (∀m ∈M) X(m) ∈ Δ}. The
distribution Δ is said to be involutive if DΔ is a Lie subalgebra of V (M). A
smooth distribution ΔD is called D-invariant if it is preserved by the local flows
generated by elements of D, and integrable it possesses (maximal) integral sub-
manifolds through each point of M.

Sussman’s Theorem asserts that ΔD is integrable if and only if it is D-invari-
ant ([Sus73, Th. 4.2]). As a special case, where all subspaces ΔD(m), m ∈ M,
are of the same dimension, we obtain Frobenius’ Theorem. The invariance con-
dition on ΔD implies that it is involutive, but the converse does not hold. E.g.
consider on M = R2 the set D, consisting of two vector fields

∂
∂x1

, f (x1)
∂
∂x2

with f−1(0) =]−∞,0]

(see also Example IV.4.4).
If M is analytic and D consists of analytic vector fields, then Nagano shows

in [Naga66] that the involutivity of the corresponding distribution is sufficient
for the existence of integral submanifolds.

(b) The invariance condition for a distribution is quite analogous to the sta-
bility condition for a Lie subalgebra h ⊆ L(G). If, furthermore, G is analytic
with an analytic exponential function, then each closed subalgebra is stable,
which is analogous to Nagano’s result (cf. Lemma IV.4.3(b)).

To relate this to stability of Lie algebras of vector fields, assume that M
is compact. If h ⊆ V (M) is a stable subalgebra (not necessarily closed), then
the corresponding distribution Δh is stable, and Sussman’s Theorem implies
that its maximal integral submanifolds are the orbits of the subgroup H :=
〈expDiff(M)(h)〉 of Diff(M) generated by the flows of elements of h ([KYMO85,
Sect. 3.1]).

If, conversely, we start with a smooth distribution Δ, then the closed space
hΔ of all vector fields with values in Δ is a Lie subalgebra if and only if Δ
is involutive. Furthermore, it is not hard to see that Sussman’s Theorem implies
that Δ is involutive if and only if hΔ is stable. If this is the case, the corresponding
subgroup HΔ of Diff(M) satisfies hΔ ⊆ Le(HΔ) ⊆ Ld(HΔ) ⊆ hΔ. Now it is a
natural question whether HΔ carries the structure of a Lie group. For more details
and related examples, we refer to Section 3.1 in [KYMO85]. �
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Open Problems for Section IV

Problem IV.1. Show that for each subgroup H of a locally exponential Lie
group G, the set Le(H) = {x ∈ L(G) : expG(Rx)⊆H} is a Lie subalgebra of G
or find a counterexample.

If G is finite-dimensional, then Yamabe’s Theorem implies that the arc-
component of H is an integral subgroup (Remark II.6.5) which proves the asser-
tion in this case. If H is closed, then Le(H) is a Lie subalgebra by Lemma IV.3.1.

We further observe that Le(H) is invariant under all operators Ad(expG(x))
= eadx for x ∈ Le(H). If Le(H) is closed (which is the case for each closed
subgroup) and closed under addition, then it is a closed vector subspace of L(G),
and for x,y ∈ h it contains the derivative of the curves t �→ et adxy in 0. This
implies that it is a Lie subalgebra. �

Problem IV.2. Show that for each closed subgroup H of a locally exponential
Lie group G the closed Lie subalgebra Le(H)⊆ L(G) is locally exponential. �

Problem IV.3. Find an example of a locally exponential normal Lie subgroup
N of a locally exponential Lie group G for which L(G)/L(N) is not locally
exponential or prove that it always is. In view of Theorem IV.3.5, this would
imply that G/N is locally exponential. �

Problem IV.4. (One-parameter groups and local exponentiality) Let α : R→
GL(E) define a smooth action of R on the Mackey complete locally convex
space and D := α ′(0) be its infinitesimal generator. We then obtain a 2-step
solvable Lie group G := E �α R with the product

(v,t)(v′, t ′) = (v+α(t).v′, t + t ′)

and the Lie algebra g = E �D R. Characterize local exponentiality of G in terms
of the infinitesimal generator D.

Writing the exponential function as expG(v,t) = (β (t).v,t) with β (t) =∫ 1
0 α(st)ds, we obtain the curve β : R→ L (E). We are looking for a char-

acterization of those operators D for which there exists some T > 0 such that

(1) β (]−T ,T [)⊆ GL(E), and
(2) β̃ : ]−T ,T [×E→ E,(t,v) �→ β (t)−1v is smooth.

Note that (t,v) �→ β (t)v is always smooth. If E is a Banach space, then G is
a Banach–Lie group, hence locally exponential. In this case, D is a bounded
operator and we have for each t �= 0:

β (t) =
1
t

∫ t

0
esD ds =

1
t

etD−1
D

=
etD−1

tD
=

∞

∑
k=0

tk

(k +1)!
Dk.
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As β : R→L (E) is analytic w.r.t. to the operator norm on L (E), β (0) = 1,
and GL(E) is open, conditions (1) and (2) follow immediately. Moreover, the
Spectral Theorem implies that

Spec(β (t)) =
{etλ −1

tλ
: λ ∈ Spec(D)

}
,

which means that β (t) is invertible for |t|< 2π
sup{Im(λ ) : λ∈Spec(D)} . �

Problem IV.5. (Invariant subspaces) Let α : R→GL(E) be a smooth action of
R on the Mackey complete locally convex space E and β (t) as in Problem IV.4.

Suppose that F ⊆ E is a closed invariant subspace. Then we also have
β (t)(F) ⊆ F for each t ∈ R. Assume that for some ε > 0 the operator β (t)
is invertible for |t| ≤ ε . Show that β (t)−1(F) ⊆ F for |t| ≤ ε or find a coun-
terexample. Note that this is trivially the case if F is of finite dimension or
codimension. �

Problem IV.6. Show that BCH–Lie groups are regular. In [Rob04], Robart has
obtained substantial results in this direction, including that for each BCH–Lie
group G with Lie algebra g and each smooth path ξ ∈C∞(I,g), the initial value
problem

η(0) = idg, η ′(t) = [η(t),ξ (t)]
has a solution in L (g). Unfortunately, it is not clear whether these solutions
define curves in GL(g). �

Problem IV.7. Show that each nilpotent topological group is a topological
group with Lie algebra in the sense of Definition IV.1.23 (cf. Theorem IV.1.24).

�

Problem IV.8. In Theorem IV.3.3, we have seen that a locally exponential Lie
subgroup H of a locally exponential Lie group G is a submanifold, where the
submanifold chart in the identity can be obtained from the exponential function
of G.

It is an interesting question whether every Lie group H which is a subman-
ifold of a locally exponential Lie group G is in fact a locally exponential Lie
group. This is true if G is a Banach–Lie group because this property is inherited
by every subgroup which is a submanifold.

This point also concerns the use of the term “Lie subgroup,” which would
also be natural for subgroups which are submanifolds. �

Problem IV.9. Develop a theory of algebraic subgroups for CIAs in the context
of locally exponential, resp., BCH–Lie groups. A typical question such a theory
should answer is: For which linear actions of a locally exponential Lie group G
on a locally convex space E are the stabilizers Gv, v∈ E, locally exponential Lie
subgroups? �
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Problem IV.10. Show that Theorems IV.4.15/16 remain valid for locally expo-
nential Lie groups. �

Problem IV.11. Let G be a regular Lie group and H ⊆ G a closed subgroup.
Then Le(H) is a closed subset of L(G), stable under scalar multiplication.
On the other hand, Ld(H) is a Lie subalgebra containing Le(H). Do these
two sets always coincide? If, in addition, G is μ-regular, this follows from
Lemma III.2.7. �

Problem IV.12. (a) Let G be a Lie group with a smooth exponential func-
tion. Find examples where the Trotter Formula and/or the Commutator Formula
(Lemma IV.1.17) do not hold. For which classes of groups (beyond the locally
exponential ones) are these formulas, or the more general Lemma III.2.7, valid?
What about the group Diffc(M)?

(b) What can be said about the sequence of power maps pn(x) = xn in a local
Lie group? In local coordinates with 0 as neutral element, it is interesting to
consider for an element x the sequence

(
x
n

)n
. Does it converge (to x)? �

Problem IV.13. Let Δ be an integrable distribution on the compact manifold M
and HΔ the corresponding subgroup of Diff(M) preserving the maximal integral
submanifolds of Δ (Remark IV.4.18(b)). Show that HΔ is a regular Lie group.�

Problem IV.14. (cf. [Rob97, p.837, Prop. 3]) Let G be a μ-regular Lie group
and h⊆L(G) a closed stable subalgebra. Does h integrate to an integral Lie sub-
group? Since product integrals converge in G, for two smooth curves
α ,β : [0,1]→ h, the curve

(α ∗β )(t) := α(t)+Ad(γα(t)).β (t)

has values in h, which leads to a Lie group structure on C∞(I,h) with Lie algebra
C∞([0,1],h), where the bracket is given by

[ξ ,η ](t) :=
[
ξ (t),

∫ t

0
η(τ)dτ

]
+
[∫ t

0
ξ (τ)dτ ,η(t)

]
([Rob97, Th. 9]). The map E : α �→ γα(1) is a group homomorphism, so that the
problem is to see that the quotient group (C∞(I,h),∗)/kerE ∼= im(E) carries a
natural Lie group structure. �

V. Extensions of Lie groups

In this section, we turn to some general results on extensions of infinite-dimen-
sional Lie groups. In Section V.1, we explain how an extension of G by N is
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described in terms of data associated to G and N. This description is easily
adapted from the abstract group theoretic setting (cf. [ML68]). In Section V.2,
we describe the appropriate cohomological setup for Lie theory and explain
criteria for the integrability of Lie algebra cocycles to group cocycles. This is
applied in Section V.3 to integrate abelian extensions of Lie algebras to corre-
sponding group extensions.

V.1. General extensions

Definition V.1.1. An extension of Lie groups is a short exact sequence

1→ N
ι−−→Ĝ

q−−→G→ 1

of Lie group morphisms, for which Ĝ is a smooth (locally trivial) principal N-
bundle over G with respect to the right action of N given by (ĝ,n) �→ ĝn. In the
following, we identify N with the subgroup ι(N) � Ĝ.

We call two extensions N ↪→ Ĝ1→→G and N ↪→ Ĝ2→→G of the Lie group G
by the Lie group N equivalent if there exists a Lie group morphism ϕ : Ĝ1→ Ĝ2

such that the following diagram commutes:

N ↪→ Ĝ1 →→ G⏐⏐�idN

⏐⏐�ϕ ⏐⏐�idG

N ↪→ Ĝ2 →→ G.

It is easy to see that any such ϕ is an isomorphism of Lie groups and that
we actually obtain an equivalence relation. We write Ext(G,N) for the set of
equivalence classes of Lie group extensions of G by N.5

We call an extension q : Ĝ→ G with kerq = N split if there exists a Lie
group morphism σ : G→ Ĝ with q◦σ = idG. This implies that Ĝ∼= N �S G for
S(g)(n) := σ(g)nσ(g)−1. �

Remark V.1.2. A Lie group extension N ↪→ Ĝ→→ G can also be described in
terms of data associated to G and N as follows: Let q : Ĝ→ G be a Lie group
extension of G by N. By assumption, the map q has a smooth local section.
Hence there exists a global section σ : G→ Ĝ smooth in an identity neighbor-
hood and normalized by σ(1) = 1. Then the map

Φ : N×G→ Ĝ, (n,g) �→ nσ(g)

5 From the description of Lie group extensions as in Theorem V.1.4 below, one obtains cardi-
nality estimates showing that the equivalence classes actually form a set.
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is a bijection which restricts to a local diffeomorphism on an identity neighbor-
hood. In general,Φ is not continuous, but we may nevertheless use it to identify
Ĝ with the product set N×G, endowed with the multiplication

(5.1.1) (n,g)(n′,g′) = (nS(g)(n′)ω(g,g′),gg′),

where

(5.1.2) S :=CN ◦σ : G→Aut(N) for CN : Ĝ→Aut(N), CN(g) = gng−1,

and

(5.1.3) ω : G×G→ N, (g,g′) �→ σ(g)σ(g′)σ(gg′)−1.

Note that ω is smooth in an identity neighborhood and that the map Ŝ : G×N→
N,(g,n) �→ S(g)(n) is smooth in a set of the form UG ×N, where UG is an
identity neighborhood of G. The maps S and ω satisfy the relations

(C1) σ(g)σ(g′) = ω(g,g′)σ(gg′),
(C2) S(g)S(g′) = CN(ω(g,g′))S(gg′),
(C3) ω(g,g′)ω(gg′,g′′) = S(g)

(
ω(g′,g′′)

)
ω(g,g′g′′). �

Definition V.1.3. Let G and N be Lie groups. A smooth outer action of G on N
is a map S : G→ Aut(N) with S(1) = idN for which

Ŝ : G×N→ N, (g,n) �→ S(g)(n)

is smooth on a set of the form UG×N, where UG ⊆ G is an open identity neigh-
borhood, and for which there exists a map ω : G×G→ N with ω(1,1) = 1,
smooth in an identity neighborhood, such that (C2) holds. We call (S,ω) a lo-
cally smooth non-abelian 2-cocycle.

We define an equivalence relation on the set of all smooth outer actions of
G on N by S′ ∼ S if S′ = (CN ◦α) · S for some map α : G→ N with α(1) = 1,
smooth in an identity neighborhood. We write [S] for the equivalence class of
S. �

Remark V.1.2 implies that for each extension q : Ĝ→ G of Lie groups and
any section σ : G→ Ĝ which is smooth in an identity neighborhood with σ(1) =
1, (5.1.2) defines a smooth outer action of G on N. Different choices of such
sections lead to equivalent outer actions.

Theorem V.1.4. Let G be a connected Lie group, N a Lie group and (S,ω) a
smooth outer action of G on N. Then (5.1.1) defines a group structure on N×G
if and only if (C3) holds. If this is the case, then this group carries a unique Lie
group structure, denoted N×(S,ω) G, for which the identity N×G→ N×(S,ω) G
is smooth in an identity neighborhood and

q : N×(S,ω) G→ G, (n,g) �→ g

defines a Lie group extension of G by N. �
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All Lie group extensions of G by N arise in this way, so that we obtain a
partition

Ext(G,N) =
⋃
[S]

Ext(G,N)[S],

where Ext(G,N)[S] denote the set of equivalence classes of extensions corre-
sponding to the equivalence class [S].

If N is abelian, then each class [S] contains a unique representative S, which
is a smooth action of G on N. Fixing S, the set Ext(G,N)S carries a natural
abelian group structure, where the addition is given by the Baer sum: For two
extensions q1 : Ĝ1→ G, q2 : Ĝ2→ G of G by N, the Baer sum is defined by

Ĝ := {(ĝ1, ĝ2) ∈ Ĝ1× Ĝ2 : q1(ĝ1) = q2(ĝ2)}/Δ′N , Δ′N := {(n,n−1) : n ∈ N},
and the projection map q(ĝ1, ĝ2) := q1(ĝ1). This defines an abelian group struc-
ture on the set Ext(G,N)S whose neutral element is the class of the split exten-
sion Ĝ = N �S G (cf. [ML63, Sect. IV.4]). In Theorem V.2.8 below, we shall
recover this group structure in terms of group cohomology.

Theorem V.1.5. ([Ne05]) Assume that Z(N) carries an initial Lie subgroup
structure (Remark II.6.5). Then each class [S] determines a smooth G-action
on Z(N) by g.z := S(g)(z) and the abelian group Ext(G,Z(N))S acts simply
transitively on Ext(G,N)[S] by

[H]∗ [Ĝ] := [(α∗Ĝ)/Δ′Z(N)],

where α : H→ G is a Lie group extension of G by the G-module Z(N),

α∗Ĝ={(ĝ1, ĝ2)∈H×Ĝ : α(ĝ1)=q(ĝ2)} and Δ′Z(N) :={(n,n−1) : n∈Z(N)}.
�

Examples V.1.6. Interesting classes of extensions of Lie groups arise as follows.
(a) Projective unitary representations: Let H be a complex Hilbert space,

U(H) its unitary group with center Z(U(H)) = T1, and PU(H) := U(H)/T1
the projective unitary group (all these groups are Banach–Lie groups). If H is
a complex Hilbert space and π : G→ PU(H) a projective representation of the
Lie group G with at least one smooth orbit in the projective space P(H), then
the pull-back diagram

T = R/Z ↪→ U(H)→→ PU(H)�⏐⏐=
�⏐⏐ π

�⏐⏐
T ↪→ Ĝ →→ G

defines a central Lie group extension of G by the circle group (cf. [Lar99]).
This leads to a partition of the set of equivalence classes of projective unitary
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representations according to the set Ext(G,T) of central extensions of G by T

(cf. [Ne02a]).
(b) Hamiltonian actions: Let G be a connected Lie group, M a locally convex

manifold and ω ∈ Ω2(M,R) a closed 2-form which is the curvature of a pre-
quantum line bundle p : P→M with connection 1-form θ ∈Ω1(P,R). Assume
further that σ : G→ Diff(M) defines a smooth action of G on M for which all
associated vector fields σ̇(x) ∈ V (M) are Hamiltonian, i.e., the closed 1-forms
iσ̇(x)ω are exact. Then the range of the map σ : G→ Diff(M) lies in the group
Ham(M,ω) of Hamiltonian automorphisms of (M,ω), and the diagram

T ↪→ Aut(P,θ )→→ Ham(M,ω)�⏐⏐=
�⏐⏐ σ

�⏐⏐
T ↪→ Ĝ →→ G

defines a central Lie group extension of G by T (cf. [Kos70], [RS81], [NV03]).
(c) (Extensions by gauge groups) Let q : P→ M be a smooth K-principal

bundle, where M is compact and K is locally exponential (cf. Theorem IV.1.12).
Further, let σ : G→ Diff(M) define a smooth action of G on M, whose range
lies in the subgroup Diff(M)[P] of diffeomorphisms ϕ with ϕ∗P∼ P, i.e., fixing
the equivalence class [P]. Then the diagram

Gau(P) ↪→ Aut(P) = Diff(P)K →→ Diff(M)[P]�⏐⏐=
�⏐⏐ σ

�⏐⏐
Gau(P) ↪→ Ĝ →→ G

defines an extension of G by the gauge group Gau(P) of this bundle.
(d) If q : V→M is a finite-dimensional vector bundle and K = GL(V ), the

preceding remark applies to the corresponding frame bundle, and leads to the
diagram

Gau(V) ↪→ Aut(V)→→ Diff(M)[V]�⏐⏐=
�⏐⏐ σ

�⏐⏐
Gau(V) ↪→ Ĝ →→ G .

In view of [KYMO85, p.89], the Lie group Aut(V) is μ-regular if M is compact.
(e) (Non-commutative generalizations; cf. [GrNe06], [KYMO85, Sect. 3.2])

Let A be a CIA and E a finitely generated projective right A-module. Then the
group GLA(E) of A-linear endomorphisms of E is a Lie group, which is a sub-
group of the larger group

ΓL(E) :={ϕ∈GL(E) : (∃ϕA ∈ Aut(A))(∀s∈E)(∀a∈A) ϕ(s.a)=ϕ(s).ϕA(a)}
of semilinear automorphisms of E. These are the linear automorphisms ϕ ∈
GL(E) for which there exists an automorphism ϕA of A with ϕ(s.a) = ϕ(s).ϕA(a)
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for s ∈ E,a ∈ A. Then for each homomorphism σ : G→Aut(A), G a connected
Lie group, whose range lies in the set Aut(A)E of those automorphisms of A
preserving E by pull-backs, the diagram

GLA(E) ↪→ ΓL(E)→→ Aut(A)E�⏐⏐=
�⏐⏐ σ

�⏐⏐
GLA(E) ↪→ Ĝ →→ G

defines an extension of G by the linear Lie group GLA(E).
For the special case A = C∞(M,R), finitely generated projective modules

correspond to vector bundles over M (cf. [Ros94], [Swa62]), so that (e) special-
izes to (d). �

Remark V.1.7. Non-abelian extensions of Lie groups also play a crucial role
in the structural analysis of the group of invertible Fourier integral operators
of order zero on a compact manifold M ([OMYK81], [ARS86a/b]), which is
an extension of a group of symplectomorphisms of the complement of the zero
section in the cotangent bundle T ∗(M) whose Lie algebra corresponds to smooth
functions homogeneous of degree 1 on the fibers. �

The following theorem is an important tool to verify that given Lie groups
are regular (cf. [KM97], [OMYK83a, Th. 5.4] in the context of μ-regularity,
and [Rob04]). A variant of this result for ILB–Lie groups is Theorem 3.4 in
[ARS86b].

Theorem V.1.8. Let Ĝ be a Lie group extension of the Lie group G by N. Then
Ĝ is regular if and only if the groups G and N are regular. �

Remark V.1.9. A typical class of examples illustrating the difference between
abelian and central extensions of Lie groups arises from abelian principal bun-
dles. If q : P→M is a smooth principal bundle with the abelian structure group
Z over the compact connected manifold M, then the group Aut(P) = Diff(P)Z

of all diffeomorphisms of P commuting with Z (the automorphism group of
the bundle) is an extension of the open subgroup Diff(M)[P] of Diff(M) by
the gauge group Gau(P) ∼= C∞(M,Z) of the bundle (Example V.1.6(c)). Here
the conjugation action of Diff(M) on Gau(P) is given by composing func-
tions with diffeomorphisms. Central extensions corresponding to the bundle
q : P→M are obtained by choosing a principal connection 1-form θ ∈Ω1(P,z).
Let ω ∈Ω2(M,z) denote the corresponding curvature form. Then the subgroup
Aut(P,θ ) of those elements of Aut(P) preserving θ is a central extension of an
open subgroup of Diff(M,ω), which is substantially smaller that Diff(M). This
example shows that the passage from central extensions to abelian extensions
is similar to the passage from symplectomorphism groups to diffeomorphism
groups (see also [Ne06a]).
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As the examples of principal bundles over compact manifolds show, abelian
extensions of Lie groups occur naturally in geometric contexts and in particu-
lar in symplectic geometry, where the pre-quantization problem is to find for a
symplectic manifold (M,ω) a T-principal bundle with curvature ω , which leads
to an abelian extension of Diff(M)0 by the group C∞(M,T). Conversely, every
abelian extension q : Ĝ→ G of a Lie group G by an abelian Lie group A is in
particular an A-principal bundle over G. This leads to an interesting interplay
between abelian extensions of Lie groups and abelian principal bundles over
(finite-dimensional) manifolds.

A shift from central to abelian extensions occurs naturally as follows: Sup-
pose that a connected Lie group G acts on a smooth manifold M which is en-
dowed with a Z-principal bundle q : P→ M (Z an abelian Lie group) and that
each element of G lifts to an automorphism of the bundle. If all elements of G
lift to elements of the group Aut(P,θ ) for some principal connection 1-form θ ,
then we obtain a central extension as in Example V.1.6(b). But if there is no such
connection 1-form θ , then we are forced to consider the much larger abelian
extension of G by the group Gau(P) ∼= C∞(M,Z) or at least some subgroup
containing non-constant functions. The case where M is a restricted Graßman-
nian of a polarized Hilbert space and the groups are restricted operator groups
of Schatten class p > 2, resp., mapping groups C∞(M,K), where K is finite-
dimensional and M is a compact manifold of dimension ≥ 2, is discussed in
detail in [Mick89] (see also [PS86] for a discussion of related topics). �

V.2. Cohomology of Lie groups and Lie algebras

Any good setting for a cohomology theory on Lie groups should be fine enough
to take the smooth structure into account and flexible enough to parameterize
equivalence classes of group extensions. All these criteria are met by the lo-
cally smooth cohomology we describe in this subsection (cf. [Ne02a], [Ne04a]).
The traditional approach in finite dimensions uses globally smooth cochains
([Ho51]), which is too restrictive in infinite dimensions.

From Lie group cohomology to Lie algebra cohomology

Definition V.2.1. (a) Let g be a topological Lie algebra and E a locally convex
space. We call E a topological g-module if E is a g-module for which the action
map g×E→ E is continuous.

(b) Let G be a Lie group and A an abelian Lie group. We call A a smooth
G-module if it is endowed with a G-module structure defined by a smooth action
map G×A→ A. �
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Definition V.2.2. Let g be a topological Lie algebra and E a topological g-
module. For p ∈ N0, let Cp

c (g,E) denote the space of continuous alternating
maps gp→ E, i.e., the Lie algebra p-cochains with values in the module E. We
identify C0

c (g,E) with E and put C•c (g,E) :=
⊕∞

p=0 Cp
c (g,E). We then obtain a

cochain complex with the Lie algebra differential dg : Cp
c (g,E)→ Cp+1

c (g,E)
given on f ∈Cp

c (g,E) by

(dg f )(x0, . . . ,xp):=
p

∑
j=0

(−1) jx j. f (x0, . . . , x̂ j, . . . ,xp)

+∑
i< j

(−1)i+ j f ([xi,x j],x0, . . . , x̂i, . . . , x̂ j, . . . ,xp),

where x̂ j indicates omission of x j ([ChE48]). In view of d2
g = 0, the space

Zp
c (g,E) := ker(dg |Cp

c (g,E)) of p-cocycles contains the space Bp
c (g,E) :=

dg(C
p−1
c (g,E)) of p-coboundaries. The quotient

H p
c (g,E) := Zp

c (g,E)/Bp
c (g,E)

is the p-th continuous cohomology space of g with values in the g-module E.
We write [ f ] := f +Bp

c (g,E) for the cohomology class of the cocycle f . �

Definition V.2.3. Let G be a Lie group and E a smooth locally convex G-
module, i.e., a smooth G-module which is a locally convex space. We write

ρE : G×E → E, (g,v) �→ ρE(g,v) =: ρE(g)(v) =: g.v

for the action map. We call a p-form α ∈ Ωp(G,E) equivariant if we have for
each g ∈ G the relation

λ ∗gα = ρE(g)◦α .

If E is a trivial module, then an equivariant form is a left invariant E-valued
form on G.

We write Ωp(G,E)G for the subspace of equivariant p-forms in Ωp(G,E)
and note that this is the space of G-fixed elements with respect to the action
given by g.α := ρE(g)◦ (λg−1)∗α . The subcomplex (Ω•(G,E)G,d) of equivari-
ant differential forms in the E-valued de Rham complex on G has been intro-
duced in the finite-dimensional setting by Chevalley and Eilenberg in [ChE48].

Let g := L(G)∼= T1(G). An equivariant p-form α is uniquely determined by
the corresponding element α1 ∈Cp

c (g,E):

(5.2.1) αg(g.x1, . . . ,g.xp) = ρE(g)◦α1(x1, . . . ,xp) for g ∈ G,xi ∈ g.

Conversely, (5.2.1) provides for each ω ∈Cp
c (g,E) a unique equivariant p-form

ωeq on G with ωeq
1 = ω . �
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The following observation is due to Chevalley/Eilenberg ([ChE48, Th.
10.1]). For an adaptation to the infinite-dimensional setting, we refer to [Ne04a].

Proposition V.2.4. The evaluation maps

ev1 : Ωp(G,E)G→Cp
c (g,E), ω �→ ω1

define an isomorphism from the cochain complex (Ω•(G,E)G,d) of equivariant
E-valued differential forms on G to the continuous E-valued Lie algebra com-
plex (C•c (g,E),dg). �

Definition V.2.5. Let A be a smooth G-module and Cn
s (G,A) denote the space

of all functions f : Gn→ A which are smooth in an identity neighborhood and
normalized in the sense that f (g1, . . . ,gn) vanishes if g j = 1 holds for some j. We
call these functions normalized locally smooth group cochains. The differential
dG : Cn

s (G,A)→Cn+1
s (G,A), defined by

(dG f )(g0, . . . , gn):=g0. f (g1, . . . ,gn)

+
n

∑
j=1

(−1) j f (g0, . . . ,g j−1g j, . . . ,gn)+(−1)n+1 f (g0, . . . ,gn−1).

turns (C•s (G,A),dG) into a differential complex. We write Zn
s (G,A) :=

ker(dG | Cn
s (G,A)) for the corresponding group of cocycles, Bn

s (G,A) :=
dG(Cn−1

s (G,A)) for the subgroup of coboundaries, and

Hn
s (G,A) := Zn

s (G,A)/Bn
s (G,A)

for the n-th locally smooth cohomology group with values in the smooth module
A. �

Let M1, . . . ,Mk be smooth manifolds, A an abelian Lie group and
f : M1×·· ·×Mk→ A a smooth function. For vk ∈ Tmk(Mk) we obtain a smooth
function

∂k(vk) f : M1×·· ·×Mk−1→ a := L(A),
(m1, . . . ,mk−1) �→ δ ( f )(m1,...,mk)(0, . . . ,0,vk).

Iterating this process, we obtain for each tuple (m1, . . . ,mk) ∈ M1×·· ·×Mk a
continuous k-linear map

Tm1(M1)×·· ·×Tmk(Mk)→ a, (v1, . . . ,vk) �→
(
∂1(v1) · · ·∂k(vk) f

)
(m1, . . . ,mk).

The following theorem describes the natural map from Lie group to Lie al-
gebra cohomology ([Ne04a, App. B]; see also [EK64]):

Theorem V.2.6. For f ∈Cn
s (G,A), n≥ 1, and x1, . . . ,xn ∈ g∼= T1(G) we put

(Dn f )(x1, . . . ,xn) := ∑
σ∈Sn

sgn(σ)
(
∂1(xσ(1)) · · ·∂n(xσ(n)) f

)
(1, . . . ,1).
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Then Dn( f ) ∈ Cn
c (g,a), and these maps induce a morphism of cochain com-

plexes
D : (Cn

s (G,A),dG)n≥1→ (Cn
c (g,a),dg)n≥1

and in particular homomorphisms Dn : Hn
s (G,A)→ Hn

c (g,a) for n≥ 2.
For A = a these assertions hold for all n ∈ N0, and if A ∼= a/ΓA holds for a

discrete subgroup ΓA of a, then D1 also induces a homomorphism
D1 : H1

s (G,A)→ H1
c (g,a), [ f ] �→ [df (1)]. �

Integrability of Lie algebra cocycles

We have seen above that for n≥ 2 there is a natural derivation map

Dn : Hn
s (G,A)→ Hn

c (g,a)

from locally smooth Lie group cohomology to continuous Lie algebra coho-
mology. Since the Lie algebra cohomology spaces Hn

c (g,a) are much better ac-
cessible by algebraic means than those of G, it is important to understand the
amount of information lost by the map Dn. Thus one is interested in kernel and
cokernel of Dn. A determination of the cokernel can be considered as describing
integrability conditions on cohomology classes [ω ] ∈Hn

c (g,a) which have to be
satisfied to ensure the existence of f ∈ Zn

s (G,A) with Dn f = ω .
Before we turn to the complete solution for n = 2 ([Ne04a, Sect. 7]), we take

a closer look at the much simpler case n = 1.

Remark V.2.7. For n = 1 we consider the more general setting of a Lie group
action on a non-abelian group: Let G and N be Lie groups with Lie algebras
g and n and σ : G×N → N a smooth action of G on N by automorphisms. A
crossed homomorphism, or a 1-cocycle, is a smooth map f : G→ N with

f (gh) = f (g) ·g. f (h) for g,h ∈ G,

which is equivalent to ( f , idG) : G → N � G being a group homomorphism.
We note that for a 1-cocycle smoothness in an identity neighborhood implies
smoothness and write Z1

s (G,N) for the set of smooth 1-cocycles G→ N.
It is easy to see that for each crossed homomorphism f : G→ N, the loga-

rithmic derivative δ ( f ) ∈ Ω1(G,n) is an equivariant 1-form with values in the
smooth G-module n, hence uniquely determined by D1( f ) := T1( f ) : g→ n.
Conversely, an easy application of the Uniqueness Lemma shows that if G is
connected, then a smooth function f : G→ N is a crossed homomorphism if
and only if f (1) = 1 and δ ( f ) is an equivariant 1-form.

To see the infinitesimal picture, we call a continuous linear map α : g→ n a
crossed homomorphism, or a 1-cocycle, if

(5.2.2) α([x,y]) = x.α(y)− y.α(x)+ [α(x),α(y)],



398 K.-H. Neeb

which is equivalent to (α , idg) : g→ n � g being a homomorphism of Lie al-
gebras. We write Z1

c (g,n) for the set of continuous 1-cocycles g→ n. If G is
connected, we obtain an injective map

D1 : Z1
s (G,N)→ Z1

c (g,n).

The cocycle condition (5.2.2) for α holds if and only if αeq ∈ Ω1(G,n) sat-
isfies the Maurer–Cartan equation. Therefore the Fundamental Theorem (The-
orem III.1.2) shows that if G is connected and N is regular, then a 1-cocycle
α ∈ Z1

c (g,n) is integrable to some group 1-cocycle if and only if the period
homomorphism

perα := perαeq : π1(G)→ N

vanishes. This can also be expressed by the exactness of the sequence

0→ Z1
s (G,N) D1−−−−−→Z1

c (g,n)
per−−−−−→Hom(π1(G),N)

which already gives an idea of what kind of obstructions to expect for 2-cocycles.
�

The special importance of the group H2
s (G,A) stems from the following the-

orem, which can be derived easily from the construction in Section V.1.

Theorem V.2.8. If G is a connected Lie group and S : G→Aut(A) a smooth ac-
tion of G on the abelian Lie group A, then we obtain an isomorphism of abelian
groups

H2
s (G,A)→ Ext(G,A)S, [ω ] �→ A×(S,ω) G. �

Remark V.2.9. (a) If the group G is not connected, then condition (L3) in The-
orem II.2.1 requires an additional smoothness condition on cocycles, which is
equivalent to smoothness of the functions

fg : G→ A, fg(g′) := f (g,g′)− f (gg′g−1,g)

on an identity neighborhood for each g ∈ G. For g ∈ G0 this is automatically
the case for each f ∈ Z2

s (G,A). We write Z2
ss(G,A)⊆ Z2

s (G,A) for the set of all
cocycles satisfying this additional condition. Then B2

s (G,A)⊆ Z2
ss(G,A), and we

put H2
ss(G,A) := Z2

ss(G,A)/B2
s (G,A). Theorem V.2.8 remains valid for general

G with H2
ss(G,A) instead of H2

s (G,A).
(b) The second cohomology groups do not only classify abelian extensions

of G. In view of Theorem V.1.5, the sets Ext(G,N)[S] are principal homogeneous
spaces of the groups Ext(G,Z(N))S

∼= H2
ss(G,Z(N)), provided Z(N) is an initial

Lie subgroup of the Lie group N (Remark II.6.5(c)). Therefore the knowledge
of the second cohomology groups is also crucial for an understanding of non-
abelian extension classes. �
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On the Lie algebra level, we similarly have for topologically split extensions
of Lie algebras (cf. Remark I.2.7):

Proposition V.2.10. Let (a,S) be a topological g-module, where S : g→End(a)
denotes the module structure, and write Ext(g,a)S for the set of all equivalence
classes of topologically split a-extensions ĝ of g for which the adjoint action of
ĝ on a induces the given g-module structure on a. Then the map

Z2
c (g,a)→ Ext(g,a)S, ω �→ [a⊕ω g],

where a⊕ω g denotes a×g, endowed with the bracket

[(a,x),(a′,x′)] := (x.a′ − x′.a+ω(x,x′), [x,x′]),

factors through a bijection H2
c (g,a)→ Ext(g,a)S, [ω ] �→ [a⊕ω g]. �

We now turn to the description of the obstruction for the integrability of Lie
algebra 2-cocycles.

Theorem V.2.11. (Approximation Theorem; [Ne02a; Th. A.3.7]) Let M be a
compact manifold. Then the inclusion map C∞(M,G) ↪→C(M,G) is a morphism
of Lie groups which is a weak homotopy equivalence, i.e., it induces isomor-
phisms of homotopy groups

πk(C∞(M,G))→ πk(C(M,G))

for each k ∈ N0. In particular, we have

[M,G]∼= π0(C∞(M,G))

for the group [M,G] of homotopy classes of maps M→ G. �
Below, a denotes a smooth Mackey complete G-module.

Definition V.2.12. (a) If M is a compact oriented manifold of dimension k and
Ω ∈Ωk(G,a) a closed a-valued k-form, then the map

p̃erΩ : C∞(M,G)→ a, σ �→
∫
σ
Ω :=

∫
M
σ ∗Ω

is locally constant. If, in addition, Ω is equivariant, then its values lie in the
closed subspace ag of g-fixed elements in a, hence defines a period map [M,G]→
ag ([Ne02a, Lemma 5.7]). If M = Sk is a sphere, so that πk(G)⊆ [Sk,G] corre-
sponds to base point preserving maps, then restriction to πk(G) defines a group
homomorphism

perΩ : πk(G)→ ag,

called the period homomorphism defined by Ω.
(b) For k = 2 and ω ∈ Z2

c (g,a), we obtain a Lie algebra 1-cocycle

fω : g→C1
c (g,a)/dga, x �→ [ixω ],
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and it is shown in [Ne04a, Lemma 6.2] that this 1-cocycle gives rise to a well-
defined period homomorphism, called the flux homomorphism,

Fω : π1(G)→ H1
c (g,a)

as follows. For each piecewise smooth loop γ : S1→ G, we define a 1-cocycle

Iγ : g→ a, Iγ(x) :=
∫
γ

ixrω
eq,

where xr is the right invariant vector field on x with xr(1) = x, and put Fω([γ ]) :=
[Iγ ]. �

Now we turn to the main result of this section ([Ne04a, Th. 7.2]):

Theorem V.2.13. Let G be a connected Lie group, A a smooth G-module of the
form A ∼= a/ΓA, where ΓA ⊆ a is a discrete subgroup of the Mackey complete
space a and qA : a→ A the quotient map. Then the map

P̃ :Z2
c (g,a)→Hom

(
π2(G),A

)×Hom
(
π1(G),H1

c (g,a)
)
, P̃(ω)=(qA ◦perω ,Fω)

factors through a homomorphism

P :H2
c (g,a)→Hom

(
π2(G),A

)×Hom
(
π1(G),H1

c (g,a)
)
, P([ω ])=(qA◦perω ,Fω),

and the following sequence is exact:

0→ H1
s (G,A) I−−→H1

s (G̃,A) R−−→H1(π1(G),A
)G ∼= Hom

(
π1(G),AG) δ−−−−→

δ−−−−→H2
s (G,A) D2−−−−→H2

c (g,a) P−−−−→Hom
(
π2(G),A

)×Hom
(
π1(G),H1

c (g,a)
)
.

Here the map δ assigns to a group homomorphism γ : π1(G)→ AG the quotient
of the semi-direct product A�G̃ by the graph {(γ(d),d) : d ∈ π1(G)} of γ which
is a discrete central subgroup, I denotes the inflation map and R the restriction
map to the subgroup kerqG

∼= π1(G) of G̃.
If, in particular, π1(G) and π2(G) vanish, we obtain an isomorphism

D2 : H2
s (G,A)→ H2

c (g,a). �

Remark V.2.14. (a) If G is 1-connected, things become much simpler and the
criterion for the integrability of a Lie algebra cocycleω to a group cocycle is that
im(perω) ⊆ ΓA. Similar conditions arise in the theory of abelian principal bun-
dles on smoothly paracompact presymplectic manifolds (M,Ω) (Ω is a closed
2-form on M). Here the integrality of the cohomology class [Ω] is equivalent to
the existence of a pre-quantum bundle, i.e., a T-principal bundle T ↪→ M̂→→M
whose curvature 2-form is Ω (cf. [Bry93], [KYMO85]).

(b) For finite-dimensional Lie groups the integrability criteria simplify sig-
nificantly because π2(G) vanishes ([CaE36]). This has been used by É. Cartan
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to construct central extensions and thus to prove that each finite-dimensional Lie
algebra belongs to a global Lie group, which is known as Lie’s third theorem
(cf. [CaE30/52], [Est88]).

(c) Let (M,ω) denote a compact symplectic manifold and D̃iff(M,ω) the
universal covering group of the identity component Diff(M,ω)0 of the Fréchet–
Lie group Diff(M,ω) (Theorem III.3.1). Then the Lie algebra homomorphism

(5.2.3) fω : V (M,ω) :={X ∈V (M) : LXω=0}→H1
dR(M,R), X �→ [iXω ],

where H1
dR(M,R) is considered as an abelian Lie algebra, integrates to a Lie

group homomorphism

F : D̃iff(M,ω)→ H1
dR(M,R),

whose restriction per fω to the discrete subgroup π1(Diff(M,ω)) is called the flux
homomorphism. Let ham(M,ω) := ker fω denote the Lie subalgebra of Hamil-
tonian vector fields. In [KYMO85, 2.2], it is shown that

H̃am(M,ω) := kerF

is a μ-regular Lie group.
Recently, there has been quite some activity concerning the flux homomor-

phism for symplectic manifolds and generalizations thereof ([Ban97, Ch. 3],
[KKM05], [Ne06a]), including a proof of the flux conjecture ([Ono04]), formu-
lated by Calabi ([Cal70]). It asserts that the image of the flux homomorphism
per fω is discrete for each compact symplectic manifold (cf. [MD05], [LMP98]
for a survey).

(d) In [RS81], Ratiu and Schmid address the existence problem of ILH–Lie
group structures for the following three classes of groups: Under the assump-
tion that the image of the flux homomorphism is discrete, which is always the
case ([Ono04]), they show that the group Ham(M,ω) of Hamiltonian diffeo-
morphisms carries an ILH–Lie group structure. If q : P→M is a pre-quantum
T-bundle with curvature ω and connection 1-form θ , they further show that the
quantomorphism group Aut(P,θ ), a central T-extension of Ham(M,ω) (cf. Ex-
ample IV.1.6(b)), is an ILH–Lie group, and they obtain an ILH–Lie group G
for the Lie algebra of real-valued smooth functions on T ∗(M) which are ho-
mogeneous of degree 1 with respect to the Poisson bracket. The latter group
is of particular interest for the Lie group structure on the group of invertible
Fourier–integral operators of order zero, which is a Lie group extension of G
([ARS84,86a/b]).

For a discussion of the relation between quantomorphisms and Hamiltonian
diffeomorphisms, extending some of these structures, such as Kostant’s Theo-
rem ([Kos70]) to infinite dimensional manifolds, we refer to [NV03].
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(e) The period and the flux homomorphism annihilate the torsion subgroups
of π2(G), resp., π1(G). Hence they factor through the rational homotopy groups
π2(G)⊗Q, resp., π1(G)⊗Q.

(f) If a is a trivial module and ω ∈ Z2
c (g,a), then ĝ := a⊕ω g is a cen-

tral extension of g, and x.(a,y) := (ω(x,y), [x,y]) turns ĝ into a topological g-
module. A 1-cocycle f : g→ a is the same as a Lie algebra homomorphism, and
B1

c(g,a) = {0}, so that H1
c (g,a) = HomLie(g,a) ∼= L (g/[g,g],a). In this case,

the flux homomorphism

Fω : π1(G)→ HomLie(g,a)

vanishes if and only if the action of g on ĝ integrates to a smooth action of the
group G on ĝ ([Ne02a, Prop. 7.6]). �

We emphasize that Theorem V.2.13 holds for Lie groups which are not nec-
essarily smoothly paracompact. On these groups de Rham’s Theorem is not
available, so that one has to get along without it and to use more direct methods.
This is important because many interesting Banach–Lie groups are not smoothly
paracompact, because their model spaces do not permit smooth bump functions
(cf. Remark I.4.5).

Remark V.2.15. Let G be a connected smoothly paracompact Lie group and A a
smooth G-module of the form a/ΓA, where ΓA is a discrete subgroup of a. Let
Z2

gs(G,A) denote the group of smooth 2-cocycles G×G→ A and B2
gs(G,A) ⊆

Z2
gs(G,A) the cocycles of the form dGh, where h∈C∞(G,A) is a smooth function

with h(1) = 0. Then we have an injection

H2
gs(G,A) := Z2

gs(G,A)/B2
gs(G,A) ↪→H2

s (G,A),

and the space H2
gs(G,A) classifies those A-extensions of G with a smooth global

section. We further have an exact sequence

Hom(π1(G),aG) δ−−→H2
gs(G,A) D−−→H2

c (g,a) P−−−−→
P−−−−→H2

dR(G,a)×Hom
(
π1(G),H1

c (g,a)
)
,

where P([ω ]) = ([ωeq],Fω) (cf. Section 8 in [Ne02a] and Remark 8.5 in [Ne
04a]). �

Remark V.2.16. Let G be a Lie group with Lie algebra g and a := C∞(G,R), en-
dowed with the compact open C∞-topology. Note that G acts on a by (g. f )(x) :=
f (xg), and that the corresponding action of g corresponds to the embedding
g→ V (G),x �→ xl . Using the left trivialization of T (G), we see that R-valued p-
forms are in one-to-one correspondence with those smooth functions G×gp→
R which are p-linear and alternating in the last p arguments. This implies in
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particular, that each p-form ω ∈ Ωp(G,R) defines an element of Cp
c (g,a), and

it is easy to see that this leads to an injection of cochain complexes

η : (Ω•(G,R),d) ↪→ (C•(g,a),dg).

If G is a Fréchet–Lie group, then the cartesian closedness argument from the
convenient calculus (cf. [KM97, p.30]) implies that η is bijective, which leads
to an isomorphism

H p
dR(G,R)∼= H p

c (g,a).

If, in addition, G is smoothly paracompact, we thus obtain a description of
real-valued singular cohomology of G in terms of Lie algebra cohomology (cf.
[Mi87], [Ne04a, Ex. 7.6]).

In [Mi87], Michor applies this construction in particular to the group Diff(M)
for a compact manifold M. For more detailed information on the de Rham co-
homology of groups like Diff(M) or C∞(M,K), where M is compact and K
finite-dimensional, we refer to [Beg87]. �

We have seen above that period homomorphisms arise naturally in the inte-
gration theory of Lie algebra extensions to group extensions. Below we describe
some interesting classes of Lie algebra 2-cocycles which have some independent
topological interpretation.

Let G = C∞c (M,K), where K is a Lie group with Lie algebra k and M is a σ -
compact finite-dimensional manifold, so that g = L(G) ∼= C∞c (M,k), endowed
with the natural locally convex direct limit structure (Theorem II.2.8). For de-
tailed proofs of the results below we refer to [MN03] for the compact case and
to [Ne04c] for the non-compact case.

The Lie algebra cocycles we are interested in are those of product type,
constructed as follows. Let E be a Mackey complete space and κ : k× k →
E an invariant continuous symmetric bilinear form. Then the quotient space
z := Ω1

c(M,E)/dC∞c (M,E) carries a natural locally convex topology because
the space of exact forms is closed with respect to the natural direct limit topol-
ogy. We then obtain a continuous Lie algebra cocycle

ω ∈ Z2
c (g,z) by ω(ξ ,η) := [κ(ξ ,dη)].

Of particular interest is the case E = V (k), where κ : k× k→ V (k) is the uni-
versal invariant symmetric bilinear form and the case E = R, where κ is the
Cartan–Killing form of a finite-dimensional Lie algebra. We write ΠM

κ ⊆ z for
the corresponding period group. Other types of cocycles, which are not of prod-
uct type, are described in [NeWa06a]. If k is a compact simple Lie algebra and
M = S1, then H2

c (g,R) is one-dimensional and generated by the cocycle de-
fined by the Cartan–Killing form κ . The associated central extensions and their
integrability to Lie groups are discussed in some detail in Section 4.2 in [PS86].

Theorem V.2.17. The following assertions hold:
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(1) For M = S1 we have z ∼= E, and the period group ΠS1

κ is the image of a
homomorphism

perκ : π3(K)→ E,

obtained by identifying the subgroup π2(C∗(S1,K)) of π2(G) with π3(K).
(2) ΠM

κ is contained in H1
dR,c(M,E) and coincides with the set of all those co-

homology classes [α ] for which integration over circles and properly em-
bedded copies of R, we obtain elements of ΠS1

κ .
(3) ΠM

κ is discrete if and only if ΠS1

κ is discrete.
(4) If dimK < ∞ and κ is universal, then ΠS1

κ ⊆V (k) is discrete.
(5) If K is compact and simple, then the Cartan–Killing form κ is universal, for

a suitable normalization of κ we have ΠS1

κ = Z, and ΠM
κ ⊆ H1

dR,c(M,R) is
the subgroup of all cohomology classes with integral periods in the sense of
(2). �

Remark V.2.18. A particularly interesting class of corresponding central ex-
tensions has been studied by Etingof and Frenkel in [EF94]. They investigate
the situation where M is a compact complex manifold, K is a simple complex
Lie group, κ is the Cartan–Killing form, and by projecting onto the subspace
of H1

dR(M,C)⊆Ω1(M,C)/dC∞(M,C) generated by the holomorphic 1-forms,
they obtain a central extension of the complex Lie group C∞(M,K) by a com-
pact complex Lie group, which in some cases is an elliptic curve or an abelian
variety. �

V.3. Abelian extensions of Lie groups

In this subsection, we use the results of the preceding subsection to integrate
abelian extensions of Lie algebras to Lie group extensions.

If S : G→ Aut(A) defines on A the structure of a smooth G-module, G is
connected and A ∼= a/ΓA with ΓA ⊆ a discrete, then H2

s (G,A) ∼= Ext(G,A)S

(Theorem V.2.8), so that Theorem V.2.13 provides in particular necessary and
sufficient conditions for a Lie algebra cocycle ω ∈ Z2

c (g,a) to correspond to a
global Lie group extension ([Ne04a, Th. 6.7]):

Theorem V.3.1. (Integrability Criterion) Let G be a connected Lie group and
A a smooth G-module with A0

∼= a/ΓA, where ΓA is a discrete subgroup of the
Mackey complete space a. For each ω ∈ Z2

c (g,a), the abelian Lie algebra ex-
tension a ↪→ ĝ := a⊕ω g→→ g integrates to a Lie group extension A ↪→ Ĝ→→G
with a connected Lie group Ĝ if and only if

(1) Πω := im(perω)⊆ ΓA, and
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(2) there exists a surjective homomorphism γ : π1(G)→ π0(A) such that the
flux homomorphism Fω : π1(G)→ H1

c (g,a) is related to the characteristic
homomorphism

θA : π0(A)→ H1
c (g,a), [a] �→ [D1(dG(a))] by Fω = θA ◦ γ .

If A is connected, then (2) is equivalent to Fω = 0. �

Corollary V.3.2. Let G be a connected Lie group, a a smooth Mackey complete
G-module and ω ∈ Z2

c (g,a). Then there exists a smooth G-module A with Lie
algebra a such that the abelian Lie algebra extension a ↪→ ĝ := a⊕ω g→→ g
integrates to a Lie group extension A ↪→ Ĝ→→ G with a connected Lie group Ĝ
if and only if Πω is a discrete subgroup of aG.

Proof. The necessity is immediate from Theorem V.3.1. For the converse, we
first use this theorem to find an extension q0 : G�→ G̃ of the universal covering
group G̃ of G by the smooth G-module A0 := a/Πω . Then A := q−1

0 (π1(G))⊆
G� is a Lie group with identity component A0, so that G� is an A-extension of
G. �

Note that it may happen that the group A constructed in the preceding proof
is not abelian. Since A0 and π1(G) are abelian, it is at most 2-step nilpotent.

Remark V.3.3. (a) Suppose that only (1) in Theorem V.3.1 is satisfied, and that
A is connected. Consider the corresponding extension q� : G� → G̃ of G̃ by
A ∼= a/ΓA. Then G ∼= G�/π̂1(G), where π̂1(G) := (q�)−1(π1(G)) is a central
A-extension of π1(G), hence 2-step nilpotent. This group is abelian if and only
if the induced commutator map

C : π1(G)×π1(G)→ A

vanishes. It is shown in [Ne04a, Rem. 6.8] that, up to sign, this map is given by

C([γ ], [η ]) =
∫
γ∗η
ωeq, where γ ∗η : T2→ G, (t,s) �→ γ(t)η(s).

(b) According to a result of H. Hopf ([Hop42]), we have for each arcwise
connected topological space X an exact sequence

0→ H2(π1(X),A)→ H2
sing(X ,A)∼= Hom(H2(X),A)→ Hom(π2(X),A)→ 0

(cf. [ML78, p.5]). If G is smoothly paracompact, then the closed 2-form ωeq

defines a singular cohomology class in H2
sing(G,a) ∼= Hom(H2(M),a) and af-

ter composition with the quotient map qA : a→ A, a singular cohomology class
cω ∈ H2

sing(G,A). The inclusion Πω ⊆ ΓA means that this class vanishes on the
spherical cycles, i.e., the image of π2(G) in H2(G). Hence it determines a cen-
tral extension of π1(G) by A, and if A is divisible, this central extension is de-
termined by the commutator map C : π1(G)×π1(G)→ A. If this map vanishes,
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then cω = 0, but Example V.3.5(b) below shows that this does not imply the
existence of a corresponding global group cocycle. If G is 1-connected, then
cω vanishes if and only if ω integrates to a group cocycle (cf. [EK64]), but in
general this simple criterion fails.

(c) If F ′ω([γ ])∈H1
dR(G,a) denotes the de Rham class obtained as in Proposi-

tion V.2.4, then we have for each piecewise smooth loop η : S1→G the formula∫
η F ′ω(γ) =

∫
γ∗η ωeq. �

The following proposition displays another facet of Hopf’s result mentioned
under (b) above for the special case of topological groups (cf. [Ne04a, Prop.
6. 11]). In the context of rational homotopy theory, it can be extended to the
Cartan–Serre Theorem, that the rational homology algebra of an arcwise con-
nected topological group is generated by the homology classes defined by maps
Sk→ G, k ∈ N (cf. [BuGi02, Th. 3.17]).

Proposition V.3.4. Let G be a topological group, S2(G)⊆ H2(G) the subgroup
of spherical 2-cycles, i.e., the image of π2(G) under the Hurewicz homomor-
phism π2(G)→ H2(G), and Λ2(G) := H2(G)/S2(G) the quotient group. Then
Λ2(G) is generated by the images of cycles defined by maps of the form

α ∗β : T2→ G, (t,s) �→ α(t)β (s),

where α ,β : T→ G are loops in G. �

Example V.3.5. (a) Let G := Diff(M)op
0 be the opposite group of the identity

component of Diff(M) for a connected compact manifold M. Recall that its Lie
algebra is g := V (M) (Example II.3.14). For each Fréchet space E, the abelian
Lie group a = C∞(M,E) is a smooth G-module with respect to ϕ . f := f ◦ϕ .
Each closed E-valued 2-form ωM defines a continuous Lie algebra 2-cocycle by
ω(X ,Y ) := ωM(X ,Y ). In this case, the period map and the flux cocycle can be
described in geometrical terms. In [Ne04a, Sect. 9], it is shown that the period
map

perω : π2(Diff(M))→ ag = C∞(M,E)V (M) = E

factors for each m0 ∈M through the evaluation map evm0 : Diff(M)→M,ϕ �→
ϕ(m0), to the map

perωM
: π2(M,m0)→ E, [σ ] �→

∫
σ
ωM.

Likewise, the flux homomorphism can be interpreted as a map

Fω : π1(Diff(M))→ H1
dR(M,E)∼= Hom(π1(M),E),

that vanishes if and only if all integrals of the 2-form ωM over smooth cycles of
the form H : T2 → M,(s, t) �→ α(s).β (t) with loops α in Diff(M) and β in M
vanish.
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This easily leads to the sufficient condition for the integrability of ω that the
period group ΓE of the 2-form ωM should be discrete in E. This in turn implies
the existence of a Z-principal bundle for Z := E/ΓE with curvature ωM over
M, and the identity component of the group Aut(P) = Diff(P)Z is a Lie group
extension of G by Gau(P)∼= C∞(M,Z), integrating ω (Example V.1.6(c)).

It would be very interesting to understand to which extent the discreteness
of the periods of ωM is necessary for the discreteness of the period group of ω
(see also the discussion in [KYMO85, p.86] and Problem V.4).

(b) We consider the special case M = T2, realized as the unit torus in C2 and
let ωM be an invariant 2-form on M with

∫
MωM = 1.

Since π2(M,m0) is trivial, perω vanishes. By α(z)(w1,w2) = (zw1,w2),
we obtain a loop α in Diff(M), and the loop β (z) := (1,z) in M satisfies
α(z1).β (z2) = (z1,z2), so that ∫

α∗β
ωM = 1.

We conclude that Fω �= 0. Hence the Lie algebra cocycle ω on V (M) does not
integrate to a group cocycle with values in the connected group a = C∞(T2,R).

Since ωM is integral, it is the curvature of a natural T-bundle q : P→ M,
which leads to an abelian extension

1→ A := Gau(P)∼= C∞(M,T) ↪→ D̂iff(M)0→→ Diff(M)0→ 1

whose Lie algebra cocycle coincides with ω . Note that π0(A)∼= [T2,T]∼= Z2 is
non-trivial.

(c) The same phenomenon occurs already for the subgroup T := T2, act-
ing on itself by translations, and accordingly on a. By restriction, we obtain an
abelian extension

1→ A = C∞(T2,T) ↪→ T̂2→→ T2→ 1

whose flux homomorphism Fω : π1(T2)→ H1(R2,a)∼= H1
dR(T2,R)∼= R2 is in-

jective. In this case, there is a reduction of the extension of T to an extension by
the subgroup

B := T×Hom(T,T)∼= T×Z2 ⊆ A = C∞(T2,T),

generated by the constant maps and the characters of T . The corresponding
extension T̃ of T by B is isomorphic to the Heisenberg group

H :=

{⎛⎝1 a c
0 1 b
0 0 1

⎞⎠ : a,b,c ∈ R

}
=

⎛⎝1 R R

0 1 R

0 0 1

⎞⎠ modulo

⎛⎝1 0 Z

0 1 0
0 0 1

⎞⎠ . �
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Example V.3.6. Let G := SL2(R). From the natural action of G on P1(R)∼= S1,
we derive an action on the space a := Ω1(S1,R). In Section 10 of [Ne04a], it
is shown that there exists a non-trivial ω ∈ Z2(sl2(R),a) which integrates to an
abelian extension

ŜL2(R) =Ω1(S1,R)� f SL2(R),

so that we obtain a non-trivial infinite-dimensional abelian extension of SL2(R)
which is a Fréchet–Lie group.

Since all finite-dimensional Lie group extensions of SL2(R) by vector spaces
split on the Lie algebra level, this example illustrates the difference between the
finite- and infinite-dimensional theory. �

For more references dealing specifically with central extensions, we refer to
[Ne02a]. In particular, [CVLL98] is a nice survey on central T-extensions of Lie
groups and their role in quantum physics (see also [Rog95]). It also contains
a description of the universal central extension for finite-dimensional groups.
For infinite-dimensional groups, universal central extensions are constructed in
[Ne02d], and for root graded Lie algebras in [Ne03] (cf. Subsection VI.1).

Example V.3.7. (The Virasoro group) Let G := Diff+(T) be the group of orien-
tation preserving diffeomorphisms of the circle T. Then the inclusion T ↪→ G
of the rigid rotations is a homotopy equivalence, so that π2(G) vanishes and
π1(G)∼= Z (cf. [Fu86, p.302]).

Furthermore, H2
c (g,R) = R[ω ] is one-dimensional ([PS86]), and the corre-

sponding flux homomorphism Fω vanishes ([Ne02a, Ex. 9.3]), so that Theo-
rem V.3.1 implies the existence of a corresponding central R-extension of G,
called the Bott–Virasoro group Vir. Remark V.2.15 implies that this extension
has a smooth global section, hence can be described by a smooth global cocy-
cle. Such a cocycle, and other related ones, are described explicitly by Bott in
[Bo77]. A more direct construction of this and related cocycles has been de-
scribed recently by Billig ([BiY03]).

In [Se81], G. Segal studies projective unitary representations of Diff(S1) via
representations of loop groups, which implicitly define unitary representations
of the Bott–Virasoro group. In [GW84/85], Goodman and Wallach give an ana-
lytic construction of the unitary highest weight representations of Vir by directly
integrating the corresponding Lie algebra representation on the representations
of loop groups, using scales of Banach spaces.

The Bott–Virasoro group is also a very interesting geometric object. One as-
pect of its rich geometric structure is that, although it is only a smooth real Lie
group which is not analytic (Remark VI.2.3 below), it carries the structure of
a complex Fréchet manifold, which is obtained by identifying it with the com-
plement of the zero section in the holomorphic line bundles over Diff+(S1)/T

([Lem95], [KY87]). �
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Open Problems for Section V

Problem V.1. Generalize Theorem V.2.13 in an appropriate way to non-
connected Lie groups G and A.

The generalization to non-connected Lie groups G means to derive acces-
sible criteria for the extendibility of a 2-cocycle on the identity component G0

to the whole group G. From the short exact sequence G0 ↪→ G→→ π0(G), we
obtain maps

H2(π0(G),A) I−−→H2(G,A) R−−→H2(G0,A)G,

but it is not clear how to describe the image of the restriction map R from G to
G0.

If A is a trivial module, one possible approach is to introduce additional
structures on a central extension Ĝ of G0 by A, so that the map q : Ĝ → G
describes a crossed module, which requires an extension of the natural G0-action
of G on Ĝ to an action of G (cf. [Ne05]).

To deal with non-connected groups A seems to be tractable if we assume that
A0
∼= a/ΓA as in Theorem V.2.13. Under the assumption that G is connected, the

crucial information is contained in an exact sequence

0→ H2
s (G,A0)→ H2

s (G,A)
γ−−→Hom(π1(G),π0(A))→ H3

s (G,A0),

where γ assigns to an extension of G by A the corresponding connecting ho-
momorphism π1(G)→ π0(A) in the long exact homotopy sequence (cf. [Ne04a,
App. E]). To determine H2

s (G,A) in terms of Hs(G,A0) and known data, one
has to determine the image of H2

s (G,A) in Hom(π1(G),π0(A)). �

Problem V.2. Do the spaces Z2
s (G,A) and Z2

ss(G,A) (Remark V.2.9) coincide
for each non-connected Lie group G and each smooth G-module A?

This is true if G is connected ([Ne04a, Prop. 2.6]), but in general we do
not know if Z2

ss(G,A) is a proper subgroup of Z2
s (G,A), which is equivalent to

H2
ss(G,A) being a proper subgroup of H2

s (G,A). In terms of abelian extensions,
this means that there exists an abelian extension Ĝ of G by the G-module A for
which the restriction Ĝ0 to the identity component G0 is a Lie group extension,
but Ĝ cannot be turned into a Lie group because for certain elements ĝ ∈ Ĝ the
conjugation action on Ĝ0 is not an action by smooth group automorphisms (cf.
condition (L3) in Theorem II.2.1). �

Problem V.3. Give an explicit description of kernel and cokernel of the deriva-
tion maps

Dn : Hn
s (G,A)→ Hn

c (g,a) for n≥ 3.
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For A ∼= a/ΓA for some discrete subgroup ΓA ⊆ a, the first necessary condition
for [ω ] ∈ Hn

c (g,a) to lie in the image of D, one obtains quite easily is that the
range of the period homomorphism

perω : πn(G)→ a

must be contained in ΓA
∼= π1(A) (cf. [GN07]). �

Problem V.4. An interesting special case of the preceding problem arises for
G = Diff(M)op

0 , M a compact manifold, a=C∞(M,R), where G acts by (ϕ . f )(m)
:= f (ϕ(m)), and ω ∈Ω2(M,R) is a closed 2-form. Then ω defines a Lie alge-
bra cocycle in Z2

c (V (M),a), and it is an interesting question when this cocycle
integrates to a group cocycle on G. We know that this is the case if the period
group 〈[ω ],H2(M)〉 ⊆ R is discrete, but this is not necessary (cf. [KYMO85,
p.86]). The approach described in Example V.3.5 may be useful to analyze this
problem. The crucial point is to understand the range of the homomorphism
π2(Diff(M))→ π2(M,m0) and of the natural map π1(Diff(M))×π1(M,m0)→
[T2,M]→H2(M) (Example V.3.5) (see [Ban97, Ch. 3] for more details on such
maps). �

Problem V.5. Give a characterization of those principal K-bundles q : P→M
for which the extension Aut(P) of the subgroup Diff(M)[P] by the gauge group
Gau(P) splits on the group level (cf. Example V.1.6). On the Lie algebra level,
such conditions are given by Lecomte in [Lec85]. Note that this is obviously the
case if the bundle is trivial, which implies Aut(P)∼= C∞(M,K)� Diff(M). It is
also the case for natural bundles to which the action of Diff(M) lifts, such as the
frame bundle and other natural bundles. �

VI. Integrability of locally convex Lie algebras

In this section, we take a systematic look at the integrability problem for locally
convex Lie algebras with an emphasis on locally exponential ones, because they
permit a quite satisfying general theory. For Lie algebras which are not locally
exponential only isolated results are available.

VI.1. Enlargeability of locally exponential Lie algebras

Definition VI.1.1. A locally convex Lie algebra g is said to be integrable if there
exists a Lie group G with L(G)∼= g. It is called locally integrable if there exists
a local Lie group (G,D,mG,1) with Lie algebra L(G) ∼= g. A locally exponen-
tial Lie algebra is called enlargeable if it is integrable to a locally exponential
Lie group, i.e., if some of the corresponding local groups are enlargeable (cf.
Definition IV.2.3). �
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Although every finite-dimensional Lie algebra is integrable, integrability of
infinite-dimensional Lie algebras turns out to be a very subtle property.

Examples VI.1.2. (a) If g is a finite-dimensional Lie algebra, endowed with its
unique locally convex topology, then g is integrable. This is Lie’s Third The-
orem. One possibility to prove this is first to use Ado’s Theorem to find an
embedding g ↪→ gln(R) and then to endow the integral subgroup G := 〈expg〉 ⊆
GLn(R) with a Lie group structure such that L(G) = g (cf. Corollary IV.4.10).

(b) If g is locally exponential, then it is locally integrable by definition. In
particular, every Banach–Lie algebra is locally integrable (Examples IV.2.4). �

Enlargeability and generalized central extensions

The criteria described in Section V.3 provide good tools to understand the dif-
ference between the group and Lie algebra picture for abelian extensions. How-
ever, not all quotient maps q : ĝ→ g of Lie algebras are topologically split in the
sense that there is a continuous linear section, therefore they are not extensions
of the type just discussed. An important example is the map ad: g→ g/z(g),
where z(g) is the center. The fact that for each locally exponential Lie algebra
g, the Lie algebra gad := g/z(g) is always integrable (Theorem IV.3.8) shows
that the question of the integrability of central extensions has to be addressed
even for those which are not topologically split. Fortunately, there is a method
to circumvent the problems caused by this topological difficulty by reducing all
assertions to topologically split central extensions. The key concept is that of a
generalized central extension (cf. [Ne03], [GN07]).

Definition VI.1.3. A morphism q : ĝ→ g of locally convex Lie algebras is called
a generalized central extension if it has dense range and there exists a continu-
ous bilinear map b : g×g→ ĝ for which b◦ (q×q) is the Lie bracket on ĝ. It is
called a central extension if, in addition, q is a quotient map. �

The subtlety of generalized central extensions is that q need not be surjective
and if it is surjective, it need not be a quotient map. Fortunately, these difficul-
ties are compensated by the following nice fact. Let us call a locally convex
Lie algebra g topologically perfect if its commutator algebra is dense. We call
a generalized central extension qg : g̃→ g universal if for any generalized cen-
tral extension q : ĝ→ g there exists a unique morphism of locally convex Lie
algebras α : g̃→ ĝ with q◦α = qg. Then one can show that each topologically
perfect locally convex Lie algebra g has a universal generalized central exten-
sion (unique up to isomorphism). For the basic results on generalized central
extensions we refer to [Ne03, Sect. III], where one also finds descriptions of the
universal generalized central extensions of several classes of Lie algebras.
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Remark VI.1.4. If q : ĝ→ g is a central extension, then q×q : ĝ× ĝ→ g×g also
is a quotient map. Therefore the Lie bracket of ĝ factors through a continuous
bilinear map b : g×g→ ĝ with b(q(x),q(y)) = [x,y] for x,y ∈ ĝ, showing that q
is a generalized central extension of g. �

Proposition VI.1.5. ([Ne03, Lemma III.4])6 For a generalized central exten-
sion q : ĝ→ g the following assertions hold:

(1) The corresponding map b is a Lie algebra cocycle in Z2
c (g, |ĝ|), where |ĝ|

denotes ĝ, considered as a trivial g-module.
(2) If |g| denotes the space g, endowed with the trivial Lie bracket, then the

maps

ψ : ĝ→|ĝ|⊕bg, x �→ (x,q(x)) and η : |ĝ|⊕b g→|g|, (x,y) �→y−q(x)

are homomorphisms of Lie algebras, ψ is a topological embedding, η is a
quotient map, and the sequence

0→ ĝ
ψ−−→|ĝ|⊕b g

η−−→|g| → 0

is exact. �

For the following theorem from [GN07], we recall that central extensions of
locally exponential Lie algebras by Mackey complete spaces are locally expo-
nential (Theorem IV.2.10).

Theorem VI.1.6. (Enlargeability criterion for generalized central extensions)
Let G be a connected locally exponential Lie group with Lie algebra g and
q : ĝ→ g a generalized central extension for which ĝ is Mackey complete. Let
ω ∈ Z2

c (g, |ĝ|) be the associated Lie algebra cocycle and perω : π2(G)→ |ĝ| the
corresponding period homomorphism. Then the following assertions hold:

(1) Πω := im(perω) is contained in z.
(2) ĝ is enlargeable if Πω is discrete.
(3) If q is a central extension, then ĝ is enlargeable if and only ifΠω is discrete.

Proof. (1) follows from the fact that the cocycle q◦ω =−dg idg is trivial. It is
the Lie bracket of g.

(2) Corollary V.3.2 implies that g̃ := |ĝ| ⊕b g is enlargeable if and only if
Πω is discrete. If this is the case, then the closed ideal ĝ of g̃ is also enlargeable
because ĝ∼= kerη implies that it is locally exponential (Theorem IV.2.9), so that
Corollary IV.4.10 applies.

(3) Suppose that q is a quotient map, i.e., a central extension, and that ĝ is
enlargeable. Since the cocycle b̃ := q∗b coincides with the Lie bracket on ĝ, the

6 For the case of central extensions of Banach–Lie algebras, part of the assertions below can
be found in a footnote in [ES73, p.58].
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corresponding central extension ĝ� := |ĝ| ⊕b̃ ĝ is split by the section σ(x) :=
(x,x), hence is enlargeable. Furthermore,

g̃ = |ĝ|⊕b g∼= ĝ�/({0}× z)

is locally exponential by Theorem IV.2.9, which applies in particular to all quo-
tients by central ideals. In view of Theorem VI.1.10 below, it now suffices to
show that the integral subgroup Z generated by z is a locally exponential Lie
subgroup. But this follows from the fact that the projection onto |ĝ|×{0} along
im(σ) restricts to a homeomorphism on z. Hence the corresponding subgroup
is a locally exponential Lie subgroup, and this completes the proof. �

The preceding theorem applies in particular to central extensions z ↪→ ĝ
→→ g = L(G) of Banach–Lie algebras, for which it characterizes integrability in
terms of the discreteness of Πb. In this case, a similar criterion is given by van
Est and Korthagen in [EK64]. On the surface, their criterion has the same for-
mulation, but their period homomorphism arises as an element of H2

sing(G,z)∼=
Hom(H2(G),z) obtained from the enlargeability theory of local groups ([Est62]).
Under their assumption that G is 1-connected, the Hurewicz homomorphism
π2(G)→ H2(G) is an isomorphism, so that their period homomorphism also is
a homomorphism π2(G)→ z, and one can even show that both coincide up to
sign. We think that the definition of the period homomorphism in terms of in-
tegration of differential forms makes it much more accessible than the implicit
construction in [EK64].

Definition VI.1.7. Let g be a locally exponential Lie algebra and consider the
central extension

0→ z(g)→ g→ gad := g/z→ 0.

Let Gad ⊆ Aut(g) be endowed with its locally exponential group structure with
Lie algebra gad (Theorem IV.3.8) and

perg : π2(Gad)→ z(g)

the corresponding period homomorphism (Theorem VI.1.6(1)). We write Π(g)
:= im(perg) for its image and call it the period group of g. �

The following theorem generalizes the enlargeability criterion of [EK64] for
Banach algebras. It follows immediately from Theorem IV.3.8 on the integra-
bility of g/z(g) and Theorem VI.1.6.

Theorem VI.1.8. (Enlargeability Criterion for locally exponential Lie algebras)
A Mackey complete locally exponential Lie algebra g is enlargeable if and only
if its period group Π(g) is discrete. �
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Proposition VI.1.9. If g is a separable locally exponential Lie algebra, then
Π(g) is countable. If, in addition, g is Fréchet, then Π(g) is closed if and only if
it is discrete.

Proof. If g is separable, then the same holds for the connected group Gad and
hence for the identity component C∗(S1,Gad)0 of the loop group. Its universal
covering group is also separable, so that its fundamental group, which is iso-
morphic to π2(Gad), is countable. This implies that Π(g) is countable.

If Π(g) is closed and g is Fréchet, it is a countable complete metric space,
hence discrete. �

For the second part of the preceding proposition, the Fréchet assumption on
g is crucial: the space RR contains a non-discrete closed subgroup isomorphic
to Z(N) ([HMP04, Cor. 3.2(i)]).

Combining the fact that kernels of morphisms are locally exponential Lie
subgroups (Proposition IV.3.4) and Theorem IV.1.19 on the integration of mor-
phisms of Lie algebras, one obtains the equivalence of (1) and (2) in the follow-
ing integrability criterion for quotient algebras ([GN06]):

Theorem VI.1.10. (Enlargeability Criterion for quotients) Let G be a 1-con-
nected locally exponential Lie group and n � g a closed ideal for which the
quotient Lie algebra q := g/n is locally exponential. Let

Z(G,n) := {g ∈ G : (Ad(g)−1)(g)⊆ n}.

Then Z(G,n) � G is a normal locally exponential Lie subgroup with Lie algebra

z(g,n) := {x ∈ g : [x,g]⊆ n},

and the Lie algebra homomorphism q : z(g,n)→ z(q) defines a period homo-
morphism

perq : π1(Z(G,n))→ z(q), perq([γ ]) =
∫ 1

0
q(δ (γ)t)dt,

where γ : [0,1]→ Z(G,n) is a piecewise smooth loop. The following assertions
are equivalent:

(1) The locally exponential Lie algebra q = g/n is enlargeable.
(2) The normal integral subgroup N := 〈expG n〉 � G is a locally exponential

Lie subgroup.
(3) The image of perq is a discrete subgroup of z(q). �

Remark VI.1.11. In addition to the assumptions of the preceding theorem, sup-
pose that G is a Fréchet–Lie group. We then have Qad

∼= G/Z(G,n), and since
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Michael’s Selection Theorem ([MicE59]) applies to the quotient map g→ q,
this leads to a surjective homomorphism

δ : π2(Qad)→ π1(Z(G,n)).

The surjectivity of δ follows from the 1-connectedness of G and the exactness
of the long exact homotopy sequence of the bundle G→Qad. Then it is not hard
to see that

perq ◦δ = perq : π2(Qad)→ z(q),

which shows that (3) in Theorem VI.1.10 is equivalent to the discreteness of the
Π(q) (Theorem VI.1.8). �

Proposition VI.1.12. (Functoriality of the period group) Let ϕ : g→ h be a
morphism of Mackey complete locally exponential Lie algebras with ϕ(z(g))⊆
z(h) and ϕad : gad → had the induced homomorphism. Then ϕad integrates to
a group homomorphism ϕ̃ad : G̃ad → H̃ad, ϕ(Π(g)) ⊆ Π(h), and the following
diagram commutes

π2(Gad)
π2(ϕ̃ad)−−−−−→ π2(Had)⏐⏐�perg

⏐⏐�perh

z(g)
ϕ−−−−−→ z(h)

.

�

Corollary VI.1.13. If g1,g2 are Mackey complete locally exponential Lie alge-
bras, then

Π(g1×g2) =Π(g1)×Π(g2). �

Remark VI.1.14. (Constructing non-enlargeable Lie algebras) Suppose that g is
a locally exponential Lie algebra with Π(g) ∼= Z. Let θ ∈ R \Q. Then z :=
{(x,θx) : x ∈ z(g)} is a central ideal of g× g, so that h := (g× g)/z is lo-
cally exponential. Corollary VI.1.13 and Proposition VI.1.12 imply that, writing
Π(g) = Zd, we get

Π(h)∼= Z[(d,0)]+Z[(0,d)] = (Z+Zθ )[(d,0)],

which is not discrete. Hence h is not integrable. �
Using the construction of the group G via Theorem VI.1.6 and the long exact

homotopy sequence, one can identify the period group of enlargeable Fréchet–
Lie algebras in terms of the center:

Proposition VI.1.15. If G is a locally exponential 1-connected Fréchet–Lie
group and g = L(G) its Lie algebra, then

Π(g) = ker(expG |z(g))∼= π1(Z(G)). �
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Example VI.1.16. The first example of a non-enlargeable Banach–Lie alge-
bra was given by van Est and Korthagen with the method described in Re-
mark VI.1.14 ([EK64]). It is the central extension g of the Banach–Lie algebra
C1(S1,su2(C)) by R, defined by the cocycle

ω( f ,g) :=
∫ 1

0
tr( f (t)g′(t))dt,

where we identify functions on S1 ∼= R/Z with 1-periodic functions on R. Then
gad
∼= C1(S1,su2(C)) and Gad

∼= C1(S1,SU2(C)) leads to π2(Gad)∼= π3(SU2(C))∼=
π3(S3)∼= Z. Now one shows that perg = perω is non-trivial to verify thatΠ(g)∼=
Z.

Using Kuiper’s Theorem ([Ku65]), Douady and Lazard gave a simpler ex-
ample ([DL66]): by observing that the 1-connectedness of the unitary group
U(H) of an infinite-dimensional complex Hilbert space H implies that its Lie
algebra u(H) := {X ∈L (H) : X∗ =−X} satisfies

Π(u(H))∼= π1(Z(U(H))) = π1(T)∼= Z

(Proposition VI.1.15).
Based on the fact that U(H) is 1-connected, one can also give the following

direct argument. For any irrational θ ∈R\Q the line n := Ri(1,θ1) generates a
dense subgroup of the center Z(U(H)×U(H)) ∼= T2 of the 1-connected group
U(H)×U(H), so that Theorem VI.1.10 implies that the quotient Lie algebra
(u(H)×u(H))/n is not enlargeable. �

Enlargeability of quotients

One may take Theorem VI.1.10 as a starting point of a theory of certain topo-
logical groups which are more general than Lie groups, namely quotients of Lie
groups. This leads to the concept of a scheme of Lie groups, or S-Lie group (cf.
[Ser65], [DL66] and [Est84]). The strength of this concept for Banach–Lie al-
gebras and, more generally, locally exponential Lie algebras, follows from the
fact that each such Lie algebra is a quotient of an enlargeable one:

Theorem VI.1.17. ([Swi71] for the Banach case) For each locally exponential
Fréchet–Lie algebra g, the Lie algebra

Λ(g) := C∗([0,1],g) := {γ ∈C([0,1],g) : γ(0) = 0}
is enlargeable.

Proof. Clearly, z(Λ(g)) = Λ(z(g)), so that Λ(g)ad
∼= Λ(gad) follows from Mi-

chael’s Theorem ([MicE59]). The corresponding group C∗([0,1],Gad) is con-
tractible, and this leads to Π(Λ(g)) = {0}, which implies enlargeability. �
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A central point of the preceding theorem is that it implies that each locally
exponential Fréchet–Lie algebra g is a quotient of an enlargeable Fréchet–Lie
algebra (cf. [Rob02, Th. 5]): the evaluation map ev1 : Λ(g)→ g,γ �→ γ(1) is a
quotient map. Now one can address the enlargeability problem along the lines
of Theorem VI.1.10.

Remark VI.1.18. (a) In [Woj06], Wojtyński describes a variant of this approach
for Banach–Lie algebras. Instead of considering the Banach–Lie algebra Λ(g),
he considers analytic paths γ(t) := ∑∞n=1 antn, for which ‖γ‖1 := ∑∞n=1 ‖an‖ is
finite. Identifying these curves with their coefficient sequences, we denote this
space by �1(g) := �1(N,g). The Lie bracket on this sequence space is given by

(6.1.1) [(an),(bn)] = (cn) with cn =
n−1

∑
j=1

[a j,bn− j].

With the same Lie bracket, we also turn the full sequence space gN into
a pro-nilpotent Fréchet–Lie algebra, which is exponential for trivial reasons.
Since the Banach–Lie algebra �1(g) injects into the exponential Lie algebra gN,
it is enlargeable by Corollary IV.4.10. Again, we have an evaluation map

q : �1(g)→ g, (an) �→
∞

∑
n=1

an,

which is a quotient morphism of Lie algebras and since the subgroup 〈exp�1(g)〉
is contractible (cf. [Woj06]), one may proceed with Theorem VI.1.10 as for
Λ(g).

(b) In [Pe93a/95a], Pestov shows that if E is a Banach space of dimE > 1,
then the free Banach–Lie algebra over E has trivial center. As a consequence, ev-
ery Banach–Lie algebra g of dimension > 1 is a quotient of a centerless Banach–
Lie algebra F(g), the free Banach–Lie algebra over the Banach space g, which
is enlargeable because its center is trivial (Theorem IV.3.8). Again, we can pro-
ceed with Theorem VI.1.10 to obtain enlargeability criteria. �

The following enlargeability criterion of Swierczkowski for extensions by
not necessarily abelian ideals is a powerful tool. It would be very interesting
to see if it can be extended to the locally exponential setting. It applies in par-
ticular to all situations where q is finite-dimensional or abelian (cf. [Swi65];
Remark V.2.14(b)).

Theorem VI.1.19. ([Swi67, Th., Sect. 12]) Suppose that g is a Banach–Lie
algebra and n � g a closed enlargeable ideal for which q := g/n is enlargeable
to some group Q with vanishing π2(Q), then g is enlargeable. �
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Definition VI.1.20. A Banach–Lie algebra is said to be lower solvable if there
exists an ordinal number α and an ascending chain of closed subalgebras

{0}= g0 ⊆ g1 ⊆ g2 ⊆ ·· · ⊆ gβ ⊆ gβ+1 ⊆ ·· · ⊆ gα = g

such that

(a) If β ≤ α is not a limit ordinal, then Xβ−1 is an ideal of Xβ containing all
commutators.

(b) If β ≤ α is a limit ordinal, then Xβ is the closure of
⋃
γ<β Xγ . �

The following theorem is an immediate consequence of Theorem VI.1.19,
applied to the situation where q is abelian:

Theorem VI.1.21. ([Swi65, Th. 2]) Each lower solvable Banach–Lie algebra
is enlargeable. �

Some of the methods used above for Banach–Lie groups have some potential
to work in greater generality. Here are some ideas:

Remark VI.1.22. If G is a Lie group with Lie algebra g, then

P(G) := C∞∗ (I,G) := {γ ∈C∞(I,G) : γ(0) = 1}
also is a Lie group with Lie algebra P(g) := C∞∗ (I,g), endowed with the point-
wise bracket. The logarithmic derivative δ : P(G)→C∞(I,g) is a smooth map
satisfying δ (αβ ) = δ (β )+Ad(β )−1.δ (α) and T1(δ )(ξ ) = ξ ′. (Lemma II.3.3).
As [ξ ,η ]′ = [ξ ′,η ]+ [ξ ,η ′], it follows that T1(δ ) : P(g)→C∞(I,g) becomes a
topological isomorphism of Lie algebras if C∞(I,g) is endowed with the bracket

(6.1.2) [ξ ,η ](t) :=
[
ξ (t),

∫ t

0
η(τ)dτ

]
+
[∫ t

0
ξ (τ)dτ ,η(t)

]
.

The evaluation map ev1 : P(g)→ g corresponds to the quotient map

C∞(I,g)→ g, ξ �→
∫ 1

0
ξ (τ)dτ .

If, in addition, G is regular, then δ is a diffeomorphism, and it follows that
C∞(I,g), endowed with the bracket (6.1.2), is integrable. Since this property is
clearly necessary for the regular integrability of g, Lie algebras with this prop-
erty are called pre-integrable in [RK97] (see also [Les93]). �

If G is a real BCH–Lie group, then a morphism κG : G→ GC to a com-
plex BCH–Lie group GC is called a universal complexification if for each other
morphism α : G→ H to a complex BCH–Lie group H, there exists a unique
morphism β : GC → H with α = β ◦ κG. It is well known that if G is finite-
dimensional, then a universal complexification always exists (cf. [Ho65] , [Ne99,
Th. XIII.5.6]), but it need not be locally injective, so that it may occur that
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dimC GC < dimR G. The following theorem shows that, due to the existence of
non-enlargeable Lie algebras, the situation becomes more complicated in infi-
nite dimensions.

Theorem VI.1.23. (Existence of universal complexifications; [GN03], [Gl02c])
Given a real BCH–Lie group G, let NG be the intersection of all kernels of
smooth homomorphisms from G to complex BCH–Lie groups. Then G has a
universal complexification if and only if NG is a BCH–Lie subgroup of G and
the complexification of L(G)/Le(NG) is enlargeable. �

Note that Theorem VI.1.10 implies that if G is 1-connected, the existence of
a universal complexification is equivalent to the enlargeability of L(G)/Le(NG).
In [GN03], one finds an example of a Banach-Lie group for which NG fails to
be a Lie subgroup ([GN03, Sect. V]) and also examples where NG = {1} but
L(G)C is not enlargeable. The setting of BCH–Lie groups is the natural one for
complexifications because if g is a locally exponential Lie algebra for which gC

is locally exponential as a complex Lie algebra, then the local multiplication is
complex analytic. This implies that gC is BCH which in turns entails that g is
BCH.

Localizing enlargeability

We call a norm ‖ ·‖ on a Lie algebra g submultiplicative if ‖[x,y]‖ ≤ ‖x‖‖y‖ for
all x,y ∈ g. A Banach–Lie algebra (g,‖ · ‖) is called contractive if its norm is
submultiplicative. For any contractive Lie algebra, we define

δg := inf{‖x‖ : 0 �= x ∈Π(g)} ∈ [0,∞]

and note that g is enlargeable if and only if δg > 0, which is equivalent to the
discreteness of the period group Π(g) (Theorem VI.1.8). The following theo-
rem is originally due to Pestov who proved it with non-standard methods. A
“standard” proof has been given in [Bel04] by Beltita.

Theorem VI.1.24. (Pestov’s Local Theorem on Enlargeability) A contractive
Banach–Lie algebra g is enlargeable if and only if there exists a directed fam-
ily H of closed subalgebras of g for which

⋃
H is dense in g and inf{δh :

h ∈H }> 0. �
Since for each finite-dimensional Lie algebra g the period group is trivial,

we have δg = ∞, and the preceding theorem, applied to the directed family of
finite-dimensional subalgebras of g leads to:

Corollary VI.1.25. ([Pe92], [Bel04]) If g is a Banach–Lie algebra containing
a locally finite-dimensional dense subalgebra, then g is enlargeable. �

Corollary VI.1.26. ([Pe93b, Th. 7]) A Banach–Lie algebra g is enlargeable if
and only if all its separable closed subalgebras are. �
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Period groups for continuous inverse algebras

Another interesting class of cocycles arises for complete CIAs A ([Ne06c]). A
continuous alternating bilinear map α : A×A→ E, E a locally convex space, is
said to be a cyclic 1-cocycle if

α(ab,c)+α(bc,a)+α(ca,b) = 0 for a,b,c ∈ A.

We write ZC1(A,E) for the set of all cyclic 1-cocycles with values in E. Let
AL = gl1(A) denote the Lie algebra (A, [·, ·]) obtained by endowing A with the
commutator bracket. Then each cyclic cocycle defines a Lie algebra cocycle
α ∈ Z2

c (AL,E) with respect to the trivial module structure on E. To describe the
universal cyclic cocycle, we endow A⊗A with the projective tensor topology
and define 〈A,A〉 as the completion of the quotient space

(A⊗A)/ span{a⊗a,ab⊗ c+bc⊗a + ca⊗b;a,b,c ∈ A}.
We write αu(a,b) := 〈a,b〉 for the image of a⊗b in 〈A,A〉. Then the universal
property of the projective tensor product implies that

L (〈A,A〉,E)→ ZC1(A,E), f �→ f ◦αu

is a bijection for each complete locally convex space E, so that αu is a universal
cyclic 1-cocycle. Of particular interest is the map bA : 〈A,A〉→ A,〈a,b〉→ [a,b]
defined by the commutator bracket. Its kernel

HC1(A) := kerbA ⊆ 〈A,A〉
is the first cyclic homology space of A (cf. [Lo98]). We write ωu for the universal
cyclic 1-cocycle, interpreted as a Lie algebra 2-cocycle. Then the corresponding
period map

perωu
: π2(A×)→ 〈A,A〉

actually has values in the subspace HC1(A), which leads to a homomorphism

perωu
: π2(A×)→ HC1(A).

It is a remarkable fact that this structure behaves nicely if we replace A by
a matrix algebra Mn(A). Let ηn : A→ Mn(A),a �→ aE11 denote the natural in-
clusion map and observe that it induces maps 〈A,A〉 → 〈Mn(A),Mn(A)〉, taking
HC1(A) into HC1(Mn(A)). In the other direction, we have maps

tr(2) : 〈Mn(A),Mn(A)〉 → 〈A,A〉, 〈(ai j),(bi j)〉 �→
n

∑
i, j=1

〈ai j,b ji〉,

and the topological version of the Morita invariance of cyclic homology ([Lo98,
Th. 2.2.9]) asserts that these maps restrict to isomorphisms HC1(Mn(A)) →
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HC1(A). This leads to extensions of the universal cocycle to a cocycle ωn
u ∈

Z2
c (gln(A),〈A,A〉) with η∗nωn

u = ωu for each n ∈ N. In terms of the tensor prod-
uct structure gln(A)∼= A⊗gln(K), it is given by

ωn
u (a⊗ x,b⊗ y) = tr(xy)〈a,b〉.

To explain the corresponding compatibility on the level of period homomor-
phisms, we define the topological K-groups of A by

Ki+1(A) := lim−→ πi(GLn(A)) for i ∈ N0,

where the direct limit on the right hand side corresponds to the embeddings

GLn(A)→ GLn+1(A), a �→
(

a 0
0 1

)
,

induced by the corresponding embeddings Mn(A) ↪→Mn+1(A). The group K0(A)
is defined as the Grothendieck group of the abelian monoid lim−→ π0(Idem(Mn(A))),

endowed with the addition [e]+ [ f ] :=
[(e 0

0 f

)]
(cf. [Bl98]).

The naturality of the universal cocycles now implies that the period maps

perωn
u

: π2(GLn(A))→ HC1(A)

combine to a group homomorphism

per1
A : K3(A) = lim−→ π2(GLn(A))→ HC1(A),

which is a natural transformation from the functor K3 with values in abelian
groups to the functor HC1 with values in complete locally convex spaces.

It is of some interest to know whether the group

Π1
A := im(per1

A)⊆ HC1(A)

is discrete. If this is the case, then each period homomorphism perωn
u

has discrete

image, which implies that the corresponding central extension ĝln(A) of the Lie
algebra gln(A) by 〈Mn(A),Mn(A)〉 is enlargeable.

This central extension is of particular interest when restricted to the sub-
algebra sln(A) := [gln(A),gln(A)]. We define a Lie bracket on 〈Mn(A),Mn(A)〉
by

[〈a,b〉,〈a′,b′〉] := 〈[a,b], [a′,b′]〉,
turning it into a locally convex Lie algebra. Now the bracket map of Mn(A)
induces a generalized central extension

q : ŝln(A) := 〈Mn(A),Mn(A)〉 → sln(A), 〈a,b〉 �→ [a,b]
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with kerq = HC1(Mn(A)) ∼= HC1(A), which is a universal generalized central
extension, called the topological Steinberg–Lie algebra ([Ne03, Ex. 4.10]). The
enlargeability criterion in Theorem VI.1.6 immediately leads to:

Theorem VI.1.27. If the subgroupΠ1
A of HC1(A) is discrete, then all Steinberg–

Lie algebras ŝln(A) are enlargeable. �

Remark VI.1.28. Let ω ∈ ZC1(A,E) be a cyclic cocycle, considered as a Lie
algebra cocycle on (A, [·, ·]). Then the adjoint action of A on the Lie algebra
ÂL := E⊕ω AL integrates to an action of A× by

g.(z,a) = (z−ω(ag−1,g),gag−1).

In view of Remark V.2.14(f), this implies the triviality of the flux homomor-
phism

Fω : π1(A×)→ H1
c (AL,E)⊆L (A,E). �

According to [Bos90], we have for each complex complete CIA A natural
isomorphisms

β i
A : Ki(A)→ Ki+2(A), i ∈ N0.

This is an abstract version of Bott periodicity. In particular, the range of

PA := per1
A ◦β 1

A : K1(A)→ HC1(A)

coincides with ΠA
1 . The main advantage of this picture is that natural transfor-

mations from K1 to HC1 are unique, which leads to the explicit formula

PA([g]) =∑
i, j

〈(g−1)i j,g ji〉 for [g] ∈ K1(A),g ∈ GLn(A)

(cf. [Ne06c]). If, in addition, A is commutative, then HC1(A) is the completion
of the quotient Ω1(A)/dA(A), where Ω1(A) is the (topological) universal differ-
ential module of A. In these terms, we then have

PA(g) = 〈det(g)−1,det(g)〉= [det(g)−1dA(det(g))],

which leads to

im(PA) = PA([A×]) = {[a−1dA(a)] : a ∈ A×}.
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Examples VI.1.29. (1) For A = C∞c (M,C), M a σ -compact finite-dimensional
manifold, we have

HC1(A)∼=Ω1
c(M,C)/dC∞c (M,C)

([Co94], [Mai02]). Moreover, Mn(A)∼= C∞c (M,Mn(C)) and

ωn
u ( f ,g) = [tr( f ·dg)]

is a cocycle of product type, which implies that its period group coincides with
the group

im(PA) = δ (C∞c (M,C×))/dC∞c (M,C)

of integral cohomology classes in H1
dR,c(M,C), which is discrete (Theorem

V. 2. 17).
(2) For A =C(X ,C), where X is a compact space, Johnson’s Theorem entails

that Ω1(A), and hence HC1(A) ∼= Ω1(A)/dA(A), vanish ([BD73, Th. VI.12]).
This further implies that for each C∗-Algebra A the homomorphism PA vanishes.

�

A particularly interesting class of Fréchet CIAs are the d-dimensional smooth
quantum tori. These algebras are parametrized by skew-symmetric matrices
Θ ∈ Skewd(R), as follows. They are topologically generated by d invertible
elements u1, . . . ,ud , together with their inverses, satisfying the commutation re-
lations

upuq = e2π iΘpququp for 1≤ p,q≤ d.

Moreover,

AΘ =
{
∑

I∈Zd

αIu
I : (∀k ∈ N)∑

I

|I|k|αI|< ∞
}
,

where |I| = i1 + · · ·+ id and uI := ui1
1 · · ·uid

d , so that, as a Fréchet space, AΘ is
isomorphic to the space of smooth functions on the d-dimensional torus. In par-
ticular, we have the commutative case A0

∼= C∞(Td,C). The following theorem
characterizes those for which the image of PA is discrete ([Ne06c]):

Theorem VI.1.30. For the d-dimensional smooth quantum torus AΘ, the group
im(PAΘ) is discrete if and only if d ≤ 2 or the matrix Θ has rational entries. �

An interesting consequence of the preceding theorem is that there exists a
CIA A for which im(PA) is not discrete. The smallest examples are of the form

A := C∞(T,AΘ), where Θ =
(

0 θ
−θ 0

)
,θ ∈ R \Q, so that AΘ is a so-called

irrational rotation algebra.
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VI.2. Integrability of non-locally exponential Lie algebras

After the discussion of the enlargeability of locally exponential and Banach–
Lie algebras in the preceding subsection, we now turn to more general classes
of Lie algebras. Unfortunately, there is no general theory beyond the locally
exponential class, so that all positive and negative results are quite particular.

We start with a discussion of some obstructions to the integrability to an an-
alytic Lie group, then turn to complexifications of Lie algebras of vector fields,
and finally to Lie algebras of formal vector fields, resp., Lie algebras of germs.

Proposition VI.2.1. ([Mil84, Lemma 9.1]) Let G be a connected analytic Lie
group. Then each closed ideal n � L(G) is invariant under Ad(G). �

Corollary VI.2.2. If g is a Lie algebra containing a closed ideal which is not
stable, then g is not integrable to an analytic Lie group with an analytic expo-
nential function. �

Remark VI.2.3. Proposition VI.2.1 implies that the Lie group Diff(M) of all
diffeomorphisms of a compact manifold M does not possess an analytic Lie
group structure for which its Lie algebra is V (M). Indeed, for each non-dense
open subset K ⊆M, the subspace

V (M)K := {X ∈ V (M) : X |K = 0}
is a closed ideal of V (M) not invariant under Ad(Diff(M)) because
Ad(ϕ).V (M)K = V (M)ϕ(K) for ϕ ∈ Diff(M). �

The situation improves if we restrict our attention to analytic diffeomor-
phisms:

Theorem VI.2.4. ([Les82/83]) Let M be a compact analytic manifold and
V ω(M) the Lie algebra of analytic vector fields on M. Then V ω(M) carries
a natural Silva space structure, turning it into a topological Lie algebra, and
the group Diffω(M) of analytic diffeomorphisms carries a smooth Lie group
structure for which V ω(M)op is its Lie algebra. �

It is shown by Tognoli in [Ta68] that the group Diffω(M), M a compact
analytic manifold, carries no analytic Lie group structure (cf. [Mil82, Ex. 6.12]).
That there is no analytic Lie group with an analytic exponential function and Lie
algebra V ω(M) can be seen by verifying that the map (X ,Y ) �→ Ad(FlX1 ).Y is
not analytic on a 0-neighborhood in V ω(M)×V ω(M) (cf. [Mil82, Ex. 6.17]).

The following non-integrability result is quite strong because it does not as-
sume the existence of an exponential function. Its outcome is that complexifica-
tions of Lie algebras of vector fields are rarely integrable. For complexifications
of Lie algebras of ILB–Lie groups, similar results are described by Omori in
[Omo97, Cor. 4.4].
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Theorem VI.2.5. ([Lem97]) Let M be a compact manifold of positive dimen-
sion. Then the complexifications gC of the following Lie algebras g are not in-
tegrable:

(1) The Lie algebra V (M) of smooth vector fields on M.
(2) If M is analytic, the Lie algebra V ω(M) of analytic vector fields on M.
(3) IfΩ is a symplectic 2-form on M, the Lie algebra V (M,Ω) := {X ∈V (M) :

LXΩ= 0} of symplectic vector fields on M.
(4) If M is analytic and Ω is an analytic symplectic 2-form on M, the Lie alge-

bra V ω(M,Ω) of analytic symplectic vector fields on M.

Proof. (Idea) Lempert’s proof is based on the following result, which is ob-
tained by PDE methods: If ξ : R→ gC is a smooth curve such that for each
x ∈ gC the IVP

γ(0) = x, γ̇(t) = [ξ (t),γ(t)]

has a smooth solution, then ξ (0) ∈ g.
For (1) he gives another argument, based on the fact that

(6.2.1) Aut(V (M)C)∼= Aut(V (M))�{1,σ} ∼= Diff(M)�{1,σ},
where σ denotes the complex conjugation on V (M)C . The first isomorphism is
obtained in [Lem97], using [Ame75], and the second is an older result of Pursell
and Shanks ([PuSh54]; cf. Theorem IX.2.1).

Clearly (6.2.1) implies that for any connected Lie group G with Lie alge-
bra L(G) = V (M)C , the group Ad(G) ⊆ Aut(V (M)C) preserves the real sub-
space V (M). Taking derivatives of orbit maps, this leads to the contradiction
[V (M)C ,V (M)]⊆ V (M). �

Theorem VI.2.6. ([Omo81]) For any non-compact σ -compact smooth mani-
fold M of positive dimension, the Lie algebra V (M) is not integrable to any Lie
group with an exponential function.

Proof. (Sketch) If G is a Lie group with Lie algebra L(G) = V (M) and an
exponential function, then for each X ∈ V (M) we obtain a smooth 1-parameter
group t �→ Ad(expG(tX)) of automorphisms of V (M) with generator adX . By
[Ame75, Thm. 2], Aut(V (M)) ∼= Diff(M), so that we obtain a one-parameter
group γX of Diff(M) which then is shown to coincide with the flow generated
by X (cf. Lemma II.3.10; [KYMO85, Sect. 3.4]). This contradicts the existence
of non-complete vector fields on M. �

Since the BCH series can be used to defined a Lie group structure on any
nilpotent locally convex Lie algebra, all these Lie algebras are integrable. The
following theorem shows that the integrability problem for solvable locally con-
vex Lie algebras contains the integrability problem for continuous linear opera-
tors on locally convex spaces, which is highly non-trivial (Problem VI.1). E.g.
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if M is a finite-dimensional σ -compact manifold and X ∈ V (M) a vector field,
then the corresponding derivation of the Fréchet algebra C∞(M,R) is integrable
if and only if the vector field X is complete.

Theorem VI.2.7. Let E be a locally convex space and D∈ gl(E). Then the solv-
able Lie algebra g := E �D R with the bracket [(v, t),(v′, t ′)] :=
(tDv′ − t ′Dv,0) is integrable if and only if D is integrable to a smooth R-action
on E.

Proof. If D is integrable to a smooth representation α : R→GL(E) withα ′(0)=
D, then the semi-direct product G := E �α R is a Lie group with the Lie algebra
g.

Suppose, conversely, that G is a connected Lie group with Lie algebra g. Re-
placing G by its universal covering group, we may assume that G is 1-connected.
Then the regularity of the additive group (R,+) implies the existence of a
smooth homomorphism χ : G→ R with L(χ) = q, where q(v,t) = t is the pro-
jection g = E �D R→ R (Theorem III.1.5).

Using Glöckner’s Implicit Function Theorem ([Gl03a]), it follows that kerχ
is a submanifold of G and there exists a smooth curve γ : R→ G with γ(0) = 1
and χ ◦ γ = idR.

Next we observe that [g,g] ⊆ E implies that E is Ad(G)-invariant, so that
AdE(g) := Ad(g) |E defines a smooth action of G on E whose derived represen-
tation is given by adE(x,t) = tD. We now put α(t) := AdE(γ(t)) and observe
that

δ (α)(t) = adE(δ (γ)(t)) = q(δ (γ)(t)) ·D = δ (χ ◦ γ)(t) ·D = D.

Hence D is integrable. �

Example VI.2.8. Let gfn(R)−1 := Rn[[x1, . . . ,xn]] denote the space of all Rn-
valued formal power series in n variables, considered as the Lie algebra of for-
mal vector fields, endowed with the bracket

[ f ,g](x) := dg(x) f (x)−df (x)g(x),

which makes sense on the formal level because if f is homogeneous of degree
p and g is homogeneous of degree q, then [ f ,g] is of degree p+q−1.

We have already seen in Example IV.1.14 that the subalgebra gfn(R) of all
elements with vanishing constant term is the Lie algebra of the Fréchet–Lie
group Gfn(R) of formal diffeomorphisms of Rn fixing 0. We obviously have the
split short exact sequence

0→ gfn(R) ↪→ gfn(R)−1→→ Rn→ 0,

where Rn is considered as an abelian Lie algebra, corresponding to the constant
vector fields.
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We claim that the Lie algebra gfn(R)−1 is not integrable to any Lie group
with an exponential function. This strengthens a statement in [KYMO85, p.80],
that it is not integrable to a μ-regular Fréchet–Lie group. Let us assume that
G is a Lie group with Lie algebra gfn(R)−1. With a similar argument as in the
proof of Theorem VI.2.7, one can show that for each constant function x the
operator adx on gfn(R)−1 is integrable. We consider the constant function e1.
Then [e1,g] = ∂g

∂x1
, and we can now justify as in Example II.3.13 that ade1 is not

integrable, hence that gfn(R)−1 cannot be integrable to any Lie group with an
exponential function. �

The preceding example shows that the constant terms create problems in
integrating Lie algebras of formal vector fields, which is very natural because
the formal completion distinguishes the point 0 ∈ Rn. A similar phenomenon
arises in the context of groups of germs of local diffeomorphisms. For germs of
functions in 0, the non-integrability of vector fields with non-zero constant term
follows from the fact that all automorphisms preserve the unique maximal ideal
of functions vanishing in 0 (cf. [GN06]).

Let gsn(R)−1 denote the space of germs of smooth maps Rn→Rn in 0, iden-
tified with germs of vector fields in 0. According to [RK97, Sect. 5.2], this space
carries a natural Silva structure, turning it into a locally convex Lie algebra. Let
gsn(R) denote the subspace of all germs vanishing in 0 and gsn(R)1 the set of
germs vanishing of second order in 0.

Theorem VI.2.9. ([RK97, Th. 3]) The group Gsn(R) of germs of diffeomor-
phism of Rn in 0 fixing 0 carries a Lie group structure for which the Lie algebra
is the space gsn(R) of germs of vector fields vanishing in 0.

We have a semidirect product decomposition Gsn(R)∼= Gsn(R)1 �GLn(R),
where Gsn(R)1 is the normal subgroup of those germs [ϕ ] for which ϕ − idRn

vanishes of order 2. The map

Φ : gsn(R)1→ Gsn(R)1, ξ �→ id+ξ

is a global diffeomorphism. �

In view of the preceding theorem, it is a natural problem to integrate Lie
algebras of germs of vector fields vanishing in the base point to Lie groups of
germs of diffeomorphisms. This program is carried out by Kamran and Robart
in several papers (cf. [RK97], [KaRo01/04], [Rob02]). It results in several in-
teresting classes of Silva–Lie groups of germs of smooth and also analytic local
diffeomorphisms, where the corresponding Silva–Lie algebras depend on cer-
tain parameters which are used to obtain a good topology.

Example VI.2.10. The formal analog of the Lie algebra gs1(R)1 is the Lie al-
gebra gf1(R)1 which is pro-nilpotent, hence in particular BCH. In contrast to
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this fact, Robart observed that gs1(R)1 is not BCH. In fact, for the elements
ξ (x) = ax2, λ ∈ R and η(x) = x3, we have

∞

∑
n=0

(
(adξ )nη

)
(x) = x3

∞

∑
n=0

ann!xn,

which converges for no x �= 0 if a �= 0. With Floret’s results from [Fl71, p.155],
it follows that this series does not converge in the Silva space gs1(R)1, so that
Theorem IV.1.7 shows that gs1(R)1 is not BCH. �

The following proposition is a variant of E. Borel’s theorem on the Taylor
series of smooth functions. It provides an interesting connection between the
smooth global and the formal perspective on diffeomorphism groups.

Proposition VI.2.11. (Glöckner) Let M be a smooth finite-dimensional mani-
fold, m0 ∈M and Diffc(M)m0 the stabilizer of m0. For each ϕ ∈ Diffc(M)m0 , let
T∞m0

(ϕ) ∈ Gfn(R) denote the Taylor series of ϕ in m0 with respect to some local
chart. Then the map

T∞m0
: Diffc(M)m0,0→ Gfn(R)0

is a surjective homomorphism of Lie groups, where Gfn(R)0 is the subgroup of
index 2, consisting of those formal diffeomorphisms ψ with det(T0(ψ)) > 0. �

Example VI.2.12. Let ghn(C) denote the space of germs of holomorphic maps
f : Cn → Cn in 0 satisfying f (0) = 0. We endow this space with the locally
convex direct limit topology of the Banach spaces Ek of holomorphic functions
on the closed unit disc of radius 1

k in Cn (with respect to any norm). Thinking
of the elements of ghn(C) as germs of vector fields in 0 leads to the Lie bracket

[ f ,g](z) := dg(z) f (z)−df (z)g(z),

which turns ghn(C) into a topological Lie algebra.
The set Ghn(C) of all germs [ f ] with det( f ′(0)) �= 0 is an open subset of

ghn(C) which is a group with respect to composition [ f ][g] := [ f ◦g]. In [Pis77],
Pisanelli shows that composition and inversion in Ghn(C) are holomorphic, so
that Ghn(C) is a complex Lie group with respect to the manifold structure it
inherits as an open subset of ghn(C). This Lie group has a holomorphic expo-
nential function which is not locally surjective, where the latter fact can be ob-
tained by adapting Sternberg’s example f (z) = e

2π i
m z+ pzm+1 (Example IV.1.14)

([Pis76]).
Note that Ghn(C)∼= Ghn(C)1 �GLn(C), where Ghn(C)1 is the subgroup of

all diffeomorphisms with linear term idCn . �
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Remark VI.2.13. Let g(A) be a symmetrizable Kac–Moody Lie algebra. In
[Rod89], Rodriguez-Carrington describes certain Fréchet completions of g(A),
including smooth g∞(A) and analytic versions gω(A), which are BCH–Lie al-
gebras ([Rod89, Prop. 1]). Corresponding groups are constructed for the uni-
tary real forms by unitary highest weight modules of g(A), as subgroups of the
unitary groups of a Hilbert space (Corollary IV.4.10). In [Su88], Suto obtains
closely related results, but no Lie group structures.

In a different direction, Leslie describes in [Les90] a certain completion g(A)
of g(A) which leads to a Lie group structure on the space C∞([0,1],g(A)), cor-
responding to the natural Lie algebra structure on this space. One thus obtains
an integrable Lie algebra extension of g(A) in the spirit of pre-integrable Lie al-
gebras (Remark IV.1.22). For an approach to Kac–Moody groups in the context
of diffeological groups, we refer to [Les03] (cf. [So84]). �

Open Problems for Section VI

Problem VI.1. (Generators of smooth one-parameter groups) Let E be a locally
convex space and D : E → E a continuous linear endomorphism. Characterize
those linear operators D for which there exists a homomorphismα : R→GL(E)
defining a smooth action of R on E. In view of Theorem VI.2.7, this is equivalent
to the integrability of the 2-step solvable Lie algebra g := E �D R.

If E is a Banach space, then each D integrates to a homomorphism α which
is continuous with respect to the norm topology on GL(E) and given by the
convergent exponential series α(t) := ∑∞k=0

tk

k! D
k.

Since for each smooth linear R-action on E, given by some α as above,
the infinitesimal generator α ′(0) is everywhere defined, this problem is not a
problem about operators which are unbounded in the sense that they are only
defined on dense subspaces. In some sense, the passage from Banach spaces
to locally convex spaces takes care of this problem. If, e.g. α : R→ GL(E)
is a strongly continuous one-parameter group on a Banach space E, then the
subspace E∞ ⊆ E of smooth vectors carries a natural Fréchet topology inherited
from the embedding

E∞ ↪→C∞(R,E), v �→ αv, αv(t) = α(t)v,

and the induced one-parameter group α∞ : R→ GL(E∞) defines a smooth ac-
tion. In this sense, each generator of a strongly continuous one-parameter group
also generates a smooth one-parameter group on a suitable Fréchet space. �

Problem VI.2. (Integrability of 2-step solvable Lie algebras) Theorem VI.2.7
gives an integrability criterion for solvable Lie algebras of the type g = E �D R.



430 K.-H. Neeb

Since abelian Lie algebras are integrable for trivial reasons, it is natural to
address the integrability problem for solvable Lie algebras by first restricting to
algebras of solvable class 2, i.e., D1(g) := [g,g] is an abelian ideal of g. Clearly,
the adjoint action defines a natural topological module structure for the abelian
Lie algebra W := g/D1(g) on E := D1(g). Here are some problems concerning
this situation:

(1) Does the integrability of g imply that the Lie algebra module structure of
W on E integrates to a smooth action of the Lie group (W,+) on E? If E is
finite-dimensional, this can be proved by an argument similar to the proof
of Theorem VI.2.7.

(2) Assume that the Lie algebra module structure of W on E integrates to a
smooth action of (W,+). Does this imply that g is integrable?

If g∼= V �W is a semidirect product, the latter is obvious, but if g is a non-
trivial extension of W by V , the situation is more complicated. Note that all
solvable Banach–Lie algebras are integrable by Theorem VI.1.21. �

Problem VI.3. Is the group Gsn(R)1 of germs of diffeomorphisms ϕ of Rn

fixing 0, for which the linear term of ϕ− idRn vanishes, exponential? �

Problem VI.4. Let G be a regular Lie group. Is every finite codimensional
closed subalgebra h ⊆ L(G) integrable to an integral subgroup? For μ-regular
groups this follows from Theorem III.2.8. �

Problem VI.5. Is the group Ghn(C) defined in Example VI.2.12 a regular Lie
group? Is the subgroup Ghn(C)1 an exponential Lie group? (cf. Problem VI.3)

�

Problem VI.6. Does Pestov’s Theorem VI.1.24 generalize to locally exponen-
tial Lie algebras? �

Problem VI.7. For quotient maps q : E → Q of Fréchet spaces, we may use
[MicE59] to find a continuous linear cross section σ : Q→ E, which implies
in particular that q defines a topologically trivial fiber bundle. For more gen-
eral locally convex spaces, cross sections might not exist, but it would still be
interesting if quotient maps of locally convex spaces are Serre fibrations, i.e.,
have the homotopy lifting property for cubes (cf. [Bre93]). If this is the case,
the long exact homotopy sequence would also be available for quotient maps of
locally exponential Lie groups, which would be an important tool to calculate
homotopy groups of such Lie groups. �

Problem VI.8. Prove an appropriate version of Theorem VI.1.23 on the exis-
tence of a universal complexification for locally exponential Lie algebras.
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Note that this already becomes an interesting issue on the level of Lie al-
gebras because the complexification of a locally exponential Lie algebra need
not be locally exponential. In fact, in Example IV.4.6 we have seen an exponen-
tial Lie algebra g containing an unstable closed subalgebra h. If gC is locally
exponential, as a complex Lie algebra, then the local multiplication in gC is
holomorphic, so that g is BCH, contradicting the existence of unstable closed
subalgebras. �

VII. Direct limits of Lie groups

The systematic study of Lie group structures on direct limit Lie groups G =
lim−→ Gn was started in the 1990s by J. Wolf and his coauthors ([NRW91/93]).

They used certain conditions on the groups Gn and the maps Gn→ Gn+1 to en-
sure that the direct limit groups are locally exponential. Since not all direct limit
groups are locally exponential (Example VII.1.4(c)), their approach does not
cover all cases. The picture for countable direct limits of finite-dimensional Lie
groups was nicely completed by Glöckner who showed that arbitrary countable
limits of finite-dimensional Lie groups exist ([Gl03b/05a]). The key to these re-
sults are general construction principles for direct limits of finite-dimensional
manifolds. These results are discussed in Section VII.1. In Section VII.2, we
briefly turn to other types of direct limit constructions where the groups Gn are
infinite-dimensional Lie groups.

VII.1. Direct limits of finite-dimensional Lie groups

Theorem VII.1.1. ([Gl05]) (a) For every sequence (Gn)n∈N of finite-dimen-
sional Lie groups Gn with morphisms ϕn : Gn → Gn+1, the direct limit group
G := lim−→ Gn carries a regular Lie group structure. The model space L(G) ∼=
lim−→ L(Gn) is countably dimensional and carries the finest locally convex topol-

ogy, and G has the universal property of a direct limit in the category of Lie
groups.

(b) Every countably dimensional locally finite Lie algebra g, endowed with
the finest locally convex topology, is integrable to a regular Lie group G.

(c) Every connected regular Lie group G whose Lie algebra is countably
dimensional, locally finite and carries the finest locally convex topology is a
direct limit of finite-dimensional Lie groups. �

In the following, we shall call the class of Lie groups described by the pre-
ceding theorem locally finite-dimensional (regular) Lie groups.
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Remark VII.1.2. (a) Beyond countable directed systems, several serious obsta-
cles arise. First of all, for countably dimensional vector spaces, the finest locally
convex topology coincides with the finest topology for which all inclusions of
finite-dimensional subspaces are continuous. This is crucial for many arguments
in this context. If E is not of countable dimension, the addition on E is not con-
tinuous for the latter topology. Similar problems occur for uncountable direct
limits of topological groups: in many cases the direct limit topology does not
lead to a continuous multiplication (cf. [Gl03b] for more details).

(b) Any countably dimensional space E, endowed with the finest locally
convex topology can be considered as a direct limit space of finite-dimensional
subspaces En of dimEn = n. Since each En is a closed subspace which is Banach,
and all inclusions En→En+1 are compact operators, E is an LF space and a Silva
space at the same time. �

Theorem VII.1.3. ([Gl05/06d]) Let G be a locally finite-dimensional Lie group.
Then the following assertions hold:

(1) Every subalgebra h⊆ L(G) integrates to an integral subgroup.
(2) Every closed subgroup H is a split submanifold, so that H is a locally finite-

dimensional Lie group, and the quotient space G/H carries a natural man-
ifold structure.

(3) Every locally compact subgroup H ⊆ G is a finite-dimensional Lie group.
(4) G does not contain small subgroups. �

Example VII.1.4. (a) One of the most famous examples of a direct limit Lie
group is the group

GL∞(R) := lim−→ GLn(R)

with the connecting maps

ϕn : GLn(R)→ GLn+1(R), a �→
(

a 0
0 1

)
.

Its Lie algebra is the Lie algebra gl∞(R) of all (N×N)-matrices with only
finitely many non-zero entries (cf. [NRW91], [Gl03b]).

In [KM97, Thm. 47.9], it is shown that every subalgebra h of gl∞(R) is
integrable to an integral subgroup, which is a special case of Theorem VII.1.3.
Here h is even BCH.

(b) In the context of C∗-algebras, direct limits of finite-dimensional ones are
particularly interesting objects. On the level of unit groups one encounters in
particular groups of the form

G := lim−→ GL2n(C), ϕn(a) =
(

a 0
0 a

)
.
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(c) Let E := C(N) be the free vector space with basis (en)n∈N and D ∈L (E)
be defined by D(en) = 2π inen (cf. Example II.5.9(a)). Then the Lie algebra g :=
E �D R is locally finite and we obtain a corresponding locally finite-dimensional
Lie group G = E �α R, where α(t) = etD. Since the sequence (0, 1

n)n∈N consists
of singular points for the exponential function, the Lie algebra g is not locally
exponential (cf. Remark II.5.8). �

Theorem VII.1.5. Every continuous homomorphism between locally finite-di-
mensional Lie groups is smooth. �

As the corresponding result for locally exponential Lie groups (Theorem IV.
1.18) did, the preceding theorem implies that locally finite-dimensional Lie
groups form a full sub-category of topological groups. We even have the fol-
lowing stronger version of the preceding theorem:

Theorem VII.1.6. Let G = lim−→ Gn be a locally finite-dimensional Lie group

and H a Lie group.

(a) A group homomorphism ϕ : G→H is smooth if and only if the correspond-
ing homomorphisms ϕn : Gn→ H are smooth.

(b) If H has a smooth exponential map, then each continuous homomorphism
ϕ : G→ H is smooth.

Proof. (a) is contained in [Gl05]. In view of (a), part (b) follows from the finite-
dimensional case, which in turn follows from the existence of local coordinates
of the second kind: (t1, . . . , tn) �→∏n

i=1 expG(tixi). �

VII.2. Direct limits of infinite-dimensional Lie groups

Direct limit constructions also play an important role when applied to sequences
of infinite-dimensional Lie groups. On the level of Banach-, resp., Fréchet
spaces, different types of directed systems lead to the important classes of LF
spaces and Silva spaces (cf. Definition I.1.2).

If M is a σ -compact finite-dimensional manifold and K a Lie group, then
the groups C∞c (M,K) of compactly supported smooth maps M→ K are direct
limits of the subgroups C∞X (M,K) := { f ∈C∞(M,K) : supp( f )⊆X}, which, for
Banach–Lie groups K, are Fréchet–Lie groups. On C∞c (M,K) this leads to the
structure of an LF–Lie group if K is Fréchet, but the construction of a Lie group
structure works for general K (Theorem II.2.8). For dimK <∞, these groups are
also discussed in [NRW94] as direct limit Lie groups which are BCH.

Many interesting direct limits of mapping groups and other interesting class-
es embed naturally into certain direct sums, also called restricted direct prod-
ucts, often given by a nice atlas of a manifold. Therefore the following theorem
turns out to be quite useful because it provides realizations as subgroups of a
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Lie group, and it usually is easier to verify that subgroups of Lie groups are Lie
groups, than to construct the Lie group structures directly.

Theorem VII.2.1. ([Gl03c]) If (Gi)i∈I is a family of locally exponential Lie
groups, then their direct sum

G :=
⊕
i∈I

Gi :=
{

(gi)i∈I ∈∏
i∈I

Gi : |{i : gi �= 1}|< ∞
}

carries a natural Lie group structure, where L(G) ∼= ⊕
i∈I L(Gi) carries the

locally convex direct sum topology. �

Theorem VII.2.2. ([Gl06c]) For a σ -compact, non-compact manifold M of
positive dimension, the Lie group Diffc(M) of compactly supported diffeomor-
phisms, endowed with the Lie group structure modeled on the LF space Vc(M)
is not a direct limit of the subgroups DiffMn(M), (Mn)n∈N an exhaustion of M,
in the category of smooth manifolds, but a homomorphism Diffc(M)→ H to a
Lie group H is smooth if and only if it is smooth on each subgroup DiffMn(M).

�
A crucial tool for the proof of the preceding theorem is the following lemma:

Lemma VII.2.3. (Fragmentation Lemma) Let M be a σ -compact finite-dimen-
sional manifold. Then there exists a locally finite cover (Kn)n∈N of M by com-
pact sets, an open identity neighborhood U ⊆ Diffc(M) and a smooth mapping
Φ : U→⊕

n∈N DiffKn(M) which satisfies γ =Φ(γ)1◦· · ·◦Φ(γ)n for each γ ∈U.
�

Theorem VII.2.4. ([Gl06c]) For a σ -compact, non-compact manifold M of
positive dimension and a finite-dimensional Lie group K of positive dimen-
sion, the Lie group C∞c (M,K) of compactly supported K-valued smooth func-
tions, endowed with the Lie group structure modeled on the direct limit space
C∞c (M,K) = lim−→ C∞Mn

(M,K), (Mn)n∈N an exhaustion of M, is not a direct limit

of the subgroups C∞Mn
(M,K) in the category of smooth manifolds, but a homo-

morphism C∞c (M,K)→ H to a Lie group H is smooth if and only if it is smooth
on each subgroup C∞Mn

(M,K). �

Open Problems for Section VII

Problem VII.1. Is every Lie group G whose Lie algebra L(G) is countably
dimensional, locally finite, and endowed with the finest locally convex topology
regular? (cf. Problem II.2). �
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Problem VII.2. Are locally finite-dimensional Lie groups topological groups
with Lie algebra? It is not clear that the compact open topology on L(G) ∼=
Hom(R,G) coincides with the given one on L(G) if the group is not locally
exponential. �

Problem VII.3. Does every subgroup H of a locally finite-dimensional Lie
group G carry an initial Lie subgroup structure? (cf. (FP5)) �

Problem VII.4. Let M be a locally convex manifold and g ⊆ V (M) a count-
ably dimensional locally finite-dimensional subalgebra consisting of complete
vector fields. Does the inclusion g→ V (M) integrate to a smooth action of a
corresponding Lie group G with L(G) = g? (cf. (FP7))

The first step should be to prove this for finite-dimensional Lie algebras g,
using local coordinates of the second kind and then to use that locally finite-
dimensional Lie groups are direct limits in the category of smooth manifolds
([Gl05]). �

Problem VII.5. The methods developed in [Gl03b] for the analysis of direct
limit Lie groups seem to have potential to apply to more general classes of Lie
groups G which are direct limits of finite-dimensional manifolds Mn, n ∈ N,
with the property that for n,m ∈ N there exist c(n,m) and d(n) with

Mn ·Mm ⊆Mc(n,m) and M−1
n ⊆Md(n),

a situation which occurs in free constructions. Similar situations, with infinite-
dimensional M, occur in the ind-variety description of Kac–Moody groups (cf.
[Kum02], [BiPi02]). �

VIII. Linear Lie groups

In this section, we take a closer look at linear Lie groups, i.e., Lie subgroups
of CIAs. The point of departure is that the unit group of a Mackey complete
CIA A is a BCH–Lie group (Theorem IV.1.11). This permits us to use the full
machinery described Section IV for linear Lie groups.

Definition VIII.1. A linear Lie group is a Lie group which can be realized as a
locally exponential Lie subgroup of the unit group of some unital CIA. �

We collect some of the basic tools in the following theorem.

Theorem VIII.2. The following assertions hold:

(1) Linear Lie groups are BCH.
(2) Continuous homomorphisms of linear Lie groups are analytic.
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(3) If G is a linear Lie group, then each closed Lie subalgebra h ⊆ L(G) inte-
grates to a linear Lie group.

(4) For each morphism ϕ : G→ H of linear Lie groups the kernel is a linear
Lie group.

(5) For each n ∈ N, the algebra Mn(A) also is a CIA and GLn(A) = Mn(A)× is
a linear Lie group.

Proof. (1)-(4) follow from the fact that A× is BCH (Theorem IV.1.11), Theorem
IV.1.8, and the corresponding assertions on BCH–Lie groups in Section IV.

For (5), we refer to [Gl02b] (see also [Sw77]). �
Linear Lie groups traditionally play an important role as groups of opera-

tors on Hilbert spaces, where they mostly occur as Banach–Lie subgroups (cf.
[PS86], [Ne02b]). The connection between Lie theory and CIAs is more recent.
The first systematic investigation of CIAs from a Lie theoretic perspective has
been undertaken by Glöckner in [Gl02b]. Originally, complex CIAs came up
in the 1950s as a natural class of locally convex associative algebras still per-
mitting a powerful holomorphic functional calculus (cf. [Wae54a/b], [Al65]; see
also [Hel93], and [Gram84] for Fréchet algebras of pseudo-differential opera-
tors).

In K-theory, the condition on a topological ring R that its unit group R× is
open and that the inversion map is continuous is quite natural because it is a cru-
cial assumption for the analysis of idempotents in matrix algebras, resp., finitely
generated projective modules, and the natural equivalence classes ([Swa62];
Section VI.1).

To get an impression of the variety of linear Lie groups, we describe some
examples of CIAs:

Examples VIII.3. (a) Unital Banach algebras are CIAs.
(b) If M is a compact smooth manifold (with boundary) and A is a CIA over

K ∈ {R,C}, then for each r ∈ N0∪{∞}, the algebra Cr(M,A) of A-valued Cr-
functions on M is a CIA ([Gl02b]). If M is non-compact, but σ -compact, then
C∞c (M,A), endowed with the direct limit topology of the subalgebras C∞X (M,A),
is a non-unital CIA (Definition II.1.3(b)).

(c) For A = Mn(C), the preceding construction leads in particular to the CIAs

Cr(M,Mn(C))∼= Mn(Cr(M,C)),

whose unit groups are the mapping groups Cr(M,GLn(C)).
(d) Let X be a compact subset of Cn and (Un)n∈N a sequence of compact

neighborhoods of X with
⋂

nUn = X . In [Wae54b], Waelbroeck shows that the
algebra O(X ,C) of germs of holomorphic functions on X is a CIA if it is en-
dowed with the locally convex direct limit topology of the Banach algebras
CO(Un,C) of those continuous functions on Un which are holomorphic on the
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interior of Un (the van Hove topology). This defines on O(X ,C) the structure of
a Silva space. The continuity of the multiplication and the completeness of this
algebra is due to van Hove ([vHo52a]).

(e) If A is a Banach algebra, M a smooth manifold, α : M→ Aut(A) a map
and αa(m) := α(m)(a), then the subspace A∞ := {a ∈ A : αa ∈C∞(M,A)} is a
CIA ([Gram84]). �

Part (d) of the preceding example shows in particular that for each compact
subset X ⊆ Cn the unit group O(X ,C×) of the CIA O(X ,C) is a Lie group. In
[Gl04b], Glöckner generalizes this Lie group construction as follows:

Theorem VIII.4. Let X be a compact subset of a metrizable topological vector
space, K ∈ {R,C} and K a Banach–Lie group over K. Then the group O(X ,K)
of germs of K-valued analytic maps on open neighborhoods of X is a K-analytic
BCH–Lie group. �

Examples VIII.5. The following examples are Fréchet algebras with continuous
inversion which are not CIAs because their unit groups are not open:

(1) A = C∞(M,C), where M is a non-compact σ -compact finite-dimensional
manifold (cf. Remark II.2.10).

(2) A = O(M,C), where M is a complex submanifold of some Cn, i.e., a
Stein manifold.

(3) A = RN with componentwise multiplication. �
In finite dimensions, a connected Lie group is called linear if it is isomorphic

to a Lie subgroup of some GLn(R). Not all connected finite-dimensional Lie
groups are linear. Typical examples of non-linear Lie groups are the universal
covering S̃L2(R) of SL2(R) and the quotient H/Z, where

H =

⎛⎝1 R R

0 1 R

0 0 1

⎞⎠
is the 3-dimensional Heisenberg group (Example V.3.5(c)) and Z ⊆ Z(H) is
a non-trivial cyclic subgroup of its center ([Wie49]). It is a natural question
whether the linearity condition on a connected finite-dimensional Lie group be-
comes weaker if we only require that it is a Lie subgroup of the unit group of
some Banach algebra or even a CIA. According to the following theorem, this
is not the case ([BelNe06]). Its Banach version is due to Luminet and Valette
([LV94]).

Theorem VIII.6. For a connected finite-dimensional Lie group G, the following
are equivalent:

(1) The continuous homomorphisms η : G→ A× into the unit groups of Mackey
complete CIAs separate the points of G.

(2) G is linear in the classical sense. �
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Remark VIII.7. Let us call a Banach–Lie algebra g linear if it has a faithful
homomorphism into some Banach algebra A.

According to Ado’s Theorem ([Ado36]), each finite-dimensional Lie algebra
is linear, but the situation becomes more interesting, and also more complicated,
for Banach–Lie algebras.

In view of Corollary IV.4.10, enlargeability is necessary for linearity, but it
is not sufficient. In fact, if the Lie algebra g of a 1-connected Banach–Lie group
G contains elements p,q for which [p,q] is a non-zero central element with
expG([p,q]) = 1, then g is not linear, because any morphism g→ A would lead
to a linear representation of the quotient H/Z of the 3-dimensional Heisenberg
group modulo a cyclic central subgroup Z. Such elements exist in the Lie alge-
bra ĝ of the central extension of the Banach–Lie algebra C1(S1,su2(C)) by R

(Example VI.1.16; [ES73]).
Since for each Banach–Lie algebra g the quotient gad = g/z(g) is linear, the

intersection n of all kernels of linear representations of g is a central ideal of
g. This links the linearity problem intimately with central extensions: When is
a central extension of a linear Banach–Lie algebra linear? As the enlargeability
is necessary, the discreteness of the corresponding period group is necessary
(Theorem VI.1.6), but what else?

In [ES73], van Est and Świerczkowski describe a condition on the cohomol-
ogy class of a central extension which is sufficient for linearity. They apply this
in particular to show that, under some cohomological condition involving the
center, for a Banach–Lie algebra g, the Banach–Lie algebra C1∗([0,1],g) of C1-
curves γ in g with γ(0) = 0 is linear. It is remarkable that their argument does
not work for C0-curves. Closely related to this circle of ideas is van Est’s proof
of Ado’s theorem, based on the vanishing of π2 for each finite-dimensional Lie
group ([Est66]).

It is also interesting to note that for a real Banach–Lie algebra g, linearity
implies the linearity of the complexification gC , which in turn implies that gC is
enlargeable, which is crucial for the existence of universal complexifications of
the corresponding groups (cf. Theorem VI.1.23). In view of Corollary IV.4.10,
we thus have the implications

g linear ⇒ gC enlargeable ⇒ g enlargeable. �

Remark VIII.8. [GN07] (a) Let A be a unital CIA and n∈N. Further let sln(A) �
gln(A) denote the closed commutator algebra (cf. the end of Section VI.1). As
this is a closed subalgebra, it generates some integral subgroup S→ GLn(A)
with L(S) = sln(A). But in general S will not be a Lie subgroup. This problem
is caused by the fact that GLn(A) need not be simply connected.
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Let q : G̃Ln(A)→ GLn(A)0 denote the universal covering group of the iden-
tity component of GLn(A). Then the Lie algebra morphism

Tr: gln(A)→ A/[A,A], (ai j) �→
[ n

∑
i=1

aii

]
satisfies kerTr = sln(A). Let HC0(A) denote the completion of A/[A,A]. Then
Tr: gln(A)→ HC0(A) integrates to a morphism of BCH–Lie groups

D̃ : G̃Ln(A)→ HC0(A),

and Ŝ := kerD � G̃Ln(A) is a BCH–Lie subgroup whose identity component Ŝ0

is a covering group of S. If the image of the induced period homomorphism

(8.1) perTr : π1(GLn(A))→ HC0(A)

is discrete, then Z := HC0(A)/ im(perTr) is a Lie group and D factors through a
homomorphism D : GLn(A)0→ Z, which can be considered as a generalization
of the determinant. Now kerD is a BCH–Lie subgroup of GLn(A) with Lie
algebra sln(A), which implies that (kerD)0 = S. It is interesting to compare this
situation with the one in Remark V.2.14(c), where the group of Hamiltonian
diffeomorphisms of a symplectic manifolds plays a similar role.

If A is commutative, then the determinant det : GLn(A)→ A× is a morphism
of Lie groups and SLn(A) � GLn(A) is a normal BCH–Lie subgroup with Lie
algebra sln(A).

Since the period maps (8.1) are compatible for different n, they lead to a
homomorphism

per0
A : K2(A) = lim−→ π1(GLn(A))→ HC0(A)

(cf. the end of Section VI.1). If A is complex, we may compose with the Bott
isomorphism β 0

A : K0(A)→ K2(A) to get a natural transformation

TA := per0
A ◦β 0

A : K0(A)→ HC0(A),

which is unique and therefore given by TA([e]) = Tr(e). It follows that the image
of per0

A is discrete if and only if the image of the trace map

Tr :
∞⋃

n=1

Idem(Mn(A))→ HC0(A)

generates a discrete subgroup.
If A is commutative, then HC0(A) = A, and the image of the trace map lies

in the discrete subgroup 1
2π i ker(expAC

) of AC . Hence the image of the trace map
is discrete for each commutative CIA. �
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Remark VIII.9. The set Idem(A) of idempotents of a CIA plays a central role in
(topological) K-theory. In [Gram84], Gramsch shows that this set always car-
ries a natural manifold structure, which implies in particular that its connected
components are open subsets. The key point is to use rational methods to obtain
charts on this set.

In a similar spirit, it is explained in [BerN04/05] how Jordan methods can
be used in an infinite-dimensional context to obtain manifold structures on ge-
ometrically defined manifolds generalizing symmetric spaces and Graßmann
manifolds. �

Open Problems for Section VIII

Problem VIII.1. Show that the completion of a CIA A is again a CIA or give a
counterexample. �

Problem VIII.2. Characterize those Banach–Lie algebras which are linear in
the sense that they have an injective homomorphism into some Banach algebra
(Remark VIII.7).

Not much seems to be known about this problem, which is partly related to
the non-existence of Lie’s theorem on the representation of solvable Banach–
Lie algebras. In view of this connection, the class of Banach–Lie algebras of the
form g = E �D R, where D is a continuous linear operator on the Banach space
E should be a good testing ground.

As each real Banach space E is isomorphic to L (R,E), which can be em-
bedded as a Banach–Lie algebra into the Banach algebra L (E⊕R), each abelian
Banach–Lie algebra is linear. What about nilpotent ones? �

Problem VIII.3. Show that each linear Lie group is regular. We know that this
is the case for unit groups of CIAs. If, in addition, A is μ-regular in the sense
of Definition III.2.4, then Theorem III.2.10 implies the μ-regularity of each Lie
subgroup. �

Problem VIII.4. Is the tensor product A⊗B of two CIAs, endowed with the
projective tensor topology a CIA? This is true for B = Mn(K), n ∈ N, where
A⊗B ∼= Mn(A). Is it also true if B is the algebra of rapidly decreasing matrices
or the direct limit algebra M∞(K) := lim−→ Mn(K)? �

Problem VIII.5. Let g be a locally convex Lie algebra. Does the enveloping
algebra U(g) carry a natural topology for which the multiplication is continuous
and the natural map g→U(g) is continuous?
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More generally, let E be a locally convex space and endow its tensor algebra
T (E) =

⊕∞
n=0 E⊗n with the locally convex direct limit topology, where the sub-

spaces E⊗n carry the projective tensor topology. Is the multiplication on T (E)
continuous? �

Problem VIII.6. (a) Does every locally convex Lie algebra g have a faithful
topological module E? If Problem VIII.5 has a positive solution, then we may
simply take E := U(g).

(b) Does every nilpotent locally convex Lie algebra have a faithful nilpotent
topological module? Is this true in the Banach category? �

IX. Lie transformation groups

One of the fundamental references on topological transformation groups is the
monograph [MZ55] by Montgomery and Zippin. Since it also deals with differ-
entiability properties of transformation groups on manifolds, some of the tech-
niques described there have interesting applications in the context of infinite-
dimensional Lie theory.

IX.1. Smooth Lie group actions

Theorem IX.1.1. ([BoMo45], [MZ55, p.212]) Any continuous action σ : G×M
→M of a finite-dimensional Lie group on a finite-dimensional smooth manifold
M by diffeomorphisms is smooth. �

For compact manifolds we obtain the following “automatic smoothness”
result on homomorphisms of Lie groups (see also [CM70] for one-parameter
groups; and [Gl02d] for the non-compact case).

Corollary IX.1.2. If M is a σ -compact finite-dimensional manifold and G a
finite-dimensional Lie group, then any continuous homomorphism ϕ : G →
Diffc(M) is smooth. �

The following result provides a positive answer to (FP9) for diffeomorphism
groups.

Theorem IX.1.3. ([MZ55, Th. 5.2.2, p.208]) If a locally compact group G acts
faithfully on a smooth finite-dimensional manifold M by diffeomorphisms, then
G is a finite-dimensional Lie group. If M is compact, then each locally compact
subgroup of Diff(M) is a Lie group. �
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The preceding results take care of the actions of locally compact groups on
manifolds. As the work of de la Harpe and Omori ([OdH71/72]) shows, the
situation for Banach–Lie groups is more subtle:

Theorem IX.1.4. ([OdH72]) Let G be a Banach–Lie group. If L(G) has no
proper finite-codimensional closed ideals, then L(G) has no proper finite-codi-
mensional closed subalgebra and each smooth action of G on a finite-dimen-
sional manifold is trivial. �

If α : g→ V (M) is an injective map, then for each p ∈M the subspace

gp := {x ∈ g : α(x)(p) = 0}
is a finite-codimensional subalgebra with

⋂
p gp = {0}. Therefore the existence

of many finite-codimensional subalgebras is necessary for Lie algebras to be
realizable by vector fields on a finite-dimensional manifold.

Theorem IX.1.5. ([OdH72]) If a Banach–Lie group G acts smoothly, effec-
tively, amply (for each m ∈ M the evaluation map g→ Tm(M) is surjective),
and primitively (it leaves no foliation invariant) on a finite-dimensional mani-
fold M, then it is finite-dimensional. �

Theorem IX.1.6. ([Omo78, Th. B/C]) Let G be a connected Banach–Lie group
acting smoothly, effectively and transitively on a finite-dimensional manifold M.

(1) If M is compact, then G is finite-dimensional.
(2) If M is non-compact, then L(G) contains a finite-codimensional closed solv-

able ideal. �

Since Diff(M) acts smoothly, effectively and transitively on M, this implies:

Corollary IX.1.7. Diff(M) cannot be given a Banach-Lie group structure for
which the natural action on M is smooth. �

In Section 4 of [OdH72], Omori and de la Harpe construct an example of a
Banach–Lie group G acting smoothly and amply, but not primitively on R2.

The preceding discussion implies in particular that Banach–Lie groups rarely
act on finite-dimensional manifolds. As the gauge groups of principal bundles
q : P→M over compact manifolds M show, the situation is different for locally
exponential Lie groups (cf. Theorem IV.1.12). Therefore it is of some interest to
have good criteria for the integrability of infinitesimal actions of locally expo-
nential Lie algebras on finite-dimensional manifolds (cf. (FP7)).

We start with a more general setup for infinite-dimensional manifolds which
need extra smoothness assumptions:

Theorem IX.1.8. (Integration of locally exponential Lie algebras of vector fields;
[AbNe06]) Let M be a smooth manifold modeled on a locally convex space, g
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a locally exponential Lie algebra and α : g→ V (M) a homomorphism of Lie
algebras whose range consists of complete vector fields. Suppose further that
the map

Exp: g→ Diff(M), x �→ Flα(x)
1

is smooth in the sense of Definition II.3.1 and that 0 is isolated in
z(g)∩ Exp−1(idM). Then there exists a locally exponential Lie group G and
a smooth action σ : G×M→M whose derived action σ̇ : g→ V (M) coincides
with α . �

In the finite-dimensional case, the smoothness assumptions in Theorem IX.1.
8 follows from the smooth dependence of solutions of ODEs on parameters and
initial values, and the condition on the exponential function can be verified with
methods to be found in [MZ55]. This leads to the following less technical gener-
alization of the Lie–Palais Theorem which subsumes in particular Omori’s cor-
responding results for Banach–Lie algebras ([Omo80, Th. A], [Pe95b, Th.4.4]).

Theorem IX.1.9. Let M be a smooth finite-dimensional manifold, g a locally
exponential Lie algebra and α : g→ V (M) a continuous homomorphism of
Lie algebras whose range consists of complete vector fields. Then there exists
a locally exponential Lie group G and a smooth action σ : G×M → M with
σ̇ = α . �

The following result is a generalization of Palais’ Theorem in another direc-
tion. Since Diff(M) is μ-regular (Theorem III.3.1), it also follows from Theo-
rem III.2.8.

Theorem IX.1.10. ([Les68]) If M is compact, then a subalgebra g⊆ V (M) is
integrable to an integral subgroup if g is finite-dimensional or closed and finite-
codimensional. �

IX.2. Groups of diffeomorphisms as automorphism groups

In this subsection, we simply collect some results stating that automorphism
groups of certain algebra, Lie algebra or groups associated to geometric struc-
ture on manifolds are what one expects. Most of the results formulated below
for automorphisms of structures attached to a manifold M generalize to results
saying that if M1 and M2 are two manifolds and two objects of the same kind at-
tached to M1 and M2 are isomorphic, then this isomorphism can be implemented
by a diffeomorphism M1→M2, compatible with the geometric structures under
consideration.

Theorem IX.2.1. Let M be a σ -compact finite-dimensional smooth manifold.
Then the following assertions hold:
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(1) For the Fréchet algebra C∞(M,R), each homomorphism to R is a point
evaluation.

(2) Aut(C∞(M,R))∼= Diff(M).
(3) Aut(Vc(M))∼= Aut(V (M))∼= Diff(M).
(4) If, in addition, M is complex and V (1,0)(M)⊆ V (M)C is the Lie algebra of

complex vector fields of type (1,0), then Aut(V (1,0)(M))∼= AutO(M) is the
group of biholomorphic automorphisms of M.

(5) For each finite-dimensional σ -compact manifold M and each simple (real
or complex) finite-dimensional Lie algebra k, the natural homomorphism

C∞(M,Aut(k))�Diff(M)→ Aut(C∞(M,k))

is surjective.
(6) If M is a Stein manifold and k is a finite-dimensional complex simple Lie

algebra, then Aut(O(M,k)) ∼= O(M,Aut(k))� AutO(M), where AutO(M)
denotes the group of biholomorphic diffeomorphisms of M.

(7) If K ⊆ Cn is a polyhedral domain and O(K,C) the algebra of germs of
holomorphic C-valued functions in K, then the group Aut(O(K,C)) con-
sists of the germs of biholomorphic maps of K and der(O(K,C)) consists
of the germs holomorphic vector fields on K.

Proof. (1) (cf. [My54] for the compact case; [Pu52]; [Co94]).
(2) follows easily from (1) because each automorphism of the algebra

C∞(M,R) acts on Hom(C∞(M,R),R)∼= M.
(3) The representability of each isomorphism of Vc(M) by a diffeomorphism

is due to Pursell and Shanks ([PuSh54]), and the other assertion follows from
Theorem 2 in [Ame75]. It is based on the fact that the maximal proper subalge-
bras of finite codimension are all of the form V (M)m := {X ∈ V (M) : X(m) =
0} for some m ∈M, hence permuted by each automorphism; resp. the fact that
all maximal ideals consist of all vector fields whose jet vanishes in some m∈M.

(4) follows from Theorem 1 in [Ame75].
(5) [PS86, Prop. 3.4.2]. A central point is that every non-zero endomorphism

of k is an automorphism. Further, it is used that [k,C∞(M,k)] = C∞(M,k)] and
that distributions supported by one point are of finite order.

(6) [NeWa06b].
(7) This is [vHo52b, Th. III], where it is first shown that the maximal ideals

in the Silva CIA O(K,C) (Example VIII.3(d)) are the kernels of the point eval-
uations ([vHo52b, Th. I]). �

Remark IX.2.2. Let K ⊆ Cn be a compact subset and AutO(K) the group of
germs of bihomolorphic maps, defined on some neighborhood of K, mapping K
onto itself. In [vHo52a], van Hove introduces a group topology on this group as
the topology for which the map

AutO(K)→O(K,Cn)×O(K,Cn), g �→ (g,g−1)
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is an embedding. He shows that, under certain geometric conditions on the set
K, this group is complete and contains no small subgroups. Moreover, its natural
action on O(K,C) is continuous. �

Theorem IX.2.3. ([Omo74], §10]) Let M be a σ -compact finite-dimensional
smooth manifold. For a differential form α on M we put V (M,α) := {X ∈
V (M) : LXα = 0}. Then the following assertions hold:

(1) If μ is a volume form or a symplectic form on M, then every (algebraic)
automorphism of V (M,μ) is induced by an element of the group

{ϕ ∈ Diff(M) : ϕ∗μ ∈ Rμ}.
(2) If α is a contact 1-form on M, then every (algebraic) automorphism of

V (M,α) is induced by an element of the group {ϕ ∈ Diff(M) : ϕ∗α ∈
C∞(M,R×) ·α}. �

In [Omo80], one finds another interesting result of this type. Let V be a
germ of an affine variety in 0 ∈ Cn. Two such germs V and V ′ are said to be bi-
holomorphically equivalent if there exists an element ϕ ∈ Ghn(C) of the group
of germs of biholomorphic maps fixing 0 (as in Example VI.2.12), such that
ϕ(V ) = ϕ(V ′). On the infinitesimal level the automorphisms of a germ V are
given by the Lie algebra

g(V ) := {X ∈ ghn(C) : X .J(V )⊆ J(V )},
where J(V )⊆ O(0,C) (the germs of holomorphic functions in 0) is the annihi-
lator ideal of V . Let g(V )k � g(V ) denote the ideal consisting of all vector fields
vanishing of order k in 0 and form the projective limit Lie algebra

g(V ) := lim←− g(V )/g(V )k,

which can be viewed as a Fréchet completion of g(V ).
An element X ∈ ghn(C) is called semi-expansive if it is Ghn(C)-conjugate

to a linear diagonalizable vector field for which all eigenvalues lie in some open
halfplane. The germ V is called an expansive singularity if g(V ) contains an
expansive vector field.

Theorem IX.2.4. Two expansive singularities V and V ′ are biholomorphically
equivalent if and only if the pro-finite Lie algebras g(V ) and g(V ′) are isomor-
phic. Moreover, Aut(g(V )) can be identified with the stabilizer Ghn(C)V of V
in the group Ghn(C). �

On the group level, we have the following analog of Theorem IX.2.3 (cf.
[Fil82] for (1) and [Ban97, Thms. 7.1.4/5/6] for (2)-(4)):

Theorem IX.2.5. Let M be a σ -compact connected finite-dimensional smooth
manifold. Then the following assertions hold:



446 K.-H. Neeb

(1) Every (algebraic) automorphism of Diff(M) is inner.
(2) If α is a contact 1-form on M, then every (algebraic) automorphism of

Diff(M,α) is conjugation with an element of the group {ϕ ∈Diff(M) : ϕ∗α ∈
C∞(M,R×) ·α}.

(3) If ω is a symplectic form and M is compact of dimension ≥ 2, then every
(algebraic) automorphism of Diff(M,ω) is conjugation by an element of the
group

{ϕ ∈ Diff(M) : ϕ∗ω ∈ Rω}.
(4) If μ is a volume form and M is of dimension ≥ 2, then every (algebraic)

automorphism of Diff(M,μ) is conjugation by an element of the group {ϕ ∈
Diff(M) : ϕ∗μ ∈ Rμ}. �

Open Problems for Section IX

Problem IX.1. Let V (M)cp denote the set of complete vector fields on the
finite-dimensional manifold M (Remark II.3.8). Then we have an exponential
function

Exp: V (M)cp→ Diff(M), X �→ FlX1 .

Is it true that 0 is isolated in Exp−1(idM) with respect to the natural Fréchet
topology on V (M) (cf. Definition I.5.2)?

That this is true for compact manifolds follows from Newman’s Theorem
([Dr69, Th. 2]). For the proof of Theorem IX.1.9, we show for each continuous
homomorphism α : g→ V (M) of a locally exponential Lie algebra g to V (M)
with range in V (M)cp that 0 is isolated in (Exp◦α)−1(idM), which is a weaker
statement.

Since the set Exp−1(idM) is in one-to-one correspondence with the smooth
T-actions on M, the problem is to show that the trivial action is isolated in this
“space” of all smooth T-actions on M.

If M is the real Hilbert space �2(N,R) with the Hilbert basis en, n ∈ N, then
we have linear vector fields Xn(v) := 2π i〈v,en〉en with exp(Xn) = idM and Xn→
0 uniformly on compact subsets of E. Hence the finite-dimensionality of M is
crucial. �

Problem IX.2. (Banach symmetric spaces) Let M be a smooth manifold. We
say that (M,μ) is a symmetric space (in the sense of Loos) (cf. [Lo69]) if
μ : M×M→M,(x,y) �→ x · y is a smooth map with the following properties:

(S1) x · x for all x ∈M.
(S2) x · (x · y) = y for all x,y ∈M.
(S3) x · (y · z) = (x ·y) · (x · z) for all x,y ∈M.
(S4) Tx(μx) =− idTx(M) for μx(y) := μ(x,y) and each x ∈M.
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(a) Is it true that the automorphism group Aut(M,μ) of a Banach symmetric
space (M,μ) is a Banach–Lie group? (cf. [Ne02c], [La99])

(b) The tangent spaces Tx(M) of a symmetric space carry natural struc-
tures of Lie triple systems. Develop a Lie theory for locally exponential, resp.,
Banach–Lie triple systems, including criteria for the integrability of morphisms
and enlargeability (cf. Sections IV and VI). �

Problem IX.3. A fundamental problem in the theory of Banach transformation
groups is that we do not know if orbits carry natural manifold structures. As in
finite dimensions, the main point is to find good criteria for a closed subgroup
H of a Banach–Lie group G to ensure that the coset space G/H has a natural
manifold structure for which the action of G on G/H is smooth and the quotient
map q : G→ G/H is a “weak” submersion in the sense that all its differentials
are linear quotient maps. In view of Remark IV.4.13, this is true if

(1) H is a split submanifold (the same proof as in finite dimensions works),
(2) H is a normal Banach–Lie subgroup (without any splitting requirements)

(Corollary IV.3.6), and
(3) G is a Hilbert–Lie group, which implies the splitting condition (1).

Here are some concrete problems:

(a) Suppose that G/H is a smooth manifold with submersive q and a smooth
action of G. Does this imply that H is a Lie subgroup of G?

(b) Are the stabilizer groups Gm for a smooth action of a Banach–Lie group
G on a Banach manifold M Lie subgroups? For linear actions this follows
from Proposition IV.3.4 and Corollary IV.3.13.

(c) Characterize those Lie subgroups H for which G/H is a smooth manifold.
(d) Let H ⊆ G be a closed subgroup and h := Le(H) its Lie algebra. Then

the normalizer NG(h) of h is a Lie subgroup (Proposition IV.3.4, Corol-
lary IV.3.12). Is it true that Ad(G).h∼= G/NG(h) carries a natural manifold
structure?

Note that, if H is connected, it is a normal subgroup of NG(h). If H is a Lie
subgroup, this implies that NG(h)/H carries a Lie group structure and therefore
a manifold structure. �

Problem IX.4. Show that for each compact subset K ⊆ Cn the group AutO(K)
from Remark IX.2.2 is a Lie group with respect to the manifold structure inher-
ited from the embedding into O(K,Cn) (cf. Remark IX.2.2). �

Problem IX.5. (Automorphisms of gauge algebras) Let q : P→M be a smooth
K-principal bundle over the (compact) manifold M. Determine the group
Aut(gau(P)) of automorphisms of the gauge Lie algebra. Does it coincide with
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the automorphism group Aut(ad(P)) of the adjoint bundle, whose space of sec-
tions gau(P) is? If K is a simple complex Lie group, then the results in [Lec80,
Th. 16] provide a local description of the automorphisms of this Lie algebra
in terms of diffeomorphisms of M and sections of the automorphism bundle
Aut(ad(P)). �

Problem IX.6. Determine the automorphism groups of the Lie algebras gfn(K),
gsn(K) and ghn(C). �

Problem IX.7. Describe all connected Banach–Lie groups acting smoothly, ef-
fectively and transitively on a finite-dimensional manifold. In view of Theo-
rem IX.1.6, for each Banach–Lie group G, the Lie algebra L(G) contains a
finite-codimensional closed solvable ideal. If, conversely, g is a Banach–Lie al-
gebra with a finite-dimensional closed solvable ideal, then Theorem VI.1.19 im-
plies that g is enlargeable. Under which conditions do the corresponding groups
G act effectively on some finite-dimensional homogeneous space? (see also the
corresponding discussion in [Omo97]). �

Problem IX.8. Let G be a Banach–Lie group and H ⊆G a closed subgroup for
which Le(H) has finite codimension. Does this imply that G/H is a manifold?

�

X. Projective limits of Lie groups

Projective limits play an important role in several branches of Lie theory. Since
complete locally convex spaces are nothing but closed subspaces of products of
Banach spaces, on the level of the model spaces, the projective limit construc-
tion leads us from Banach spaces to the locally convex setting. On the group
level, the situation is more involved because, although projective limits of Lie
groups are often well-behaved topological groups, in general they are not Lie
groups. In this section, we briefly report on some aspects of projective limit
Lie theory and the recent theory of Hofmann and Morris of projective limits of
finite-dimensional Lie groups.

X.1. Projective limits of finite-dimensional Lie groups

In their recent monograph [HoMo06], Hofmann and Morris approach projective
limits of finite-dimensional Lie groups, so-called pro-Lie groups, from a topo-
logical point of view. We refer to [HoMo06] for details on the results mentioned
in this subsection.
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Clearly, arbitrary products of finite-dimensional Lie groups, such as

RJ, ZJ, SL2(R)J

for an arbitrary set J, are pro-Lie groups. The following theorem gives an ab-
stract characterization of pro-Lie groups:

Theorem X.1.1. A topological group G is a pro–Lie group if and only if it is
isomorphic to a closed subgroup of a product of finite-dimensional Lie groups.
In particular, closed subgroups of pro-Lie groups are pro-Lie groups. �

A crucial observation is that the class of topological groups with Lie algebra
(cf. Definition IV.1.23) is closed under projective limits and that

L(lim←− G j)∼= lim←− L(G j)

as locally convex Lie algebras. Let us call topological vector spaces isomor-
phic to RJ for some set J weakly complete. These are the dual spaces of the
vector spaces R(J), endowed with the weak-∗-topology. This provides a duality
between real vector spaces and weakly complete locally convex spaces, which
implies in particular that each closed subspace of a weakly complete space is
weakly complete and complemented. In particular, weakly complete spaces are
nothing but the projective limits of finite-dimensional vector spaces. These con-
siderations lead to:

Theorem X.1.2. Every pro-Lie group has a Lie algebra which is a a projective
limit of finite-dimensional Lie algebras, hence a weakly complete topological
Lie algebra. The image of the exponential function

expG : L(G)→ G, γ �→ γ(1)

generates a dense subgroup of the identity component G0. �
In the following, we call projective limits of finite-dimensional Lie algebras

pro-finite Lie algebras (called pro-Lie algebras in [HoMo06]).

Remark X.1.3. According to Yamabe’s Theorem ([MZ55]), each locally com-
pact group G for which G/G0 is compact is a pro-Lie group. Since the totally
disconnected locally compact group G/G0 contains an open compact subgroup,
each locally compact group G contains an open subgroup with a Lie alge-
bra, hence is a topological group with a Lie algebra (cf. [Las57], [HoMo05,
Prop. 3.5]). �

In view of Theorem X.1.1, the category of pro-Lie groups is closed un-
der products and projective limits, which are remarkable closedness properties
which in turn lead to the existence of an adjoint functor Γ for the Lie functor L:

Theorem X.1.4. (Lie’s Third Theorem for Pro-Lie Groups; [HoMo05]) The Lie
functor L from the category of pro-Lie groups to the category of pro-Lie algebras
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has a left adjoint Γ. It associates with each pro-finite Lie algebra g a connected
pro-Lie group Γ(g) and a natural isomorphism ηg : g→ L(Γ(g)), such that for
every morphism ϕ : g→ L(G) there exists a unique morphism ϕ ′ : Γ(g)→ G
with L(ϕ ′)◦ηg = ϕ . �

The first part of the following structure theorem can be found in [HoMo06].
The second part follows from the fact that finite-dimensional tori are the only
abelian connected compact Lie groups.

Theorem X.1.5. A connected abelian pro-Lie group is of the form RJ ×C for
a compact connected abelian group C. It is a Lie group if and only if C is a
finite-dimensional torus. �

It is quite remarkable that the category of pro-finite Lie algebras permits to
develop a structure theory which is almost as strong as in finite dimensions. In
particular, there is a Levi decomposition. To describe it, we call a pro-finite Lie
algebra g pro-solvable if it is a projective limit of finite-dimensional solvable
Lie algebras:

Theorem X.1.6. (Levi decomposition of pro-finite Lie algebras and groups;
[HoMo06]) Each pro-finite Lie algebra g contains a unique maximal pro-solv-
able ideal r. There is a family (s j) j∈J of finite-dimensional simple Lie algebras
such that s :=∏ j∈J s j satisfies

g∼= r� s.

For the corresponding pro-finite Lie group Γ(g) we then have

Γ(g)∼= R�S, where S∼=∏
j∈J

S j,

where S j is a 1-connected Lie group with Lie algebra s j and R is diffeomorphic
to N×RK for some set K and some simply connected pro-nilpotent Lie group
N ∼= (L(N),∗). �

More concretely, the closed commutator algebra n := [r,r] is pro-nilpotent,
because all images of this subalgebra in finite-dimensional solvable quotients of
r are nilpotent. If e⊆ r is a closed vector space complement of n in r ([HoMo06,
4.20/21]), then the map

(10.1.1) Φ : n× e �→ R, (x,y) �→ expR(x)expR(y)

is a homeomorphism ([HoMo06, Th. 8.13]). The point of view of [HoMo06]
is purely topological, so that infinite-dimensional Lie group structures are not
discussed. We note that (10.1.1) can be viewed as a chart of the topological
group R, and it is not hard to see that it defines on R the structure of a smooth
Lie group.
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Based on the preceding theorem, one can characterize those pro-finite Lie
algebras which are integrable to locally convex Lie groups ([HoNe06]):

Theorem X.1.7. For a pro-finite Lie algebra g the following are equivalent:

(1) g is the Lie algebra of a locally convex Lie group G with smooth exponential
function.

(2) g is the Lie algebra of a regular locally convex Lie group G.
(3) g has a Levi decomposition g ∼= r � s, where only finitely many factors in

s =∏ j∈J s j are not isomorphic to sl2(R).
(4) The group Γ(g) is locally contractible.
(5) The group Γ(g) carries the structure of a regular Lie group, compatible with

its topology.

Proof. (Sketch) Let R denote the 1-connected group with Lie algebra r con-
structed from the chart (10.1.1) and S j be the 1-connected Lie group with Lie
algebra s j. If s j is isomorphic to sl2(R), then S j

∼= S̃L2(R) is diffeomorphic to
R3, so that S :=∏ j∈J S j carries a natural manifold structure, turning it into a Lie
group. One verifies that S acts smoothly on R, so that G := R�S is a Lie group
with Lie algebra g.

For the converse, let G be a Lie group with Lie algebra g and a smooth
exponential function expG : g→ G; put J0 := { j ∈ J : s j �∼= sl2(R)}. For each
j ∈ J0, we then have morphisms α j : S j→G, β j : G→ S j with β j ◦α j = idS j . If
J0 is infinite, this contradicts the local contractibility of G. �

Remark X.1.8. To describe all connected regular Lie groups G with a pro-finite
Lie algebra g, we have to describe the discrete central subgroups of the 1-
connected ones, which are isomorphic, as topological groups, to some G :=Γ(g)
(cf. [HoMo06]). In all these groups, the exponential function restricts to an iso-
morphism z(g)→ Z(G)0 of topological groups, so that Z(G)0

∼= RX for some
set X . Based on the information provided in the preceding theorem, it is shown
in [HoMo06] that a subgroup Γ⊆ Z(Γ(g))0 is discrete if and only if it is finitely
generated and its intersection with Z(G)0 is discrete. This characterization pro-
vides a quite good description of all discrete subgroups of Z(G), hence all non-
simply connected regular Lie groups with Lie algebra g.

If S∼=∏ j∈J S j and J is infinite, then infinitely many factors S j are isomorphic

to S̃L2(R), whose center is isomorphic to Z. The subgroup of index 2 acts triv-
ially in each finite-dimensional representation, which leads to Z(G)∩ S j

∼= Z.
Hence Z(G)∩S contains a subgroup isomorphic to ZJ\J0 , which implies in par-
ticular that the adjoint group of g is not a Lie group. �

We have already seen that all pro-nilpotent Lie algebras are exponential,
which applies in particular to all pro-nilpotent pro-finite Lie algebras. The fol-
lowing theorem provides a characterization of the locally exponential pro-Lie
algebras ([HoNe06]):
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Theorem X.1.9. For a pro-Lie algebra g, the following are equivalent:

(1) g is locally exponential.
(2) There exists a 0-neighborhood U ⊆ g, consisting of exp-regular points, i.e.,

κg(x) is invertible for each x ∈U.
(3) Γ(g) is a locally exponential topological group.

If these conditions are satisfied, then g contains a closed ideal of finite codi-
mension which is exponential. In particular, g is virtually pro-solvable, i.e.,
g = r� s with a finite-dimensional semisimple Lie algebra s, and g is enlarge-
able. �

Recall that we have seen in Example II.5.9(a) an example of a pro-finite Lie
algebra g ∼= RN �D R which is not locally exponential. Since this Lie algebra
has an abelian closed hyperplane, the existence of an exponential hyperplane
ideal is not sufficient for local exponentiality.

X.2. Projective limits of infinite-dimensional Lie groups

As we have seen in the preceding Subsection X.1, the extent to which the struc-
ture theory of finite-dimensional Lie groups can be carried forward to projective
limits is quite surprising. There are also natural classes of topological groups
which are natural projective limits of infinite-dimensional Lie groups. There-
fore it would be of some interest to develop a systematic “pro–Lie theory” for
such groups.

One of the most natural classes of such groups are the mapping groups.
Let M be a σ -compact finite-dimensional smooth manifold, r ∈ N0 ∪{∞}, K
a Lie group, and G := Cr(M,K), endowed with the compact open Cr-topology
(Definition II.2.7).

Then there exists a sequence (Mn)n∈N of compact subsets of M which is
an exhaustion, in the sense that Mn ⊆ int(Mn+1). Using the usual Morse the-
oretic arguments, we may assume that the subsets Mn are compact manifolds
with boundary. Then each compact subset of M is contained in some Mn, which
implies that

G = Cr(M,K)∼= lim←− Cr(Mn,K)

is a projective limit, where the projection maps are given by restriction. In view
of Theorem II.2.8, the groups Cr(Mn,K) are Lie groups, so that the topological
group Cr(M,K) is a projective limit of Lie groups.

If K is locally exponential, then each Cr(Mn,K) inherits this property, so that
Cr(Mn,K) is a topological group with Lie algebra (Definition IV.1.23), and this
implies that Cr(M,K) also is a topological group with Lie algebra, where

L(Cr(M,K))∼= lim←− L(Cr(Mn,K)) = lim←− L(Cr(Mn,K)) = lim←− Cr(Mn,L(K))
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= Cr(M,L(K)).

As in the case of compact manifolds M, the exponential function of Cr(M,K) is
given by

exp: Cr(M,L(K))→Cr(M,K), ξ �→ expK ◦ξ .

If M is a compact complex manifold and K is a linear complex Lie group,
then all holomorphic functions M→K are constant. Therefore the groups O(M,K)
are trivial in this case. If M is non-compact and K is a complex Lie group, we
use the compact open topology to turn O(M,K) into a topological group and
observe that we have a topological embedding O(M,K) ↪→Cr(M,K) for each
r ∈ N0∪{∞}. Those cases for which we know to have honest Lie group struc-
tures on O(M,K) are quite limited (cf. Theorem III.1.9), but it seems that pro-
jective limit theory is also a useful tool to study these groups of holomorphic
maps. Let (Mn)n∈N, as above, be an exhaustion of M by compact submani-
folds with boundary. Then the groups O(Mn,K), defined appropriately, carry
Lie group structures, for which O(Mn,L(K)) is the corresponding Lie algebra
(cf. [Wo05b]), so that

O(M,K)∼= lim←− O(Mn,K)

is a projective limit of Lie groups.
It would be of considerable interest to find a good categorical framework for

such classes of projective limits of Lie groups. Of particular relevance would be
to understand the “right class” of central extensions of the groups O(M,K) and
Cr(M,K) in the same spirit as for the groups C∞c (M,K) of compactly supported
maps (cf. [Ne04c]).

Open Problems for Section X

Problem X.1. Are strong ILB–Lie groups, resp., μ-regular Lie groups, topolog-
ical groups with Lie algebra? What about diffeomorphism groups? Does it suf-
fice that the Lie group G has a smooth exponential function (cf. Problem VII.2)?

�

Problem X.2. Let g be a pro-finite Lie algebra and n � g a closed exponential
ideal of finite codimension. Characterize the local exponentiality of g in terms
of the spectra of the operators adn x := adx |n (cf. Proposition X.1.9). Are all
locally exponential pro-finite Lie algebras BCH? �

Problem X.3. For the description of the non-simply connected Lie groups a-
mong the projective limits of finite-dimensional Lie groups, it is important to
understand the structure of the center of the simply connected ones. Let G be a
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such a 1-connected group and Z(G) its center. The Lie algebra of Z(G) is z(g),
which lies in the pro-solvable radical, so that Z(G)0

∼= z(g). On the other hand,
we have seen in Remark X.1.8 that Z(G) may contain non-discrete subgroups
isomorphic to ZN. Is it possible to determine the structure of Z(G) as a topolog-
ical group (see [HoMo06] for more details)? �

Problem X.4. Determine the automorphism groups of pro-finite Lie algebras.
Under which conditions are they Lie groups? An interesting situation where the
automorphism group of a pro-finite Lie algebra is a closed subgroup of a Lie
groups is described in Theorem IX.2.4. �
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sur le tore, C. R. Acad. Sci. Paris Ser. I Math., 301 (1985), 127–130.

[DL66] A. Douady and M. Lazard, Espaces fibrés en algèbres de Lie et en groupes, Invent.
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groups. V. Several basic properties, Tokyo J. Math., 6 (1983), 39–64.

[OMYK83b] H. Omori, Y. Maeda, A. Yoshioka and O. Kobayashi, On regular Fréchet-Lie
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J. Math., 49 (1997), 820–839.

[Rob02] T. Robart, Around the exponential mapping, In: Infinite Dimensional Lie Groups
in Geometry and Representation Theory, World Sci. Publ., River Edge, NJ, 2002,
pp. 11–30.

[Rob04] T. Robart, On Milnor’s regularity and the path-functor for the class of infinite di-
mensional Lie algebras of CBH type, Algebras Groups Geom., 21 (2004), 367–
386.
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