
ORIGINAL PAPER

Hopscotch into Coding: Introducing Pre-Service Teachers
Computational Thinking

Shenghua Zha1 & Yi Jin2
& Pamela Moore1

& Joe Gaston1

Published online: 8 August 2019
Association for Educational Communications & Technology 2019

Abstract
Researchers and educators have advocated computational thinking (CT) should be integrated into K-12 settings as early as
elementary schools. However, there has been a lack of knowledge of how pre-service K-8 teachers would be engaged in the
learning of CTand its integration in different subject areas. In this study, we taught a flipped learningmodule in an undergraduate
Educational Technology course. Pre-service teachers learned and practiced CT knowledge and skills using a block programming
app called Hopscotch. Results of this first iteration of design-based research showed that the orchestration of the technology and
instructional methods, such as team-based learning, flipped classroom, and pair programming, supported students’ transforma-
tive learning experience. It improved their understanding and application of CTconcepts. Meanwhile, the mixed-method analysis
found some instructional issues that needed to be addressed in future iterations. Suggestions were provided at the end of the paper.

Keywords Elementary teacher education . Computational thinking . Coding . Collaborative learning

Introduction

Computer Science (CS) education in K-12 settings has been
proliferating in the past 30 years. In 1980, Seymour Papert
took the initiative in examining children’s learning of LOGO
programming (Papert 1980). This interest was resumed in
2006 when Wing (2006) coined the term Computational
Thinking (CT). It referred to a set of skills that com-
puter scientists frequently used in solving computing
problems, such as problem formulations, abstraction, al-
gorithmic thinking, and pattern recognition and

generalization. Researchers and educators argued that
these skills were applicable in every subject and hence
every student should learn and master (Buitrago Flórez
et al. 2017; Grover and Pea 2013; Wing 2006).

To meet the increasing needs of CS/CT education at K-12
settings, professional development activities for in-service
teachers have been growing (Guzdial 2011; Menekse 2015).
They were offered as independent CS courses or short-term
and long-term training sessions. However, there has been a
lack of knowledge of how pre-service teachers would engage
in CS/CT learning and teaching (Yadav et al. 2017b). In a
systematic review, Menekse (2015) found 21 studies of in-
service teachers’ CS training from journal and conference pa-
pers published between 2004 and 2014. However, only seven
papers were found to be related to pre-service teachers.

In fact, it is probably more challenging to teach CS/CT to
pre-service teachers than in-service teachers. At present, in-
service teacher training was voluntary-based, and only
teachers who had interests would participate in the training
(Bean et al. 2015; Peterson and Scharber 2017; Rich et al.
2018). However, pre-service teacher training is set for all stu-
dents, regardless of their initial interest or prior CS experi-
ences. Therefore, the course instructors may expect a broad
spectrum of interest and computing experience in a CS/CT
teacher education course (Amiri 2000). Although challenging,
with more states in the U.S. starting to integrate coding and

* Shenghua Zha
shzha@southalabama.edu

Yi Jin
yjin8@kennesaw.edu

Pamela Moore
prmoore@southalabama.edu

Joe Gaston
jgaston@southalabama.edu

1 University of South Alabama, University Commons 3800, 75 N.
University Blvd, Mobile, AL 36688-0002, USA

2 Kennesaw State University, 585 Cobb Ave NW, Room 2334, MD
0127, Kennesaw, GA 30144, USA

TechTrends (2020) 64:17–28
https://doi.org/10.1007/s11528-019-00423-0

http://crossmark.crossref.org/dialog/?doi=10.1007/s11528-019-00423-0&domain=pdf
mailto:shzha@southalabama.edu

CT standards into K-12 curriculum, teacher educators need to
provide coding and CT preparation to pre-service teachers.

In this study, we implemented a flipped learning module
teaching pre-service teachers (students, in brief) CT concepts
and skills. The first purpose of this study was to examine the
impact of the learningmodule on students’CT knowledge and
attitude. The second purpose was to identify areas for im-
provements in the future iterations. The following section
depicted a summary of the literature review regarding pre-
service teachers’ CS/CT education. The rest of the sections
follow the DBR cycle. The planning and acting stages of
DBR were described in the section of Learning Module
Design. The Method section focused on the observation and
analysis of students’ learning in the flipped module. The
Results and Discussions sections reflected this first iteration
and offered suggestions for improvements in future iterations.

Literature Review

CS/CT Teacher Education in the U.S

CS has been offered as independent courses in teacher educa-
tion programs in many countries, such as South Africa and
Turkey (Balanskat and Engelhardt 2015; Cetin 2016; Mentz
et al. 2008). However, in the United States, CS education in K-
12 settings was different from other countries. At present, 15
states gave high-school students access to CS education, but
only six states expanded it to lower grades (Promote
Computer Science 2019). In addition, CS was not offered as
an independent discipline in K-8 settings (Mouza et al. 2017).
It was integrated into other subject courses, mostly the sub-
jects of Science, Technology, Engineering, and Mathematics
(STEM) (Lye and Koh 2014).

The lack of CS as an independent discipline in K-8 affected
CS course offering in Teacher Education programs in the U.S.
According to a recent report from code.org, 33 states plus
Washington, D. C. had CS teacher certification programs
(2018 state of Computer Science education: Policy and
implementation 2019). Most of these programs targeted pre-
service secondary education teachers. At present, there has not
been an established framework or model for pre-service K-8
teachers even though researchers and educators advocated that
CS/CT should be introduced early at elementary schools to
leverage students’ development of CT skill before college
(Buitrago Flórez et al. 2017; Qualls and Sherrell 2010). One
rule of thumb that has been well accepted is that CS education
for pre-service K-8 teachers should be integrated with peda-
gogical content knowledge (Yadav et al. 2014). For instance,
pre-service teachers may learn to develop collaborative learn-
ing instructions to teach students to draw different geometric
shapes in 7th-grade math class while working in pairs using
Scratch. In doing this, pre-service teachers not only learn CT

and coding but also solve geometry problems. Thus, CS/CT is
not a standalone subject. It becomes a set of skills/tool to solve
problems in other subjects. Moreover, pre-service teachers’
experience of appropriate pedagogy, such as pair work, as
learners may set a model for their future teaching.

Efforts to Introduce K-8 Pre-Service Teachers CS/CT

Due to the unique situations of CS/CT education in K-8 set-
tings, researchers have been exploring innovative ways to
introduce CS/CT to pre-service K-8 teachers. One practice is
to embed introductory CS/CT learning modules in a teacher
education course that every pre-service teacher takes. Yadav
and his colleagues implemented a one-week CS/CTmodule in
an Educational Psychology course (Yadav et al. 2011). Two
lectures introduced basic CTconcepts and its importance in K-
12 education. Examples of CT application in science and hu-
manities were given at the end of the lecture. During the lec-
tures, students used an interactive response system called
clicker to answer questions. Their results showed that this
module helped students to develop a comprehensive under-
standing of CT and a positive attitude toward its integration in
K-12 settings. Furthermore, the lectures emphasized CT con-
cepts instead of computing technology. This approach helped
the pre-service teachers to develop an understanding that CT
was applicable in subject areas other than CS.

Bean and his colleagues conducted a 2-h intervention
among a group of pre-service teachers (Bean et al. 2015).
Their study focused on a different perspective of CS/CT: the
integration of coding in three subject areas. The intervention
began with an overview and demonstration of three coding
exercises. Those exercises were tied to the areas of music,
language arts, and math. Instructors addressed questions
posed by students during the exercises. In the end, the class
reflected and discussed their learning experiences and the ap-
plicability in K-12 classrooms. Results of the pre- and post-
survey showed that pre-service teachers’CTand teaching self-
efficacy had significant improvement as a result of the inter-
vention. It may be that the three applications helped students
to see the possibility of CS integration in subjects other than
CS. Meanwhile, technical difficulties were observed when the
class was requested to switch from laptops to iPads. They had
to look for a new programming language as Scratch ran on
Adobe Flash and was not natively supported by iOS.

Educational Technology courses in Teacher Education pro-
grams have served as a primary gateway for pre-service
teachers to learn cutting-edge technologies and their pedagog-
ical application in different subject areas (Wetzel et al. 2008).
Often, it is the only technology course offered in most teacher
preparation programs in the U.S. Hence, this course carries
many expectations that other Teacher Education courses do
not offer, such as improving pre-service teachers’ technology
beliefs and self-efficacy (Funkhouser and Mouza 2013). This

18 TechTrends (2020) 64:17–28

http://code.org

course could be an ideal outlet to introduce CS/CT to pre-
service teachers (Yadav et al. 2017a).

In an educational technology course, Chang and Peterson
(2018) assigned two groups of pre-service teachers a CS/CT
learning module, which started with a thirty-minute lecture on
CT concepts. Then students were given one hour to explore
robots and other CT resources. After the class, students had
individual self-reflection on their learning experiences.
Results of this case study showed an overall positive im-
pact of the short-term exposure on pre-service teachers’
CS/CT understanding. However, some students still held a
stereotype that they were not trained as a CS major, and
thus, CT should not be their field of teaching. This belief
possibly prevented them from developing a positive learn-
ing attitude toward CS/CT.

In a nutshell, exploratory studies embedding CS/CT mod-
ules in educational methods or technology courses showed
that it was promising to change students’ CS/CT understand-
ing and sometimes self-efficacy. These modules seemed to
confirm the positive impact of the following design: First,
CTconcepts should be introduced to students before program-
ming tools (Chang and Peterson 2018; Yadav et al. 2011).
This method helped to foster students’ understanding of CT
application as problem-solving skills. Second, exercises
should be designed to explicitly convey the possibility of
CS/CT integration outside CS or even STEM areas (Bean
et al. 2015). Reflective discussion should be offered to
strengthen this perspective. Last, but not the least, visual-
based block programming language or tools such as Scratch,
should be used in the introductionmodule (Cetin 2016). These
tools helped students to understand the CT application better
than text programming language such as C, where students
usually spent a significant amount of time debugging the syn-
tax errors.

However, these studies also posed questions for further
investigations: first, how much guidance and scaffolding
should be provided in the module exercise? Bean et al.
(2015) offered full guidance to teach students the coding in
three exercises. In Chang and Peterson’s (2018) study, stu-
dents were given the freedom to explore a variety of comput-
ing tools. No conclusive suggestions have been made.
Second, how much time did students need to develop a good
understanding of CT concepts and foster a positive self-effi-
cacy? This question was also tied with the re-design of
Educational Technology courses as they carried many expec-
tations but little room for the inclusion of CS/CT module.

Research Questions

In the fall of 2018, we embedded a CS/CT flipped learning
module in an educational technology course at a four-year
university in the southern U.S. When designing the module,

we followed the suggestions from the literature: 1. CT con-
cepts were introduced first using online readings, videos, tu-
torials, and other materials; 2. Exercises were designed for the
literacy content area; 3. Discussion forums were designed for
students to reflect; and 4. A visual block programming app,
Hopscotch, was the primary coding tool for the exercise. One
purpose of this first iteration of design-based research was to
identify areas for future improvement. The other purpose was
to seek the impact of this flipped learning module on students’
CS/CT knowledge and attitude that will help us understand
howmuch guidance and time students need to develop a good
understanding of CT concepts and foster a positive self-effi-
cacy. Therefore, our research question was: How did the
flipped learning module contribute to students’ learning expe-
rience, knowledge of, and attitude toward CS/CT in K-8
education?

Class Structure

This study took place in an undergraduate educational tech-
nology course. It was the only technology course that pre-
service teachers took during their four years of study.
Students learn technology-integrated learning theories and
technologies in 15 weeks. It was offered in a blended mode.
When online modules were not offered, students were expect-
ed to meet twice per week in class, and each class session
lasted about 75 min. When online modules were offered, stu-
dents were required to participate in asynchronous and/or syn-
chronous activities posted on the learning management sys-
tem. Each online module was usually available for about one
week, and students could adjust their own learning pace in
asynchronous activities.

The course instructor, also one of the researchers in this
study, has had over ten years of experiences in instructional
design, blended and online course teaching, and professional
development. She had programming skills and knowledge in
visual-based block programming languages, such as Scratch
and Hopscotch, as well as text programming languages, such
as HTML, JavaScript, and Visual Basic.

Participants

Participating students were fifteen pre-service teachers,
majoring in elementary education (87%, n = 13) or secondary
education (13%, n = 2). Ninety-three percent (n = 14) were
female, and 7 % (n = 1) were male. Twenty-seven percent of
students were African American (n = 4), 7 % were Native
Indian (n = 1) and Asian (n = 1) respectively, and 60 % were
Caucasian (n = 9). Fourteen of them had no computer pro-
gramming experiences before. Only one student mentioned

TechTrends (2020) 64:17–28 19

that she had a little coding experience with LEGO robots
when she was in middle school.

Learning Module Design

The programming language used in this module was
Hopscotch, a visual-based block programming language. It
was chosen for a couple of reasons. First, its embedded video
tutorials allowed learners to practice coding along with the
tutorials without switching the screens. Second, the tutorials
explicitly focused on the basic coding concepts, such as se-
quence, conditional logic, and algorithms. This feature saved
the instructor’s time either to look for relevant video tutorials
or to introduce beginners the application of CT concepts in a
programming language in class. Last, but not the least, stu-
dents were able to complete an animation project following
each tutorial, which made the learning engaging and fun.
However, this program had its weaknesses. First, it was free,
but users need to pay if using extra features, such as importing
images or sounds. Those features were not essential learning
component in this module. Second, it was only available on
the iOS platform. Students in this study were able to check out
iPads from the college. Therefore, the instructor decided to
choose this program after weighing its strengths and
weaknesses.

The learning module was offered in a flipped learning
mode to ensure students have enough time to explore CT
readings and tutorials in Hopscotch before applying their
knowledge in coding projects in the in-class session
(Abeysekera and Dawson 2014; Enfield 2013). The online
component of the module (online module, in brief) was

available to students in a week prior to the in-class session.
As shown in Fig. 1, students were instructed to read the arti-
cles that introduced CTconcepts and cases of its integration in
K-8 subject areas. Then they were guided to set up accounts in
Hopscotch and practice with the embedded video tutorials.
Students were requested to participate in two online discus-
sion forums. One discussion forum was for Hopscotch Q&A,
and the other one was used for students’ reflections of their
learning experience with Hopscotch. In the second forum,
students were required to answer the question: What was your
experience at the beginning, middle, and end of this learning
journey?

To ensure students’ readiness for the in-class session,
Team-Based Learning was adapted in the learning module,
and students were informed of this at the beginning of the
online module (Michaelsen et al. 2002). In the following
Monday after the online module, students met in class for
75 min. First, they took an individual quiz testing their under-
standing of CT and Hopscotch programming. Thereafter, they
discussed the same set of questions and submitted the quiz in
teams. The purpose of this team quiz and discussion was to
clarify students’ conceptual understanding of CT and
Hopscotch coding. Students had been working in the same
teams in multiple course projects before. So they were quite
familiar with each other. After their quiz submission, the in-
structor explained the answers to a question if a team did it
wrong. Their participation in the online forums and in-class
quizzes were counted into the course grades.

Thereafter, the core of the class time was spent on the
application activity. Students were instructed to develop a dig-
ital story in Hopscotch explaining an idiom. The reason why
the application activity was focused on the Language Arts was
to break students’ stereotype that coding belonged to and ben-
efit STEM only (Chang and Peterson 2018). The instructor
demonstrated a completed story “a bull in a China shop” and
explained how the algorithm was developed (Fig. 2). This
demonstration was made via a free remote-connection app
called TeamViewer. It projected the iPad screen to the com-
puter and projector screens so that students saw clearly how
the coding was developed in Hopscotch. Then students were
assigned into pairs to design and develop a story (McDowell
et al. 2006; Williams and Kessler 2001). They had the option
of developing the same or a different idiom story. The instruc-
tor rotated among teams and offered suggestions and prompts
to help students design, code, and debug in Hopscotch.

Methods

Design-Based Research (DBR) was conducted (Barab and
Squire 2004; Reimann 2013). Different from traditional em-
pirical research, the purpose of this DBR was to establish and
refine the design of the flipped learning module for future

20 TechTrends (2020) 64:17–28

Fig. 1 Design of the flipped coding module

iterations. The course instructor participated in not only mod-
ule design but also research. A mixed-method analysis was
taken to study the delivery and outcome of this module.

Data Collection

A pre-module online survey was delivered at the beginning of
the module. Students were given two days to complete and
submit the survey. Questions in this survey included students’
demographic information and their prior computer program-
ming experience. A post-module survey was handed to stu-
dents at the end of the in-class session. Students had about
10 min to complete the paper survey. Both pre- and post-
module surveys asked students’ attitude toward CT, which
was adopted from instruments validated in prior studies
(Friday Institute for Educational Innovation 2012; Rich et al.
2017). Answers to the seventeen attitude questions were cod-
ed in 4 points, with 1 meaning “Strongly Disagree” and 4
meaning “Strongly Agree”. The post-module survey also
asked students’ learning experiences in the flipped Team-
Based Learning. This set of questions was adapted from in-
struments validated in Mennenga’s (2012) study. Answers to
these learning experience questions were coded in 5 points,
with 1 meaning “Strongly Disagree,” 3 meaning “Neither
Disagree Nor Agree,” and 5 meaning “Strongly Agree”.

A pair of quizzes was deployed to assess students’ knowl-
edge of CTand Hopscotch coding. Five multiple-choice ques-
tions were included in each quiz. The first quiz was delivered
at the beginning of the in-class session. The same quiz was
used in the following team discussion as a part of Team-Based
Learning. The second quiz was delivered at the end of the in-
class session.

Qualitative data included the instructor’s notes and stu-
dents’ answers to the open-ended question in the post-
module survey and online discussion forums. The course in-
structor took notes to record her observation of students’
learning behavior. In addition, the last question in the post-
module survey asked students’ comments about this learning
experience.

Data Analysis

A repeated measures ANOVA was conducted to identify
changes in students’ understanding of CTand Hopscotch cod-
ing in the first, team, and second quizzes. A set of t-tests was
used to compare the changes in students’ attitude toward CT
in the pre- and post-module survey. In this test, a Bonferroni
correction was used to minimize the Type I error (Miller
1981). The corrected alpha value was set at .00294, which
was the value of .05 divided by 17.

Students did not ask any questions on the Hopscotch Q&A
forum. Therefore, it was not included in the data analysis.
Students’ responses in the reflective discussion forum were
imported into QSR NVivo 11 Plus, a qualitative analysis soft-
ware. Posts to the question “What was your experience at the
beginning, middle, and end of this learning journey?” were
coded to distinguish their reflections at the beginning, middle,
and end stage of the online module. Term-frequency analysis
was used to find patterns of students’ perception (O'Neill et al.
2018). First, a word frequency query was run to detect the top
words that were frequently presented in students’ posts.
Second, words that did not contribute to understanding stu-
dents’ perception, such as “some” or “this,” were filtered out.
At the end of the query, the top 20 words that had the highest
frequency in students’ posts were presented.

Instructor’s observation was used firstly as a formative
evaluation to adjust the learning pace and content and second-
ly as a summative evaluation to reflect the strengths and weak-
nesses of this module. These notes were used to supplement
the quantitative and qualitative findings from students’ perfor-
mance and perceptions.

Results

Statistics results from quizzes showed a significant change
between the first, team, and second quizzes; Wilk’s λ = .17,
F(2, 12) = 28.8, p < .01 (Fig. 3). The post-hoc comparisons
showed a significant difference in the scores for the first

TechTrends (2020) 64:17–28 21

Fig. 2 Hopscotch interface

(M = 8.8, SD = 5.1) and second (M = 16.8, SD = 3.8) quizzes;
t(14) = −5.3, p < .01. Likewise, there was a significant differ-
ence in the scores for the first (M = 8.8, SD = 5.1) and team
(M = 18.79, SD = 2.08) quizzes; t(13) = −7.88, p < .01.
However, no statistical significance was found between the
team and second quizzes; t(13) = 1.60, p = .13.

Items measuring students’ attitude towards CT did not
show significant changes except one. The item “I doubt that
I can solve problems by using computer applications.”
showed a borderline significant change (Table 1). This item
was reversely coded. An increase in the mean value meant that

students showed a stronger disagreement with the item de-
scription. Hence, students showed less doubt in using com-
puter applications for problem-solving after this flipped
module.

Students’ reflection in the discussion forum showed that
they had a transformative learning experience. We listed the
twenty most-frequent words that students used to describe
their experience at the beginning, middle, and end of the learn-
ing module (Table 2). We then presented this result in three
word-cloud images. In those word clouds, the stronger and
larger a word was, the higher the frequency it showed up in
students’ posts. As shown in the left word-cloud of Fig. 4,
students’ initial impression when assigned the module was
confused and worried mainly because they did not know what
coding or programming looked like and how it could be ap-
plicable in education. One student acknowledged that she
even did not want to do the project. Yet, two students
expressed their interest and curiosity at the beginning. After
students were instructed to install and open Hopscotch and
learn with the embedded tutorials, their attitudes changed, as
shown in the middle word-cloud of Fig. 4. Students
commented that the program “really broke everything down
in the tutorials and made everything very easy to understand”.
When they had no difficulty in following the tutorials and
understanding what the coding did, they felt comfortable,
and the confidence of coding increased. At the end of the
online module, coding became an enjoyable and exciting
learning experience, as shown in the right word-cloud of

Table 1 Results of t-test and descriptive statistics of students’ attitudes toward CT

Pre-Survey Post-Survey t df p

M SD M SD

Knowledge of computing will allow me to secure a better job. 3.33 1.05 3.47 .64 −.46 14 .65

My career goals do not require that I learn computing skills. 2.93 .59 2.93 .70 0.00 14 1.00

I doubt that I can solve problems by using computer applications. (R) 2.73 .80 3.53 .52 −3.60 14 .00293

I expect to use software in my future educational and teaching work. 3.13 1.19 3.67 .49 −1.74 14 .10

I can achieve good grades (C or better) in computing projects or courses. 3.33 .82 3.47 .52 −.49 14 .63

The challenge of solving problems using computer science appeals to me. (R) 2.80 .86 2.87 .92 −.21 14 .84

I expect to use computer applications for future projects involving teamwork. 3.13 .99 3.60 .51 −1.61 14 .13

I can learn to understand computing concepts. 3.20 1.01 3.60 .51 −1.47 14 .16

I am not comfortable with learning computing concepts. (R) 3.00 .76 3.07 .70 −.25 14 .81

I expect to use computing skills in my daily life. 3.13 .99 3.07 .70 .19 14 .85

I hope that my future career will require the use of computing concepts. 3.13 .74 2.80 .78 1.32 14 .21

I think that computer science is interesting. 3.00 .93 3.00 .66 .00 14 1.00

I will voluntarily teach kids coding if I were given the opportunity. 3.20 .86 2.93 .70 .94 14 .36

Computational thinking can be integrated into classroom education in other disciplines. 3.20 1.01 3.47 .52 −1.00 14 .33

Computational thinking should be integrated into classroom education for other disciplines. 3.13 .99 3.33 .62 −.68 14 .51

Having background knowledge and understanding of computer science is valuable in and of itself. 3.27 1.10 3.53 .52 −.81 14 .43

Knowledge of coding can be helpful to improve most careers. 3.13 .99 3.27 .59 −.41 14 .69

Items ending with R meant they were reversely coded in the analysis

22 TechTrends (2020) 64:17–28

Fig. 3 Students’ scores in the first, team, and second quizzes

Fig. 4. A couple of students mentioned that they benefit a lot
from pausing and rewinding the video tutorials, which cannot
be accomplished in in-class lectures. Although not prompted,
ten students mentioned that they were interested in learning
more about computer programming and teach it in their future
classes. Three students thought coding would help K-12 stu-
dents to learn other subjects such as math.

Results of the post-module survey showed that students’
perception of this flipped learning experience was very posi-
tive on average (Table 3). This finding was well supported by
their qualitative answers in the survey. Six students provided
qualitative comments in the post-module survey. Among
them, four described this learning experience as fun and inter-
esting experiences. One of them said that this was one of her

favorite modules in the course. One student shared a mixed
feeling, saying that it was hard but very interesting and fun.
Only one student provided negative comments, “I actually
found it confusing myself, so I can imagine that for young
students.”

The course instructor’s observation supported that students
did not have much difficulty in using Hopscotch. One online
discussion forum was created for students’ questions.
Nonetheless, no one asked questions or showed any confu-
sions of Hopscotch programming. In the in-class session,
when students were asked if they had any confusions or ques-
tions regarding the first quiz after the team discussion, all
students shook their heads. During the application practice,
no students asked questions on where to find a button or what
block to use under a specific condition, meaning that they
knew how to code in Hopscotch. Instead, all pairs were ac-
tively engaged in discussions and coding. Often, one student
coded in Hopscotch while the other peer observed and offered
suggestions. When they could not proceed, both students
worked on their iPads and explored different solutions until
they found one and shared with the other.

However, the course instructor noticed that although stu-
dents had about 45 min to create a new idiom story or recreate
the demonstrated story, no groups finished it when the class
was over. As shown in Fig. 5, the demonstrated story had three
objects: the texts, the bull, and the china. It meant that students
need to develop coding for each object. Students were
prompted to draw a flowchart for each object to help the cod-
ing. Nevertheless, most student pairs drew one flowchart in
the form of a storyline and then started coding immediately
without further referencing the flowchart (Fig. 6). In doing
this, groups were involved in the trial and error coding
process. Although they were able to complete the coding
of one object: the bull, they did not code the actions of the
other two objects: texts and china. When prompted, stu-
dents began the coding of the other two objects in
Hopscotch without planning it in the flowchart or any
other visual forms. Then it became another trial and error
loop. As a result, the reflective discussion had to be can-
celled due to the time shortage.

Table 2 20 most frequent words representing students’ beginning,
middle, and end of the learning experiences

Frequency Rank Beginning Middle End

1 Confused Able Excited

2 Interesting Confident Enjoyed

3 Long Interesting Future

4 Slow Better Learned

5 Wanted Different Liked

6 Excited Adjusting Fun

7 Hard Attention Able

8 New Code Confident

9 Unfamiliar Comfortable Knew

10 Worried Confused Loved

11 Adventure Difficult New

12 Clueless Easy Playing

13 Complicated Enjoy Engaged

14 Curious Frustrating Interesting

15 Different Fun Understood

16 Eager Helpful Wanted

17 Intimidating Intrigued Accomplished

18 Lost Obstacle Appealing

19 Fun Practice Beneficial

20 Thrilled Prefer Curious

TechTrends (2020) 64:17–28 23

Fig. 4 Students’ attitude toward CT at the beginning (left), middle (middle), and end (right) of online learning

Discussions and Implications

Results of this first iteration were inspiring. Pre-service
teachers in this class were either females and/or African
Americans, who have been identified as underrepresented
groups in pursuing CS or other STEM careers (NCES 2018;
Williams 2017). Their success in CS/CT teaching would set
up role models that inspires underrepresented students in K-8
schools to study CS (Buschor et al. 2013). Most of the pre-
service teachers in this class did not have any coding experi-
ences except one. Thus, they expressed confusions, anxiety,
and resistance, while a couple of them showed curiosity at the
beginning stage. As they paced along with the step-by-step
instructions in the online module, their resistance and anxiety
were reduced. They became interested in learning and prac-
ticing the coding activities.

Miles et al. (2017) found that team quizzes scored higher
than individual quizzes due to the collective intelligence in-
volved in the team discussion of Team-based Learning.

Hence, what reflected individual students’ growth in our study
was their differences in the first and third quizzes. Results of
the knowledge quizzes showed a significant growth of stu-
dents’ CS/CT knowledge and skill before and at the end of
the in-class session, which supported findings from other stud-
ies (Chang and Peterson 2018; Yadav et al. 2011). Students’
overall perception of their flipped learning experience was
positive. These findings suggested that different instructional
methods were orchestrated successfully in this module. The
flipped learning module enabled students to pace their initial
conceptual learning in CT and coding. The online module
provided explicit and step-by-step instructions to guide stu-
dents to understand and practice the coding. The in-class ses-
sion engaged students in collaborative learning activities. The
instructor’s observation showed that students were actively
engaged in pair programming in the application activity.
Team-Based Learning was an effective method to ensure stu-
dents’ readiness. The in-class readiness assurance activities,
including tests and team discussion, offered a second

Table 3 Descriptive statistics of
students’ perception of their
flipped learning experience (N =
15)

Min Max Mean SD

I enjoy the learning activities. 4 5 4.73 .46

I learn better in a team setting. 3 5 4.47 .74

I think the learning activities are an effective approach to learning. 3 5 4.60 .63

The learning activities are fun. 4 5 4.67 .49

I have a positive attitude towards this learning module. 4 5 4.67 .49

I have had a good experience with this learning module. 4 5 4.67 .49

24 TechTrends (2020) 64:17–28

Fig. 5 A sample of the flowchart that helps students’ coding

opportunity for students to strengthen their understanding of
CT and Hopscotch coding. Thus, it prepared them for the
upcoming learning activity at a higher cognitive level.

The embedded video tutorials in Hopscotch were helpful.
They not only explained the basic CT concepts but also dem-
onstrated their application in the development of digital stories
or games. These tutorials were critical in taking students out of
their comfort zone and working on a new subject area that
they did not know or even resist to learn. However, a lot of
K-12 schools had a Bring-Your-Own-Device policy.
Therefore, in our next iteration, we may switch a program that
is available on all major operating systems. Regardless of
which program is chosen for the course, tutorials need to suf-
fice the following requirements: 1) Each clip is short and
focuses on one CT or coding concept; and 2) It is better to
make each tutorial clip the production of a digital story or a
game to engage learners.

A couple of changes for the next iteration were proposed
based on researchers’ observations and analyses results. First,
a couple of coding practices will be added to the online mod-
ule. These practices will be small scale and easy to finish. The
purpose of these practices was to engage students in practicing
their skills and fostering their positive attitude toward coding.
Meanwhile, the practices will help students to be skillful in
coding the in-class projects.

Second, students need a sustained scaffolding in their prac-
tice. Similar to Chang and Peterson’s (1) study, students in our
study felt positive towards the end of their online learning
experience when given the freedom to explore Hopscotch in
the onlinemodule. However, during the in-class application or
problem-solving, students had difficulty in completing the

demonstrated story on their own even after the instructor
walked through the steps with the class. Therefore, we pro-
pose the following changes in future iterations: 1). A step-by-
step scaffolding should be offered in the in-class practice.
Although students learned CT concepts and played with
Hopscotch in the online module, their knowledge and skills
were segmented. The in-class practice was the first time when
they pulled them together systematically. Thus, scaffolding
would help them to build their first coding scheme. 2). Our
observation showed that students went directly into coding
without any planning. They were not used to utilizing the
flowchart to design the coding. As a result, their coding pro-
cess followed the pattern of trial and error, which was time-
consuming. So in future iterations, students will be trained to
design the coding from what they feel comfortable with: the
storyboard. Then students will learn to convert storyboards to
flowcharts. 3). Students’ difficulty in the practice was proba-
bly due to the fact that the story involved more than one
object, which was challenging for them to handle as their first
hands-on project. It should start with a simple storytelling
project, such as a story with only one object. When students
successfully code a one-object project, the difficulty of the
following projects may increase. In consideration of the time
limit of an in-class session, the complicated project may occur
at the beginning of the second session. Thereafter, students
will join in a class discussion on the integration of CS/CT in
the teaching of different subject areas. A take-home project
will be the development of a CS/CT lesson plan. Therefore,
two weeks is proposed for this module to be integrated into an
educational technology course in future iterations (Fig. 7).

Our study demonstrated the potentials of integrating a CT
module into an educational technology course as suggested by
the literature (Chang and Peterson 2018; Yadav et al. 2011).
This study also addressed another question emerged in the
literature. The flipped module in our study took one week
and an additional 75 min. Considering students’ near-zero
background in CS/CT, the time and format of flipped module
seemed to be appropriate to improve their CT understanding
as shown in prior studies (Chang and Peterson 2018; Yadav
et al. 2011). However, this time length was not enough for
students to work out a specific CTapplication in coding, need-
less to say, the development of lesson ideas. In addition, re-
sults of our study failed to provide strong and solid evidence
that the short exposure improved students’ attitudes or self-
efficacy, which was inconsistent with findings from Bean
et al.’s (2015) study.

We suggest that teacher educators consider integrating a
CT module in the stand-alone education technology courses
in their teacher education programs. This module should be
both standards-based and content area specific. However, one
module is not enough. Teacher educators should also collab-
orate to integrate standards-based content area specific CT
projects into the methods courses so that pre-service teachers

TechTrends (2020) 64:17–28 25

Fig. 6 A sample of students’ initial flowchart

will have more exposure and training on how to integrate CT
into various content areas. A CT course especially designed
for pre-service teachers that is both standards-based and con-
tent area specific is also a promising strategy. Future research
should investigate the effectiveness of these approaches.

Limitations

The sample size in this study was small, which restricted the
generalizability of the results. A large sample is needed in
future studies to verify pre-service teachers’ growth of CS/
CT conceptual understanding and skills as well as their
attitudes.

Due to the time limit, we did not have an in-class reflection
on CS/CT integration in subject areas. As a result, we were not
able to compare students’ reflections in the online module
with those from the in-class session. Future studies shall in-
clude this comparison, which will help to detect the impact of
the in-class session from students’ qualitative perceptions.

Conclusion

In this design-based research, we embedded a flipped learning
module in an educational technology course to teach pre-
service teachers CS/CT concepts and integration. Results of
the mixed-method analysis showed that a CS/CT flipped mod-
ule embedded in an educational technology course had the
potential of improving pre-service teachers’CTunderstanding

and probably some attitudes. In the in-class session, the read-
iness assurance activities improved students’ understanding of
CTand coding. Students enjoyed collaborative learning activ-
ities. However, the instructor’s observation found students’
learning challenge in completing the coding of the class pro-
ject. We proposed a revised module framework to better scaf-
fold students’ CT learning for future iterations.

Compliance with Ethical Standards

Conflict of Interest The authors declare that they have no conflict of
interest.

Ethical Approval All procedures performed in studies involving human
participants were in accordance with the ethical standards of the institu-
tional and/or national research committee and with the 1964 Helsinki
declaration and its later amendments or comparable ethical standards.
This article does not contain any studies with animals performed by any
of the authors.

References

2018 state of Computer Science education: Policy and implementation.
(2019). Code.org Advocacy Coalition & Computer Science
Teachers Association. Retrieved from https://code.org/files/2018_
state_of_cs.pdf. Accessed 10 Jan 2019.

Abeysekera, L., & Dawson, P. (2014). Motivation and cognitive load in
the flipped classroom: Definition, rationale and a call for research.
Higher Education Research & Development, 34(1), 1–14. https://
doi.org/10.1080/07294360.2014.934336.

Amiri, F. (2000). IT-literacy for language teachers: Should it include
computer programming? System, 28(1), 77–84.

Fig. 7 Proposed design for future
iterations

26 TechTrends (2020) 64:17–28

https://code.org/files/2018_state_of_cs.pdf
https://code.org/files/2018_state_of_cs.pdf
https://doi.org/10.1080/07294360.2014.934336
https://doi.org/10.1080/07294360.2014.934336

Balanskat, A., & Engelhardt, K. (2015). Computing our future:
Computer programming and coding - priorities, school cur-
ricula and initiatives across Europe. European Schoolnet:
Brussels, Belgium.

Barab, S., & Squire, K. (2004). Design-based research: Putting a
stake in the ground. The Journal of the Learning Sciences,
13(1), 1–14.

Bean, N., Weese, J., Feldhausen, R., & Bell, R. S. (2015). Starting from
scratch: Developing a pre-service teacher training program in com-
putational thinking. Paper presented at the 2015 IEEE Frontiers in
Education Conference (FIE).

Buitrago Flórez, F., Casallas, R., Hernández, M., Reyes, A., Restrepo, S.,
& Danies, G. (2017). Changing a generation’s way of thinking:
Teaching computational thinking through programming. Review of
Educational Research, 87(4), 834–860. https://doi.org/10.3102/
0034654317710096.

Buschor, C. B., Berweger, S., Frei, A. K., & Kappler, C. (2013). Majoring
in STEM-what accounts for women's career decision making? A
mixed methods study. The Journal of Educational Research,
107(3), 167–176. https://doi.org/10.1080/00220671.2013.788989.

Cetin, I. (2016). Preservice teachers’ introduction to computing:
Exploring utilization of scratch. Journal of Educational
Computing Research, 54(7), 997–1021. https://doi.org/10.1177/
0735633116642774.

Chang, Y. H., & Peterson, L. (2018). Pre-service teachers’ perceptions of
computational thinking. Journal of Technology and Teacher
Education, 26(3), 353–374.

Enfield, J. (2013). Looking at the impact of the flipped classroom model
of instruction on undergraduate multimedia students at CSUN.
TechTrends, 57(6), 14–27.

Friday Institute for Educational Innovation. (2012). Teacher efficacy and
attitudes toward STEM survey. NC: Raleigh.

Funkhouser, B. J., & Mouza, C. (2013). Drawing on technology: An
investigation of preservice teacher beliefs in the context of an intro-
ductory educational technology course. Computers & Education,
62, 271–285. https://doi.org/10.1016/j.compedu.2012.11.005.

Grover, S., & Pea, R. (2013). Computational thinking in K–12.
Educational Researcher, 42(1), 38–43. https://doi.org/10.3102/
0013189X12463051.

Guzdial, M. (2011). Learning how to prepare computer science high
school teachers. Computer, 44(10), 95–97. https://doi.org/10.1109/
MC.2011.316.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of
computational thinking through programming: What is next for
K-12? Computers in Human Behavior, 41, 51–61. https://doi.org/
10.1016/j.chb.2014.09.012.

McDowell, C., Werner, L., Bullock, H. E., & Fernald, J. (2006). Pair
programming improves student retention, confidence, and program
quality. Communications of the ACM, 49(8), 90–95. https://doi.org/
10.1145/1145287.1145293.

Menekse, M. (2015). Computer science teacher professional develop-
ment in the United States: A review of studies published between
2004 and 2014. Computer Science Education, 25(4), 325–350.
https://doi.org/10.1080/08993408.2015.1111645.

Mennenga, H. A. (2012). Development and psychometric testing of the
team-based learning student assessment instrument. Nurse
Educator, 37(4), 168–172. https://doi.org/10.1097/NNE.
0b013e31825a87cc.

Mentz, E., van der Walt, J. L., & Goosen, L. (2008). The effect of incor-
porating cooperative learning principles in pair programming for
student teachers. Computer Science Education, 18(4), 247–260.
https://doi.org/10.1080/08993400802461396.

Michaelsen, L. K., Knight, A. B., & Fink, L. D. (2002). Team-based
learning: A transformative use of small groups in college teaching.
Westport: Praeger.

Miles, J. M., Larson, K. L., & Swanson, M. (2017). Team-based learning
in a community health nursing course: Improving academic out-
comes. Journal of Nursing Education, 56(7), 425–429. https://doi.
org/10.3928/01484834-20170619-07.

Miller, R. G. (1981). Simultaneous statistical inference. New York:
Springer-Verlag.

Mouza, C., Yang, H., Pan, Y.-C., Yilmaz Ozden, S., & Pollock, L. (2017).
Resetting educational technology coursework for pre-service
teachers: A computational thinking approach to the development
of technological pedagogical content knowledge (TPACK).
Australasian Journal of Educational Technology, 33(3), 61–76.
https://doi.org/10.14742/ajet.3521.

NCES. (2018). Number and percentage distribution of science, technol-
ogy, engineering, and mathematics (STEM) degrees/certificates
conferred by postsecondary institutions, by race/ethnicity, level of
degree/certificate, and sex of student: 2008–09 through 2016–17.
National Center for Education Statistics. Retrieved from https://
nces.ed.gov/programs/digest/d18/tables/dt18_318.45.asp?current=
yes

O'Neill, M. M., Booth, S. R., & Lamb, J. T. (2018). Using NVivo™ for
literature reviews: The eight step pedagogy (N7+1). The Qualitative
Report, 23(13), 21–39.

Papert, S. (1980).Mindstorms: Children, computers, and powerful ideas.
New York: Basic Books.

Peterson, L., & Scharber, C. (2017). Learning about makerspaces:
Professional development with K-12 inservice educators. Journal
of Digital Learning in Teacher Education, 34(1), 43–52. https://
doi.org/10.1080/21532974.2017.1387833.

Promote Computer Science. (2019). Retrieved from https://code.org/
promote

Qualls, J. A., & Sherrell, L. (2010). Why computational thinking should
be integrated into the curriculum. Journal of Computing Sciences in
Colleges, 25, 66–71.

Reimann, P. (2013). Design-based research. In R. Luckin, S.
Puntambekar, P. Goodyear, B. L. Grabowski, J. Underwood, & N.
Winters (Eds.),Handbook of Design in Educational Technology (pp.
37–50). New York: NY: Routledge.

Rich, P. J., Jones, B., Belikov, O., Yoshikawa, E., & Perkins, M. (2017).
Computing and engineering in elementary school: The effect of
year-long training on elementary teacher self-efficacy and beliefs
about teaching computing and engineering. International Journal
of Computer Science Education in Schools, 1(1). https://doi.org/
10.21585/ijcses.v1i1.6.

Rich, P. J., Browning, S. F., Perkins, M., Shoop, T., Yoshikawa, E., &
Belikov, O. M. (2018). Coding in K-8: International trends in teach-
ing elementary/primary computing. TechTrends, 1–19. https://doi.
org/10.1007/s11528-018-0295-4.

Wetzel, K., Foulger, T. S., &Williams,M. K. (2008). The evolution of the
required educational technology course. Journal of Computing in
Teacher Education, 25(2), 67–71.

Williams, T. (2017). What happened to women in Computer Science?
Retrieved from https://www.goodcall.com/news/women-in-
computer-science-09821. Accessed 10 Jan 2019.

Williams, L. A., & Kessler, R. R. (2001). Experiments with industry's
“pair-programming” model in the computer Science classroom.
Computer Science Education, 11(1), 7–20. https://doi.org/10.1076/
csed.11.1.7.3846.

Wing, J. M. (2006). Computational thinking. Communications of the
ACM, 49(3), 33–35.

Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S., & Korb, J. T. (2011).
Introducing computational thinking in education courses. Paper pre-
sented at the 42nd ACM technical symposium on computer science
education, Dallas.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014).
Computational thinking in elementary and secondary teacher

TechTrends (2020) 64:17–28 27

https://doi.org/10.3102/0034654317710096
https://doi.org/10.3102/0034654317710096
https://doi.org/10.1080/00220671.2013.788989
https://doi.org/10.1177/0735633116642774
https://doi.org/10.1177/0735633116642774
https://doi.org/10.1016/j.compedu.2012.11.005
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.1109/MC.2011.316
https://doi.org/10.1109/MC.2011.316
https://doi.org/10.1016/j.chb.2014.09.012
https://doi.org/10.1016/j.chb.2014.09.012
https://doi.org/10.1145/1145287.1145293
https://doi.org/10.1145/1145287.1145293
https://doi.org/10.1080/08993408.2015.1111645
https://doi.org/10.1097/NNE.0b013e31825a87cc
https://doi.org/10.1097/NNE.0b013e31825a87cc
https://doi.org/10.1080/08993400802461396
https://doi.org/10.3928/01484834-20170619-07
https://doi.org/10.3928/01484834-20170619-07
https://doi.org/10.14742/ajet.3521
https://nces.ed.gov/programs/digest/d18/tables/dt18_318.45.asp?current=yes
https://nces.ed.gov/programs/digest/d18/tables/dt18_318.45.asp?current=yes
https://nces.ed.gov/programs/digest/d18/tables/dt18_318.45.asp?current=yes
https://doi.org/10.1080/21532974.2017.1387833
https://doi.org/10.1080/21532974.2017.1387833
https://code.org/promote
https://code.org/promote
https://doi.org/10.21585/ijcses.v1i1.6
https://doi.org/10.21585/ijcses.v1i1.6
https://doi.org/10.1007/s11528-018-0295-4
https://doi.org/10.1007/s11528-018-0295-4
https://www.goodcall.com/news/women-in-computer-science-09821
https://www.goodcall.com/news/women-in-computer-science-09821
https://doi.org/10.1076/csed.11.1.7.3846
https://doi.org/10.1076/csed.11.1.7.3846

education. ACM Transactions on Computing Education, 14(1), 1–
16. https://doi.org/10.1145/2576872.

Yadav, A., Gretter, S., Good, J., & McLean, T. (2017a). Computational
thinking in teacher education. In P. Rich & C. B. Hodges (Eds.),
Emerging research, practice, and policy on computational thinking
(pp. 205–220). Cham: Springer.

Yadav, A., Stephenson, C., & Hong, H. (2017b). Computational thinking
for teacher education. Communications of the ACM, 60(4), 55–62.
https://doi.org/10.1145/2994591.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

28 TechTrends (2020) 64:17–28

https://doi.org/10.1145/2576872
https://doi.org/10.1145/2994591

	Hopscotch into Coding: Introducing Pre-Service Teachers Computational Thinking
	Abstract
	Introduction
	Literature Review
	CS/CT Teacher Education in the U.S
	Efforts to Introduce K-8 Pre-Service Teachers CS/CT

	Research Questions
	Class Structure
	Participants
	Learning Module Design
	Methods
	Data Collection
	Data Analysis

	Results
	Discussions and Implications
	Limitations
	Conclusion
	References

