
ORIGINAL PAPER

Computational What? Relating Computational Thinking to Teaching

Ugur Kale1 & Mete Akcaoglu2
& Theresa Cullen3

& Debbie Goh4
& Leah Devine5

& Nathan Calvert6 & Kara Grise7

Published online: 18 April 2018
Association for Educational Communications & Technology 2018

Abstract
Computational thinking is one of the skills critical for successfully solving problems posed in a technology driven and complex
society. The limited opportunities in school settings to help students develop computational thinking skills underscores the need
for helping teachers integrate it in their practices. Besides developing the knowledge of technology, content, and pedagogy,
teachers need to recognize the relevance of computational thinking to their teaching, a factor influencing their future practice with
it. Drawing from the literature on problem-solving and TPACK framework, this paper discusses strategies, including content-
specific examples, problem-solving nature of computational thinking, and the methods of teaching problem-solving for enabling
teachers to make the connections between computational thinking and their practices.

Keywords Computational thinking . Problem solving, teacher education

Background

Computational thinking is a means to understand and solve
complex problems through using computer science concepts
and techniques (Wing 2008) such as decomposition, pattern
recognition, abstraction, and algorithms (Grover and Pea
2013). As it may relate to individuals’ abilities to use technology
in everyday life, computational thinking becomes even more
critical to be successful in society. The World Economic
Forum predicts a loss of 7.1 million jobs by 2020 as robots
and automation displace jobs across industries and geographic
regions. At the same time, there will be 2.1 million new jobs
created in the areas of computing, math, architecture, and engi-
neering (The Fourth Industrial Revolution n.d.). The rapid

change in skills requirements across all jobs underscores the
urgency of developing computational thinking and code literacy
in our children to future-proof them for an economy and society
that run on complex computing technologies such as artificial
intelligence, robotics, the Internet of Things, and analytics.

As noted above, problem solving is the essential skill under-
lying computational thinking, and it is perhaps the most impor-
tant skill differentiating humans (van Merriënboer 2013). Given
the problemswe face increase in complexity, the new generation
of learners are ever more required to have the abilities to solve
complex and dynamic problems (Sonnleitner et al. 2014). This
makes it essential that schools and teachers work to support
teaching of such skills to young children (Greiff et al. 2014;
Sonnleitner et al. 2014). Unfortunately, however, formal

* Ugur Kale
ugur.kale@mail.wvu.edu

Mete Akcaoglu
makcaoglu@georgiasouthern.edu

Theresa Cullen
tacullen@ou.edu

Debbie Goh
debbiegoh67@gmail.com

Leah Devine
ldevine@k12.wv.us

Nathan Calvert
ghostyroastytoasty@gmail.com

Kara Grise
kgrise13@gmail.com

1 Learning Sciences and Human Development Department, West
Virginia University, 504-F Allen Hall, PO Box 6122,
Morgantown, WV 26505, USA

2 Georgia Southern University, Statesboro, GA, USA

3 University of Oklahoma, Norman, OK, USA

4 California University of Pennsylvania, California, PA, USA

5 West Virginia Virtual Schools, Charleston, WV, USA

6 Hollywood Elementary School, Hollywood, MD, USA

7 Mercyhurst Preparatory School, Erie, PA, USA

TechTrends (2018) 62:574–584
https://doi.org/10.1007/s11528-018-0290-9

http://crossmark.crossref.org/dialog/?doi=10.1007/s11528-018-0290-9&domain=pdf
http://orcid.org/0000-0003-2286-5251
mailto:ugur.kale@mail.wvu.edu

schooling is often far from teaching students the necessary skills
to solve complex problems of real life (Authors 2016; Resnick
1987). This is also indicated by the results of recent findings
from the Programme for the International Assessment of Adult
Competencies (Rampey et al. 2016): adults in the United States
performed lowest, in comparison to adults ages 16–65, in sev-
enteen other nations in their ability to engage in problem-solving
in technology rich environments.

Efforts to address the need for promoting problem-solving
and computational thinking skills in today’s complex computing
society are also reflected in recent initiatives by the U.S.
Government and Department of Education, such as Digital
Promise, MakerEd, and BNation of Makers^ movement by the
White House. For example, in 2016, President Obama launched
theComputer Science for All initiative to fund computer science
education in schools so that American students could formally
learn computer science and acquire computational thinking
skills. The National Science Foundation (NSF) is also investing
$120 million over the next five years to promote computer sci-
ence education in school curricula nationwide.

Such initiatives built on the earlier research and development
projects, however, mostly targeted large and affluent school dis-
tricts in big cities (Guzdial 2016) and are more unique than
common in the current public education system. In schools,
competing curriculum priorities and lack of funds still limit the
opportunities for teachers to learn how to teach computer sci-
ence concepts and computational thinking in their classrooms
(Google Inc. and Gallup Inc. 2016). Time constraints and a need
for teachers to focus on increasing their content knowledge is
also likely to make them hesitant to learn a new field.

A consequence of the above factors is that students in class-
rooms will have limited opportunities to gain computational
thinking skills. Limited participation in the fields of STEM
and computing will even widen the existing inequalities in
the transition into a complex computing-based society with
women and those in developing or underdeveloped settings
most at risks of falling behind. More opportunities are, thus,
essential in schools to enable teachers and students to practice
computational thinking. While the increasing number of com-
puter science classes focusing on computer programming can
be promising (Google Inc. and Gallup Inc. 2016), teachers
need to know more than how to code in order to integrate
computational thinking in their teaching. Teachers must be
shown how computational thinking can enhance their teach-
ing and their students’ understanding of their content area.

Teaching Computational Thinking

Successful integration of a technological innovation in teach-
ing requires a nuanced understanding of not only technology,
but also the content (what to teach) and pedagogy (how to
teach) (Mishra and Koehler 2006), which is referred to as

Technological Pedagogical Content Knowledge (TPACK).
Accordingly, teaching computational thinking should entail
the knowledge of using computational thinking tools (technol-
ogy), knowing which instructional strategies to use to teach
computational thinking and the subject matter (pedagogy),
and understanding of computational thinking and the subject
matter (content). Findings from a survey study with 636 com-
puter science teachers in Greece (Giannakos et al. 2015) indi-
cated that even though teachers rated their content, pedagog-
ical, and technological knowledge individually high, their un-
derstanding of technology in relation to teaching computer
science concepts was rather limited. In other words, knowing
technology and content did not translate to knowing how to
use technology to teach the content.

Not being able to relate the affordances of technology to the
teaching of specific content would be even more problematic
when it comes to promoting computational thinking in other
subjects because teachers would need not only to become
knowledgeable of the subject they teach but also to understand
computer science concepts. For instance, to help students de-
velop computational thinking in a science course, teachers
may engage their students in creating a simulation of an eco-
system. Besides the understanding of the ecosystem, they
would need to develop an algorithm and define variables to
represent the interactions among its inhabitants. To develop
the simulations, they would also need to operationalize the
algorithm in the programming environment.

While such various kinds of knowledge and understanding
are essential to a well-developed TPACK for promoting com-
putational thinking, teaching with technological innovations
requires the belief that these innovations are beneficial for
teaching and learning (Ertmer et al. 2012). Teachers need to
recognize the educational value of computational thinking re-
garding how it connects to their own teaching. Defined as the
degree to which a task is Buseful or relevant for other tasks or
aspects of an individual’s life^ (Hulleman et al. 2010, p.881),
utility value influences the perception of meaningfulness that
shows the individual how the content connects to its applica-
tion. Value perceptions are good predictors of future success
and engagement (Hulleman et al. 2010). As such, recognizing
the utility value of computational thinking is essential to
teachers’ interest in future practices with it.

Existing initiatives on computational thinking emphasize
coding skills in computer science classes. For instance, as part
of the national CS4All efforts, computer science tends to be
taught as a standalone subject (Herold 2017), as opposed to
being integrated in other subjects (Google Inc. and Gallup Inc.
2016). A sole programming focus of such practices may not
be perceived relevant to all teachers who teach various content
areas. Without recognizing what computational thinking may
mean in their classrooms regarding technology use, content
learning, and pedagogical approaches, teachers may find it
meaningless, and consequently become reluctant to teach it.

TechTrends (2018) 62:574–584 575

As observed in a recent research project surveying over three
thousand primary school teachers in Italy, the teachers had an
incomplete conception about computational thinking
(Corradini et al. 2017).

The purpose of this paper is to discusses strategies for en-
abling teachers to make the connections between computa-
tional thinking and their teaching. Specifically, we argue that
(a) reviewing content-specific examples of computational
thinking tools, (b) recognizing the problem-solving nature of
computational thinking processes and identifying the kinds of
knowledge to support computational thinking, and (c) apply-
ing methods of teaching problem-solving to promote compu-
tational thinking can help teachers recognize the educational
value of computational thinking and connect it to their own
teaching. In the next sections, we will discuss each strategy for
such connections depicted in Fig. 1.

Content-Specific Computational Thinking Tools

The content focus in teacher professional development has
been observed to be one of the key factors enabling teachers
to transfer their newly gained knowledge to classroom settings
(Garet et al. 2001). However, professional development pro-
grams to support teachers’ knowledge and skills of integrating
technologies tend to focus on tools and pedagogy in isolation
from content (Goh and Kale 2015). Further, using computa-
tional thinking in teaching other subjects besides program-
ming has been underexplored (Grover and Pea 2013). Thus,
an explicit connection of computational thinking technology
to content areas of teaching is an essential step toward helping
teachers recognize its relevance to their practices.

In 2016, the International Society for Technology in
Education (ISTE) included computational thinking as one of
its seven standards for students. These standards are accepted

across the United States and reflect the growing inclusion of
coding and computational thinking in schools (ISTE 2016).
As a means to help promote computational thinking in K12
settings, ISTE and the Computer Science Teachers
Association (CSTA) collaborated to identify ideas and
examples of what computational thinking concepts and
processes may look like in activities across various content
areas. Barr and Stephenson (2011) outlined the results of these
efforts, a simplified version of which is shown in Table 1.

While such classifications are useful to identify content-
specific activities, technologies to foster computational thinking
in the different subjects requires selection. Tools that are easy to
use but also powerful enough to produce sophisticated algo-
rithms are considered ideal such as Alice, Scratch, or Kodu,
which help learners focus on designing through graphical pro-
gramming while avoiding issues with coding syntax (Grover
and Pea 2013). On the other hand, how such tools can benefit
students’ content learning beyond coding skills is still necessary.

In a semester-long recent workshop provided on computa-
tional thinking through Kodu, teacher candidates tended to
focus on the coding aspects while having difficulties in
connecting computational thinking to the content area that
they teach (Authors 2016). In another professional develop-
ment program on computational thinking through Scratch,
only less than half of the participant teachers highlighted the
content learning they helped facilitate in their classrooms
(Duncan et al. 2017). Developing projects samples or
prompting teachers to search ones specific to their content
areas can be a useful strategy to avoid such issues. For in-
stance, the ScratchED website (Scratch n.d.-a, -b) – an online
community of parents, teachers, and students using Scratch,
hosts sample projects, lessons, and relevant materials, which
can be searched according to the grade levels, material types,
and content areas.

Besides finding such resources to get lesson ideas, the abil-
ity to remix existing projects or to modify their scripts allows
for making versions that can be tailored to specific lessons.
According to Scratch user statistics (Scratch, n.d.-a, -b), in the
first two months of 2017, around 500,000 projects were
remixed and over 1,000,000 new projects were created, which
is a promising trend for exchanging and creating lessons in
various content areas that incorporate the use of computational
thinking tools.

Problem-Solving Nature of Computational Thinking

Another key component of helping teachers connect compu-
tational thinking to their teaching practices is to help them
recognize its problem-solving nature. Computational thinking
is more than just computer programming: it involves both
constructing and analyzing processes (Wing 2008). Through
creating and presenting solutions to given situations, it en-
gages students consciously in making artifacts (e.g., designFig. 1 Connecting CT with current practices

576 TechTrends (2018) 62:574–584

systems) in situated environments. As a computing process,
computational thinking starts with being confronted by prob-
lems, the solution to which involves decomposition, pattern
recognition, abstraction, automation, algorithms, and analysis
(Barr et al. 2011; Grover and Pea 2013; Wing 2008). These
processes mirror the components of problem-solving, namely
understanding and representing, planning and monitoring, ex-
ecuting, self-regulation (Mayer and Wittrock 2006; OECD
2003). Table 2 compares the processes involved in computa-
tional thinking and problem-solving.

By recognizing the problem-solving nature of computa-
tional thinking (Voogt et al. 2015), teachers can focus on
problematizing their content for students to Bsolve^, and de-
termine the problem-solving processes needed to facilitate
their computational thinking. Given the similarities between
both processes, the kinds of knowledge required and the
methods to facilitate computational thinking should benefit
from those for teaching problem-solving. In other words, the
knowledge base on how to teach problem-solving can inform
the pedagogy for how to teach computational thinking.

Knowledge for Problem-Solving to Support
Computational Thinking

Based on research on problem-solving, Mayer and Wittrock
(2006) identified the kinds of knowledge to support the cog-
nitive processes required for solving problems. These

included (a) Factual/Conceptual, (b) Strategic, (c)
Procedural, and (d) Metacognitive knowledge.

Factual knowledge refers to knowledge of facts such as
Bthere are twelve months in a year^, and conceptual knowl-
edge involves knowledge of concepts, their classifications,
and relations such as knowing how raindrops form (Mayer
and Wittrock 2006). Facts and concepts provide the knowl-
edge needed to understand and represent a given problem.
Strategic knowledge is the knowledge of general methods
regarding how to approach or decompose a problem such as
synthesizing articles to identify the key ideas (Mayer and
Wittrock 2006). Strategic knowledge is essential to planning
and monitoring solutions to a given problem. Procedural
knowledge is about knowing a set of particular procedures
for how to do or complete a task, such as the steps to follow
in order to change a tire or do long division (Mayer and
Wittrock 2006). Procedural knowledge helps carry out the
planned solutions (Execution) in the problem-solving process.
Metacognitive knowledge, on the other hand, refers to the
awareness of one’s own thinking process such as BI don’t
know how to move to the next step.^ Self-regulation in the
problem-solving process mostly depends on metacognitive
knowledge (Mayer and Wittrock 2006). Given the problem-
solving nature of computational thinking as depicted in
Table 2, these kinds of knowledge may also be needed to
support the processes involved in computational thinking
(See Fig. 2).

Table 1 * Examples of computational thinking processes in various content areas

CT processes Mathematics Science Language arts

Decomposition Apply order of operations in an expression Do a species classification Write an outline

Pattern recognition Use histogram, pie chart, bar chart to find patterns Identify patterns in experiment data Represent patterns of different sentences

Abstraction Identify underlying structures in a word problem Build a model of a physical entity Write a story with branches

Algorithm Do long division and factoring Do an experimental procedure Write instructions

Automation Use excel or star logo Use probeware Use a spell checker

* See Barr and Stephenson’s work (2011) for other domains and CT concepts

Table 2 Comparison of problem solving and computational thinking

Problem-solving Computational thinking

Understand a situation, information, main
features/mechanism

Understand &
Represent

Confrontation Define and understand a problem encountered

Identify constraints, parts, variables, relations Plan & Monitor Decomposition Logically break it down into smaller parts

Pattern recognition Identify patterns among the smaller parts

Represent alternatives, relations, functions, Abstraction Filter out details and identify underlying
characteristics or rules

Propose

Carry out planned operations Execute Algorithm/
Automation

Generate and automate steps to solve the problem

Check & reflect on the decision, analysis
& design, diagnosis/solution

Self-regulate Analysis Analyze possible solutions Test/debug/troubleshoot

Analyze the appropriateness of the abstractions made

TechTrends (2018) 62:574–584 577

Teaching Problem-Solving to Facilitate
Computational Thinking

Mayer and Wittrock (1996, 2006) outlined instructional
methods that develop the kinds of knowledge that facilitate
problem-solving processes, which can also benefit computa-
tional thinking (Akcaoglu 2014). These include Load-reduc-
ing, Schema-activation, Structured-based, Generative,
Guided-discovery, Modeling, and Teaching Thinking Skills.
Below, we described these strategies in details and provided
examples for each to demonstrate the connections made be-
tween teaching problem solving and students’ computational
thinking. The examples came from the classrooms of three of
the authors, who are currently K12 teachers. They specifically
developed and implemented learning activities in various con-
tent areas including Spanish, geometry, and financial literacy
as part of a graduate level course focusing on Scratch as a
learning tool and problem solving as a teaching method for
promoting computational thinking.

Load-Reducing Load-reducing methods focus on preventing
working memory from being overloaded to facilitate informa-
tion processing during problem-solving. These methods in-
volve both automaticity and constraint removal strategies to
help develop the procedural knowledge (Mayer and Wittrock
2006). Automaticity encompasses the teaching of specific
low-level component cognitive skills pertaining to a task so
that in ensuing tasks, more effort can be placed upon execut-
ing higher-level problem-solving skills (Samuels 1979). For
instance, students who practice the basics of coding skills
enough would then need to pay little attention to it and focus
more on the planning and execution of their solutions during
programming. In constraint removal strategy, the goal is to
remove constraints in the problem space to ease the process
of new knowledge acquisition during the process of problem-
solving. The goal is to Bcreate problem skills tasks that do not
require attention demanding tasks^ (Mayer and Wittrock

2006, p.292). By using visual coding programs, students
would not need to worry about syntaxes in text-based
programing.

Example in Spanish Designed for upper middle school stu-
dents (7th–8th graders), this activity is contextualized within
reading and writing in Spanish. The main learning outcome
for students is to read and understand basic Spanish words,
and to create interactive learning games in Spanish by using
Scratch. The activity starts with reviewing Spanish commands
in Scratch. Then, students play an interactive game that re-
quires written input in Spanish to Btravel^ to Spanish speaking
countries and answer trivia questions to earn points, which is
followed by the creation of students’ own interactive games.

Remixing can serve as a load-reducing method in this ac-
tivity helping the algorithm process of computational think-
ing. For instance, instead of creating a new Scratch project,
students remix the example interactive game created by the
teacher. To remix, they modify the existing codes in the algo-
rithm and observe the changes made as the game runs (See
Fig. 3). This process allows students to analyze and under-
stand the structure of the existing game, through which they
can see if the underlying model used fits with their own goals
in creating a new one.

Scheme-Activation Schema-activation methods focus on en-
abling learners to make sense of the new content by relating it
to their existing understanding (Mayer and Wittrock 2006),
and support the conceptual/factual knowledge. For instance,
advance organizers, diagrams, or graphic organizers (e.g.,
concept maps) can highlight the relationship among both the
familiar and unfamiliar concepts key to understanding and
representing a problem confronted (Jonassen 2004).
Through a chart that outlines the behavior of a system (e.g.,
a simulation or game), learners can identify the main elements
(decompose), their interactions, and conditions in which they
occur (pattern). Using analogies is another means to activate
schema, in which Blearners solve a new problem by using
what they know about a related problem that they can [al-
ready] solve^ (Mayer and Wittrock 1996, p.55). Using analo-
gous problems, students can find similarities in the underlying
structures in two separate problems that differ on the surface
(e.g., a predator-prey problem using rabbits and wolves vs.
using two imaginary alien species) (Gick and Holyoak 1980,
1983). During design tasks, analogies can be provided
through introducing scenarios that are different on the surface,
but essentially built on same underlying principles.

Example in Geometry Designed for 5th graders, this activity
focuses on two-dimensional shapes and their angles. Themain
learning outcome for students is to graph two dimensional
composite shapes on the coordinate plane by identifying the
number of lines and determining the angles of the basic

Fig. 2 Kinds of knowledge supporting problem solving and
computational thinking

578 TechTrends (2018) 62:574–584

shapes. The activity starts with plotting coordinates on a paper
grid to create basic shapes such as a square. This is followed
by a task to draw the same shape in Scratch, which requires
familiarization with its interface and identifying the necessary
commands such as Bpen down^ (to start drawing), and Bgo to
x:_ y:_^ (to start the drawing from specific coordinates),
Bmove:_ steps^ (to determine the distance to move forward)
Bturn: _ degrees^ (to change the direction of the movement),
and Brepeat^ (to automate the steps according to the number of
lines required).

Drawing shapes that students familiar with can activate
their schema, which would help make sense of the elements

of the problem confronted. For instance, the problem posed in
this activity is to draw a composite shape in the Scratch inter-
face such as a drawing of a simple house. A composite shape
consists of multiple basic shapes, which students may be fa-
miliar with drawing on paper. The major task becomes draw-
ing the similar shapes in Scratch interface through the neces-
sary commands (See Fig. 4).

Generative In generative methods, as the name suggests, stu-
dents are asked to generate (e.g., write out) connections be-
tween what they know and what they learned. This process is
believed to promote teaching for understanding (Mayer and

Fig. 3 Process of remixing an existing project

Fig. 4 Practice drawing on paper before scratch interface

TechTrends (2018) 62:574–584 579

Wittrock 2006). Although this sounds similar to schema acti-
vation, the focus here is rather on the learners generating the
connections as opposed to being presented ones. The genera-
tive methods support conceptual/factual knowledge by requir-
ing learners to explain the new information and how it is
related to what they already know (Linden and Wittrock
1981). For instance, when asked to describe the meaning of
a variable in familiar situations, learners may liken it to a
physical Bcontainer .̂ These methods also support
metacognitive knowledge by engaging learners in a self-
explanation process (Wittrock 1989, 1991). For instance,
prompting learners to explain or take notes for themselves
regarding the set of coding they develop for a given task can
enable them to analyze their own problem-solving processes.

Example in Financial Literacy The activity, part of an 11th
grade financial planning course, focuses on stock price fac-
tors. The main learning outcome for students is to define and
calculate stock price factors such as current yield, total return,
and earnings per share, and to analyze these calculations to
determine whether to purchase, sell, or hold the stocks. After a
presentation about stock prices, students practice calculating
simple problems on a worksheet that has question prompts.
They continue practicing the calculations with more questions
on Scratch where they have to define variables for the formu-
las and develop algorithms for the calculations of given
scenarios.

Question-prompts can serve as a generative method in this
activity to facilitate the decomposition process of computa-
tional thinking by having students make the connections be-
tween what they know and what they learned. For instance,
students are given a worksheet that not only lists the problem
but also provides questions that prompt them to explain and
break down the problem (e.g., formulas) into smaller compo-
nents such as the variables (e.g., annual dividend and current
market value) to calculate the current yield (See Fig. 5).

Structured Methods Structured methods, supporting strategic
knowledge, focuses on enabling learners to manipulate con-
crete objects for better understanding of more abstract

concepts or rules (Mayer and Wittrock 2006), such as using
bundles of sticks or beads to teach mathematics concepts.
Design tasks through coding can serve as external representa-
tions of problems, which can serve as Bconcrete^ objects help-
ing students understand the abstract rules behind complex
problems (White 1993).

Example in Geometry As described earlier, for this activity,
5th graders are to graph two dimensional composite shapes on
the coordinate plane in Scratch interface. They identify the
number of lines and determine the angles of the basic shapes.
Manipulating the content in this activity can help them identify
patterns. For instance, students can draw a triangle first, then a
square, a pentagon, or the like. As they draw a new shape or
modify a previously drawn one, they make changes in their
coding, which would reflect the relationship between the num-
ber of lines and the angles for each kind of shape (e.g., turning
90 degrees to draw a square, or 60 degrees for a triangle).
Based on the relationship and pattern identified, an algorithm
can draw a kind of shape based on the number of lines entered
as the input (See Fig. 6).

Guided-Discovery Guided-discovery methods, supporting
strategic knowledge, emphasize a combination of enough
guidance to and a level of freedom for learners to explore
the problem so that they can identify relations and patterns,
and to discover the underlying rules and principles on the
problem focused (Mayer and Wittrock 2006). Guided discov-
ery methods are known to be superior to pure discovery
methods (for a review see: Kirschner et al. 2006; Mayer
2004). For example, students can be provided with practice
opportunities on their own where they are also guided as
needed to discover the reasons for the observed outcomes as
they code during a problem-solving task.

Example in Geometry The previous example focused on struc-
tured methods where 5th graders identify the number of lines
and determine the angles of the basic shapes by manipulating
the shapes and changing the codes. Despite its positive impact
on understanding of abstract concepts, manipulating concrete

Fig. 5 Student worksheet with
question prompts breaking
problem into components

580 TechTrends (2018) 62:574–584

objects may overload learning (Kilpatrick et al. 2001), especial-
ly if it is completed in a pure discovery method. In the activity,
just because students draw different shapes and modify their
coding on their own does not mean they would automatically
grasp the relationship between the elements of each shape and
the codes. Guidance, however, in the form of question-prompts
for students to focus on each shape at a time, and to explain the
changes they notice in relation to the number of lines and angles
for the new shape can help them identify patterns that theymight
not be able to recognize on their own.

Modeling Modeling methods emphasize demonstrating or
explaining the steps involved in solving problems (Mayer
and Wittrock 2006), and can support conceptual, strategic,
and procedural knowledge.Worked-out examples and appren-
ticeships are common strategies to model. In work-out exam-
ples, explaining the steps and their justifications can provide
the learners with a successful problem solver’s reasoning
(Quilici and Mayer 2002). This can aid learners’ three key
cognitive processing in problem-solving (Mayer and
Wittrock 2006) – relating a newly encountered problem to
the one exemplified (conceptual), abstracting a method (stra-
tegic), and applying it to solving the new problem (procedur-
al). For instance, a completed program that has annotations
explaining the key codes and their rationales can support
learners’ such cognitive processes. The apprenticeship strate-
gy also highlights examples. However, the main focus is on
novices working with more experienced problem solvers
(Lave and Wenger 1991). Reciprocal teaching and coopera-
tive learning are also other strategies to model (Palinscar and
Brown 1984). In reciprocal teaching, instructors and learners
can take turns to discuss their approaches to a given coding

task, and during cooperative learning, learners with varying
abilities work together on similar tasks where they can share
their varying perspectives to solving the problem.

Example in Spanish For this activity, as outlined earlier, 7th and
8th graders are to read and understand basic Spanish words, and
to create interactive learning games in Spanish by using Scratch
where they create interactive games. Demonstrations and re-
sources in this activity can serve as a method to model the steps
that students can abstract from and apply to their learning tasks.
For instance, regarding developing interactive games, the teach-
er models to students how to work with the necessary codes,
change backgrounds, or add characters, which can be in the
form of in-class demonstrations or video tutorials that can be
accessed at any time (See Fig. 7):

As students review such resources or observe their
teachers’ demonstrations in class, they can start to see the
underlying functions of the codes such as Bif and then condi-
tions^, which then can be used in any scenarios (abstracting)
when it comes to designing their own interactive games.

Teaching Thinking Finally, Teaching Thinking Skills Directly
is the process of designing instruction with the goal of explic-
itly teaching specific metacognition to students (Mayer and
Wittrock 1996, 2006). Having learners focus on and be con-
scious about the problem-solving process (e.g., through
reflecting) through reflections is the key tenet of teaching
thinking skills. Jonassen (2004) summarized key strategies
that support students’ reflection on the problem-solving pro-
cess, such as peer instruction, think-aloud pairs, and coding
protocols. These are not domain specific strategies and can be
applied to teaching computational thinking. For example, in

Fig. 6 Example code and output for drawing various shapes in Scratch

TechTrends (2018) 62:574–584 581

peer instruction, learners can be prompted to not only describe
their coding for a given task but also convince another learner
of the correctness of their solution. For the think-aloud pair
strategy, learners are assigned two roles – problem solver and
listener. The problem solver can be asked to verbalize her
thoughts as she generates the codes while the listener listens
to it, catches mistakes, and prompts the problem solver to
verbalize further as needed. Coding protocols, another strate-
gy to teaching thinking skills, help learners learn how to solve
problems by having them study how others solved them.
Providing learners with a transcript of how a program is com-
pleted to generate certain outcomes can allow them to analyze
the successful problem solvers’ thought process.

Example in Financial Literacy As described earlier, for this
activity, 11th graders are to practice the calculations of stock
price factors such as current yield, total return, and earnings

per share. They define variables for the formulas and develop
algorithms for the calculations of given scenarios in Scratch.

Having students be aware of the problem-solving process
through reflection can help them analyze their decisions. In
the activity, students are taught to develop and run the algo-
rithms that calculate the associated prices such as the Total
Return for different scenarios. While working in pairs, they
can be asked to justify their decisions to each other regarding
buying, selling, or holding a particular stock based on the
analysis of their codes. For instance, a stock with a higher
dividend may not necessarily result in a higher Total Return
depending on the values in other variables taken into account
for the calculations.

Figure 8 summarizes the lists of methods discussed so
far for teaching problem-solving, and the computational
thinking process that they can facilitate. The specific
methods and the computational thinking processes that

Fig. 7 Teacher modeling the use of codes in scratch in two modes

Fig. 8 Methods for teaching
problem solving and facilitating
computational thinking

582 TechTrends (2018) 62:574–584

were connected in the examples above were also highlight-
ed with references to the examples.

Conclusion

Referred to as individuals’ abilities to solve problems through
using computer science concepts, computational thinking is
considered a critical skill in contemporary and future society
(Wing 2008). However, there are limited opportunities in public
education for students to develop computational thinking skills
(Google Inc. and Gallup Inc. 2016; Guzdial 2016), which will
be likely to widen existing inequalities in the transition into a
complex computing society.While more opportunities are need-
ed in school settings focusing on computational thinking,
teachers need to know more than how to code in order to facil-
itate their students’ learning. Teachers need to recognize the
relevance of computational thinking to what they teach before
they can intend to incorporate it their practices.

In this paper, we highlighted three strategies that can help
teachers make the connections between computational think-
ing and their teaching. The first one emphasized content-
specific examples regarding the use of computational thinking
tools. Given teachers’ tendencies to focus on coding aspects of
computational thinking (Authors 2016), seeing how technol-
ogies and resources can benefit students’ content learning is
key to their perception of computational thinking. The second
strategywas based on problem-solving nature of computation-
al thinking. By recognizing the similarities between both
kinds of learning processes, teachers can frame their content
as Bproblems^ for their students to Bsolve^, while promoting
computational thinking. The third strategy building on the first
two ones was the main theme of the paper. It is focused on the
methods of teaching problem-solving as a means to support
the kind of knowledge necessary to the processes involved in
computational thinking.

By describing the methods of teaching problem-solving
and providing subject-specific examples, we operationalized
the teaching of problem-solving in the context of teaching
computational thinking, which can serve as a practical
framework to guide the efforts in promoting computational
thinking in content-specific learning activities. Our approach
here reflected a main argument that the methods to teach
problem solving should benefit the teaching of computation-
al thinking due to similarities between the two processes.
However, future research is needed to examine the effective-
ness of these methods especially in emerging technology-
rich tinkering context such as makerspaces where teachers
and students design and create artifacts by inquiring, creat-
ing, and solving problems. Exploring how these methods
can inform (and be informed by) the inquiry and making
processes to facilitate computational thinking would be an
essential area of future studies.

Compliance with Ethical Standards

Conflict of Interest The authors declare that they have no conflict of
interest.

Ethical Approval This article does not contain any studies with human
participants or animals performed by any of the authors.

References

Akcaoglu, M. (2014). Learning problem-solving through making games
at the game design and learning summer program. Educational
Technology Research & Development., 62(5), 583–600. https://doi.
org/10.1007/s11423-014-9347-4.

Authors et al. (2016). Details removed for peer review.
Barr, V., & Stephenson, C. (2011). Bringing computational thinking to

K-12: What is involved and what is the role of the computer science
education community? ACM Inroads, 2(1), 48–54.

Barr, D., Harrison, J., & Conery, L. (2011). Computational thinking: A
digital age skill for everyone. Learning& LeadingWith Technology,
38(6), 20–23.

Corradini, I., Lodi, M., & Nardelli, E. (2017). Conceptions and
Misconceptions about Computational Thinking among Italian
Primary School Teachers. In Proceedings of the 2017 ACM
Conference on International Computing Education Research (pp.
136–144). ACM.

Duncan, C., Bell, T., & Atlas, J. (2017). What do the teachers think?:
Introducing computational thinking in the primary school curricu-
lum. In Proceedings of the Nineteenth Australasian Computing
Education Conference (pp. 65–74). ACM.

Ertmer, P. A., Ottenbreit-Leftwich, A. T., Sadik, O., Sendurur, E., &
Sendurur, P. (2012). Teacher beliefs and technology integration
practices: A critical relationship. Computers and Education, 59(2),
423–435. https://doi.org/10.1016/j.compedu.2012.02.001.

Garet, M. S., Porter, A. C., Desimone, L., Birman, B. F., & Kwang Suk,
Y. (2001). What makes professional development effective? Results
from a national sample of teachers. American Educational Research
Journal, 38(4), 915–945.

Giannakos, M. N., Doukakis, S., Pappas, I. O., et al. (2015). Investigating
teachers’ confidence on technological pedagogical and content
knowledge: An initial validation of TPACK scales in K-12 comput-
ing education context. Journal of Computers in Education., 2(1),
43–59. https://doi.org/10.1007/s40692-014-0024-8.

Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving.
Cognitive Psychology, 12, 306–355.

Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical
transfer. Cognitive Psychology, 15, 1–38.

Goh, D., & Kale, U. (2015). The urban-rural gap: Project-based learning
with technology among west Virginian teachers. Technology
Pedagogy, and Education. https://doi.org/10.1080/1475939X.
2015.1051490.

Google Inc., &Gallup Inc. (2016). Trends in the state of computer science
in U.S. K-12 schools. In Retrieved from http://goo.gl/j291E0.

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review
of the state of the field. Educational Researcher, 42(1), 38–43.
https://doi.org/10.3102/0013189X12463051.

Greiff, S., Wüu, S., WuS, S., Csapó, B., Demetriou, A., Hautamäki, J.,
Graesser, A. C., & Martin, R. (2014). Domain-general problem
solving skills and education in the 21st century. Educational
Research Review, 13, 74–83.

Guzdial, M. (2016). State of the states: Progress toward CS for all.
Communications of the ACM. Retrieved from http://cacm.acm.

TechTrends (2018) 62:574–584 583

https://doi.org/10.1007/s11423-014-9347-4
https://doi.org/10.1007/s11423-014-9347-4
https://doi.org/10.1016/j.compedu.2012.02.001
https://doi.org/10.1007/s40692-014-0024-8
https://doi.org/10.1080/1475939X.2015.1051490
https://doi.org/10.1080/1475939X.2015.1051490
http://goo.gl/j291E0
https://doi.org/10.3102/0013189X12463051
http://cacm.acm.org/blogs/blog-cacm/198790-state-of-the-states-progress-toward-cs-for-all/fulltext

org/blogs/blog-cacm/198790-state-of-the-states-progress-toward-
cs-for-all/fulltext

Herold, B. (2017). Computer science for all in San Francisco schools: 7
Early takeaways [Blog post]. Retrieved from http://blogs.edweek.
org/edweek/DigitalEducation/2017/04/computer_science_for_all_
san_francisco_7_takeaways.html?cmp=SOC-SHR-twitter

Hulleman, C. S., Godes, O., Hendricks, B. L., & Harackiewicz, J. M.
(2010). Enhancing interest and performance with a utility value
intervention. Journal of Educational Psychology, 102(4), 880–895.
https://doi.org/10.1037/a0019506.

International Society for Technology in Education (ISTE). (2016). ISTE
national educational technology standards (NETS) for students.
Eugene, OR :International Society for Technology in Education.

Jonassen, D. H. (2004). Learning to solve problems: An instructional
design guide (Vol. 6). San Francisco, CA: Wiley.

Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding it up: Helping
children learn mathematics. Washington, DC: National Academy
Press.

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guid-
ance during instruction does not work: An analysis of the failure of
constructivist, discovery, problem-based, experiential, and inquiry-
based teaching. Educational Psychologist, 41(2), 75–86.

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral
participation. Cambridge university press.

Linden, M., & Wittrock, M. C. (1981). The teaching of reading compre-
hension according to the model of generative learning. Reading
Research Quarterly, 44–57.

Mayer, R. E. (2004). Should there be a three-strikes rule against pure
discovery learning? The case for guided methods of instruction.
The American Psychologist, 59(1), 14–19. https://doi.org/10.1037/
0003-066X.59.1.14.

Mayer, R. E., & Wittrock, M. C. (1996). Problem-solving transfer. In D.
C. Berliner & R. C. Calfee (Eds.), Handbook of educational
psychology (pp. 47–62). New York, NY: Macmillan Library
Reference.

Mayer, R. E., & Wittrock, M. C. (2006). Problem solving. In P. A.
Alexander, P. H. Winne, P. A. Alexander, P. H. Winne (Eds.),
Handbook of educational psychology (pp. 287–303). Mahwah,
NJ, US: Lawrence Erlbaum Associates Publishers.

van Merriënboer, J. J. G. (2013). Perspectives on problem solving and
instruction. Computers & Education, 64, 153–160. https://doi.org/
10.1016/j.compedu.2012.11.025.

Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content
knowledge: A new framework for teacher knowledge. Teachers
College Record, 108, 1017–1054.

OECD. (2003). PISA 2003 assessment framework: Mathematics, read-
ing, science and problem solving knowledge and skills. OECD
Publishing. Retrieved from http://www.oecd.org/edu/school/
programmeforinternationalstudentassessmentpisa/33694881.pdf

Palinscar, A. S., & Brown, A. L. (1984). Reciprocal teaching of
comprehension-fostering and comprehension-monitoring activities.
Cognition and Instruction, 1(2), 117–175.

Quilici, J. L., & Mayer, R. E. (2002). Teaching students to recognize
structural similarities between statistics word problems. Applied
Cognitive Psychology, 16(3), 325–342.

Rampey, B.D., Finnegan, R., Goodman, M., Mohadjer, L., Krenzke, T.,
Hogan, J., and Provasnik, S. (2016). Skills of U.S. unemployed,
young, and older adults in sharper focus: Results from the program
for the international assessment of adult competencies (PIAAC)
2012/2014: First look (NCES 2016-039). U.S. Department of
Education. Washington, DC: National Center for Education
Statistics Retrieved from http://nces.ed.gov/pubsearch

Resnick, L. B. (1987). The 1987 presidential address: Learning in school
and out. Educational Researcher, 16(9), 13–20.

Samuels, S. J. (1979). The method of repeated readings. The Reading
Teacher, 32(4), 403–408.

Scratch. (n.d.-a).Monthly project shares. RetrievedMarch 28, 2017, from
https://scratch.mit.edu/statistics/

Scratch ED. (n.d.-b). Search resources. Retrieved March 28, 2017, from
http://scratched.gse.harvard.edu/resources

Sonnleitner, P., Brunner, M., Keller, U., & Martin, R. (2014). Differential
relations between facets of complex problem solving and students’
immigration background. Journal of Educational Psychology,
106(3), 681–695. https://doi.org/10.1037/a0035506.

The Fourth Industrial Revolution:What it means and how to respond. (n.d.).
Retrieved from: http://www.weforum.org/agenda/2016/01/the-fourth-
industrial-revolution-what-it-means-and-how-to-respond .

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015).
Computational thinking in compulsory education: Towards an agen-
da for research and practice. Education and Information
Technologies, 20(4), 715–728. https://doi.org/10.1007/s10639-015-
9412-6.

Wing, J. (2008). Computational thinking and thinking about computing.
Philosophical Transactions of the Royal Society A, 366, 3717–3725.
https://doi.org/10.1098/rsta.2008.0118.

White, B. Y. (1993). ThinkerTools: Causal models, conceptual change,
and science education. Cognition and Instruction, 10(1), 1–100.

Wittrock, M. C. (1989). Generative processes of comprehension.
Educational Psychologist, 24(4), 345–376.

Wittrock, M. C. (1991). Generative teaching of comprehension. The
Elementary School Journal, 92(2), 169–184.

584 TechTrends (2018) 62:574–584

http://cacm.acm.org/blogs/blog-cacm/198790-state-of-the-states-progress-toward-cs-for-all/fulltext
http://cacm.acm.org/blogs/blog-cacm/198790-state-of-the-states-progress-toward-cs-for-all/fulltext
http://blogs.edweek.org/edweek/DigitalEducation/2017/04/computer_science_for_all_san_francisco_7_takeaways.html?cmp=SOC-SHR-twitter
http://blogs.edweek.org/edweek/DigitalEducation/2017/04/computer_science_for_all_san_francisco_7_takeaways.html?cmp=SOC-SHR-twitter
http://blogs.edweek.org/edweek/DigitalEducation/2017/04/computer_science_for_all_san_francisco_7_takeaways.html?cmp=SOC-SHR-twitter
https://doi.org/10.1037/a0019506
https://doi.org/10.1037/0003-066X.59.1.14
https://doi.org/10.1037/0003-066X.59.1.14
https://doi.org/10.1016/j.compedu.2012.11.025
https://doi.org/10.1016/j.compedu.2012.11.025
http://www.oecd.org/edu/school/programmeforinternationalstudentassessmentpisa/33694881.pdf
http://www.oecd.org/edu/school/programmeforinternationalstudentassessmentpisa/33694881.pdf
http://nces.ed.gov/pubsearch
https://scratch.mit.edu/statistics/
http://scratched.gse.harvard.edu/resources
https://doi.org/10.1037/a0035506
http://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-and-how-to-respond
http://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-and-how-to-respond
https://doi.org/10.1007/s10639-015-9412-6
https://doi.org/10.1007/s10639-015-9412-6
https://doi.org/10.1098/rsta.2008.0118

	Computational What? Relating Computational Thinking to Teaching
	Abstract
	Background
	Teaching Computational Thinking
	Content-Specific Computational Thinking Tools
	Problem-Solving Nature of Computational Thinking
	Knowledge for Problem-Solving to Support Computational Thinking
	Teaching Problem-Solving to Facilitate Computational Thinking

	Conclusion
	References

