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Abstract A key notion conveyed by those who advocate for
the use of data to enhance instruction is an awareness that
learning analytics has the potential to improve instruction
and learning but is not currently reaching that potential.
Gibbons (2014) suggested that a lack of learning facilitated
by current technology-enabled instructional systems may be
due in part to the natural tendency of many designers to focus
on the surface layers of instruction (i.e., the content and con-
trol layers), while failing to adequately design the internal
(less visible) aspects (e.g., the data management layer). In this
paper, we outline phases in the design process related to the
data management layer that should be considered when inte-
grating learning analytics into a technology-enabled learning
system.

Keywords Instructional design - Learning analytics -
Educational data mining - Technology-enabled learning

With improvements in and availability of educational technol-
ogies, demand has increased for technology integration to
enhance and improve the instruction educators provide
(Davies and West 2014), including the potential use of learn-
ing analytics (USDOE 2012; Woolf 2010). Learning
analytics, sometimes called academic analytics (Campbell
and Oblinger 2007), is a relatively recent application of an
older data analytics discussion (see Skinner 1968; Tyler
1949); it is described “as the measurement, collection, analy-
sis and reporting of data about learners and their contexts, for

>4 Randall Davies
Randy.Daveis@BYU.edu

Instructional Psychology & Technology, Brigham Young University,
150-L MCKB, Provo, UT 84602, USA

purposes of understanding and optimizing learning and the
environments in which it occurs” (Siemens 2011, p. 1). The
principal difference between earlier calls for data use and cur-
rent mandates is the massive amount of data available through
technology-enabled systems. Interestingly, a key notion con-
veyed by those who now mandate and advocate that instruc-
tion be enhanced through the use of data is the awareness that
educational data mining and learning analytics has the poten-
tial to improve instruction and learning but is not currently
reaching that potential (Woolf 2010).

Technology use is becoming entrenched in education. But
with the exception of limited use of assessment data, most of
the current technology-enabled instructional systems use very
little data to adapt and enhance instruction in the way Oblinger
(2012) anticipates (see also Woolf 2010). The ability of in-
structional designers and researchers to obtain and work with
large data sets is still in a nascent state; in practice, most
educational data analysis is conducted as separate educational
data mining research, not real-time application of learning
analytics (Chung 2014; Mayer 2009). Although much prog-
ress has been made and considerable research conducted, the
development of instructional systems that make full use of
learning analytics remains an untapped prospect for instruc-
tional designers developing technology-enabled instructional
systems (Woolf 2010). Part of the problem seems to be that
instructional designers do not design for data use.

A common criticism of early computer-assisted instruction
(CAI) was, and to some extent still is, that these instructional
systems are simply technology-facilitated content delivery
systems based on passive learning models of instruction
(Chung 2014; Nicholson 2007; Robson and McElroy 2008).
In essence many of these systems are simply electronic page
turners or menu driven audio-visual players (Fairweather and
Gibbons 2000). Modern variations of CAI usually continue
with a didactic approach to instruction, with the presentation
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of content intended to inform the learner (Robson 2013).
Instructional technology in these types of systems is seen as
an affordable, flexible, and efficient way to present informa-
tion. From this notion, a whole class of easy-to-use tools has
been created (e.g., Camtasia, Authorware, etc.) based on the
belief that instructors could easily develop a CAI version of
their course.

Research into the design of these types of information-
providing systems has often focused on user control of the
content being presented as well as the intuitiveness of the
human—computer interface. Certainly integrating technology
into education still involves helping students gain quick ac-
cess to information of various types (Davies and West 2014).
These types of computer-based systems improve the efficien-
cy of instruction but often do little to improve the efficacy of
learning (Cuban et al. 2001; Kleiman 2004). Gibbons (2014)
suggested that a lack of learning facilitated by these instruc-
tional designs may be due in part to the natural tendency of
many designers to focus on the surface layers of instruction
(i.e., the content and control layers), while failing to adequate-
ly design the internal (less visible) aspects (e.g., the data man-
agement layer).

Some designers have attempted to enhance the content de-
livery approach to CAI by adding assessment components to
an instructional system. Testing components often take the
form of problems that provide practice questions intended as
a self-test for students, and summative assessments of the
course learning objectives. Many instructional systems track
assessment results to indicate students’ progress in completing
the course but provide little actionable information to students
or teachers. Intelligent tutoring systems grounded in
competency-based instruction models attempt to do more than
simply report assessment results (Graesser et al. 2012). But
simple reporting of assessment results is still the most com-
mon consideration designers make as they create the data
management layer for an instructional system. While this is
a good first step in starting an instructional conversation that
may improve the helpfulness of the instruction being de-
signed, much more could be done (Gibbons et al. 2008).
The personalization and adaptability of instruction depends
on the system’s ability to obtain data (including and in addi-
tion to basic assessment data). These relevant data must be
analyzed; the results must then be reported as actionable in-
formation in near real-time. At this level more needs to be
done in the design of data management so that technology-
enabled instructional systems can reach the potential of data-
driven instruction.

Basic learning analytics is becoming the standard for many
online learning systems and will continue to become more
important. While data analytics has many purposes (e.g., for-
mal institutional and educational research including traditional
and blended learning environments), the focus of this paper is
to explore the idea of designing instruction (specifically CAI
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and technology-enabled systems) utilizing data to adapt and
improve instruction. In this paper, we outline aspects of in-
structional design within the data management layer that
should be considered when integrating learning analytics into
a technology-enabled learning system.

A Framework for Learning Analytics

Learning analytics is a relatively new application of the
broader data analytics field involving and extending the inte-
gration of educational data mining into general educational
practices (Baker and Siemens 2014; Baker and Yacef 2009;
ElAtia et al. 2012; Picciano 2012). Currently several educa-
tional data mining frameworks have been proposed but are
still being refined (Elias 2011; Greller and Drachsler 2012).
Campbell and Oblinger (2007) described academic analytics
(an educational data mining framework) in five steps: capture,
report, predict, act, and refine. One proposed modification to
this framework suggests adding a separate data selection (i.e.,
data mining) step prior to the data capture process to provide
guidance for it (Dron and Anderson 2009). Another possibil-
ity suggested is to integrate data aggregation, organization,
and access considerations into the capture, reporting and act-
ing processes (Hendricks et al. 2008). For the purposes of this
paper we use a modified version of Campbell and Oblinger’s
(2007) educational data mining framework which includes
five steps: data selection, data capture and storage, data visu-
alization and reporting, data use, and system refinement. This
adaptation makes the framework more suitable for the design
of learning analytics into the data management layer. The
aspects of data selection and data capture and storage will be
treated extensively as much of the data-management design is
done in these steps. Data visualization, reporting, and use are
discussed in more general terms, with the eventual refinement
introduced as an evaluative feedback loop. These steps illus-
trate design processes necessary for instructional designers to
integrate learning analytics more effectively into an instruc-
tional system.

Data Selection

The first step in integrating data use into an instructional de-
sign using this framework requires a decision regarding which
data should be collected. Data are required for learning ana-
lytics, but not all data provide equal benefits. A “digital ocean
of data” exists (DiCerbo and Behrens 2012), largely because
technology-enabled systems can capture “data exhaust” (dig-
ital traces from learners’ online activities). But, the call to use
data exhaust based simply on its availability may be ill-
informed (Watters 2012). Educators appear to be drowning
in that digital ocean, and much of the data-exhaust solution
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seems to be salt water (superfluous irrelevant data); in many
instances the use of data exhaust (e.g., click stream data) has
not delivered promised improvements to instruction (Thille
etal. 2014).

Purpose and Questions

Rather than settling for the collection of “available and afford-
able data,” instructional designers should plan to capture data
that will provide actionable information (Behrens and
DiCerbo 2014). This requires identifying the purpose for data
collection and the questions to be answered with these data
(Papamitsiou and Economides 2014). If the purpose involves
identifying patterns of use or non-use and developing predic-
tion models for academic success or behavioral risk, then
broad between-learner data sets are needed. If the educational
need involves determining how to adapt instruction for or
provide remediation to an individual student, then deep with-
in-learner information is required. Multiple purposes may be
identified for data capture within a single instructional system.
The dimensionality of the data to be obtained depends on
instructional purposes and goals (Thille et al. 2014), and
selecting appropriate data that can be used to answer specific
questions is more likely to produce actionable information.
Designs that do not initially include the selection and capture
of relevant data may require a costly retrofit; in some cases a
complete redesign of the instructional system may be
required.

Theory and Context

Two considerations are necessary when planning data collec-
tion: (a) pedagogical and instructional design theory, and (b)
contextualization of data and appropriate “grain size.”
Addressing the first concern, Reigeluth (1999) suggested that
the reason for capturing specific data in an instructional sys-
tem should be based on relevant theory. He advocated that
research-based pedagogical and instructional design theories
be used for explicit guidance on how to better help people
learn and develop. With a theory in mind, designers should
work on identifying appropriate data that would allow them to
test those theories and inform action.

Speaking to “grain size” and the types of data to collect,
Thille et al. (2014) suggested that the value of educational data
obtained from an instructional system is most often deter-
mined not by the amount of data obtained about a given learn-
er but by the contextual information and semantic meaning
added to the data captured. Additionally, Chung and Kerr
(2012) argued for using the “finest usable grain size,” mean-
ing “a data element that has a clear definition associated with
it” (p. 3). For example, a click event in a learning environment
is by itself meaningless; but when that same piece of data is
contextualized, it becomes informative. The click data may be

useful if we know the user clicked a button at a specific mo-
ment in the learning process and that the button provided the
learner with access to a screen that gives a definition for a
term. For this reason, Chung and Kerr (2012) recommended
that the data collected from a learning environment should be
as detailed as possible so it can be linked with other informa-
tion in the system.

Outcome and Process

Chung (2014) identified two student interactions that may be
of interest in a design: (a) outcome measures and (b) process
measures. Capturing and reporting basic outcome measures is
common practice in most instructional systems that claim
learning analytics capabilities (Pardo 2013). However,
capturing and using process level data that can be applied in
real time are rather uncommon. Chung (2014) lamented that
most learning management systems fail to capture data of
interest because “they are designed to host content and not
designed to measure learners’ interaction with that content”
(p. 5). A properly designed instructional system would be
planned to capture those data relevant to the learning analytics
needed (both assessment and process level data).

In many ways the data selection step is an educational data
mining activity. The creation of an initial theory-based predic-
tion model is required; one that can be tested and refined over
time. The process is likely to be iterative, not unlike design-
based research or rapid prototyping, but at the outset a begin-
ning is needed. In addition to prediction models, assessment
tools must be carefully designed and created to measure core
skills and threshold concepts relevant to the instructional ob-
jectives of the course (Meyer et al. 2006). Too often the as-
sessments we use are not particularly suitable for the purposes
of learning analytics (Cizek 2010; Keefe 2007; Marzano
2009). The success of an instructional design endeavor will
depend a great deal on the pedagogic vision of the designer
(Dron and Anderson 2011), inevitably mitigated by the avail-
ability and practicality of obtaining requisite data (Chung
2014; Behrens and DiCerbo 2014).

Data Capture and Storage

Once design decisions about requisite data have been outlined
for the instructional design of a system, the second step in this
framework is the capture phase of the design process which
requires decisions that concern logging and linking of relevant
data so users can access it efficiently and use it effectively. In
many instances, the data-producing environment will be a
single learning management system (LMS). Unfortunately,
for a variety of reasons, most commercially available LMSs
are used by educators as a means to monitor students’ com-
pletion of instructional activities or as an electronic resource
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repository, rather than as a medium to facilitate and improve
student learning through data use (Chung 2014). Designers
and educators typically settle for the existing data capture
capabilities and functions of the technology platform (LMS)
rather than attempting to capture and utilize essential data
relevant to the pedagogical purposes of the instruction
(Salkind 2010).

Several challenges must be addressed in the design of the
data management layer of an instructional system if learning
analytics is to be employed. A properly designed instructional
system that makes full use of learning analytics will likely
require data access from a variety of sources within and out-
side a specific LMS. Designers need to be mindful of where
those data can be obtained, where they will be stored, how
disparate data types will be structured, and how data will be
made accessible within the system.

Challenge 1: Obtaining Interoperability Access

Substantial amounts of data exist within an instructional sys-
tem, but much of the learning process for a student occurs
outside the purview of the LMS. Rarely will a single LMS
contain all the information about a student needed by an in-
structional system. The design process needs to be concerned
with where pertinent student information exists and how to
access these data. Recent efforts to help solve this issue in-
clude the development of Learning Tools Interoperability
(LTT) standards, developed by IMS Global to allow students
to have single sign-on access to external tools from their LMS.
This allows a student to log into a LMS and have access to a
number of other systems. If the data do not exist within the
system, the designer must determine how such data may be
obtained.

Challenge 2: Capturing Activity-Trace and Process-Level
Data

Many systems capture potentially useful data but fail to store
or utilize it effectively. Most LMSs can track basic activity-
trace data (e.g., page views, resource access, and task submis-
sion information). Often, however, these data are only tempo-
rarily stored (e.g., for the duration of a user’s session). When
these data are saved by the LMS, they are generally stored in
the systems’ own databases, which can be expansive. Often
stakeholders cannot access this raw data unless specific per-
missions are granted. When these data are accessible, they are
often less than useful because the format, linking information,
and contextual metadata are not specified.

In addition, LMSs typically do not track process-level data
on how students interact with the instructional aspects of the
course: including how the learners interact with videos, quiz-
zes, or content, or how they go about solving an educational
task. Work is being done to facilitate the capture of these types
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of data. For example, Experience API (xAPI) is an interoper-
ability standard developed by Advanced Distributed Learning
(ADL) which specifies for the user how to structure and store
analytics data. It uses an actor, verb, object structure for ana-
lytics statements. These data can be sent to a learning record
store (LRS), which is a database allowing users to store their
analytics data.

Challenge 3: Storing Data for Real-Time Use

Developing real-time reporting and adaptive instruction re-
quires real-time access to relevant data. Most LMSs do not
give users real-time access to student data, but rather provide
some sort of application programming interface (API) to ex-
tract batch data. Many of these have rate limits that make
pulling and analyzing data in real time less feasible. For ex-
ample, at a university with 60,000 students, a week may be
required to pull all of the necessary data using an API. Thus
the data provided is a week old. Even on a small scale, using
APIs for real-time data analysis and reporting can still require
minutes, which is longer than students want to wait for real-
time data reporting. Batch processing data works well for
educational data mining research when developing a predic-
tive model, but not for real-time access needed when person-
alizing instruction.

To facilitate quick access, the needed data must often be
restructured and transformed into a more usable state. Many
organizations choose to use data warchouses to store pre-
processed data. A data warehouse is essentially a database
used to store data obtained from a wide variety of sources,
enabling the data to be used for learning analytics with greater
speed and ease. Design decisions need to be made for pack-
aging pre-processed data and storing these data for quick
access.

Designing the Visualization and Reporting of Data

The next step in this framework involve presenting results to
stakeholders. Data visualization refers to relaying manipulated
raw data obtained from a learning environment back to the
stakeholders in a visually comprehensive and intuitive data
representation that can be quickly understood and interpreted
(Pardoe 2013), providing the intended data users with rele-
vant, timely, comparable, and actionable information.
Knowing from the outset what data need to be collected is
essential (Buckingham Shum 2012); however, design deci-
sions also need to be made about what, how, when, and to
whom data will be reported.

Data visualization and reporting can be used for a variety of
purposes at the macro (regional, state, national, international),
meso (institution-wide), and micro (course, individual user)
levels (Frech and Damaske 2012). By far the most common
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data reporting practice is communicating assessment data re-
sults (Woolf 2010). At the course level, most instructional
systems track assessment results simply to indicate students’
progress in completing the course. Successfully finishing
assigned tasks in a timely manner is deemed indicative of
satisfactory learning. This may not be the case. Data reported
at the course level are most often provided in various forms of
digital dashboards where histograms, graphs, timelines, traffic
lights, etc. are used to communicate progress (Behrens and
DiCerbo 2013; Pardoe 2013; White and Larusson 2013). At
the institution level, administrators use summary assessment
data for calculating course completion rates or aggregating
indications of basic student competencies.

Effective and efficient data visualization requires that the
data captured has been purposefully organized and stored in
an accessible format; otherwise, data reporting is challenging
and unlikely to be done in real time. At each level it is assumed
that the information reported will be useful to the teacher, stu-
dent, or administrator in making decisions regarding action.
The organization and visualization of data are helpful in decid-
ing on subsequent actionable steps only if the data being com-
municated are accurate and complete (Koskas 2004).

Incorporating Data Use in the Design

The purpose of any learning analytics endeavor is to provide
actionable information. The design implication for this step of
the framework involves deciding how the data will be used.
Regrettably, the designs of many instructional systems end at
reporting, with the assumption that users will interpret the data
and decide what to do next. However, an instructional system
has the potential to do more (Graesser et al. 2012).

An enhanced application of learning analytics might pro-
vide stakeholders with reporting that incorporates predictive
models as well as interpretation of the data and possibly rec-
ommendations for action (Macfadyen and Dawson 2010;
Pistilli et al. 2013). The design for an intelligent tutoring sys-
tem, which might include adaptive algorithms and learning
analytics engines, might also include plans for ways the sys-
tem will adapt or personalize the instruction provided. Actions
might include providing the instructor with a list of students
who might benefit from remediation, recommending to stu-
dents the next steps to take, or customizing (adapting) instruc-
tion in terms of scope and sequence. Such actions would need
to be designed.

System Refinement
The final step in this framework involves monitoring the

learning analytics function of an instructional system in a con-
tinual self-improvement effort. The predictive models, as well

as the capture, reporting, and application procedures, need to
be updated on a regular basis (Campbell et al. 2007). The
design implications of revising are inherent in the need to
revise and improve the designs.

By evaluating various aspects of the system over time (in-
cluding its function, use, and effectiveness), instructional de-
signers can assess the effects of their designs and deepen their
understanding of the pedagogical practice they employ
(Brooks et al. 2013). Evaluating design performance not only
informs the pedagogical theory of the instruction, it can in-
form and optimize the learning provided (Brooks et al. 2013;
White and Larusson 2013). Evaluating our products requires
continuous consideration so that education is refined and
improved.

Concluding Summary

Education has fallen behind business in its use of data analyt-
ics, for a variety of reasons. However, basic learning analytics
is becoming the standard for many online learning systems
and will continue to become more importance. In business, a
minor increase in market share or purchases due to actionable
information provided by data analytics is considered a suc-
cess. But designing for learning analytics in education is much
more challenging. The instruction we design is expected to be
effective for a broad range of students in a variety of circum-
stances. Much of the data needed to facilitate and improve
learning is difficult to obtain and tricky to automate.
However, part of the problem seems to be that instructional
designers do not design for data use. Designers naturally at-
tend to designing the visible layers of instruction (the content
and control layers) but fail to adequately design the data man-
agement layer of an instructional system (Gibbons 2014). To
improve the potential for learning, learning analytics needs to
be specifically addressed in the design of instruction.

Largely due to improvements in, and increased availability
of educational technologies, learning analytics has the poten-
tial to improve the teaching and learning process, but it has not
to date reached its potential. A more strategic approach to
designing technology-enabled instructional systems is needed
if these systems are to more fully benefit from data analytics.
Adapting an educational data mining framework for academic
analytics proposed by Campbell and Oblinger (2007), we rec-
ommend areas in the instructional design process where learn-
ing analytics decisions need to be made.

In the data selection process, theory-based decisions must
be made concerning requisite data. Too often a designer relies
on the data capture capabilities of a specific technology rather
than designing in terms of the data needed to answer instruc-
tional and pedagogical questions. Many instructional systems
are designed to simply track task completion (i.e., progress in
a course) as an indication that learning has occurred. Rarely do
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designers attend to the processes of learning or the aspects of
learning that have not been accomplished (i.e., misconcep-
tions, strategy flaws, and faulty practices). At this phase of
the design, educational data mining research is needed to cre-
ate prediction models that will inform designs and help guide
decisions on which data are required. Additionally, care
should be taken in designing and creating assessment tools
that measure core skills and threshold concepts relevant to
the instructional objectives of the course (Meyer et al. 2006).

When planning data capture and storage, design decisions
need to include accessing data from a variety of sources.
Using external tools that are compliant with interoperability
standards can help in overcoming the challenges of using log
data for learning analytics. Additional challenges of capturing
difficult-to-obtain data, packaging pre-processed contextual-
ized data, and storing (i.e., data warehousing) of these data for
quick access also need to be considered. If essential data is
difficult to access, it likely will not be used.

For effective data visualization, designs need to be com-
pleted that support effective reporting of data. Fundamental to
the utility of this process is providing the intended users of
these data with relevant, timely, comparable, and actionable
information. Designers must make decisions about what, how,
when, and to whom data will be reported. Design must also
anticipate data use; enhanced applications of learning analyt-
ics have the potential to go beyond the typical simple
reporting. Instructional designers might increase the utility
of learning analytics in education by providing stakeholders
with reporting that uses predictive models to interpret the data
and possibly make recommendations for action. Designs that
consider how the data will be used broaden the value of the
instruction.

The success of an instructional design endeavor will de-
pend a great deal on the pedagogic vision of the designer,
though it will inevitably be constrained by the availability
and practicality of obtaining requisite data. These designs
need to be tested and revised. By evaluating various aspects
of the system over time, instructional designers can improve
their designs and deepen their understanding of the pedagog-
ical practices they employ. If learning analytics is to have the
effect on education intended and anticipated by many, de-
signers must attend more carefully to the data management
layer of instruction.
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