TechTrends (2016) 60:114-123
DOI 10.1007/s11528-016-0022-y

@ CrossMark

ORIGINAL PAPER

Design and Implementation of the Game-Design

and Learning Program

Mete Akcaoglu1

Published online: 26 February 2016
© Association for Educational Communications & Technology 2016

Abstract Design involves solving complex, ill-structured
problems. Design tasks are consequently, appropriate contexts
for children to exercise higher-order thinking and problem-
solving skills. Although creating engaging and authentic de-
sign contexts for young children is difficult within the con-
fines of traditional schooling, recently, game-design has
emerged as an alternative context to provide young children
with opportunities to practice design and thinking skills.
Despite the increasing interest from educators and researchers
to use game-design as a platform to teach young students
higher-order thinking skills, literature documenting design
and development of such learning experiences has been
scarce. This paper provides a detailed account of how a com-
plex network of pedagogies, theories, and technologies were
brought together to design and develop the Game Design and
Learning (GDL) program, with the purpose of teaching stu-
dents basics of computer programming, and to give them
hands-on experiences in game-design, and teach them com-
plex problem-solving skills. The GDL program can serve as
an example for efforts aiming to create similar technology-rich
environments.

Keywords Problem-solving - Game-design - Microsoft
Kodu - Constructionism - Design - STEM

Design is an important cognitive task and a quintessential ill-
structured problem (Goel and Pirolli 1992; Jonassen 2011). It

P4 Mete Akcaoglu
makcaoglu@georgiasouthern.edu

Department of Leadership, Technology, and Human Development,
College of Education, Georgia Southern University,
Statesboro, GA 30458, USA

@ Springer

involves creating new objects, processes, or ideas by synthe-
sizing different variables in innumerable and unique ways
(Simon 1995). During this process, designers engage in im-
portant cognitive skills such as problem-solving, problem-
finding, and inquiry (Smith and Boling 2009).

Design skills, and the underlying problem-solving process-
es that are activated and practiced through design, are utilized
frequently in our daily lives (Smith and Boling 2009). In ad-
dition, jobs in science, technology, engineering, and math
(STEM) domains inherently involve solving ill-structured de-
sign problems (Jonassen 2011). Developing design skills is,
therefore, especially essential for young children to be suc-
cessful in most future careers (Eseryel et al. 2013; Jonassen
2011). Opportunities to practice design and problem-solving
skills, however, are difficult to come by in formal schooling
contexts, because schools often emphasize solving well-
structured problems, as opposed to ill-structured real-world
problems that require direct engagement with objects and
situation-specific competencies (Resnick 1987).

Since 1970s, researchers and educators have been interest-
ed in the potential of computer programming and software
design in creating authentic and meaningful contexts to teach
young students design and problem-solving skills (e.g., Harel
and Papert 1990; Papert 1980). In the last decade, digital
game-design tasks have attracted attention as an engaging task
to teach children complex thinking skills (e.g., Akcaoglu and
Koehler 2014; Denner et al.2012; Hwang et al.2013).

The attractiveness of game-design tasks as educational ac-
tivities can be explained by several factors. First, games are
inherently attractive for young children (Gee 2003; Prensky
2003). The process of game-design, therefore, has a natural
appeal, because the outcome of the process (i.c., the games) is
meaningful and fun for the creators. This process is, therefore,
enjoyable and intrinsically motivating as the students get to
work on things they personally value. Second, games are

http://orcid.org/0000-0002-1454-9104
http://crossmark.crossref.org/dialog/?doi=10.1007/s11528-016-0022-y&domain=pdf

TechTrends (2016) 60:114-123

115

complex systems, made up of many interrelated variables
(Fullerton 2008; Robertson 2012). Similarly, the game-
design process is also ill-structured, requiring designers to
satisfy many interrelated variables, troubleshoot emerging
problems, and make key decisions for their games to work.
In this sense, game-design process, as a design task, requires
activation of important metacognitive skills, making it an ideal
context to practice problem-solving skills (Ke 2014). Third,
during the design process young children get a chance to cre-
ate external (visual) representations of their otherwise abstract
ideas (Baytak and Land 2010). Externalization of mental rep-
resentations is an important aspect of the design process and
problem-solving (Bonnardel and Zenasni 2010), and during
the game-design process, children benefit greatly from being
able to see the outcomes of their design actions through im-
mediate visual feedback. Finally, during the creation of digital
games students have the opportunity to engage in computer
programming (Denner et al. 2012). Especially with new pro-
gramming interfaces, new generation game-design software
(e.g., “Microsoft Kodu” 2012; “Scratch” 2012) are intuitive,
even to the degree to be used easily by children as young as
nine or ten (Fowler and Cusack 2011). For these reasons,
game-design tasks are fun, authentic, and appropriate contexts
to teach design and problem-solving skills to young children.

Designing technology-rich and engaging learning environ-
ments for young students (i.e., digital game-design) while also
aiming to teach them important thinking skills such as prob-
lem-solving, however, requires going through a rigorous in-
structional design process. The process of design needs to be
based on theory, grounded in data, and focused on problem-
solving (Smith and Boling 2009). The creation of the
technology-rich environment, in addition to bringing together
content and pedagogies to create a harmonious whole (Mishra
and Koehler 2006), also requires working with technology.
The addition of technology into this already complex instruc-
tional design task makes the process of technology integration
more complex (Koehler and Mishra 2009).

In this descriptive case, the design process of an
instructional intervention called the Game Design and
Learning (GDL) program is detailed. The GDL program
was offered as an after-school program (7, three-hour
sessions) or a summer camp (8, five-hour sessions) to
middle school students with the purposes of teaching
them game-design, programming, and problem-solving.
In the remainder of the paper, details regarding the de-
sign process of the GDL activities and an overview of
the theories, pedagogies and the technologies is provid-
ed. By explaining the rationale behind design decisions
and giving examples from practical aspects of the GDL
program, this paper may serve as an important design
document detailing the design process of a technology-
rich environment to teach students higher-order thinking
skills.

Design and Development of the GDL Program

Building on early work by Papert (1980) where children en-
gaged in programming with Logo software, the GDL Program
aimed to get students to engage in the construction of mean-
ingful technology-based artifacts. The main objective of the
GDL program was to serve as a context to teach young stu-
dents (915 years old) the basics of game-design, program-
ming, and problem-solving, while also providing them with
meaningful, situated, and hands-on experiences in design.
This objective required the design of the GDL program to:
(a) take full advantage of available game-design software
(Microsoft Kodu), (b) be based on pedagogies that favor ex-
ploration of ideas and construction of artifacts and treat
learners as designers, and (c) effectively incorporate methods
of teaching problem-solving.

Technology: Microsoft Kodu

Microsoft Kodu was selected as the game-design software for
the GDL program. As a free download, one of the main
affordances of Kodu is that it allows young learners to get
hands-on practice with basic computer programming con-
cepts, such as “if-then” statements, variables, and conditionals
(MacLaurin 2011; Stolee and Fristoe 2011). While the prima-
ry goal when using the software is to create games, the process
of creating digital games naturally requires students to under-
stand and work with computer science concepts.

Among other available options (e.g., Scratch, Alice,
GameMaker), during the GDL program Kodu was used for
several reasons. First, Kodu environment is three-dimensional
(3D), as opposed to other popular game-design software (e.g.,
Scratch) (Fig. 1). Compared to 2D environments, the ability to
create 3D games in Kodu makes it visually more appealing for
young students. Thanks to its built in real-time 3D game en-
gine, starting from their first encounter with Kodu, even
young learners can create games akin to the games they play
regularly (MacLaurin 2011). The real-time 3D game engine
helps students create games that can compete with modern
console games, while fulfilling common gaming assumptions
(e.g., physics) without any effort on the part of the learner.

Kodu also allows for creation of computer-run simulations.
Simulations differ from games in that when users run simula-
tions they can function as microworlds to observe and count
user-defined events. Such an affordance can be used to
reverse-engineer problem scenarios to observe and visualize
causes, and devise a solution. An example of such a task can
be the creation of a simulation to replicate an environmental
issue (e.g., pollution problem), where learners design a system
that allows them to count and keep track of sources of pollu-
tion, letting them visualize ways of possible solutions. For the
reasons listed, Kodu was used during the GDL program.

@ Springer

116

TechTrends (2016) 60:114-123

Fig. 1 Screenshots of a baseball [score @) [outs W) [Strikes 00 |

| & High Score T |

game in Scratch (/eff) and Kodu
(right)

~—

Finally, even with its simplified user interface, Kodu intro-
duces learners to basics of computing concepts (Stolee and
Fristoe 2011) in a game-design context. Based on an event-
driven visual programming language, Kodu relieves younger
learners from the level of abstraction required in other game-
design or programming tools (MacLaurin 2011). This helps
overcome some of the difficulties learners face while learning
programming (Fowler and Cusack 2011). Despite this sim-
plicity, however, Kodu contains important computer program-
ming concepts: global variables, local variables, non-
determinism (via random), boolean logic (negation, conjunc-
tion, disjunction), objects, control flow (i.e., non-linear pro-
gram flow), looping, conditionals, states, and parallelism
(Stolee and Fristoe 2011; Touretzky et al. 2013).

Pedagogical Approaches

During the GDL program, the students were encouraged to
overcome problems, explore and discover concepts indepen-
dently, while guidance and support also were provided at
times to help students establish connections among different
concepts (i.e., guided discovery learning) (Mayer and
Wittrock 1996). Due to the emphasis on giving students
hands-on experiences in game-design, programming, and
problem-solving; pedagogical approaches that allow students
to actively design and construct knowledge, skills, and arti-
facts needed to be selected.

Learners as Designers Learning by design is “a constructiv-
ist approach that sees knowing as being situated in action and
co-determined by individual-environment interactions”
(Brown, Collins, & Duguid, 1989; Gibson, 1986; Roschelle
& Clancey, 1992; Young, 1993, as cited by Koehler and
Mishra 2005, p. 135). During the GDL program, the students
found opportunities to act and think like designers by engag-
ing in various game-design tasks. Conceiving of learners as
designers is important for several reasons. First, in today’s
world, people are increasingly faced with complex problems
that require novel solutions through design (Eseryel et al.
2013). When extant solutions do not apply to the new prob-
lems, the solution is usually found through creative design

@ Springer

processes that demand higher-order thinking skills and crea-
tivity (Goel and Pirolli 1992; Jonassen 2000). Therefore,
when learners get a chance to be designers, they get hands-
on experiences in practicing an important skill that will be
useful in their future careers and lives. Second, the process
of design is personal, and therefore engaging. During design
tasks, children get opportunities to play and tinker with ob-
jects, and construct personally meaningful and useful artifacts
(Ackermann 2001). Finally, design tasks are also effective
methods of teaching. Learners retain the most when they are
engaged in design of their own knowledge (Mayer 1998),
where it becomes more connected and meaningful.

Constructionism Coined by Seymour Papert, constructionism
sees learning as an active process of building socially mean-
ingful artifacts and knowledge (Ackermann 2001; Papert and
Harel 1991). Although at its core constructionism is very sim-
ilar to constructivism, Papert’s constructionism slightly di-
verges from the “v” version when it adds the idea that “this
happens especially felicitously in a context where the learner
is consciously engaged in constructing a public entity whether
it’s a sand castle on the beach or a theory of the universe”
(Papert and Harel 1991, p. 1). During the active construction
process, learning becomes more personal and engaging,
moves beyond “rote” learning and becomes more meaningful,
connected and effective (Kafai 1995). During the GDL pro-
gram, students actively engaged in creation of personally
meaningful artifacts: digital games, making the already engag-
ing process of game-design also meaningful.

Guided Discovery Learning Although in both guided dis-
covery and pure discovery methods learners are expected to
construct their own learning, the main difference between the
two methods is that in guided discovery learners are supported
through this process by getting “hints, direction, coaching,
feedback, and/or modeling to keep the student on track”
(Mayer 2004, p. 15). Timely guidance can be in the form of
supporting learners in abstracting rules, especially when con-
nections are not immediately apparent (e.g., Kurland et
al.1986). Results of research comparing guided versus pure
discovery learning methods favor guided discovery learning

TechTrends (2016) 60:114-123

117

when teaching thinking skills (Kirschner et al. 2006; Mayer
2004; Salomon and Perkins 1987). During the GDL program,
students were encouraged to explore game-design and
problem-solving concepts, but the instructional team provided
structure to their experiences by presenting initial directions
and timely support when they faced problems during the de-
sign and exploration process.

Instructional Methods

The instructional activities during the GDL courses were de-
signed to be aligned with theories of problem-solving, and
were based on well-established methods of teaching prob-
lem-solving. During the GDL program, problem-solving
was operationalized as the cognitive process of overcoming
barriers to reach a desired goal state (Funke 2010; Mayer
1977). Problem-solving process requires execution of compo-
nent cognitive processes: understanding, representing, plan-
ning/monitoring, and executing (Jonassen 2011; Mayer and
Wittrock 2006; Mayer 1977; Polya 1957). Understanding in-
volves using the background knowledge and making sense of
a given problem. Representing refers transforming external
representations of a problem into internal mental representa-
tions (Jonassen 2000; Mayer and Wittrock 2006). It also in-
volves generating hypotheses based on interrelationships
among variables for a given problem situation. The final steps
are to plan a solution for the problem by breaking it down its
parts, and then executing solution (Jonassen 2000; Mayer and
Wittrock 2006; Polya 1957). Activities during the GDL pro-
gram, therefore, targeted showing students the flow of the
problem-solving process.

As for instructional approaches to teaching problem-solv-
ing, four empirically-supported methods of teaching problem-
solving as listed in the two extensive reviews by Mayer and
Wittrock (1996, 2006) were used during the GDL program:
(a) teaching basic skills, (b) teaching for understanding, (c)
teaching by analogy, and (d) teaching thinking skills directly.
Teaching of basic skills (Mayer and Wittrock 1996) encom-
passes teaching of specific low-level component cognitive
skills pertaining to a task, so that in the ensuing tasks more
effort can be placed upon executing higher-level cognitive
skills (i.e., automaticity and cognitive load-reduction). In
load-reduction methods the constraints in the environment
that make the process of selecting, organizing and integrating
new knowledge difficult are removed to ease the process of
solving problems. Teaching for understanding (Mayer and
Wittrock 2006) involves teaching of new cognitive skills in
such a way that the freshly learned skills can be applied to
novel situations. There are three widely used methods that can
be used to teach for understanding. In structure-based
methods learners are given concrete objects that can be ma-
nipulated. In generative methods teaching for understanding is
promoted by helping students “generate relations between

their existing knowledge and information to be learned”
(Mayer and Wittrock 2006, p. 294). Finally, during the dis-
covery learning methods, it is believed that learners actively
construct connections between existing and new information,
which eventually leads to meaningful learning. Using
analogies is also another approach implemented in teaching
problem solving. In this approach, “learners solve a new prob-
lem by using what they know about a related problem that
they can [already] solve” (Mayer and Wittrock 1996, p. 55).
In teaching by analogy, the premise is that by analyzing two
problems that have surface similarity, the learners can abstract
the underlying rules. Finally, teaching thinking skills directly
is also a method utilized in teaching problem-solving. This
method involves teaching metacognitive skills (e.g., problem
decomposition) necessary to solve problems. Early research
showed teaching thinking skills directly through after-school
programs or courses is an effective way of teaching problem-
solving (Mayer and Wittrock 1996, 2006). As it will be de-
tailed later, these methods were incorporated into the GDL
activities in different ways.

From Design to Implementation: GDL Activities

Based on the established instructional methods for teaching
problem-solving that were applied within the context of guid-
ed learning theory, with key concepts of constructionism and
learning-by-design, and the affordances of Kodu integrated,
four types of activities were created to be offered during the
GDL program: (a) game-design (first three sessions), (b)
problem-solving (following two sessions), (b) troubleshooting
(one session), and (d) free design (one session). The activities
were sequenced to be offered at specific points during the
GDL program (Fig. 2).

As it can be seen in Fig. 2, game-design activities were the
through line of the GDL program, while other activities
targeting specific skills (i.e., problem-solving) were intro-
duced later, as students gained more experience and confi-
dence in game-design and programming. Sequencing GDL
activities in this manner (i.e., offering problem-solving activ-
ities only after students learned basics of digital game-design
and programming) was based on load-reduction methods
(e.g., automaticity and constraint-removal). According to the
theories of automaticity and constraint-removal, mastery of
low-level cognitive skills makes it easier for people to allocate

Game-design
Problem-solving
Troubleshooting

Free-design

[
[\
/

@ Springer

Fig. 2 Progression of different activities during GDL courses

118

TechTrends (2016) 60:114-123

more time, energy and cognitive facilities in solving problems
requiring high-level cognitive skills (Mayer and Wittrock
1996). Based on load-reduction principle, the first set of ac-
tivities at the GDL program aimed to teach students basic
skills (e.g., how to use the software, basics of game-design,
programming), eventually making it more probable for them
to tackle more complex problem-solving tasks.

Overall Activity Structure

In terms of their basic instructional structure, each GDL activ-
ity, regardless of its specific type, started with an instructor
introducing the activity to the students, and then guiding the
students through the initial steps of the design. During the
introduction stage, students were also introduced to new con-
cepts in design and programming as well as skills in game-
design and problem-solving (e.g., creating flowcharts of
games). The sessions continued with students’ iterating on
their designs with assistance from instructors as needed.

Game-design Activities

Purpose and Structure Game-design activities were offered
during the first sessions of the GDL program. The main ob-
jective of game-design activities was to teach students basics
of game-design and programming. To this end, game-design
activities were composed of smaller tasks that targeted: (a)
identifying elements of games, (b) creating flowcharts of
games to understand their systemic complexity, and (c) creat-
ing games in Kodu (from simple to complex).

Example An example game-design activity was creation of a
game called “Apple Hunter.” This activity was offered on the
first session of the GDL programs to give students an initial
sense of game-design, without overwhelming them. Apple
Hunter (will be described later) was a very simple game where
the goal was to eat five green apples and earn five points.

To introduce students to the game-design process and raise
their awareness regarding the basic elements that make up
games, the activity started with students identifying basic
elements common to most games: Goals, Rules, Assets,
Spaces, Play mechanics, and Scoring (GRASPS). By identi-
fying the GRASPS of popular games as a class, students were
guided in thinking about the games that they play at home. It
also allowed students to think from a designer’s perspective,
perhaps for the first time.

Next, students were provided with GRASPS of their first
game: Apple Hunter (Table 1). At this stage, the instructor
quickly went over the GRASPS of the game with the students
to check for understanding. During the initial sessions, since
students did not have prior experience with Kodu or game-
design process, the creation of Apple Hunter was done as a
whole class, step by step, instructor leading each step and

@ Springer

Table1 GRASPS for Apple Hunter game
Apple Hunter
Goals Eat 5 green apples
Do not eat red apples
Rules (optional: character slows down after eating red apples)
(optional: in 20 seconds)
Assets Kodu
Apples
Tree
Scoring Green apple=-+1 green point
Red apple=—1 green point
Play Wander around, look for/avoid apples, bump to eat
mechanics
Spaces Walled open world

helping learners as they moved along. During this stage, stu-
dents explored the basics of Kodu as well as programming and
game-design.

The process of designing Apple Hunter started with
creating a playable character and programming it to
move with the help of the keyboard. After this first
step, students created and programmed a tree that gen-
erates apples (green and red) at random intervals.
Finally, students programmed their character to eat
green apples upon touching them, and gain one point.
After creating the basic game, students were encouraged
to modify and improve their games, or recreate it from
scratch. During this process, they had the option to
choose to work independently or in small groups.
Instructors provided support on an as-needed basis.

Game-design activities also involved creating
flowcharts of games. Flowcharts are visual representa-
tions showing the interrelationship among various com-
ponents of games as systems. During the game-design
activities, students were guided in creating flowchart of
the games that they create. This happened in a
scaffolded manner: during the initial sessions students
received complete flowcharts of the games that they
needed to create (e.g., Apple Hunter -— see Fig. 3),
then, gradually they received less complete ones, during
the final sessions they got a blank sheet of paper and
were asked to create the flowchart for a game that they
imagined.

To help students understand how games work as sys-
tems and see the importance of flowcharts in the design
process, the instructors provided initial guidance as to
how to utilize them. For example, to give students
chances to understand how flowcharts work, the instruc-
tor asked them how they would change the flowchart if,
for example, the red apples ended the game immediate-
ly. Flowcharting was highly guided at the initial stages.

TechTrends (2016) 60:114-123

119

Fig. 3 Flowchart of the Apple
Hunter game provided by the

instructors
Kodu eats a +1 Gained
green apple YES green —» +5 green —>| WIN
point points?
Start
‘ -
‘ NO Red apple?

Rationale Game-design activities (and the smaller tasks
offered with these activities) were the through-line of
GDL program. During the game-design activities the
students gained the basic knowledge required (i.e., con-
straint-removal) so that they could tackle the complexi-
ties of later tasks. In each game-design activity, the
students were incrementally given more complex games
to develop a further understanding of game-design and
programming (for example, in the second session stu-
dents created Pac-Man in Kodu). In addition, they were
introduced to the idea of “games as complex systems,”
and were provided with tools to navigate the complex-
ity. After multiple game-design sessions that solely
targeted teaching students game-design and program-
ming, the students were introduced to problem-solving
activities.

Problem-Solving Activities

Purpose and Structure After learning basic game-design
and programming skills, the focus at GDL shifted to instruc-
tional activities that targeted teaching students how to solve
complex problems. The purpose here was to introduce the
students to important cognitive skills required to solve com-
plex problems through meaningful and engaging game-design
tasks. Situating problem-solving within the game-design pro-
cess helped make an unappealing task more appealing.
Through problem-solving activities, students not only had
chances to practice their general and specific problem-
solving skills, but also became familiar with important (basic
and metacognitive) thinking skills necessary to solve complex
problems.

Similar to game-design activities, problem-solving activi-
ties were composed of multiple smaller tasks. The general
structure of the problem-solving activities followed the ensu-
ing sequence: students (a) faced complex problem scenarios,
(b) solved these problems with instructor/peer guidance, and

(c) recreated (reverse-engineered) the problem scenarios in
Kodu as simulations.

Example An example problem-solving activity was
“SimSchool.” The first step of this activity involved introduc-
ing students to a problem with a simple scenario (Fig. 4):

After reading the note, the students received data and
graphs regarding the issue. By analyzing the data, students
had a chance to practice data literacy skills. As it can be seen
in Fig. 5, the basic relationship among the variables in the
scenario was similar to a predator—prey relationship: student
and service staff numbers had an inverse relationship with the
amount of trash.

There is a trash (environmental pollution) problem at
your school affecting everyone's health. The school
administration is trying to solve this problem, but
they need your help. You decide to help them. To
do this, in this task, you need to, first, analyze
some data to understand the source of the
problem, and then devise a solution. Finally, you
need to recreate your solution in Kodu to show the
school administration the source of the problem,
and how it can be solved.

Fig. 4 An example problem-solving scenario students received during
the GDL program

@ Springer

TechTrends (2016) 60:114-123

120
Fig. 5 SimSchool problem 12
scenario — visualized data source
10
2 8
=
26
£
< 4
2
0

It was at this first step, through instructor guidance, that the
students were also introduced to basics skills underlying prob-
lem-solving. Based on the method of teaching basic thinking
skills directly, during this step the students received instruction
on how-to solve problems following four basic steps (Polya
1957): (a) understand the problem, (b) devise a plan, (c) carry
out the plan, and (d) look back. In their first problem-solving
task (SimSchool), for example, the students were especially
encouraged to take their time, look at the patterns in the data to
understand the source of the problem. During this step, in-
structors provided support by walking around and making
sure that everyone could follow necessary steps to understand
the problem.

After understanding the problem, in the next step, the stu-
dents were asked to plan a simulation of the scenario to rep-
licate the problem. During this planning stage, the students
were encouraged to create flowcharts of their simulations, to
help them visualize the system behind their solutions. Having
planned a solution, students worked on recreating a simulation
of the scenario in Kodu. This design step was important be-
cause it allowed the students to execute their plans, and see if
their solution worked. During the problem-solving activities,
the students practiced important metacognitive skills (e.g.,
Polya’s steps of problem-solving) and also engaged in
hands-on complex problem solving.

Rationale During problem-solving activities, in addition to
teaching basic skills, other effective methods of teaching
problem-solving were also used. One such method was using
analogies. In analogies, solutions for existing problems can be
employed to solve new problems with surface differences, but
structural similarities (Gick and Holyoak 1980; Mayer and
Wittrock 2006). During the GDL program, analogies were
provided through introducing scenarios that were different
on the surface, but essentially built on same underlying prin-
ciples. For example, once students solved the SimSchool sce-
nario, in the next session they were given another scenario
called Kodu “EcoSystem.” In the Ecosystem scenario, the
relationships between the problem components were similar
to those in SimSchool: three living organisms have a preda-
tor—prey relationship where their population numbers depend

@ Springer

= Amount of Students
(hundreds)

Amount of Service Staff
(tens)

Amount of Trash (per m2)

on each other, and the goal is to maintain order. Using analo-
gous problems, and pointing the similarities between the prob-
lems openly to the students, students participating in the GDL
program had experience in identifying patterns in problems.

In addition to analogies, from a larger perspective, by using
Kodu to recreate problem scenarios, the problem-solving ac-
tivities in the GDL program can also be considered as digital
versions of structure-based methods. In structure-based
methods, teachers use concrete objects (e.g., beads and sticks)
to teach abstract rules (e.g., simple computation problems)
(Mayer and Wittrock 1996). During the GDL program, simu-
lations that students created serve as external representations
of problems, and helped them understand the abstract rules
behind complex problems.

During the process of recreating problem scenarios in
Kodu, generative methods of teaching problem-solving were
also implemented. Generative methods are designed to get
students to generate relationships between their own experi-
ences and the target information during learning activities
(Mayer and Wittrock 1996). During the GDL program, by
selecting scenarios from students’ daily life experiences
(e.g., SimSchool), and by letting students recreate these sce-
narios in worlds that they imagined, generative methods were
implemented.

Troubleshooting Activities

Purpose and Structure As a stand-alone activity,
troubleshooting was only offered in the later phases of the
GDL courses. Depending on availability of time, trouble-
shooting activities sometimes were not offered at all. The goal
of these activities was to give students structured practice op-
portunities in troubleshooting and to develop their confidence
in troubleshooting. Through troubleshooting activities the stu-
dents also got a chance to see the importance of troubleshoot-
ing during the game-design process, and design tasks in
general.

Example An example troubleshooting activity was to fix a
game that was intentionally broken by the instructors. The
games were picked from games the students were familiar

TechTrends (2016) 60:114-123

121

with, such as, Frogger (created in Kodu). Upon receiving the
game, the students were asked to play the game and analyze it
to find the flawed or missing codes, structures, or game ele-
ments. The students were reminded to explore the game to
find the source of each problem, one by one, and fix them
one by one. In Frogger, students were encouraged to initially
focus on fixing the code that controlled the main character. To
fix this issue, the students needed to add code to their character
so that can be controlled using the keyboard. Once the char-
acter is controllable, students realized the cars in the game
move too fast, making it impossible to win the game. Upon
identifying the problem, their task was to find the line of code
controlling the cars and to adjust speed parameters so that cars
move at an optimum level: not too fast (i.e., impossible to win)
or not too slow (i.e., too easy game).

Rationale During troubleshooting activities, due to the imme-
diate feedback provided by the game-design software (i.e.,
changes to codes can easily be tested by running the game),
students had opportunities to practice their troubleshooting
skills in real time. Such troubleshooting activities were impor-
tant in helping students build both the skill set necessary for
troubleshooting, and confidence in their ability thanks to be-
ing in a safe, sandbox-like environment (Papert 1980). As
noted previously, dedicated troubleshooting activities were
sometimes not offered during the GDL program, because trou-
bleshooting is a natural part of game-design and occurs natu-
rally during other activities. When time allowed, however,
instructional time was devoted to these separate troubleshoot-
ing activities, because during such dedicated opportunities
students was able to focus their attention to the troubleshoot-
ing process, and instructors were able to make sure the stu-
dents understood the procedures and skills underlying the
task.

Free Design Activities

Purpose and Structure In the final phases of the GDL
courses, even if it is for just one session, the students were
given chances to work on creating their own games. Having
learned how to use the game-design software, basics of game-
design, programming, and problem-solving during the earlier
phases of the course, at this final stage students got a final
chance to create personally and socially meaningful artifacts,
in the spirit of constructionism (Papert 1980).

Example Each student, based on their personal preferences
and the amount of technical skills they gained during the GDL
program, chose to work on creating a game of their choice.
For example, a student who was an avid player of World of
Warcraft (WoW) and was comfortable with game-design and
programming concepts decided to build one of the WoW
storylines within Kodu. Similar to the actual game, the game

included three types of playable characters: a magician, a
healer, and a warrior. Moving along a path, the team of three
players supported each other toward reaching the final boss
and beating it. Similarly, another student who played Grand
Theft Auto (GTA) opted to create a game similar to the GTA
where a character roamed the streets of a city and engaged
with multiple independent tasks. Finally, there were students
who chose to develop less complex games. In such cases,
students picked a game that they had been working on during
the earlier stages of GDL and added more rules and challenges
to the game. For example, one student developed a two-level
game out of the broken game given during the troubleshooting
activities. After fixing Frogger, he continued to add another
mini-game that players would access only after successfully
completing Frogger.

Rationale Free game-design activities served as an important
method to check student understanding, because at this final
stage the students had a chance test the boundaries of their
skills as well as the game-design software. During activity
students utilized important design skills such as problem find-
ing and troubleshooting. For example, it was very common to
find a student trying to create something that was not readily
available in Kodu. In such cases, for example creating telepor-
tation gates out of hockey pucks, students started thinking of
alternative ways to overcome problems that lacked an obvious
solution. Such opportunities were important because they
helped the students build confidence in their game-design,
programming, and problem-solving skills. What was especial-
ly unique about the GDL program was that the important
design and problem-solving skills were utilized through en-
gaging game-design tasks and in the low-stakes and safe at-
mosphere of the GDL program.

Free design activities were also important because they
were highly personalized, as students chose and worked on
design ideas that they personally valued. Being invested in a
personally meaningful problem helped them persist in the task
even in the face of difficulties. The GDL program culminated
with student presentations of the games they have developed.

Discussion and Conclusions

In this paper, the design, development, and implementation of
a technology-rich learning environment designed to teach
young students game-design, programming, and problem-
solving skills through engaging game-design activities was
detailed. As emphasized, creating such instructional activities
requires finding a balance among technology, pedagogy, and
content. Having multiple goals during the GDL program re-
quired design of a multi-faceted intervention, incorporating
multiple instructional techniques, and activities with dif-
ferent objectives.

@ Springer

122

TechTrends (2016) 60:114-123

Although the design process detailed here is specific to the
GDL program where the goal was to teach students problem-
solving through game-design tasks, the design process de-
tailed here can serve as an example for other contexts where
different types of tasks (e.g., app-making) are used to teach
different types of thinking skills (e.g., computational think-
ing). In this regard, the GDL context can be considered as
an example case of effective technology integration, where
technology was used to solve an educational problem (i.e.,
teaching problem-solving in an engaging context). Due to
the special attention given to natural interplay among technol-
ogy, pedagogy, and content, the approach to technology inte-
gration at GDL was in line with the Technological
Pedagogical Content Knowledge (TPACK) framework
(Mishra and Koehler 2006). According to TPACK, effective
technology integration is possible by first taking into account
the complexity of teaching, and then understanding the unique
and permutable nature of the interplay between technology,
pedagogy, and content. Accordingly, GDL courses were de-
signed to utilize the affordances of available technologies (i.e.,
game-design software) while satisfying pedagogical (i.e.,
constructionism), and the content needs (e.g., game-design
and programming concepts).

Reporting on detailed reports on cognitive outcomes of the
GDL program was beyond the scope of the current paper and
such accounts can be found elsewhere (Akcaoglu 2014;
Akcaoglu and Koehler 2014). It should be noted, however,
that the students who attended the GDL program showed sig-
nificant improvement in their problem-solving skills
(Akcaoglu 2014; Akcaoglu and Koehler 2014). Findings from
the research on the effectiveness of GDL speak to the success
of the program in reaching its intended goals, as well as the
effectiveness of the instructional design process employed.

The success of the GDL implementations also paves the
way for future innovations. For example, just as effectively as
embedding of thinking skills, content knowledge can also be
embedded in GDL program. For example, the scenarios given
to students can be changed to address important environmen-
tal problems, shifting the focus to teaching environmental lit-
eracy or ecological awareness. Future research can investigate
this connection and evaluate the potential of such intervention
in teaching content skills, raise awareness, and teach thinking
skills simultaneously. Such research can possibly also look at
the changes in students’ interest and utility value of careers in
science (or STEM) fields.

Recently, game-design has been championed as an alterna-
tive context to teach programming and thinking skills (Denner
etal. 2012; Ke 2014; Li 2010; Weintrop and Wilensky 2012)
and as a method of encouraging STEM careers. With the in-
creasing interest toward using game-design for instructional
purposes, there is an increasing need to develop curricula to
harness the full potential of these activities, as well as a need to
engage in research to understand the outcomes from such

@ Springer

work. The teaching context detailed here is an attempt to pave
the way for such future efforts.

References

Ackermann, E. (2001). Piaget’s constructivism, Papert’s constructionism:
What’s the difference? Future of Learning Group Publication, 5(3),
1-11.

Akcaoglu M. (2014) Learning problem-solving through making games at
the game design and learning summer program. Educational
Technology Research and Development, 62(5), 583-600. doi:10.
1007/s11423-014-9347-4.

Akcaoglu, M., & Koehler, M. J. (2014). Cognitive outcomes from the
Game-Design and Learning (GDL) after-school program.
Computers & Education, 75, 72-81. doi:10.1016/j.compedu.2014.
02.003.

Baytak, A., & Land, S. M. (2010). A case study of educational game
design by kids and for kids. Procedia - Social and Behavioral
Sciences, 2(2), 5242-5246. doi:10.1016/j.sbspro.2010.03.853.

Bonnardel, N., & Zenasni, F. (2010). The impact of technology on crea-
tivity in design: an enhancement? Creativity and Innovation
Management, 19(2), 180-191. doi:10.1111/j.1467-8691.2010.
00560.x.

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by
middle school girls: can they be used to measure understanding of
computer science concepts? Computers & Education, 58(1), 240—
249.

Eseryel, D., Ifenthaler, D., & Ge, X. (2013). Towards innovation in com-
plex problem solving research: an introduction to the special issue.
Educational Technology Research and Development, 61(3), 359—
363. doi:10.1007/s11423-013-9299-0.

Fowler, A., & Cusack, B. (2011). Enhancing introductory programming
with Kodu Game Lab: An exploratory study. In M. Lopez & M.
Verhaart (Eds.), Proceedings from 2nd Annual Conference of
Computing and Information Technology Research and Education
New Zealand (CITRENZ2011) (pp. 69-79). New Zealand:
Christchurch.

Fullerton, T. (2008). Game design workshop. Boston, MA: Elsevier.

Funke, J. (2010). Complex problem solving: a case for complex cogni-
tion? Cognitive Processing, 11(2), 133—142.

Gee, J. P. (2003). What video games have to teach us about learning and
literacy. New York: Palgrave Macmillan.

Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving.
Cognitive Psychology, 12(3), 306-355.

Goel, V., & Pirolli, P. (1992). The structure of design problem spaces.
Cognitive Science, 16(3), 395-429.

Harel, L., & Papert, S. (1990). Software design as a learning environment.
Interactive Learning Environments, 1(1), 1-32.

Hwang, G.-J., Hung, C.-M., & Chen, N.-S. (2013). Improving learning
achievements, motivations and problem-solving skills through a
peer assessment-based game development approach. Educational
Technology Research and Development. doi:10.1007/s11423-013-
9320-7.

Jonassen, D. H. (2000). Toward a design theory of problem solving.
Educational Technology Research and Development, 48(4), 63—85.

Jonassen, D. H. (2011). Learning to solve problems: A handbook for
designing problem-solving learning environments. New York:
Routledge.

Kafai, Y. B. (1995). Minds in play: Computer game design as a context
for children’s learning. Hillsdale: Lawrence Erlbaum.

Ke, F. (2014). An implementation of design-based learning through cre-
ating educational computer games: a case study on mathematics

http://dx.doi.org/10.1007/s11423-014-9347-4
http://dx.doi.org/10.1007/s11423-014-9347-4
http://dx.doi.org/10.1016/j.compedu.2014.02.003
http://dx.doi.org/10.1016/j.compedu.2014.02.003
http://dx.doi.org/10.1016/j.sbspro.2010.03.853
http://dx.doi.org/10.1111/j.1467-8691.2010.00560.x
http://dx.doi.org/10.1111/j.1467-8691.2010.00560.x
http://dx.doi.org/10.1007/s11423-013-9299-0
http://dx.doi.org/10.1007/s11423-013-9320-7
http://dx.doi.org/10.1007/s11423-013-9320-7

TechTrends (2016) 60:114-123

123

learning during design and computing. Computers & Education,
73(1), 26-39. doi:10.1016/j.compedu.2013.12.010.

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guid-
ance during instruction does not work: an analysis of the failure of
constructivist, discovery, problem-based, experiential, and inquiry-
based teaching. Educational Psychologist, 41(2), 75-86.

Koehler, M. J., & Mishra, P. (2005). What happens when teachers design
educational technology? The development of technological peda-
gogical content knowledge. Journal of Educational Computing
Research, 32(2), 131-152. doi:10.2190/0EW7-01 WB-BKHL-
QDYV.

Koehler, M. J., & Mishra, P. (2009). What is technological pedagogical
content knowledge (TPACK)? Contemporary Issues in Technology
and Teacher Education, 9(1), 60-70.

Kurland, D. M., Pea, R. D., Clement, C., & Mawby, R. (1986). A study of
the development of programming ability and thinking skills in high
school students. Journal of Educational Computing Research, 2(4),
429-458.

Li, Q. (2010). Digital game building: learning in a participatory culture.
Educational Research, 52(4), 427-443. doi:10.1080/00131881.
2010.524752.

MacLaurin, M. B. (2011). The design of Kodu: a tiny visual program-
ming language for children on the Xbox 360. ACM SIGPLAN
Notices, 46(1), 241-246.

Mayer, R. E. (1977). Thinking and problem solving: An introduction to
human cognition and learning. Glenview, Illinois: Scott, Foresman
and Company.

Mayer, R. E. (1998). Cognitive, metacognitive, and motivational aspects
of problem solving. Instructional Science, 26(1), 49-63.

Mayer, R. E. (2004). Should there be a three-strikes rule against pure
discovery learning? The case for guided methods of instruction.
The American Psychologist, 59(1), 14—19. doi:10.1037/0003-
066X.59.1.14.

Mayer, R. E., & Wittrock, M. C. (1996). Problem-solving transfer. In D.
C. Berliner & R. C. Calfee (Eds.), Handbook of educational
psychology (pp. 47-62). New York, NY: Macmillan Library
Reference.

Mayer, R. E., & Wittrock, M. C. (2006). Problem solving. In P. A.
Alexander & P. H. Winne (Eds.), Handbook of educational
psychology (pp. 287-303). Mahwah, NJ: Lawrence Erlbaum
Associates.

Microsoft Kodu. (2012). Microsoft Research. Retrieved from http://
research.microsoft.com/en-us/projects/kodu/.

Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content
knowledge: a framework for teacher knowledge. Teachers College
Record, 108(6), 1017-1054. doi:10.1111/1.1467-9620.2006.00684.
X.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas.
New York: Basic Books, Inc.

Papert, S., & Harel, 1. (1991). Situating constructionism. In S. Papert & I.
Harel (Eds.), Constructionism (Vol. 36, pp. 1-11). Norwood, NJ:
Ablex Publishing Corporation.

Polya, G. (1957). How to solve it. Garden City, NY: Doubleday/Anchor.

Prensky, M. (2003). Digital game-based learning. Computers in
Entertainment (CIE). Retrieved from http://dl.acm.org/citation.
cfm?id=950596.

Resnick, L. (1987). The 1987 presidential address: learning in school and
out. Educational Researcher, 16(9), 13-20.

Robertson, J. (2012). Making games in the classroom: benefits and gen-
der concerns. Computers & Education, 59(2), 385-398. doi:10.
1016/j.compedu.2011.12.020.

Salomon, G., & Perkins, D. N. (1987). Transfer of cognitive skills from
programming: when and how? Journal of Educational Computing
Research, 3(2), 149-169.

Scratch. (2012). Retrieved from http://scratch.mit.edu/.

Simon, H. A. (1995). Problem forming, problem finding, and problem
solving in design. In A. Collen & W. W. Gasparski (Eds.), Design
and systems: General applications of methodology (Vol. 3)ems (Vol.
3, pp. 245-257). Brunswick, NJ: Transaction Publishers.

Smith, K., & Boling, E. (2009). What do we make of design? Design as a
concept in educational technology. Educational Technology, 49(4),
3-17.

Stolee, K. T., & Fristoe, T. (2011). Expressing computer science concepts
through Kodu Game Lab. In Proceedings of the 42nd ACM
Technical Symposium on Computer Science Education (pp. 99—
104).

Touretzky, D. S., Marghitu, D., Ludi, S., Bernstein, D., & Ni, L. (2013).
Accelerating K-12 computational thinking using scaffolding, stag-
ing, and abstraction. In Proceeding of the 44th ACM technical sym-
posium on Computer science education (pp. 609-614). ACM.

Weintrop, D., & Wilensky, U. (2012). RoboBuilder: Video game
program-to-play constructionist. In Constructionism 2012 (pp. 1—
5). Athens, Greece.

@ Springer

http://dx.doi.org/10.1016/j.compedu.2013.12.010
http://dx.doi.org/10.2190/0EW7-01WB-BKHL-QDYV
http://dx.doi.org/10.2190/0EW7-01WB-BKHL-QDYV
http://dx.doi.org/10.1080/00131881.2010.524752
http://dx.doi.org/10.1080/00131881.2010.524752
http://dx.doi.org/10.1037/0003-066X.59.1.14
http://dx.doi.org/10.1037/0003-066X.59.1.14
http://research.microsoft.com/en-us/projects/kodu/
http://research.microsoft.com/en-us/projects/kodu/
http://dx.doi.org/10.1111/j.1467-9620.2006.00684.x
http://dx.doi.org/10.1111/j.1467-9620.2006.00684.x
http://dl.acm.org/citation.cfm?id=950596
http://dl.acm.org/citation.cfm?id=950596
http://dx.doi.org/10.1016/j.compedu.2011.12.020
http://dx.doi.org/10.1016/j.compedu.2011.12.020
http://scratch.mit.edu/

	Design and Implementation of the Game-Design and Learning Program
	Abstract
	Design and Development of the GDL Program
	Technology: Microsoft Kodu
	Pedagogical Approaches
	Instructional Methods

	From Design to Implementation: GDL Activities
	Overall Activity Structure
	Game-design Activities
	Problem-Solving Activities
	Troubleshooting Activities
	Free Design Activities

	Discussion and Conclusions
	References

