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Abstract Environmental burdens such as air pollution
are inequitably distributed with groups of lower socio-
economic statuses, which tend to comprise of large
proportions of racial minorities, typically bearing great-
er exposure. Such groups have also been shown to
present more severe health outcomes which can be
related to adverse pollution exposure. Air pollution ex-
posure, especially in urban areas, is usually impacted by

the built environment, such as major roadways, which
can be a significant source of air pollution. This study
aims to examine inequities in prevalence of cardiovas-
cular and respiratory diseases in the Atlanta metropoli-
tan region as they relate to exposure to air pollution and
characteristics of the built environment. Census tract
level data were obtained frommultiple sources to model
health outcomes (asthma, chronic obstructive pulmo-
nary disease, coronary heart disease, and stroke), pollu-
tion exposure (particulate matter and nitrogen oxides),
demographics (ethnicity and proportion of elderly resi-
dents), and infrastructure characteristics (tree canopy
cover, access to green space, and road intersection den-
sity). Conditional autoregressive models were fit to the
data to account for spatial autocorrelation among census
tracts. The statistical model showed areas with majority
African-American populations had significantly higher
exposure to both air pollutants and higher prevalence of
each disease. When considering univariate associations
between pollution and health outcomes, the only signif-
icant association existed between nitrogen oxides and
COPD being negatively correlated. Greater percent tree
canopy cover and green space access were associated
with higher prevalence of COPD, CHD, and stroke.
Overall, in considering health outcomes in connection
with pollution exposure infrastructure and ethnic demo-
graphics, demographics remained the most significant
explanatory variable.
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Introduction

An environmental burden is any environmental factor
that causes adverse effects [1]. Typically, members of
lower socioeconomic status (SES) tend to experience
heavier shares of these environmental burdens [2–5].
One example of an environmental burden is air pollution
exposure, which is currently the top environmental risk
factor leading to premature death globally [6, 7]. Nitro-
gen oxides (NO + NO2 = NOx) and fine particulate
matter (PM2.5) in particular have been linked to adverse
health effects including prenatal outcomes [8, 9], peri-
natal outcomes [10], cardiovascular diseases [6, 11–13],
and respiratory ailments [6, 13, 14]. With over 66% of
the world’s population projected to live in cities by 2050
[15], the health effects of air pollution are of concern as
urban areas generally have higher levels of pollutants
than rural zones [16].

Inequities in air pollution exposure [2–5, 17] and
relevant health outcomes [18–21] have been identified
previously, though there is less certainty in the research
seeking their etiologies [5]. Health equity studies have
proven challenging due to confounding socioeconomic
factors, temporal lags, non-linear relationships between
exposures and outcomes, and characteristics of the
physical environment that may modify health outcomes
related to exposures [22]. Associating a set of exposures
with numerous health outcomes is a complex problem
from an exposure science perspective [23]. Some dis-
parities can be attributed to inequitable access to care or
health behaviors associated with diet and smoking [19],
but others may relate to the physical environment. For
instance, land-use patterns of road density, proximity to
greenspace (defined as public space specifically desig-
nated as a park), and tree canopy cover can alter air
quality through physical or atmospheric chemical trans-
formation processes [24–29].

In effect, health outcomes resulting from air pollution
exposure could be affected by variables not easily de-
lineated, as has been found in studies looking at the
impact of ethnicity, age, and income brackets [30–33].
Further, when several variables characterizing inequities
are highly correlated, isolating conditional and uncon-
ditional effects is particularly challenging.

Despite these challenges, air quality in cities is of
particular concern as many source apportionment
studies have shown that traffic sources are a signifi-
cant contributor to pollution [16, 34–42]. People liv-
ing in close proximity to roadways are at risk of high

exposures to air pollutants [43], and many urban pop-
ulations of low SES groups typically live close to
roadways [17, 44, 45]. These findings, combined with
studies attributing cardiovascular and respiratory dis-
eases to air pollution exposure, suggest that members
of low SES groups in cities are likely to have poorer
health outcomes in relation to their greater exposure to
ambient air pollution [6, 11–14].

This study aims to characterize how health outcome
disparities compare to inequities in air pollution expo-
sure, the built environment, and demographics. Two
air pollutants, PM2.5 and NOx, were used as determi-
nants of risk of four cardiovascular and respiratory
diseases: chronic asthma, chronic obstructive pulmo-
nary disease (COPD), coronary heart disease (CHD),
and stroke. NOx is used in this study as it is the
reactant of concern for Atlanta in the formation of
ozone [46]. Health outcome risk was measured by
prevalence from the CDC’s 500 Cities Health database
[47]. This study also addresses factors of the built
environment such as roadways and greenspaces, which
are typically source and sink areas for air pollution. An
advantage of this study is its use of multiple publicly
available datasets at a spatial resolution finer than
many other public data sets. While the initial applica-
tion is to the Atlanta, GA, USA, area, the methods
used can be applied elsewhere.

Atlanta, GA, is the ninth largest metropolis in the
USA. Atlanta is home to a diverse population of almost
six million and hosts the busiest airport in the world [48,
49]. The region also serves as the major transportation
hub for all major interstate traffic that passes through the
state of Georgia.

Methods and Materials

This study makes use of multiple data sources to gain
information on the statistical associations among health
outcomes, pollution exposure, and infrastructure char-
acteristics. The study population was constrained to four
cities in the Atlanta metropolitan area with available
data for all data sources. The specific cities (Fig. 1)
studied are: Atlanta, John’s Creek, Roswell, and Sandy
Springs, and were chosen as they belong to the 500
Cities data set recently released by the US CDC These
four municipalities vary in population densities and
demographic profiles.
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Data Sources

This study uses cross-sectional data sources that span
2006 to 2016. Data for health outcomes, infrastructure,
and demographics were available at the census tract
level, and air pollution data were available in fine spatial
grids (250 m resolution) and then aggregated to census
tracts.

Health data were available for 2014 [32], air pollu-
tion data were available for 2011 [50], and demographic
data were obtained from the 2010 US Census. Tree
canopy, road density, and park access data were provid-
ed by the Center for Geographic Information Systems
(CGIS) and span from 2006 to 2016 [51].

Health Outcomes

Four health outcomes from the 500 Cities data [47]
known from previous literature to be associated with
poor air quality were selected for analysis. The health
outcomes examined in this study are chronic asthma,
chronic obstructive pulmonary disease (COPD), coro-
nary heart disease (CHD), and stroke. Prevalence esti-
mates for each outcome show similar spatial patterns,
with high prevalence in southern Atlanta (Fig. 2).

The prevalence data provide crude estimates in each
census tract, representing the proportion of adult re-
spondents from the CDC’s Behavioral Risk Factor
Surveillance System who reported receiving a diagno-
sis for each health outcome. These data only include
prevalence among the adult population at a single time
point, without information regarding the time of diag-
nosis or age at diagnosis. Prevalence of COPD also
includes emphysema and chronic bronchitis. Preva-
lence of CHD also includes angina [32].

Air Quality

Owing to the complexity, cost, and general mainte-
nance of air monitors, the number of air monitoring
stations located in each state is low [52–54]. For
instance, the EPA’s Chemical Speciation Network
(CSN) lists seven monitors within the state of Georgia
[55]. In areas lacking adequate monitoring stations,
observational data may not accurately capture the spa-
tial gradient in air pollution that affect exposure.
Therefore, studies that rely on limited monitoring sys-
tems to characterize air exposure are subject to inac-
curacies [56]. To combat anticipated errors that could
result, this study utilizes data from two computational
air quality models using advanced data assimilation
approaches. Those results have been thoroughly eval-
uated against observations.

Results from the line dispersion model R-Line [57]
and the photochemical model CMAQ [58] were com-
bined using the R-Line/CMAQ fusion method to pro-
duce air quality estimates at a fine spatial resolution
incorporating comprehensive emissions and chemistry
[50]. R-Line, otherwise known as the Research Line
Source dispersion model, assesses dispersion of prima-
ry roadway emissions near roadways [57]. The Com-
munity Multi-Scale Air Quality model (CMAQ) is a
chemical transport model capable of regional scale
photochemical air quality modeling [58–60]. R-Line
provides the fine spatial resolution necessary for these
analyses while CMAQ provides the needed chemistry
and regional emissions.

Air quality data for carbon monoxide (CO),
PM2.5, and NO x were originally developed for
250 m by 250 m spatial grids and were thoroughly
evaluated using data withholding [50]. These data
were aggregated to census tracts for this inequity
study (Fig. 3).

Four largest Atlanta Metropolitan Cities. (City of 

Atlanta, Sandy Springs, Johns Creek, and Roswell) 

Fig. 1 Municipalities and census tracts included in the study region
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Demographics

Data for age and racial compositions of census tracts
were obtained from the US Census Bureau (www.
census.gov). Census tracts are small, localized areas
with populations typically ranging between 1000
and 5000 inhabitants, typically less than 1 km
square in area. The data contain populations of
racial groups, converted into percentages. An
indicator variable was created for tracts that have a
predominantly African-American population, de-
fined as having more than 50% African-American
residents. Age demographics were included as the
percent of residents over the age of 65, as elderly
residents are vulnerable to both cardiovascular and
respiratory diseases. Youth populations are also
known for being vulnerable, but could not be con-
sidered in this study because the CDC data reported
the prevalence of each health outcome in adult pop-
ulations only.

Infrastructure Metric for Roadways

Data for roadways were provided by the Georgia Insti-
tute of Technology Center for Geographic Information
Systems (CGIS). In this study, the connectivity of road-
ways serves as a proxy for traffic, as well as pavement
surface area. Roadway connectivity is defined as the
ratio of links (road segments) to nodes (intersections)
[51]. These data span from 2006 to 2016.

Green Infrastructure Metrics

The relationship between roadways, air quality, and
greenspaces has been addressed [61, 62], but their overall
effectiveness in improving health outcomes is less certain
[24, 63]. This relationship is further complicated by
known access inequities among different communities
[64, 65]. This study uses tree canopy cover and access
to greenspace as measures of green infrastructure. Tree
canopy cover is measured as a percentage of the census
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Fig. 2 Prevalence of each of the
health outcomes by census tract.
All outcomes show similar spatial
patterns
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tract that is covered by canopy on both public and private
land. Greenspace access provides a metric of land access
specifically designated as public parks as of 2006
(Fig. 4), as well as the availability of privately held
greenspace and canopy cover along roadways. These
data were provided by CGIS.

Data Analysis

Analyses were run in R version 3.3.2 [66]. Continuous
data were converted to z-scores to improve interpretability
across variables. Analyses were conducted at the census
tract level due to the aggregation of the health outcome
data. The first analyses measured crude associations relat-
ing the pollutants and racial demographics separately to
each health outcome using linear models with the individ-
ual pollutants and demographic indicator as the only pre-
dictor of each model. The second considered potential
confounding by demographic and infrastructure character-
istics, incorporating spatial autocorrelation in health out-
comes among tracts. Spatial autocorrelation in this context
represents expected similarities in health outcomes among
nearby census tracts. To determine existence of spatial
autocorrelation, Moran’s I [67] was calculated for each
health outcome. Conditionally autoregressive (CAR)
models [68] were run using the Bspdep^ package [69].

The CAR model and Moran’s I use inverse distance
weighting, with distances measured between tract cen-
troids. Explanatory variables used were air pollution, the
indicator variable of having a predominantly African-
American population, the percentage of elderly residents,
park access, tree canopy cover, road intersection connec-
tivity, and value of construction projects.

The final set of analyses used air pollution exposure
rather than health effects as the response variable. These
analyses also used CARmodels with the remaining explan-
atory variables as the predictor variables. Similarly, these
analyses used inverse distance weighting for spatial auto-
correlation. The purpose of these analyses was to character-
ize census tracts with higher or lower levels of air pollution
with regard to demographics and built environment.

Results

Analyses were conducted at the census tract level on four
cities in the Atlanta metropolitan area. A total of 169
census tracts were included in these analyses. Of these,
117 were located in the City of Atlanta, 14 in John’s
Creek, 16 in Roswell, and 22 in Sandy Springs. All 69
census tracts with a predominantly African-American
population were located in Atlanta. Figure 5 shows the
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Fig. 3 Modeled levels of PM2.5 and NOx throughout metro Atlanta

Demographic Inequities in Health Outcomes and Air Pollution Exposure in the Atlanta Area and its... 223



division in location between census tracts in the region
that are predominantly African-American in population.
Among census tracts with a predominantly African-
American population, the median percentage of African-
American residents was 93.3, and among tracts with a
predominantly non-African-American population, the
median percentage of African-American residents was
11.3. Although not part of the analysis, census tract map-
ping of various economic indicators showed near identical
patterns (details available in the supplemental materials).

Summary statistics of the continuous variables used are
shown in Table 1. Exposure to NOx showed greater var-
iability than exposure to PM2.5, due largely to PM2.5 being
driven more by chemical reactions in the atmosphere,
while NOx is directly emitted, and PM2.5 in Atlanta is
dominated by secondary species formation [70, 71]. How-
ever, both pollutants follow the same trends concerning
regions with higher and lower exposure automobiles emit
both NOx and PM2.5. Variability among the prevalence of
the four health outcomes is consistent, with the four out-
comes having similar sample standard deviations.

The first analyses provide crude estimates indi-
vidually comparing how different pollutant expo-
sures and racial demographics relate to cardiovas-
cular and respiratory diseases of interest (Table 2).
All models for PM2.5 showed a positive associa-
tion between pollution levels and prevalence of
each of the four health outcomes with significance
at the 95% level. Models for NOx showed similar
positive associations, but only the results for asth-
ma and stroke were significant at the 95% level.
The models with racial demographics showed that
tracts with a predominantly African-American pop-
ulation had significantly higher prevalence of each
health outcome.

Values of Moran’s I for all health outcomes were
significant (p < 0.0001), providing evidence of spatial
autocorrelation (Table 2). Values were all positive, pro-
viding strong evidence that the data are clustered rather
than spatially random. Values of Moran’s I for both

Fig. 4 Infrastructure measures by census tract in the study region

Fig. 5 Physical separation of census tracts with predominantly
Black population and predominantly non-Black population
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pollutants were also positive and significant (p < 0.0001),
implying spatial clustering (Table 3).

Adjusting for demographics and infrastructure as com-
bined factors in the second set of analyses found that the
estimated associations between air pollution exposure to
disease was no longer positive, suggesting that the demo-
graphic and infrastructure variable are more significant.
Tracts that have predominantly African-American popu-
lations were again significantly associated with having

higher outcome prevalence for each of the four health
outcomes. Other variables significant for some health
outcomes included park access (listed as Greenspace)
and tree cover, as census tracts with greater park access
and tree cover were associated with having higher prev-
alence of COPD, CHD, and stroke.

The results from the third set of models found that
census tracts that have predominantly African-
American population are associated with greater levels

Table 1 Descriptive statistics of data used in models

N Min 25% Median 75% Max Mean SD

Asthma 169 6 7.1 8.3 11.3 15.3 9.192 2.293

COPD 169 1.7 3.6 4.7 8.5 12.8 5.829 2.839

CHD 169 0.9 3.4 4.8 6.7 10.7 5.157 2.203

Stroke 169 0.6 1.7 2.3 5.2 7.9 3.321 2.058

PM2.5 169 10.213 11.331 12.124 12.455 15.08 11.999 0.866

Nox 169 18.911 35.848 47.225 60.635 144.224 51.343 22.247

Int Den 169 0.169 0.347 0.378 0.411 0.509 0.371 0.057

Park access 169 0 0.259 0.776 0.984 1 0.63 0.367

Tree canopy 169 0.516 29.78 44.909 55.357 77.755 41.55 19.549

Acres water 169 0 0 0.899 16.002 226.349 17.435 35.636

Value 169 141,088.75 1,705,350 3,577,135.04 5,665,415 25,030,707 7,138,134.292 8,382,057.477

Table 2 Model results for health outcomes

Crude model Adjusted model Adjusted spatial model

Asthma COPD CHD Stroke Asthma COPD CHD Stroke

Moran’s I 0.3138* 0.2659* 0.1994* 0.2829*

PM2.5 0.3442* − 0.0591 − 0.1438* − 0.1339* − 0.0464 − 0.0401 − 0.1005 − 0.0911 − 0.0088

Pred AA 1.8316* 1.8268* 1.7741* 1.5023* 1.7668* 1.7743* 1.7111* 1.4695* 1.7225*

Int Den − 0.0428 − 0.0598 − 0.0134 − 0.0143 − 0.0503 − 0.0669 − 0.0159 − 0.0195

Green space 0.0702 0.1285* 0.1268* 0.0931 0.0757 0.2096* 0.2575* 0.2003*

Park access 0.0201 0.2743* 0.4823* 0.2928* 0.0089 0.1983* 0.3754* 0.2005*

Pct elderly 0.0054 0.0096 − 0.0037 0.0032 0.0065 0.0102 − 0.0035 0.0033

Value 0.0286 − 0.0061 − 0.0107 − 0.0073 0.0306 0.0024 − 0.0011 0.0019

Nox 0.2477* − 0.0475 − 0.1173* − 0.1124* − 0.0398 − 0.0348 − 0.0916* − 0.0883 − 0.0216

Pred AA 1.8207* 1.7597* 1.4899* 1.7627* 1.7711* 1.711* 1.4709* 1.7268*

Int Den − 0.0413 − 0.0563 − 0.0103 − 0.0132 − 0.0496 − 0.0646 − 0.0139 − 0.0197

Park access 0.0548 0.0916 0.0935 0.0818 0.0683 0.2115* 0.2581* 0.2016*

Tree canopy 0.0157 0.2637* 0.4727* 0.2895* 0.0056 0.1792* 0.36* 0.2012*

Pct elderly 0.0059 0.0106 − 0.0027 0.0035 0.0067 0.0105 − 0.0032 0.0031

Value 0.0277 − 0.0082 − 0.0124 − 0.0078 0.0303 0.0038 0.0004 0.0029

The column for crude models shows the parameter estimates for separate models for both pollutants and demographics

*Denotes significance at the 95% level (p < 0.05)
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of both PM2.5 and NOx (Table 3). Census tracts with
greater amounts of tree cover were associated with
increased levels of PM2.5.

Discussion

Summary of Findings

This study gathered data at the census tract level and
employed statistical models accounting for spatial auto-
correlation to characterize inequities in cardiovascular
and respiratory disease burden in metro Atlanta. This
study also investigated inequities in exposure to partic-
ulate matter and NOx, two air pollutants that have been
previously shown to relate to risk of cardiovascular and
respiratory ailments, and the impact of infrastructure on
these outcomes.

The findings of this study primarily show that racial
demographics were the strongest predictor of each
health outcome. This study also shows that at finer
scales, health outcomes are more strongly associated
with racial demographics but show greater variability
in associations with infrastructure and air quality. The
stratified scatter plots (Fig. 6) provide evidence that
census tracts with predominantly African-American
populations have, on average, greater prevalence of each
health outcome as well as greater ambient levels of each
pollutant. The first model results also showed that racial
demographics are strongly associated with ambient
levels of PM2.5 and NOx, and that exposure to those
pollutants is associated with negative health outcomes.

Using models that control for demographic charac-
teristics, however, lead to counterintuitive results De-
creased air pollution exposure was associated with
higher prevalence of each outcome, though most

associations were nonsignificant (Table 2). Lack of sig-
nificance in these adjusted models is likely due to high
correlations among predictor variables in the models.
This suggests that the limited data set used here could
not fully control for how demographics interacted with
air quality and greenspace to impact health outcomes.

While some studies have reported on purported ben-
efits of vegetation such as tree canopy on air pollution
which could reduce adverse health outcomes, in this
study, tree canopy and greenspace were associated with
higher levels of both COPD (Table 2) and air pollution
(Table 3). This result could be explained partly by
studies that show that the presence of such greenspaces
can worsen air quality or contribute to formation of
PM2.5 [27, 72–74]. In addition, the combination of vol-
atile biogenic organic compounds from trees and NOx
can lead to the formation of ozone [28, 75, 76], which is
known to degrade respiratory performance [77–79].

While predominately African-American populations
have, on average, greater prevalence of all outcomes,
there are other factors not considered in this study such
as economic spatial distribution as reflected in the
supplemental figures that could point to underlining
causes for health inequities. Thus, while the results
show that ethnic demographics is strongly associated
with high health prevalence’s, it might be a proxy
indicator for differences in economic inequity or ac-
cess to health care services that might affect health
outcomes [2].

The Pearson correlation coefficients (Table 4) indi-
cate that the percentage of African-American residents
in a census tract is strongly positively correlated with
each of the four health outcomes as well as the two air
pollutants (Table 4). However, using correlated predic-
tors in models can lead to multicollinearity, which
typically results in parameter estimates that are inac-
curate. This explains the lack of significant association
and the negative associations seen between pollutants
and health outcomes in the adjusted CAR models. As
a sensitivity analysis, the models were rerun using
only the census tracts with a majority African-
American population. These models were the same
as the previous CAR models, with the removal of
the term for having a predominantly African-
American population. For all four health outcomes,
the model terms for both pollutants remained less than
zero and nonsignificant at the 95% level. Similar re-
sults were observed when restricting analyses to only
the city of Atlanta.

Table 3 Model results for pollution

PM NOx

Moran’s I 0.3257 0.1951

Pred AA 0.313* 0.3397*

Int Den − 0.0463 − 0.0262

Park Access 0.1929 0.2122

Tree canopy 0.2693* 0.101

Pct elderly − 0.0224 − 0.0206

Value 0.0593 0.0784

*Denotes significance at the 95% level (p < 0.05)
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Fig. 6 Scatter plots stratified by racial demographics comparing pollution levels with health outcome prevalence
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Comparisons to Literature

Using racial demographics, our study yielded results
similar to the field of literature in that census tracts with
predominantly lower SES populations, which tend to
comprise mainly of African-American and other minor-
ity populations, were more likely to experience greater
prevalence of disease as well poorer air quality.

This study utilized data published in the CDC’s 500
Cities Project, which considers health outcomes at a
finer scale. Similar findings between race and health
outcomes are discussed in other studies [1, 3]. In inves-
tigating other known relationships, such as those be-
tween health prevalence and greenspace, we found
weaker and inverse associations at the census tract level,
contradicting expectations but consistent with a number
of studies [80–84]. In those studies, mixed results, in-
verse or nonsignificant associations are often reported
when relating greenspace and certain health outcomes.
Previous findings of this nature include negative asso-
ciations between urban greenspace and cardiovascular
and respiratory mortality that result from allergen expo-
sure [81] and a positive correlation between greenspace
exposure and obesity [83]. Some of these results have
been explained by other relevant factors such as
greenspace with low frequency of use not leading to
lowered cardiovascular disease risk [85]. Low frequen-
cy of use may relate to socioeconomic factors such as
education and safety concerns [86, 87]. Contrasting
studies show greenspace associated with lower risk of

heart disease [88] and areas with greater tree canopy
having greater allergen exposure [89], secondary partic-
ulate matter, or ozone, which is known to be associated
with respiratory disease [28, 90–92].

There also exists evidence linking improved mental
health and health perception to greenspace exposure,
examining depression [93, 94], perceptions [95], and
aggression among adolescents [96, 97]. It is worth noting,
however, that perceptions of healthmay differ from actual
physical health [82] or the amount of increase in child-
hood physical activity [98]. Studies of this nature often
target specific health outcomes among specific demo-
graphics, such as birthweight [99] and adolescent health.
These topics were not examined in the present study.

Other effects of greenspace on health have yielded
mixed results, such as the relationship between
greenspace and obesity. This is likely due to con-
founding factors, as previous research has found
mixed associations across age and gender groups
[100]. Other research has shown that greenspace ac-
cess is associated with higher obesity [101, 102],
suggesting that other factors are relevant to obesity,
including diet. Greenspace is also believed to influ-
ence health outcomes through changes in the sur-
rounding environment, including urban heat islands
[103]. Also noted is the possibility to see differences
in relationships between greenspace and health across
different locations, including variation within the con-
tinental USA [93] and across developed and develop-
ing nations [104].

Table 4 Pearson correlation coefficients for all data used in models

Asthma COPD CHD Stroke PM2.5 Nox Pct
Black

Int Den Green
space

Tree
canopy

Acres
water

Pct
elderly

Value

Asthma 1.000 0.894 0.642 0.854 0.344 0.248 0.937 − 0.063 0.396 − 0.132 − 0.274 − 0.176 0.162

COPD 0.894 1.000 0.887 0.973 0.236 0.148 0.838 0.025 0.277 0.105 − 0.200 − 0.114 0.108

CHD 0.642 0.887 1.000 0.930 0.178 0.105 0.663 0.153 0.147 0.344 − 0.055 − 0.132 0.106

Stroke 0.854 0.973 0.930 1.000 0.315 0.225 0.863 0.071 0.289 0.143 − 0.185 − 0.158 0.135

PM2.5 0.344 0.236 0.178 0.315 1.000 0.909 0.418 − 0.091 0.573 − 0.132 − 0.339 − 0.316 0.229

Nox 0.248 0.148 0.105 0.225 0.909 1.000 0.324 − 0.065 0.384 − 0.095 − 0.239 − 0.244 0.196

Pct AA 0.937 0.838 0.663 0.863 0.418 0.324 1.000 − 0.002 0.379 − 0.122 − 0.223 − 0.222 0.170

Int density − 0.063 0.025 0.153 0.071 − 0.091 − 0.065 − 0.002 1.000 − 0.151 0.414 0.079 0.119 0.056

Park access 0.396 0.277 0.147 0.289 0.573 0.384 0.379 − 0.151 1.000 − 0.431 − 0.528 − 0.271 0.148

Tree canopy − 0.132 0.105 0.344 0.143 − 0.132 − 0.095 − 0.122 0.414 − 0.431 1.000 0.308 0.068 0.008

Acres water − 0.274 − 0.200 − 0.055 − 0.185 − 0.339 − 0.239 − 0.223 0.079 − 0.528 0.308 1.000 0.049 − 0.079
Pct elderly − 0.176 − 0.114 − 0.132 − 0.158 − 0.316 − 0.244 − 0.222 0.119 − 0.271 0.068 0.049 1.000 − 0.279
Value 0.162 0.108 0.106 0.135 0.229 0.196 0.170 0.056 0.148 0.008 − 0.079 − 0.279 1.000
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Many of these studies exclude the impact of anthro-
pogenic landscape form, which can affect health out-
comes [105], particularly in urban areas, where de-
creased walkability has been observed to be associated
with higher BMI following an increase in walkability
[106]. Such findings highlight differences in effects of
greenspace and other urban form characteristics across
different locations. Defining urban form is also of
importance; the present study found the unexpected
result of intersection density being inversely related
to air pollution and adverse health outcomes. This is
unexpected, as traffic in cities has been shown to
correlate strongly with air pollution [107]. A different
metric to account for traffic may be more suitable.

Adverse environmental impacts from certain urban
forms (such as roadway infrastructure) in some cases
can reduce the benefits of having greenspace (i.e.,
increased physical activity). A recent Lancet report
found that exposure to air pollution removed the pos-
itive impact associated with exercise [108]. Other
works [106] showed the adverse impact of urban form
through a walkability index and found high
walkability was associated with higher depression
prevalence in deprived neighborhoods, potentially
due to exposure to derelict buildings and noise. Secu-
rity and safety have also been shown to be factors
relating to greenspace access for women and minori-
ties in Atlanta [86]. As Figs. 4 and 5 show, areas with
high park access are also areas with higher population
of minorities. This could in part, explain the findings
in this study, where tracts, despite having higher park
infrastructure, had more adverse health prevalence’s
despite access to greenspace.

Given the strong correlations among variables in
the model, the results of this study do not reflect
etiological relationships, but associations that charac-
terize existing inequities in metro Atlanta. The findings
of this study motivate future work to investigate etiol-
ogies of these inequities. Interventions designed to
improve cardiovascular and respiratory health as well
as to reduce pollution exposure would benefit from
these findings by highlighting the regions that are in
the greatest need. It is important to note the trends seen
in health outcomes included in our model do not
necessarily represent those of all health metrics. Only
those outcomes associated with air quality were in-
cluded. Due to differences in our model, our findings
may differ from health studies which consider a wider
array of outcomes.

Limitations

One limitation in this study is generalizability. The
study region consisted of four municipalities in metro
Atlanta. The results from the collection of these four
cities may not be applicable broadly to the USA, but
rather only to other metropolitan regions with similar
characteristics to Atlanta. On the other hand, the avail-
ability of the 500 City data and the techniques applied
here suggest similar analyses could be applied widely
to develop a more thorough understanding of demo-
graphic, air quality, and greenspace relationships to
health.

Another limitation lies within the correlations among
predictors. The percentage of African-American resi-
dents, ambient levels of both pollutants, and prevalence
of each of the four health outcomes showed similar
patterns among the census tracts within the study re-
gion. Furthermore, the census tracts with higher propor-
tions of African-American residents, higher pollution,
and greater adverse health outcome prevalence were
located in southern parts of Atlanta. In addition, this
investigatory study was limited to using one metric of
low SES groups, which was demographics, and did not
include other economic factors such as income or edu-
cation level.

Lastly, the collection of the health outcome data is
limiting. Data represented aggregate prevalence of
each health outcome within each census tract, and
collection relied on self-reporting of previous diagno-
ses without including information regarding the age of
the respondents when diagnosed or the year of diag-
nosis. This makes analyses of costs associated with
these health outcomes or of effects of time-specific
exposures impossible with the present data sources.
Data regarding timing of pollution exposures and di-
agnoses would provide stronger conclusions, but are
not publicly available. Another benefit to having
individual-level health data rather than aggregated
prevalence is that individual air pollution exposure
can be evaluated. Existing data pertaining to traffic
exposure are not as beneficial to this study as to other
studies because they would need to be aggregated to
the census tract level, as the pollution data were for the
present analyses. Respondents were asked if they had
been diagnosed by a medical professional. For stroke
in particular, this introduces selection bias since the
stroke cases consisted of individuals who had survived
a previous stroke.
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Future Directions

Further work on this topic aims to address the current
study’s limitations and provide more insight into the
etiologies of the inequities in both air quality and health
outcomes. Access to longitudinal data and probabilistic
non-linear data-based models [109] would make etio-
logical conclusions more feasible than this cross-
sectional study. Having individual-level data instead of
these publicly available ecological data would improve
generalizability and provide stronger analyses. Addi-
tionally, available data regarding social determinants of
health, such as unemployment, income, or educational
attainment, may contribute to the inequities in health
observed in the data. This study focused on the use of
built-environment characteristics to explain inequities in
health outcomes in this region, and the results show that
there are other factors that are likely to be stronger in
explaining these inequities.

The design of this study highlights how publicly
accessible data can be used to help municipalities un-
derstand the health state of their residents. While the
mediating influence of infrastructure proved to be more
difficult to support, cities asking similar questions may
find answers through utilizing the methods outlined in
this study. Future studies may explore other aspects of
the built environment which influence health such as
access to healthy food sources and health clinics. Infra-
structure improvement data revealing recent develop-
ment of an area could also be explored as it may reveal
the relationship between tree canopy coverage and
health outcomes, in addition to considering atmospheric
chemical processes.

As the availability of finer scale health, air quality,
demographic, and infrastructure data becomes available,
newer models may investigate currently supported
trends under a new lens. National, state, and county
scaled health studies are useful in informing health
policy and planning. As these trends are investigated at
the census tract level, novel findings may provide in-
formed insights into these complex relationships and
thus guide policy and practice innovations.

Conclusions

This study provides evidence that areas with poor air
quality carry a greater burden of cardiovascular and re-
spiratory diseases. These areas have greater percentages
of African-American residents, with many of these areas

having predominantly African-American populations.
Because demographics, air quality, and health outcomes
are so highly connected, it is difficult to use cross-
sectional data to confidently estimate causal effects.

These findings highlight challenges that face urban
planners and policy makers. While there is clear evidence
that regions that have predominantly African-American
populations have poorer air quality and higher prevalence
of the cardiovascular and respiratory diseases examined,
etiologies are unclear, making targeted interventions dif-
ficult to design and implement because it is unclear which
factors should be targeted for effective intervention.What
is clear, however, is that these populations are burdened
by both poor health and poor air quality. It is important to
realize the outcome of this study reinforces the need for
targeted interventions as populations in these areas are
projected to grow rapidly.

Further investigation is needed in linking causal re-
lationships between health, pollution, and infrastructure,
the geographic and racial disparities in health and air
quality are clear. Factors relating to infrastructure and
sources of pollution are likely to differ between regions
with predominantly minority populations and regions
with predominantly non-minority populations, necessi-
tating further investigation that quantifies the spatiotem-
poral dependencies of city-health linkages. Because
spatial patterns in demographics, pollution levels, and
disease prevalence were similar, challenges exist in
determining the etiologies of these associations. How-
ever, the growing availability of fine-scale data can
support a consistent, national level analysis.
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