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Abstract
Immunomodulatory drugs (IMiDs) have become an integral part of therapy for both newly diagnosed and relapsed/refractory 
multiple myeloma (RRMM). IMiDs bind to cereblon, leading to the degradation of proteins involved in B-cell survival and 
proliferation. Thalidomide, a first-generation IMiD, has little to no myelosuppressive potential, negligible renal clearance, 
and long-proven anti-myeloma activity. However, thalidomide’s adverse effects (e.g., somnolence, constipation, and periph-
eral neuropathy) and the advent of more potent therapeutic options has led to the drug being less frequently used in many 
countries, including the US and Canada. Newer-generation IMiDs, such as lenalidomide and pomalidomide, are utilized far 
more frequently. In numerous previous trials, salvage therapy with thalidomide (50–200 mg/day) plus corticosteroids (with 
or without selected cytotoxic or targeted agents) has been shown to be effective and well-tolerated in the RRMM setting. 
Hence, thalidomide-based regimens remain important alternatives for heavily pretreated patients, especially for those who 
have no access to novel therapies and/or are not eligible for their use (due to renal failure, high-grade myelosuppression, 
or significant comorbidities). Ongoing and future trials may provide further insights into the current role of thalidomide, 
especially by comparing thalidomide-containing regimens with protocols based on newer-generation IMiDs and by inves-
tigating thalidomide’s association with novel therapies (e.g., antibody-drug conjugates, bispecific antibodies, and chimeric 
antigen receptor T cells).

Key Points 

Thalidomide, the first immunomodulatory drug approved 
for multiple myeloma, has been infrequently used in the 
US, given its adverse effects (e.g., somnolence, constipa-
tion, and peripheral neuropathy) and the advent of more 
potent therapeutic options.

Numerous clinical studies have demonstrated thalido-
mide’s effectiveness and safety in newly diagnosed and 
relapsed/refractory multiple myeloma, as well as its low 
myelotoxicity and negligible renal clearance.

Salvage regimens combining thalidomide and corti-
costeroids (with/without selected cytotoxic or targeted 
agents) remain useful in heavily pretreated patients who 
are ineligible for novel anti-myeloma therapies (e.g., due 
to poor bone marrow reserve or severe renal dysfunc-
tion).
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1 Introduction

Multiple myeloma (MM) is a hematologic malignancy 
characterized by abnormal plasma cell (PC) proliferation, 
increased production of monoclonal protein, and end-organ 
damage [1, 2]. Diagnosis requires ≥ 10% clonal PCs on 
bone marrow (BM) examination or a biopsy-proven plas-
macytoma plus at least one myeloma-defining event, such as 
hypercalcemia, renal dysfunction, anemia, lytic bone lesions, 
or a biomarker of malignancy (e.g., ≥ 60% clonal PCs within 
the BM, involved/uninvolved free light chain ratio ≥ 100, 
or more than one focal lesion on magnetic resonance imag-
ing) [3]. In 2020, according to the World Health Organiza-
tion (WHO), a total of 176,404 new patients fulfilled such 
criteria worldwide, making MM the second most common 
blood cancer after lymphoma [4]. Among affected patients, 
63% were older than 65 years of age—a repercussion of 
the age association of MM’s precursor stage, monoclonal 
gammopathy of undetermined significance (MGUS) [5, 6].

From the first description of MM in the literature as part 
of Samuel Solly’s case series in 1844 [7] to the landmark 
trial that confirmed the safety and efficacy of the chimeric 
antigen receptor (CAR) T-cell idecabtagene vicleucel (ide-
cel) in 2021 [8], remarkable advances have been made in 
elucidating the clinicopathological aspects and potential 
therapeutic targets of MM [9]. As a result, many treat-
ment strategies are currently available. Choosing a front-
line regimen depends on efficacy, local availability, risk 
stratification, autologous stem cell transplant (ASCT) 
eligibility, and patient-specific factors (e.g., performance 
status [PS], comorbidities and preferences) [10]. However, 
due to the eventual emergence of genetically heteroge-
neous subclones of myeloma cells, even individuals who 
achieved deep responses will eventually relapse and need 
subsequent lines of therapy [11, 12].

The list of drug classes approved for MM includes 
corticosteroids, alkylating agents, anthracyclines, topoi-
somerase II inhibitors, proteasome inhibitors (PIs), 
immunomodulatory drugs (IMiDs), histone deacetylase 
inhibitors (iHDACs), selective inhibitors of nuclear export 
(SINEs), monoclonal antibodies (mAbs), antibody-drug 
conjugates (ADCs), bispecific antibodies (BsAbs), and 
CAR T cells [13–16]. Moving from bench to bedside, most 
of those therapies were developed over the last 20 years, 
leading to significant prognostic implications [9, 17]. 
The 5-year relative survival rate among US patients, for 
example, increased from 28.6% in 1986–1993 to 55.6% in 
2011–2017 [18, 19]. One of the pivotal discoveries within 
this period was the anti-myeloma activity of thalidomide, 
an old drug infamous for its teratogenic effects [20].

In Europe, thalidomide is still widely studied and incor-
porated into clinical practice, especially after the phase III 

CASSIOPEIA trial supported the use of bortezomib, tha-
lidomide, and dexamethasone (VTD) plus daratumumab 
(Dara-VTD) as a first-line regimen for newly diagnosed 
MM (NDMM) [21, 22]. However, in the US and Canada, 
the drug has largely been replaced by newer generations 
of IMiDs (lenalidomide and pomalidomide)—a direct 
consequence of thalidomide’s association with multiple 
adverse events (AEs), including somnolence, constipation, 
peripheral neuropathy (PN), and venous thromboembo-
lism (VTE) [23]. Moreover, cereblon E3 ligase modulators 
(CELMoDs), such as iberdomide (CC-220) and CC-92480, 
are now slowly making their way into US Food and Drug 
Administration (FDA) approval [24]. As a result, the cur-
rent role of thalidomide in both the upfront and salvage 
settings is less clearly defined; yet, this older agent has the 
advantage of providing significant anti-myeloma activity 
even in patients with severely compromised kidney and/
or marrow function owing to its minimal renal clearance 
and relative lack of myelotoxicity [25].

From this perspective, the present review summarizes 
the available data on thalidomide’s history, mechanisms 
and applications in MM, with a particular focus on its role 
in relapsed/refractory MM (RRMM). Our ultimate goal is 
to provide general guidance for physicians who do not cur-
rently use this drug in clinical practice, especially consider-
ing that some heavily pretreated patients may not be eligible 
for some of the novel targeted or immune-based therapies.

2  Historical Background

Thalidomide (α-N-phthalimido-glutarimide) was first 
introduced in 1956 by the West German pharmaceutical 
company Chemie Grünenthal [26]. Initially marketed as a 
well-tolerated sedative and antiemetic agent to reduce preg-
nancy-related morning sickness, thalidomide rapidly gained 
widespread popularity—by 1960, the drug was being sold 
in over 40 countries [27, 28]. Early preclinical safety evalu-
ation using pregnant rats and mice showed no interference 
with embryonic development [29]; however, approval in 
the US was not obtained at that time, mainly due to FDA 
concerns about neurotoxicity [30]. Shortly afterwards, two 
independent clinicians (Lenz in Germany and McBride in 
Australia) reported the association between human prenatal 
exposure to thalidomide and congenital limb abnormalities, 
including phocomelia [31, 32]. By 1962, thalidomide had 
been withdrawn from most commercial markets, leaving a 
legacy of approximately 10,000 affected infants [30, 32]. 
Despite the resistance of some rodent species to thalido-
mide embryopathy, ensuing studies with rabbits, primates, 
and fish species were able to demonstrate the drug’s terato-
genicity [30–32]. Thalidomide’s newly discovered property 
prompted its investigation as an antineoplastic agent during 
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the early 1960s. Nevertheless, two clinical studies includ-
ing patients with advanced tumors of various types failed to 
demonstrate evidence of objective response attributable to 
the drug [33, 34].

In 1965, Jacob Sheskin reported thalidomide’s ability 
to control erythema nodosum leprosum (ENL) [35]. This 
triggered a perspective shift on the drug from a teratogenic 
antiemetic to a potent anti-inflammatory and immunomodu-
latory agent [36]. In 1971, a WHO-coordinated, male-only 
clinical trial confirmed thalidomide’s effectiveness in treat-
ing acute leprosy reactions [37]. However, the drug only 
became FDA-approved for ENL in 1998, after studies identi-
fied an immunological basis for its clinical effects [28]. The 
FDA subsequently supported thalidomide’s experimental use 
in other inflammatory disorders (e.g., sarcoidosis, cutaneous 
lupus erythematosus, Behcet’s syndrome, ankylosing spon-
dylitis, rheumatoid arthritis, inflammatory bowel diseases, 
recurrent aphthous stomatitis, and chronic graft-versus-host 
disease), with the achievement of promising results [29, 38, 
39].

Throughout the 1990s, the number of publications related 
to thalidomide increased exponentially, as well as the off-
label uses of the drug [40, 41]. In this scenario, efforts on 
elucidating the teratogenic mechanisms of thalidomide even-
tually renewed the interest in its potential use for cancer 
treatment [42]. In 1994, thalidomide was shown to inhibit 
angiogenesis, a key process in fetal limb development [43]. 
Already a well-known hallmark of solid tumors, angiogen-
esis was also correlated to blood cancer progression by that 
time [44–46]. Soon, multiple preclinical and clinical stud-
ies evaluating the antineoplastic activity of thalidomide 
were initiated [27]. Despite varying degrees of success in 
solid tumors, remarkable benefits were observed in some 
hematologic malignancies, especially MM [27, 47]. In 2006, 
after mounting evidence of its efficacy, thalidomide became 
the first new agent in over a decade to gain FDA approval 
for MM. In 2008, a similar approval was obtained from the 
European Medicines Agency (EMA) [48, 49].

3  Mechanisms of Action

The abnormal PC proliferation inherent to MM occurs pre-
dominantly within the BM, suggesting the importance of the 
BM microenvironment in supporting disease activity [50]. 
BM angiogenesis, for example, progressively increases along 
the spectrum of PC disorders—from the more benign MGUS 
stage, throughout the smoldering phase, and up to overt MM 
[51]. This is secondary to the direct production of angio-
genic molecules by malignant PCs, as well as their induction 
in BM stromal cells (BMSCs) [52, 53]. Moreover, tumor cell 
expression of basic fibroblast growth factor (bFGF), vascular 
endothelial growth factor (VEGF), hepatocyte growth factor 

(HGF), and their respective receptors creates autocrine loops 
of growth, survival, and migration [53–55]. Accordingly, 
BM microvascular density (MVD) has been shown to have a 
direct correlation with the PC labeling index and inverse cor-
relation with the overall survival (OS) of MM patients [45, 
56–59]. In addition, BM angiogenesis has a similar prog-
nostic value in patients with solitary plasmacytomas [60].

In 1994, using a rabbit cornea micropocket assay, 
D’Amato et al. demonstrated that thalidomide inhibited 
bFGF-induced angiogenesis [43]. Using a model of murine 
cornea, his group then showed the drug’s ability to suppress 
VEGF-induced angiogenesis [61]. Later, thalidomide was 
found to attenuate nitric oxide-driven angiogenesis [62, 63] 
and downregulate other key angiogenic genes (e.g., angi-
opoietin-1, insulin-like growth factor [IGF]-1, and IGF bind-
ing protein-3) [64]. Since BM neovascularization is a criti-
cal event for MM progression, thalidomide attains disease 
control by simultaneously targeting multiple angiogenesis 
pathways, ultimately decreasing the BM MVD in respond-
ers [65–67]. In contrast, anti-VEGF drugs targeting fewer 
angiogenesis pathways (e.g., bevacizumab, sorafenib, and 
vandetanib) failed to demonstrate a significant improvement 
in patient outcomes [65].

Besides their antiangiogenic effect, thalidomide and its 
analogs induce tumor cell apoptosis via activation of cas-
pase-8, enhanced sensitivity to Fas and downregulation of 
cellular inhibitor of apoptosis protein-2 (cIAP-2) [68]. These 
agents can also suppress BMSC production of important 
mediators of myeloma cell proliferation, such as tumor-
necrosis factor (TNF)-α and interleukin (IL)-6 [27–29]. Con-
trary to expectations, IL-6 blockade with siltuximab failed to 
improve OS or progression-free survival (PFS) in previous 
trials [69]. Thalidomide further hinders tumor growth via 
downregulation of surface adhesion molecules mediating 
myeloma cell interactions with the surrounding extracel-
lular matrix and BMSCs [70, 71]. Moreover, IMiDs can 
potentiate T-cell proliferation, differentiation, and survival 
by augmenting B7-CD28 co-stimulatory signals. Apart from 
enhancing tumor antigen presentation by dendritic cells, tha-
lidomide directly induces tyrosine phosphorylation of CD28, 
promoting activation of phosphoinositide-3-kinase (PI3K) 
and nuclear factor-kappa B (NF-κB) [70–73]. The resultant 
stimulation of interferon (IFN)-γ and IL-2 production boosts 
the number and function of natural killer (NK) cells, further 
improving the anti-myeloma immune response in IMiD-
treated patients [70, 74]. Accordingly, published data on IFN 
use as an anti-myeloma agent demonstrated a significant, 
although limited, improvement in clinical outcomes [75].

Despite in vivo and in vitro demonstration of a wide range 
of pharmacological effects, thalidomide’s primary molecu-
lar target remained uncertain until 2010, when binding to 
cereblon (CRBN) was identified as the key mechanism of 
its teratogenicity [76, 77]. Shortly afterwards, CRBN 
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expression was also found to be an essential requirement for 
the anti-myeloma activity of IMiDs [78]. CRBN serves as a 
substrate receptor of the Cullin-Ring ligase 4 E3 ubiquitin 
ligase complex  (CRL4CRBN), which recognizes substrates 
for ubiquitination and proteasomal degradation [79]. The 
binding of thalidomide to CRBN causes an allosteric modi-
fication of the  CRL4CRBN complex, changing its substrate 
specificity [80]. This can lead to several downstream effects, 
depending on the proteins subsequently ubiquitinated [81]. 
Thalidomide-induced degradation of spalt-like transcription 
factor 4 (SALL4) and tumor protein 63 (TP63), for example, 
causes fetal malformations [82, 83]. Meanwhile, degradation 
of the zinc-finger transcription factors Ikaros (IKZF1) and 
Aiolos (IKZF3) exerts cytotoxic effects in myeloma cells, 
mainly through downregulation of IFN regulatory factor 4 
(IRF4) and MYC [84, 85]. Thalidomide can also trigger the 
degradation of casein kinase 1α (CK1α), a pro-growth and 
anti-apoptotic enzyme in B-cell malignancies [86]; however, 

CK1α ubiquitination is substantially more extensive with 
lenalidomide [79]. Additionally, pomalidomide is more 
effective in promoting degradation of AT-rich interactive 
domain-containing protein 2 (ARID2), a critical protein for 
MYC expression [87]. Thus, substrate recognition by CRBN 
differs depending on the ligand structure, creating potential 
for sequential use of different IMiDs as a way to overcome 
myeloma cell resistance [79, 87]. Figures 1 and 2 illustrate 
the mechanisms of action of thalidomide and its analogs.

4  Therapeutic Applications in Multiple 
Myeloma

4.1  Use in Relapsed/Refractory Multiple Myeloma

After decades of ineffective therapies primarily based on 
traditional empiricism (e.g., orange peel infusions, rhubarb 

Fig. 1  CRBN interacts with DDB1, Cul4A or Cul4B, and RoC1 to 
form the  CRL4CRBN. CRBN functions as a receptor with a conserved 
tryptophan pocket in the complex, which leads to protein targeting for 
degradation via the ubiquitin-proteasome pathway. a Under normal, 
physiologic circumstances, binding of endogenous ligands to CRBN 
regulates cell metabolism, proliferation, and differentiation. Known 
substrates include GltS, AMPKγ, and Meis2. b Exposure to an IMiD 
leads to allosteric modification, changing the substrate specificity 
of CRBN and increasing degradation of Aiolos, Ikaros, and CK1α, 
among other proteins. Depletion of these neosubstrates leads to pleio-

tropic anti-myeloma effects, such as IRF4 and MYC downregulation 
in myeloma cells, increased IL-2 production, and enhanced immune 
response against the tumor. CRBN cereblon, DDB1 DNA damage-
binding protein-1, Cul4 Cullin 4, RoC1 regulator of Cullins 1, CRL-
4CRBN Cullin-Ring ligase 4 E3 ubiquitin ligase complex, GltS glu-
tamine synthase, AMPKγ adenosine monophosphate-activated protein 
kinase gamma subunit, Meis2 Meis homeobox 2, IMiD immunomod-
ulatory drug, CK1α casein kinase 1α, IRF4 interferon regulatory fac-
tor 4, IL interleukin
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pills, and urethane), successful anti-myeloma treatment 
using prednisone and lower doses of melphalan (80–100 
mg/m2) was introduced in the late 1960s [88, 89]. Various 
dosing regimens and combinations of alkylating agents, with 
or without corticosteroids, were investigated during the fol-
lowing years [90]. In 1983, monotherapy with higher doses 
of melphalan (140 mg/m2) was demonstrated to improve 
complete remission rates, with the drawback of profound 
myelosuppression [91]. In the late 1980s, Barlogie et al. sug-
gested ASCT as a measure to hasten patient hematologic 
recovery after marrow-ablative chemotherapy and total body 
irradiation [92, 93]. In 1996, a randomized controlled trial 
(RCT) of 200 untreated adults under age 65 years showed 
that high-dose chemotherapy followed by ASCT (HDC/
ASCT) could improve overall response rate (ORR), event-
free survival (EFS), and OS [94]. This strategy was then 
established as a standard frontline treatment for transplant-
eligible (TE) NDMM patients [88]. Later, further studies 
supported the alternative of reserving ASCT for the first dis-
ease relapse [95] and the possibility of a second peripheral 

blood stem cell (PBSC) infusion as part of salvage therapy in 
selected cases [96]. Even so, therapeutic options for RRMM 
remained scarce and of limited clinical benefit [97]. Some of 
the available salvage regimens, such as vincristine/doxoru-
bicin/dexamethasone (VAD) and etoposide/dexamethasone/
cytarabine/cisplatin (EDAP), could lead to unacceptable 
AEs in a patient population mainly composed of elderly 
adults with numerous comorbidities and cumulative toxic-
ity from previous therapies [97, 98].

As higher BM angiogenesis favored MM progression and 
thalidomide possessed antiangiogenic properties, the drug 
emerged as an investigational therapy for compassionate use 
in patients with advanced disease [25]. Phase I data were 
first described by Singhal et al. in 1999. In that landmark 
study, 84 patients with RRMM received oral thalidomide 
monotherapy for a median of 80 days. If tolerated, an ini-
tial dose of 200 mg nightly was increased by 200 mg every 
2 weeks until reaching 800 mg/day. Even though study par-
ticipants had been heavily pretreated (e.g., 90% received at 
least one cycle of HDC/ASCT), 32% of them achieved a 

Fig. 2  IMiDs target not only the MM cell but also the BM microenvi-
ronment. By suppressing BMSC production of IL-6 and TNFα, these 
agents decrease MM cell proliferation. This is potentiated via down-
regulation of surface molecules that mediate BMSC–MM cell inter-
actions, such as ICAM-1 and VCAM-1. Anti-angiogenesis occurs via 
modulation of chemotactic factors involved in endothelial cell migra-
tion, such as VEGF and bFGF. By inducing tumor antigen presenta-
tion by dendritic cells and tyrosine phosphorylation of CD28, IMiDs 
stimulate T-cell activation. The resultant increase in IFN-γ and IL-2 

levels also enhances NK cell activity. PRF/GzmB is the main path-
way of target cell apoptosis, but granzyme-independent mechanisms 
can also occur. IMiDs immunomodulatory drugs, MM multiple mye-
loma, BM bone marrow, BMSC bone marrow stem cell, IL interleu-
kin, TNF tumor necrosis factor, ICAM-1 intercellular adhesion mol-
ecule-1, VCAM-1 vascular cell adhesion molecule-1, VEGF vascular 
endothelial growth factor, bFGF basic fibroblast growth factor, IFN 
interferon, NK natural killer, PRF perforin, GzmB granzyme B, MHC 
I major histocompatibility complex I
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≥ 25% decline in serum or urine paraprotein levels, and 10% 
had nearly complete or complete response (CR) [99, 100]. 
Of the 27 patients with a paraprotein response, 21 could 
have a follow-up BM examination, which showed a concur-
rent BM response (defined as < 5% PCs) in 81% of cases 
[100]. Such results stimulated multiple subsequent trials, 
further evaluating thalidomide’s efficacy for RRMM, either 
as single-agent or as part of combination regimens [99]. 
Table 1 synthesizes data from clinical studies in which at 
least 25 patients received a thalidomide-based regimen for 
RRMM [100–157]. The ORR, defined as the percentage 
of patients who had at least a partial response (PR), and 
the PFS were reported according to International Myeloma 
Working Group (IMWG) uniform response criteria [158].

In a systematic review of 42 trials of single-agent tha-
lidomide (50–800 mg/day) for RRMM, ≥ PR was seen in 
479 of 1629 patients (29.4%, 95% confidence interval [CI] 
27–32%). Among the 17 studies that assessed median time 
to response (TTR), 65% reported a period of between 1 and 
2 months. The median EFS and OS were reported at 12 and 
14 months, respectively. Severe AEs (grade 3–4) included 
somnolence (11%), constipation (16%), PN (6%), rash (3%), 
VTE (3%), and cardiac complications (2%) [159]. Mean-
while, a multicentric RCT coordinated by the Intergroupe 
Francophone du Myélome (IFM) compared the efficacy and 
safety of two doses of thalidomide (100 and 400 mg/day). 
Patients receiving 100 mg/day had significantly lower rates 
of most AEs, while 1-year OS was similar in both study arms 
after intention-to-treat (ITT) analysis [143]. The OPTIMUM 
trial, which compared dexamethasone against three different 
doses of thalidomide (100, 200, or 400 mg/day), also dem-
onstrated that it is difficult for patients to tolerate a higher 
dose for the whole treatment duration—in the 400 mg/day 
arm, average dose intensity was 256 mg/day [144]. Notewor-
thy, treatment response appears to be higher if thalidomide 
is started after the first relapse or progression than later in 
the disease course [130].

Thalidomide’s clinical efficacy in advanced MM and 
synergistic activity with dexamethasone in myeloma cell 
lines prompted extensive evaluation of the thalidomide/
dexamethasone (TD) combination as salvage therapy 
[25, 160, 161]. In a systematic review of 12 trials, among 
451 RRMM patients treated with TD, 209 (46%, 95% CI 
42–51%) achieved at least a PR. Treatment-related toxicity 
was comparable with thalidomide monotherapy. Dexametha-
sone’s median starting dose was 200 mg/day and the median 
target dose was 350 mg/day. While six studies reported an 
EFS with a weighted median value of 8 months, five studies 
reported an OS with a weighted median value of 27 months 
[161]. In 2012, Zamagni et al. investigated TD as a therapy 
for first relapse in 100 patients, achieving an ORR of 46%, 
a median PFS of 21 months, and a median OS of 43 months 
[142]. Subsequently, Hjorth et al. compared the efficacy of 

TD and bortezomib/dexamethasone (VD) in 131 patients 
relapsing after or refractory to initial melphalan-based treat-
ment. Even though both study arms had a similar ORR (55% 
for TD, 63% for VD) and median PFS (9.0 months for TD, 
7.2 for VD), rates of AEs were significantly higher in the 
VD arm [145].

Since thalidomide was found to lack myelosuppressive 
potential, the addition of conventional cytotoxic agents to 
salvage regimens became an attractive approach. Worldwide, 
many groups started to evaluate the association of TD or tha-
lidomide/prednisolone (TP) with different alkylating agents 
and anthracyclines [25, 162]. A German protocol consist-
ing of hyperfractionated intravenous cyclophosphamide 
(HyperCy; 300 mg/m2 every 12 h on days 1–3), pulsed oral 
dexamethasone (20 mg/m2 once daily on days 1–4, 9–12, 
17–20), and escalating-dose thalidomide (100–400 mg/
day) promoted CR, PR, and minor response (MR) rates of 
4, 68, and 12%, respectively. However, there was high tox-
icity in study participants, including grade 3–4 neutropenia 
(86%), severe PN (16%) and VTE (8%) [111]. Later, a Span-
ish group evaluated the efficacy of an oral combination of 
thalidomide (200–800 mg/day), cyclophosphamide (50 mg/
day) and pulsed dexamethasone (40 mg/day for 4 days every 
3 weeks) in 71 RRMM patients. After 3 months of therapy, 
CR, PR and MR rates were 2%, 55% and 26%, respectively. 
After 6 months of therapy, most responses were maintained 
and the CR rate increased to 10%, although a small group of 
patients (n = 6) progressed. The replacement of HyperCy by 
continuous oral cyclophosphamide allowed a considerable 
decline in grade 3–4 neutropenia rates (from 86 to 10%) 
[116]. In a Korean real-world data (RWD) study, patients 
treated with TD plus cyclophosphamide (n = 236) and TP 
plus melphalan (n = 140) had a similar ORR (72 vs. 65%, 
p = 0.121). Analysis of all study subjects revealed a median 
PFS of 10.4 months and median OS of 28.0 months, with the 
drawback of a 10% rate of infections warranting intensive 
supportive care [152]. Due to its established role for relapsed 
lymphomas and better toxicity profile compared with other 
alkylating agents, bendamustine has also been tested in the 
RRMM setting [135, 149, 154, 163–166]. After phase I data 
showed ≥ PR in 24 of 28 patients who received TP plus 
bendamustine 60 mg/m2 (B60) [135], Schey et al. and Mian 
et al. evaluated TD plus B60, obtaining an ORR of 41.5 
and 37%, respectively [149, 154]. TD has also been tested 
in association with doxorubicin, doxorubicin/vincristine, 
cyclophosphamide/etoposide, and cisplatin/doxorubicin/
cyclophosphamide/etoposide (TD-PACE), providing an 
ORR of 40–84% [105, 112, 124, 125]. Nowadays, these pro-
tocols are rarely indicated due to the high risk of profound 
cytopenias and infectious complications, with the important 
exception of TD-PACE [116, 167].

Similar to dexamethasone/cyclophosphamide/etoposide/
cisplatin (DCEP), TD-PACE is considered a useful regimen 
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Table 1  Prospective trials evaluating the efficacy of thalidomide-containing regimens for relapsed/refractory multiple myeloma

Study Regimen T dose (mg/day) n ORR (%) EFS/PFS OS/MST References

Singhal et al. (1999) T 200–800 84 32a 22% at 12 months 58% at 12 months [100]
Hus et al. (2001) T 200–400 53 36 240  weeksb 250 weeks [101]
Barlogie et al. 

(2001)
T 200–800 169 30 20% at 24 months 48% at 24 months [102]

Palumbo et al. 
(2001)

TD 100 77 41 12 months ND [103]

Dimopoulos et al. 
(2001)

TD 200–400 44 55 4 months 13 months [104]

Moehler et al. 
(2001)

TD + Cy + Eto 400 56 64 16 months ND [105]

Yakoub-Agha et al. 
(2002)

T 50–800 83 48 50% at 12 months 57% at 12 months [106]

Tosi et al. (2002) T 100v800 65 26 8  monthsb ND [107]
Neben et al. (2002) T 100–400 83 20 45% at 12 months 86% at 12 months [108]
Mileshkin et al. 

(2003)
T 200–800 75 28 23% at 12 months 56% at 12 months [109]

Grosbois et al. 
(2003)

T 200–400 121 31 33% at 12 months 47% at 12 months [110]

Kropff et al. (2003) TD + Cy 100–400 60 72 11 months 19 months [111]
Lee et al. (2003) TD + PACE 50–200 236 40 ND ND [112]
Waage et al. (2004) T 200–800 65 20 ND 49% at 12 months [113]
Richardson et al. 

(2004)
T 200–600 30 30 6 months ND [114]

Offidani et al. 
(2004)

T vs. T + Mel 100–600 50 26 vs. 59* 45 vs. 61% at 24 
months*

64 vs. 61% at 24 
months

[115]

García-Sanz et al. 
(2004)

TD + Cy 200–800 71 57 57% at 24 months 66% at 24 months [116]

Dimopoulos et al. 
(2004)

TD + Cy 400 53 60 8 months 17 months [117]

Palumbo et al. 
(2004)

TD 100 120 52 17 months 60% at 36 months [118]

Terpos et al. (2005) TD 200 35 57 8 months 19 months [119]
Schüt et al. (2005) TD 400 29 62 7 months 26 months [120]
Badros et al. (2005) TD + G3139 100–400 33 55 12 months 17 months [121]
Kyriakou et al. 

(2005)
TD + Cy 50–300 52 79 34% at 24 months 73% at 24 months [122]

Prince et al. (2005) T + Cel 200–800 66 42 7 months 21 months [123]
Offidani et al. 

(2006)
TD + PLD 100 50 84 57% at 72 months 74% at 72 months [124]

Hussein et al. (2006) TD + DVd 50–400 49 75 15 months 40 months [125]
Palumbo et al. 

(2006)
TD + Vel + Mel 200 26 65 6 months ND [126]

Palumbo et al. 
(2007)

TP + Vel + Mel 50 30 67 61% at 12 months 84% at 12 months [127]

Suvannasankha 
et al. (2007)

TP + Cy 200 35 63 13 months ND [128]

Murakami et al. 
(2007)

TD 100–200 66 26 6 months 25 months [129]

Maisnar et al. 
(2007)

T 50–100 53 30 ND 86 months [130]

Hattori et al. (2008) T 200–400 61 27 11% at 24 months 41% at 24 months [131]
Morris et al. (2008) T + Cla 50–200 30 89 10 months 16 months [132]
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Table 1  (continued)

Study Regimen T dose (mg/day) n ORR (%) EFS/PFS OS/MST References

Pineda-Roman et al. 
(2008)

TD + Vel 50–200 85 63 30% at 12 months 68% at 12 months [133]

Terpos et al. (2008) TD + Vel + Mel 100c 62 66 9 months ND [134]
Pönischet al. (2008) TP + B60 50–200 28 86 11 months 19 months [135]
Srikanth et al. 

(2008)d
TD + PACE 100–200 26 59 5 months 7 months [136]

Kim et al. (2010) TD + Vel + Cy 50 70 81 14% at 72 months 47% at 72 months [137]
Palumbo et al. 

(2010)
TP + Rev + Mel 50–100 44 75 51% at 12 months 72% at 12 months [138]

Lee et al. (2010) PAD/TD 100 40 84 57% at 12 months 75% at 12 months [139]
Hus et al. (2011) TD vs. TD + Lov 100 91 32 vs. 44* 16 vs. 33 months* 39 vs. 49 months [140]
Offidani et al. 

(2011)
TD + Vel + PLD 100 46 76 19 months 40 months [141]

Zamagni et al. 
(2011)

TD 100–200 100 46 21 months 43 months [142]

Yakoub-Agha et al. 
(2011)

T 100 vs. 400 400 14 vs. 26* 23 vs. 31 months 7 vs. 11 months [143]

Kropff et al. (2012) T 100 vs. 200 vs. 400 373 21 vs. 18 vs. 21 7 vs. 8 vs. 9 months 30 vs. 26 months 
vs. ND

[144]

Hjorth et al. (2012) TD 50–200 67 55 9 months 23 months [145]
Garderet et al. 

(2012)
TD vs. TD + Vel 200 269 72 vs. 87* 14 vs. 18 months* 65 vs. 71% at 24 

months
[146]

Offidani et al. 
(2012)

TP + Mel + Pan 50 31 39 59% at 12 months 63% at 12 months [147]

Geng et al. (2014) T + CPT 100 43 21 7 months ND [148]
Schey et al. (2015) TD + B60 vs. TD + 

B100
100 94 42 vs. 28 7 vs. 3 months ND vs. 11 months [149]

Mateos et al. (2016) TD + Elo 50–200 40 38 4 months 16 months [150]
Popat et al. (2016) TP + Vel + Pan 50–100 42 91 16 months ND [151]
Kwon et al. (2016) TD + Cy vs. TP + 

Mel
100 376 72 vs. 65 9 vs. 13 months 27 vs. 33 months [152]

Leng et al. (2017) TD vs. TD + CPT 150 71 25 vs. 38 3 vs. 7 months ND [153]
Mian et al. (2018) TD + B60 50–100 26 37 22% at 18 months 40% at 18 months [154]
Ludwig et al. (2019) TD + Ixa 50–100 90 51 9 months ND [155]
Lee et al. (2019) TD + Rev 50–200 52 52 4 months 20 months [156]
Bergin et al. (2021) TD + Ixa 100 39 56 14 months ND [157]

The daily dose of thalidomide (T dose) was administered on a continuous basis for varying periods, except where indicated. The overall response 
rate indicates the percentage of patients who achieved at least a 50% decline in serum and/or urine paraprotein levels, with a few exceptions. 
Progression-free survival and overall survival were calculated for the whole patient group (including non-responders), except where indicated
B60 bendamustine 60 mg/m2, B100 bendamustine 100 mg/m2, Cel celecoxib, Cla clarithromycin, CPT circularly permuted TRAIL, DVd 
pegylated liposomal doxorubicin, vincristine, and decreased-frequency dexamethasone, Eto etoposide, Elo elotuzumab, EFS event-free survival, 
G3139 Bcl-2 antisense oligodeoxynucleotide G3139, Ixa ixazomib, Lov lovastatin, Mel melphalan, MST median survival time, n number of 
patients who received a thalidomide-based regimen for relapsed/refractory multiple myeloma, ND not determined, ORR overall response rate, 
OS overall survival, PACE cisplatin, doxorubicin, cyclophosphamide, and etoposide, PAD/TD bortezomib, doxorubicin and dexamethasone 
followed by thalidomide and dexamethasone, Pan panobinostat, PFS progression-free survival, Rev  Revlimid® (lenalidomide), PLD pegylated 
liposomal doxorubicin, T thalidomide, TD thalidomide and dexamethasone, TP thalidomide and prednisone/prednisolone, Vel  Velcade® (bort-
ezomib)
*Statistically significant difference between treatment groups
a Responders were defined by a decrease of ≥ 25% in serum or urine paraprotein levels
b Calculated only for patients who had evidence of objective response
c Administered intermittently on days 1–4 and 17–20 of a 28-day cycle, for 4–8 cycles
d Only included patients with extramedullary/blastoid myeloma
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in early, aggressive relapses [23]. This protocol, generally 
administered every 4–6 weeks for 1–4 cycles, combines con-
tinuous thalidomide (50–200 mg/day) and a 4-day course 
of dexamethasone (40 mg/day), cisplatin (10 mg/m2/day), 
doxorubicin (10 mg/m2/day), cyclophosphamide (400 mg/
m2/day), and etoposide (40 mg/m2/day) [112, 168]. Multi-
ple retrospective cohort studies have reported the benefit of 
consolidating TD-PACE-like regimens with transplantation, 
highlighting the continued importance of HDC/ASCT in 
RRMM patients who are not eligible for, do not have access 
to, or did not respond to novel agents [136, 168–172]. For 
instance, Gerrie et al. analyzed the outcomes of 75 heavily 
pretreated patients at two tertiary care centers who received 
TD-PACE as salvage therapy. Overall, despite a reasonable 
ORR (49%), there was a short median PFS (5.5 months) 
and OS (14.0 months). However, when compared with non-
transplant candidates, patients who proceeded to ASCT or 
achieved sufficient disease control to allow clinical trial 
enrollment had a non-significant trend towards improved 
PFS (13.4 vs. 2.9 months) and OS (20.5 vs. 7.5 months) 
[168].

The licensing of bortezomib as an anti-myeloma agent 
rapidly led to extensive investigation of its addition to 
thalidomide-based salvage regimens. In the MMVAR/
IFM 2005-04 trial, 269 patients were randomly assigned to 
receive thalidomide (200 mg/day) and dexamethasone (40 
mg/day) either with or without bortezomib (1.3 mg/m2 intra-
venous bolus on days 1, 4, 8, and 11 for eight cycles, and 
then on days 1, 8, 15, and 22 for four cycles). The VTD arm 
achieved higher ORR (45% vs. 21%, p = 0.001) and median 
PFS (18.3 vs. 13.6 months, p = 0.001); however, 24-month 
OS rates were not significantly different (71% for VTD vs. 
65% for TD; p = 0.093) [146]. The Total Therapy 3 trial 
demonstrated significantly improved CR rates and EFS, with 
an upfront association of bortezomib to TD-PACE (VTD-
PACE) for induction prior to and consolidation after high-
dose melphalan-based tandem autotransplants [173]. This 
prompted empirical use of VTD-PACE to rescue induction 
failures or for PBSC mobilization in RRMM patients [170]. 
In 2017, a single-center, retrospective cohort used an ITT 
model to evaluate the outcomes of 141 patients (median age 
59.7 years) who received salvage therapy with VTD-PACE-
like regimens (VTD-PACE in 67.4%). Despite a median of 
four previous lines of treatment, attainment of ≥ PR and 
≥ very good PR (VGPR) occurred in 54.4 and 10.3% of 
patients, respectively. Median PFS was 3.1 months (95% CI 
1.9–3.9 months), while median OS was 8.1 months (95% CI 
6.2–9.9 months). However, in the subgroup who received 
ASCT consolidation, median OS was 15.1 months [172]. As 
a result, the 2022 National Comprehensive Cancer Network 
(NCCN) guidelines have listed both TD-PACE and VTD-
PACE as salvage therapy options for patients with aggressive 
MM [23]. Of note, in a retrospective cohort, 32% of patients 

who received TD-PACE had previously been exposed to or 
were refractory to bortezomib. Thus, the addition of this 
proteasome inhibitor (PI) in the RRMM setting may not 
yield as significant improvements as in the NDMM setting 
[168]. Moreover, the cumulative neurotoxicity associated 
with bortezomib (particular its intravenous formulation) 
may be a significant dose-limiting factor in clinical prac-
tice, hindering some individuals from taking advantage of 
the added therapeutic benefit [174]. Approaches to optimize 
bortezomib tolerance include subcutaneous administration, 
dose reduction, and weekly scheduling [175].

In this scenario, combination regimens based on alter-
native PIs with a decreased neurotoxicity profile and to 
which fewer patients have previously been exposed (e.g., 
carfilzomib) could potentially improve clinical outcomes 
in RRMM patients [23, 168]. In 2015, a phase Ib/II study 
investigated the efficacy and safety of CYKLONE, a four-
drug protocol administered in 28-day cycles (cyclophos-
phamide 300 mg/m2 on days 1, 8, 15; carfilzomib 300 mg/
m2 on days 1, 2, 8, 9, 15, 16; thalidomide 100 mg on days 
1–28; and dexamethasone 40 mg on days 1, 8, 15, 22). 
Among the 64 previously untreated, TE patients enrolled 
in the trial, 2 achieved stringent CR (sCR), 3 achieved CR, 
39 achieved VGPR, and 14 achieved PR, totaling an ORR 
of 91%. Besides being highly efficacious, the regimen was 
associated with manageable toxicities (e.g., all PN was grade 
1, while grade 3–4 neutropenia only occurred in 23% of 
cases) [176]. These results led the CYKLONE protocol to 
be included as a salvage therapy option in the 2022 NCCN 
guidelines, under the list of regimens “useful in certain cir-
cumstances for early relapses (1–3 prior therapies)” [23]. 
Although significant cardiotoxicity was not observed with 
the use of carfilzomib in the CYKLONE trial, cardiovascular 
AEs can be an important limitation of using this PI for treat-
ing MM patients [177].

The development of other targeted anti-myeloma agents 
also created interest for their combination with IMiDs as a 
way to overcome resistance in heavily pretreated patients 
[167].

In recent phase II studies, TD plus ixazomib (a novel PI 
with oral administration and an improved safety profile) 
led to an ORR of 51–56% [155, 157], while TD plus elo-
tuzumab (an anti-SLAMF7 monoclonal antibody [mAb]) 
provided an ORR of 38% [150]. In the MUK-six trial, 91% 
of patients achieved at least a PR after receiving a salvage 
regimen composed of TP, bortezomib, and the iHDAC pan-
obinostat [151]. An ongoing phase II study by the Asian 
Myeloma Network is investigating the efficacy of TD plus 
daratumumab (an anti-CD38 mAb) plus TD (Dara-TD) in 
RRMM. Among 36 patients included in an interim analysis, 
3 achieved sCR, 3 achieved CR, 10 achieved VGPR, and 
10 achieved PR, totaling an ORR of 72% [178]. Despite 
such encouraging results, phase III RCTs are still needed to 
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determine if these regimens are associated with a survival 
benefit in the RRMM setting.

Thalidomide doses of up to 800 mg/day were admin-
istered in early clinical trials, with some evidence of a 
dose–response relationship [100, 159]. Nevertheless, in a 
trial of thalidomide 100 versus 400 mg⁄day, Yakoub-Agha 
et al. demonstrated that the dose–response relationship of 
single-agent thalidomide is abrogated once corticosteroids 
are added [143]. In addition, doses exceeding 100 mg/day 
were found to cause significantly higher rates of toxicity-
related symptoms (e.g., PN, constipation, somnolence), 
affecting health-related quality of life (HRQoL) and hinder-
ing long-term treatment continuation [143, 159, 179, 180]. 
Thus, in current practice, thalidomide doses of 50–200 mg/
day are typically used [179]. In fact, most recent trials have 
employed a standard dose of 100 mg/day for RRMM patients 
[148, 149, 151, 152, 154, 155, 157]. Even so, 200–400 mg/
day can be considered in those with good tolerance and 
aggressive disease that is not responding to lower doses 
(especially when newer therapies are unavailable, contrain-
dicated, or cannot be tolerated) [179, 180]. A reasonable 
approach is to initiate therapy at 50–100 mg nightly and 
escalate the dose by 50 mg every 1–2 weeks as tolerated 
[179, 181]. The optimal duration of thalidomide-based sal-
vage therapy has not yet been defined. In most clinical trials, 
RRMM patients received treatment until disease progression 
or AEs requiring discontinuation [180].

As previously discussed, one of the possible AEs associ-
ated with IMiDs is VTE. When administered as a single 
agent, thalidomide does not raise the risk of VTE compared 
with dexamethasone alone or melphalan/prednisone (MP). 
However, the risk of VTE increases from 3–4% to 10–34% 
when thalidomide is combined with other agents, such as 
high-dose dexamethasone and/or cytotoxic chemotherapy 
[182]. As a result, current guidelines recommend that MM 
patients being treated with an IMiD-containing combination 
regimen should receive pharmacological thromboprophy-
laxis (aspirin if standard risk, low-molecular-weight heparin 
or direct oral anticoagulants if high risk) for as long as the 
IMiD is being administered [1, 2, 182].

Although evidence is limited, MM patients with disease 
progression while taking lenalidomide may obtain clinical 
benefit from thalidomide. In a small Italian trial, among the 
20 lenalidomide-refractory subjects who received thalido-
mide-based salvage therapy, 40% had a paraprotein response 
[183]. For patients with quadruple refractory disease (i.e., 
resistance to lenalidomide, pomalidomide, bortezomib, 
and carfilzomib), clinical trial enrollment is highly recom-
mended if their PS allows. Additionally, some patients may 
still benefit from ASCT, especially if they previously had 
a durable response to high-dose melphalan [168, 184]. In 
this scenario, according to Mayo Stratification for Myeloma 
and Risk-Adapted Therapy guidelines, one or two cycles of 

VDT-PACE may be used as salvage therapy if rapid disease 
control is needed or as a bridge to either clinical trial enroll-
ment or ASCT for suitable candidates [184].

4.2  Other Therapeutic Applications

Besides its role in RRMM, thalidomide is also approved 
for use in NDMM. During the early 2000s, VAD was long 
considered a standard induction therapy before ASCT [182]. 
However, in 2006, an Eastern Cooperative Oncology Group 
(ECOG)-coordinated study turned TD into the most com-
monly used induction regimen for TE patients worldwide 
[185, 186]. With the advent of PIs, the backbone of pre-
ASCT induction therapy evolved into a three-drug combi-
nation of dexamethasone, a PI, and either cyclophospha-
mide, doxorubicin, or an IMiD [187]. While VTD became 
the standard induction regimen in Europe, VD plus lena-
lidomide (VRD), cyclophosphamide (VCD), or doxorubicin 
(PAD) have been more commonly used in the US [21, 23]. 
In phase III RCTs, PAD and VCD had similar efficacy [188], 
while VTD led to higher CR rates and longer PFS than VCD 
[189]. A meta-analysis suggested that such greater response 
is associated with no extra burden of toxicity [190]. Despite 
limited evidence suggesting a better benefit–risk profile of 
VRD over that of VTD [191], there is no RCT directly com-
paring these induction regimens [23].

Recently, the CASSIOPEIA trial reinforced thalidomide 
use in Europe as part of induction therapy for NDMM. In 
this landmark study, 1085 patients received four pre-trans-
plant induction and two post-transplant consolidation cycles 
of either VTD or DaraVTD. Superiority of DaraVTD was 
demonstrated by the significantly increased post-consolida-
tion sCR rates (29% vs. 20%, p = 0.001) and PFS at 18 
months (93% vs. 85%, p < 0.001) [22]. The TOTAL therapy 
trials established TD-PACE and VTD-PACE as additional 
primary therapy options for transplant candidates [173, 192]; 
however, these regimens are generally reserved for patients 
with clinically aggressive disease [23, 173]. As suggested by 
recent phase II trials, carfilzomib/thalidomide/dexametha-
sone alone (CARTHADEX) or in combination with cyclo-
phosphamide (CYKLONE) also appear to be well tolerated, 
rapidly effective, and well-tolerated induction regimens for 
TE patients [176, 193]. Importantly, as these regimens do 
not use bortezomib or lenalidomide, patients may still be 
treated with such agents if needed during consolidation, 
maintenance, or salvage therapy [176].

Although single-agent lenalidomide is the first-line 
choice for maintenance therapy after ASCT, thalidomide is 
an off-label alternative often used in low-resource healthcare 
systems [194, 195]. In 2012, an IMWG-coordinated meta-
analysis found that employing thalidomide maintenance over 
an observation-only approach was associated with a 35% 
reduction in the risk for disease progression [196]. Given 
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the ability of bisphosphonates to hinder tumor cell prolifera-
tion and migration, induce apoptosis, block angiogenesis, 
and stimulate γδ T cells, these agents may synergize with 
IMiDs to enhance anti-myeloma effects in patients receiving 
maintenance [197]. Accordingly, one of the studies included 
in the above-cited meta-analysis was the IFM 99 02 trial, in 
which 597 patients were randomly assigned to receive no 
maintenance (arm A), pamidronate (arm B), or thalidomide/
pamidronate (arm C) after double ASCT. In arm C, 65% of 
patients had a CR or VGPR, compared with 55% in arm A 
and 57% in arm B (p = 0.03). Meanwhile, 3-year EFS esti-
mates were 36% in arm A, 37% in arm B, and 52% in arm 
C (p < 0.009) [198]. Later, RWD from 14 Korean univer-
sity hospitals (n = 258) demonstrated a significantly higher 
3-year PFS with thalidomide maintenance over observation 
(55.4 vs. 37.2%; p = 0.005) [195].

Despite the above data, thalidomide has not received 
FDA or EMA approval as maintenance therapy, since less 
consistent findings have been reported regarding survival 
benefits [199, 200]. For instance, the improved OS initially 
observed in the IFM 99 02 study was not maintained after 
long-term follow-up of patients with cytogenetics available, 
with an estimated 5-year OS rate of 74% in the thalidomide/
pamidronate arm and 70% in both control groups (p = 0.53) 
[201]. In 2012, the Medical Research Council (MRC) Mye-
loma IX trial also showed a lack of survival benefit with 
thalidomide maintenance, although median PFS was sig-
nificantly longer in the maintenance arm (23 vs. 15 months; 
hazard ratio [HR] 1.45, 95% CI 1.22–1.73, p < 0.001). In 
addition, subgroup analysis revealed a significantly worse 
OS in patients with high-risk cytogenetic abnormalities 
[200]. Noteworthy, approximately half of patients rand-
omized to thalidomide maintenance had received the drug 
during induction, making them prone to the selection of tha-
lidomide-resistant subclones [196, 200]. A subsequent meta-
analysis with survival data from MRC Myeloma IX and four 
other trials demonstrated a significant effect of thalidomide 
maintenance therapy on OS (p = 0.047) [200]. Furthermore, 
modeling the survival benefit with effective salvage therapy 
removed heterogeneity between studies (p = 0.24) and tha-
lidomide maintenance was shown to reduce the risk of death 
by 25% (p < 0.001) [199, 200].

Finally, thalidomide-based regimens can be used as ini-
tial treatment for transplant-ineligible patients [202]. In a 
meta-analysis of six RCTs comparing MP versus melphalan/
prednisone/thalidomide (MPT), the latter regimen provided 
significant benefits to PFS (HR 0.68, 95% CI 0.61–0.76, 
p < 0.001) and OS (HR 0.83, 95% CI 0.73–0.94, p = 0.004), 
extending the median survival time by approximately 20% 
(6.6 months) [203]. MPT was then established as a standard 
therapy for non-transplant candidates, despite thalidomide’s 
unfavorable toxicity profile in elderly individuals receiv-
ing the drug for prolonged periods [204]. Such treatment 

paradigm changed after publication of the FIRST trial, 
which compared MPT for 12 cycles (n = 547) versus lena-
lidomide/dexamethasone (RD) for 18 cycles (n = 541) ver-
sus RD until disease progression (n = 535). In this phase III 
study, continuous RD was superior to MPT in regard to PFS 
(HR 0.72, 95% CI 0.61–0.85, p < 0.001), OS (HR 0.78, 95% 
CI 0.64–0.96, p = 0.02), and all other secondary endpoints 
(e.g., ORR, TTR, response duration, time to treatment fail-
ure, time to second-line therapy, safety, and HRQoL) [205]. 
Later, the ECOG EA106 and HOVON87/NMSG18 trials 
showed no advantages in ORR, PFS, or OS with the use of 
melphalan/prednisone/lenalidomide induction followed by 
lenalidomide maintenance (MPR-R) over MPT induction 
followed by thalidomide maintenance (MPT-T); however, 
less toxicity was reported in the lenalidomide arm, which 
translated into better HRQoL [206, 207].

4.3  Role in Patients with Renal Dysfunction

Renal impairment (RI) is present in approximately 20% of 
MM patients at diagnosis, while 40–50% develop it through-
out the disease course [208]. This complication primarily 
results from the nephrotoxic effects of monoclonal protein, 
although other factors may contribute (e.g., dehydration, 
hypercalcemia, hyperuricemia, use of nephrotoxic drugs, 
hyperviscosity, and PC infiltration) [209, 210]. Currently, 
the standard management of MM-induced RI combines 
high-dose dexamethasone with bortezomib, whose efficacy 
and tolerance are well-established without dose adaptation 
[211]. However, the addition of thalidomide to bortezomib-
based combinations is a commonly used strategy for NDMM 
with RI, especially in Europe [208, 212]. Thalidomide is pri-
marily metabolized via non-enzymatic hydrolysis and < 1% 
of unchanged drug is excreted in the urine, causing AE rates 
to be similar in patients with abnormal or normal kidney 
function. Therefore, no dose adjustment of thalidomide is 
needed in the setting of a low creatinine clearance (CrCl) 
[210, 213, 214]. In contrast, lenalidomide is eliminated 
predominantly via urinary excretion, such that an abnormal 
CrCl remarkably impacts its pharmacokinetics [215].

As listed in Table 2, many studies have evaluated the role 
of thalidomide in the management of MM-related kidney 
disease [216–223]. Kastritis et al. reported no significant 
difference in renal function recovery (RFR) rates among 
NDMM patients treated with non-thalidomide or thalido-
mide-based regimens (69 vs. 80%, p = 0.453), but median 
time to RFR was significantly lower in patients receiving 
thalidomide (2.0 vs. 0.8 months, p = 0.005) [217]. Tosi 
et al. reported an RFR rate of 55% for patients receiving TD 
before ASCT, with normal renal function being achieved 
more frequently by those with a lower degree of RI at base-
line (93% if CrCl 30–50 mL/min vs. 19% if CrCl < 30 mL/
min, p < 0.001) [218]. Morabito et al. compared bortezomib/
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melphalan/prednisone (VMP) versus VMP plus thalidomide 
followed by bortezomib/thalidomide maintenance (VMPT-
VT) in renally impaired patients unfit for ASCT, reporting 
statistically significant improvements in ORR and PFS in 
those with moderate RI (estimated glomerular filtration 
rate [eGFR] 31–50 mL/min). Conversely, VMPT-VT had 
no advantage in terms of RI reversal over VMP (25.4 vs. 
40.3%, p = 0.092) [219]. In a retrospective study comparing 
thalidomide- and lenalidomide-based regimens, the former 
were associated with a non-significant 2.36-fold increase 
(95% CI 0.868–6.405, p = 0.092) in the probability of renal 
PR or CR (as per IMWG criteria for the definition of renal 
response) [215]. Furthermore, in a secondary cohort analysis 
of the FIRST trial, the efficacy benefits of RD over MPT 
could not be demonstrated in patients with severe RI (CrCl 
< 30 mL/min) [216].

Nonetheless, contrasting evidence on thalidomide’s 
advantages for renally impaired MM patients has been 
recently published. The OPTIMAL trial demonstrated higher 
rates of paraprotein response and dialysis independence 
among newly diagnosed individuals with a CrCl < 30 mL/
min who received bortezomib/bendamustine/dexamethasone 
(VBD) over VTD [217]. In an RWD study, the incidence 
of RI in MM patients treated with thalidomide was higher 
than in those treated with lenalidomide [20]. However, this 
could be due to physician preference for thalidomide use 
in individuals with a low CrCl at baseline. Thus, thalido-
mide administration, either as part of frontline bortezomib-
based combinations or as a component of second-line ther-
apy following bortezomib refractoriness, remains a useful 
approach in the setting of MM-related kidney disease [206, 
207]. Noteworthy, close monitoring is essential for patients 
undergoing dialysis, given the possibility of unexpected 
hyperkalemia [207].

4.4  Role in Patients with Myelotoxicity

In patients with RRMM, the association of heavy PC infiltra-
tion in the BM and numerous previous lines of therapy can 
often pose restrictions to the use of myelosuppressive agents 
[218]. While thalidomide frequently leads to dose-dependent 
non-hematologic adverse effects, thalidomide-induced myel-
otoxicity is unusual, even with doses above 400 mg/day [25]. 
The rates of neutropenia and thrombocytopenia may be low 
even when thalidomide is combined with cytotoxic chemo-
therapy. For instance, in a clinical trial of ThaCyDex for 
RRMM, 10% of patients developed grade 3–4 neutropenia, 
which was resolved after reducing the cyclophosphamide 
dosage. In the same trial, no other hematologic toxicity was 
attributable to the protocol.

In contrast, myelosuppression is a dose-limiting toxic-
ity for lenalidomide- and pomalidomide-based regimens, 
despite the significantly lower incidence of PN with these 

agents [29]. In a retrospective matched-pair analysis com-
paring TD (n = 183) against RD (n = 228) as initial therapy 
for NDMM patients, TD led to significantly lower rates of 
neutropenia (0.6 vs. 14.0%, p < 0.001), thrombocytopenia 
(0 vs. 4.8%, p = 0.002), and anemia (0 vs. 4.4%, p = 0.003) 
[219]. In the HOVON87/NMSG18 trial, which included 
637 untreated patients not eligible for transplant, grade 3–4 
hematologic toxicity was significantly more common in the 
MPR-R arm (neutropenia: 64 vs. 27%; thrombocytopenia: 
30% vs. 8%; anemia: 14 vs. 5%; p < 0.001 for all). Despite 
leading to higher growth factor support requirements, 
MPR-R use did not translate into increased infection risk 
[207].

Although these trials are not directly comparable, it is 
also interesting to note the lower rates of neutropenia and 
thrombocytopenia with the CYKLONE regimen (23 and 
4.7%, respectively) relative to those reported with bort-
ezomib/dexamethasone/cyclophosphamide/lenalidomide 
(VDCR) in the EVOLUTION study (44 and 14%, respec-
tively) [176, 224]. In addition, a large US population-based 
cohort study showed a lack of survival benefit with the use 
of lenalidomide over thalidomide in upfront MM therapy 
[20]. Thus, despite not being widely used in the US, thalido-
mide-based regimens (e.g., TD, ThaCyDex and CYKLONE) 
remain useful alternatives in heavily pretreated patients with 
a poor BM reserve. This is particularly true for patients with 
age ≤ 65 years, little to no PN at baseline, and no prior 
thromboembolic events [116, 177]. Furthermore, thalido-
mide stands out as an attractive IMiD alternative when pro-
viding care for Jehovah’s Witness patients with MM, since 
the drug’s negligible myelotoxicity could translate into lower 
requirements for allogeneic blood product support [225].

4.5  Future Perspectives

In the POLLUX trial, the addition of daratumumab to RD 
(Dara-RD) was associated with significantly higher ORR 
and PFS in RRMM patients [226]. This led to the establish-
ment of Dara-RD as a category 1 salvage therapy for early 
relapse [23]. However, common grade 3–4 AEs with the 
regimen included neutropenia (51.9%), thrombocytopenia 
(12.7%), and anemia (12.4%) [226]. In ongoing and future 
trials, the replacement of lenalidomide by thalidomide in 
daratumumab-containing regimens could potentially result 
in lower rates of dose-limiting cytopenias [178, 227]. Fur-
thermore, Dara-TD could be a good option of salvage ther-
apy for patients from resource-constrained countries, where 
concomitant use of two novel agents (e.g., daratumumab 
and lenalidomide) may lead to unaffordable healthcare costs 
[23, 178].

B-cell maturation antigen (BCMA)-directed therapies 
have substantial anti-myeloma activity but can lead to pro-
found myelosuppression and other AEs (e.g., keratopathy 
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with the ADC belantamab mafodotin [belamaf], cytokine 
release syndrome and neurotoxicity with CAR T cells) [228, 
229]. In the KarMMa trial, grade 3–4 AEs caused by ide-cell 
included neutropenia (89%), thrombocytopenia (52%), ane-
mia (60%), and infections (22%) [8]. In the CARTITUDE-1 
trial, grade 3–4 AEs caused by ciltacabtagene autoleucel 
(cilta-cel) included neutropenia (95%), thrombocytopenia 
(60%), anemia (68%), and infections (20%) [230]. CAR 
T-cell-related hematologic toxicity tends to be short-lived, 
with frequent recovery to grade ≤ 2 by day 30. Nevertheless, 
prolonged neutropenia and/or thrombocytopenia can occur 
in patients with inadequate BM reserve at baseline, creating 
the risk for life-threatening events (e.g., intracranial bleeding 
or sepsis) [8, 230]. Above that, some patients with a high 
tumor burden may lack enough BM reserve to allow autolo-
gous T-cell collection via apheresis, hindering their eligibil-
ity for CAR T-cell therapy in the first place [231]. Despite 
the promising preliminary results obtained with BsAbs 
(e.g., teclistamab, elranatamab, AMG 420, AMG 701, and 
REGN5458), early-phase clinical trials are still ongoing, for 
which many patients might not qualify [228, 229].

In the DREAMM-2 trial, the rates of grade 3–4 neutro-
penia, thrombocytopenia, and anemia varied according to 
belamaf dosing (9, 20, and 20%, respectively, in the 2.5 
mg/kg cohort; 15, 33, and 40%, respectively, in the 3.4 mg/
kg cohort) [232]. DREAMM-6 is an ongoing trial evaluat-
ing the safety, tolerability, and efficacy of belamaf plus RD 
(arm A) or VD (arm B) for RRMM patients [233, 234]. 
In arm B, grade 3–4 thrombocytopenia occurred in 67% of 
patients, leading to dose reduction in half of these patients 
[234]. Although preliminary data are still pending for arm 
A, increased rates of thrombocytopenia compared with arm 
B are expected, given lenalidomide’s higher myelosuppres-
sive effect [233, 235].

Investigations into other combinations of BCMA-directed 
agents and IMiDs are somewhat limited. In vivo studies 
combining CAR T cells with lenalidomide found that the lat-
ter could enhance antitumor activity and delay onset of func-
tional exhaustion of the former [236–238]. Further preclini-
cal data in xenograft models suggested enhanced potency 
of the BsAb AMG 701 with the addition of lenalidomide 
and pomalidomide [239, 240]. Besides boosting the anti-
myeloma effects of immunotherapy, the anti-inflammatory 
properties of IMiDs could be potentially helpful in reducing 
the risk of CRS after CAR T-cell infusion. Recently, Jan 
et al. demonstrated the ability of lenalidomide and poma-
lidomide to control degradable CAR T-cell cytokine release 
in vivo, limiting treatment-related toxicity while maintain-
ing antitumor activity [241]. Although only lenalidomide 
and pomalidomide were tested in the above-cited studies, 
comparable results could potentially be obtained with tha-
lidomide, given its analogous mechanisms of action. More-
over, thalidomide’s lack of renal dosing requirements or 

myelotoxicity could increase the inclusion of patients with 
severely decreased eGFR in future clinical trials, while 
allowing avoidance of dose delays/reductions or treatment 
discontinuation related to significant cytopenias. In the US, 
given the considerable economic burden of MM treatment to 
Medicare, thalidomide-based regimens can also be regarded 
as cost-effective alternatives to protocols containing newer-
generation IMiDs or CELMoDs [242, 243]. In low- and mid-
dle-income countries, where many of the novel agents are 
not only costly but are still awaiting approval, thalidomide 
use becomes even more attractive [194, 195]. Notwithstand-
ing, there is a persisting need for prospective trials directly 
evaluating thalidomide-containing regimens against novel 
therapies or in association with them.

5  Conclusion

Thalidomide remains a useful anti-myeloma agent in clinical 
practice, especially in the setting of high-grade myelosup-
pression and RI. Salvage regimens combining thalidomide 
(usually in a dose of 100 mg/day) and corticosteroids with 
or without selected cytotoxic or targeted agents (e.g., TD, 
ThaCyDex and CYKLONE) can be considered for RRMM 
patients who have no access to or are not eligible for novel 
therapies. In order to avoid severe AEs, frequent neurologi-
cal monitoring and pharmacological thromboprophylaxis 
should be offered. By comparing thalidomide-containing 
regimens with protocols based on new-generation IMiDs 
or CELMoDs, and by investigating the association of tha-
lidomide with novel immunotherapies (e.g., ADC, BsAbs, 
and CAR-T cells), ongoing and future trials may forge new 
ground for the revival of this old drug.
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