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Abstract Clinical researchers in oncology face the difficulty
of developing new drugs for treating cancer patients. This
challenge nowadays extends towards new horizons since a
high number of drugs are developed in each of the three par-
adigms: classical cytotoxics, new targeted agents, and emer-
gent immunotherapeutic approaches. Over the last decade,
there has been an unstoppable progress in this third paradigm,
to the extent that in 2013 immunotherapy was granted the
scientific breakthrough of the year. However, the novel mech-
anisms of action of these immunotherapeutic agents entail a
whole new series of concepts, resulting in a number of unre-
solved questions to which clarification is crucial for their suc-
cess: establishment of accurate preclinical models able to pre-
dict human toxicities, better selection of candidate popula-
tions, finding and validation of predictive biomarkers, defini-
tion of suitable endpoints, improvements in first-in-human
study designs, proposal of more accurate radiological re-
sponse criteria, management of novel immune-related toxic-
ities and development of combinations based on a biological
rationale. In this article, we review the major challenges to
overcome in forthcoming years. The final role of immunother-
apy in cancer will be determined by our capacity to shed some
light on some of these key points.

1 Introduction

Over the last 25 years, oncologists have witnessed an unprec-
edented development of new drugs with different characteris-
tics. In the 1990s, researchers faced new challenges regarding
the development of newmolecular targeted agents (MTAs), as
some previous assumptions entrenched in cytotoxics develop-
ment mandated a review [1]. First was the concept of biolog-
ically effective doses for demonstrating the proof-of-
mechanism of certain MTA [2]. Second, there was pressure
for re-defining new response criteria. Most MTAs act by mod-
ulating intracellular signaling pathways, so both the modified
Response Evaluation Criteria in Solid Tumors (mRECIST) [3]
and Choi criteria [4] emerged as suitable tools for assessing
modifications in tumor biology. Also, the appearance of new
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and chronic secondary effects not accurately graded in the
Common Terminology Criteria for Adverse Events
(CTCAE) grading system [5] highlighted the need to develop
new scores.

But if MTAs revolutionized early drug development
(EDD) and they could be considered the second paradigm in
cancer treatment (chemotherapy being the first one), new im-
munotherapeutic strategies represent the third paradigm.
Cancer immunotherapy is not something new [6].
Nevertheless, it was not until 2010 when immunotherapy
reached its current relevance, when the Food and Drug
Administration (FDA) approved the immunotherapeutic agent
sipuleucel-T for metastatic castration-resistant prostate cancer
(mCRPC) [7] and the immune-checkpoint inhibitor
ipilimumab for advanced melanoma [8]. Since then, we have
seen unstoppable progress in this third paradigm [9]. The
overwhelming success seen with immune-checkpoint inhibi-
tors in several malignancies with dismal prognosis to date [8,
10–16] and the high cure rates achieved with adoptive T-cell
therapies in some hematological conditions [17, 18] have led
researchers to consider immunotherapy a breakthrough in can-
cer treatment. In addition, immunotherapy could shift the
treatment paradigm of orphan diseases in which active thera-
peutic options are scarce.

Immuno-oncology (IO) can be considered a new paradigm
since major differences are obvious when compared to cyto-
toxics and MTAs. Table 3 depicts the main differences across
the three paradigms in EDD.

Herein, we review the controversial issues that shape this
new paradigm in cancer treatment.

2 Accuracy of Preclinical Data to Predict Toxicity
and Efficacy in Humans

One of the major issues that immunotherapy development has
faced is the imprecision of toxicological assumptions extrap-
olated from animal models. Clinical experience in IO shows
that preclinical studies do not accurately predict human sec-
ondary effects. For instance, certain organ-specific toxicities
might be overrated in animals, becoming less reliable predic-
tors of human toxicities [19]. On the contrary, preclinical stud-
ies may underestimate actual toxicity in humans. As a notori-
ous example, in 2006 six healthy volunteers participating in
the first-in-human (FIH) study of TGN141 developed life-
threatening cytokine release syndrome (CRS) after receiving
a single dose of a CD28 super-agonist monoclonal antibody,
reflecting the unpredictability of the immune-modulation with
current preclinical models [20, 21]. Lessons learned from this
incident highlighted that animal models can fail to predict
human toxicities due to the particularities of the immune sys-
tem (IS) of each species [22].

In this direction, it has been postulated that differences in
immune cells migration in response to tissue inflammatory
signals, in T-cell recognition molecules and their regulatory
signals, and even in cross-linking of surface antigens, among
other causes, could have a major role in determining efficacy
patterns and safety profiles of immunotherapeutic agents [21].
However, most trials testing new immunotherapies have en-
rolled patients irrespectively of their human leukocyte antigen
(HLA) subtype. Wolchock et al. [23] performed a retrospec-
tive analysis comparing pooled data from four phase II trials
testing ipilimumab stratifying by HLA-A*0201 status. The
analysis concluded that HLA does not have statistically sig-
nificant correlation neither with toxicity nor with efficacy.
More recent data with other checkpoint inhibitors in non-
small cell lung cancer (NSCLC) also support this observation
(L Mezquita, et al. Abstract 1223P. ESMO Meeting 2016).
However, other reports suggest that specific HLA subtypes
could possibly be related with risk of developing autoimmune
toxicities with immunotherapy [24]. Also, for other immuno-
therapeutic approaches such as vaccines, chimeric antigen re-
ceptor (CAR) T-cells or other cellular therapies, the role of
HLA in identifying epitopes whose expression is restricted
to pathological tissues will be crucial in order to ensure on-
target specificity whilst avoiding toxicities [25].

3 Selection of Patient Populations

It seems crucial to accurately define patient populations most
likely to benefit from immunotherapy. Inclusion/exclusion
criteria based on a strong biological rationale and pre-
selection of candidates based on predictive immune-
biomarkers are outstanding issues that merit further research.

Historically, most immunotherapy studies have excluded
concomitant steroid treatment assuming that they may cause
immune-modulation, which can diminish efficacy of immu-
notherapy, although there are no conclusive data supporting
this [26]. Similar assumption applies with the combination of
immunotherapy and cytotoxic drugs, but some recent data
suggest that this approach is effective and safe [27]. Also,
controversial is the potential trigger of an underlying autoim-
mune disease [28, 29] or re-activation of attenuated microor-
ganisms in patients who recently received vaccinations. The
main limitations for clarifying this is that these sub-
populations have been generally excluded from immunother-
apy trials and there is not enough experience Boutside^ clinical
studies reported yet. In addition, influence of previous treat-
ments still needs to be characterized. Gerlinger et al. showed
how metastatic clear cell renal carcinomas (mRCC) pre-
treated with everolimus significantly present lower T-cell in-
filtrates and intra-tumoral heterogeneity of T-cell clones,
which can lead to reduced efficacy of immunotherapy [30].
Rising data have also suggested increased risk to develop
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unexpected toxicity during a new line of treatment following
previous immunotherapy, probably because the biological ef-
fect of the immunotherapy is still present long after the last
dose of treatment [31].

Different immunotherapy strategies have proven to en-
hance anti-cancer activity but little is yet known about predic-
tive biomarkers of response to any of these approaches.
Subsequently, in parallel to the development of IO drugs, there
is an intense research program on biomarkers. For instance,
important efforts have been made to evaluate the clinical role
of programmed death-ligand 1 (PDL1) expression.
Development of anti-PDL1/PD1 antibodies has been accom-
panied by detailed analysis of PDL1 expression in human
tumors and immune cells, generating unanswered questions.
First, it is unclear whether assessment of PDL1 expression is
better in tumor cells (TCs) or in tumor-infiltrating lympho-
cytes (TILs) in terms of efficacy prediction. Emerging data
suggest that anti-PDL1 therapy is more effective in patients
whose TILs express high levels of PDL1 [32], whereas the
degree of PDL1 expression in TCs seems more closely corre-
lated with response to anti-PD1 blockade [33]. Interestingly,
responses with anti-PDL1/PD1 drugs have been reported
among patients with negative expression of PDL1 in tumors
such as bladder cancer [34] or NSCLC (F Barlesi, et al.
Abstract LBA44_PR. ESMO Meeting 2016). On the other
hand, data indicate that patients with higher PDL1 expression
are more likely to achieve higher response rates (RR) also in
bladder cancer [34] and NSCLC [15, 16]. Dynamic changes in
PDL1 expression during time, intra-tumoral heterogeneity,
changes in epitopes conservation, and lack of standardized
thresholds among screening tests could account for some of
these apparently contra-intuitive responses [35]. Also, previ-
ous therapies may impact PDL1 expression [36]. Moreover,
preclinical data suggest that lack of TILs may predict failure to
anti-PD1 therapy [37]. Pre-existing CD8+ TILs located at the
invasive tumor margin may in part induce PDL1 expression in
TCs, favouring response to immunotherapy. Among re-
sponders to PD1 blockade, post-treatment analyzed samples
have shown proliferation of TILs, which correlates with ra-
diologic responses [38]. Subsequently, combined presence or
absence of TILs and PDL1 expression has been proposed as a
tool to classify tumor microenvironments [39].

Recent advances in technology have revealed differential
patterns of genomic alterations across different tumor types
[40]. Although the relationship between genomic landscapes
and clinical benefit with immunotherapy is still not complete-
ly understood, there is increasing evidence that the higher the
mutational load of a tumor the greater the benefit achieved
from immune-checkpoint blockade [41]. Furthermore, identi-
fication of tumor antigen signatures present in certain re-
sponders to immunotherapy, together with tumor-
microenvironment characteristics, widens the horizon for con-
sidering that genomics can help to predict efficacy to

immunotherapy [42–45]. In addition, intra-tumor heterogene-
ity might also have implications in response to checkpoint
inhibitors [46]. Figure 1 shows strengths and limitations of
three models of potential predictive immune-biomarkers.

It is even more controversial whether these potential bio-
markers may have a predictive value with other immunother-
apeutic agents apart from immune-checkpoint inhibitors.
Identification of epigenetic modifications in genes involved
in immune response, evaluation of T- and B-cell repertoire
and cytokine profiling following the administration of immu-
notherapies, among others, will probably shed some light into
this field [47]. Figure 2 depicts some potential biomarkers for
personalizing immune strategies.

4 Definition of Suitable Endpoints

Optimal assessment of objectives by endpoints suitable for
cytotoxics or MTAs is still not well established with the new
generation of immunotherapy treatments [48]. The novel
mechanism of action (MoA) of these agents confers a series
of specific characteristics to these drugs. Careful selection of
endpoints that truly reflect the complex interactions between
host IS and tumor are needed in order to identify early effec-
tive new compounds or futile agents.

Classically, efficacy of cytotoxics has been determined by
growth or shrinkage of predefined lesions in serial tumor im-
aging. World Health Organization (WHO) criteria [49],
RECIST [50, 51], or Revised Assessment in Neuro-
Oncology (RANO) response criteria [52] have been used for
years to assess tumor response. New MTAs led to the devel-
opment of new imaging methods of response evaluation, such
as mRECIST [3], Choi criteria [4], or Positron Emission
Tomography (PET) Response Criteria in Solid Tumors
(PERCIST) [53]. These guidelines incorporated not only static
tumor measurements, but also functional assessments to char-
acterize better the underlying biology behind tumor response.

While the most appropriate method to evaluate response to
MTAs is still not fully established [54], the novel immuno-
therapy agents have added another layer of complexity to the
field. Thus, at least four distinct models of immune response
have been described: shrinkage in baseline lesions without
appearance of new lesions; durable stable disease followed
by response; shrinkage after an initial increase in total tumor
burden; and response in spite of the presence of new lesions
[55]. These patterns of response, initially described by
Wolchok et al. [55], reflect complex biological processes in
which both the host IS and the tumor are involved. For in-
stance, the situation in which patients experience initial tumor
progression or stabilization followed by tumor response might
be due to the time the IS requires for expansion of T-cells
before tumor infiltration [48]. On the other hand, patients
whose tumors have an initial growth or new lesions appear
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followed by a decrease in tumor burden (pseudo-progression)
might be experiencing infiltration by TILs preceding a late
radiological response [56, 57]. Therefore, it is important to
develop reliable radiological criteria able to determine accu-
rately efficacy [58]. Early identification of non-responders is
relevant to avoid unnecessary toxicity caused by immunother-
apy, but it is equally important to recognize, which patients are
receiving an efficacious immunotherapy and, therefore,
should not be shifted to another drug even though the radio-
logical response is not so evident [59]. The immune-related
response criteria (irRC) try to address these issues [55].
However, irRC emerged in parallel to the development of
anti-CTLA4 drugs, and extrapolation of these criteria to other
immunotherapies should be done with caution. Other criteria
such as unidimensional irRC or immune-related RECIST
(irRECIST) have also been proposed [60, 61]. Table 1 sum-
marizes differences in radiological criteria used for tumor as-
sessment in each of the three paradigms.

Whichever the guidelines used, they should be a reliable
tool to reflect the dynamic changes of the host IS and their
effect on tumor cells. Some collaborative groups, such as the
Cancer Vaccine Consortium and the International Society of
Biological Therapy of Cancer, have made a series of recom-
mendations in order to achieve this goal in forthcoming clin-
ical trials: long-term clinical improvements and/or response
af ter progress ive disease (PD) can happen with

immunotherapies; benefit/risk ratio has to be carefully consid-
ered before discontinuation; PD has to be confirmed; and du-
rable stable disease (SD) may represent true benefit [62].
Other authors such as Ribas et al. [59] have proposed to pro-
spectively establish radiologic landmark analyses at pre-
specified delayed time-points, which would be a method to
assess response caused by delayed expansion of anti-tumor T-
cells [63]. However, this could be a problem when treating
patients with rapidly growing disease in which an early con-
firmation of drug activity is needed.

Although the real incidence of pseudo-progression remains
unclear, it represents a clinical challenge. If not correctly iden-
tified, it can mislead the physician’s decision making and,
therefore, influence the clinical development of a drug. To
differentiate between pseudo-progression and true progres-
sion, the irRC propose a confirmation by a consecutive radio-
logical assessment no less than 4 weeks after progression was
first documented [55]. Importantly, the clinical status of the
patient should also be taken into account. If there is progres-
sion by imaging but the patient has a good performance status
and/or has symptomatically improved, pseudo-progression
has to be considered. On the contrary, if the patient presents
clinical deterioration and there is clinical concern that 4 weeks
is too long to repeat imaging, then it is probable that it is true
progression. If pseudo-progression is suspected, a sensible
approach is to perform a biopsy to assess the degree of TILs
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POTENTIAL FOR PREDICTING RESPONSE TO IMMUNOTHERAPY

Tumoral percentage required in
sample for genomic analysis

Fig. 1 Strengths and weaknesses of potential predictive immune-biomarkers under development
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infiltration [37, 38, 64]. However, this still is an investigation-
al approach and further investigation is needed.

Accurate survival assessment is another challenge in this
new paradigm in EDD. Overall survival (OS), the strongest
endpoint, is difficult to measure because it usually implies
long-term follow-up and is influenced by subsequent lines of
treatment [65]. In an attempt to overcome these obstacles,
surrogate endpoints for OS are used, although they do not
always correlate with OS [66]. This is a relevant issue with
immunotherapy [7, 8, 10, 63, 67–72]. As an example, the
randomized phase III study in mRCC, which compared
nivolumab versus everolimus found clear superiority of the
immunotherapeutic agent in terms of OS, but not in PFS
[63]. Albeit not frequent, the phenomenon of pseudo-
progression might impact PFS assessment making it a not

reliable surrogate endpoint for OS. If a tumor growth is
wrongly classified as PD and patient is withdrawn from trial,
PFS data will not truly reflect the clinical benefit of the im-
munotherapeutic drug.

Another outstanding challenge is comparison between sur-
vival curves. The most used method in oncology to determine
whether an investigational agent is superior to another treat-
ment is to compare Kaplan-Meier curves. However, this can-
not be so readily applicable with immunotherapy. Usually,
responders to chemotherapy or MTAs tend to do so early in
the course of treatment. Since clinical benefit with immuno-
therapy can be delayed, early interpretation of survival curves
might be difficult. For instance, in the IMPACT study com-
paring sipuleucel-T with placebo in mCRPC, separation of
survival curveswas only evident after approximately 6months
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Predic�ve gene signatures
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immune-response
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Abbrevia�ons: pMHC: pep�de major histocompa�bility complex; TLR: Toll-like receptor; IFNα: Interferon alfa; TNFα: Tumor necrosis factor alfa; VEGF: Vascular 
endothelial growth factor; CRP: C-reac�ve protein; TILs: Tumor infiltra�ng lymphocytes; Tregs: regulatory T lymphocytes; Teff/Treg ra�o: ra�o lymphocyte T 
effector/lymphocyte T regulatory; sCD25: soluble CD25; IFNγ: interferon gamma; CTLA-4: Cytotoxic T-lymphocyte-associated protein-4; PDL1: Programmed death 
ligand 1; PDL2: Programmed death ligand 2; LAG-3: Lymphocyte-ac�va�on gene 3; TIM-3: T-cell immunoglobulin and mucin domain containing-3 protein; BTLA: B-
and T-lymphocyte a�enuator protein; sLDH: soluble lactate dehydrogenase; IDO: Indoleamine-2,3-dioxygenase enzyme; TGFβ: Transforming growth factor beta.

Fig. 2 Potential biomarkers for personalizing immune strategies.
Abbreviations: pMHC, peptide major histocompatibility complex; TLR,
Toll-like receptor; IFNα, Interferon alfa; TNFα, Tumor necrosis factor
alfa; VEGF, Vascular endothelial growth factor; CRP, C-reactive protein;
TILs, Tumor infiltrating lymphocytes; Tregs, regulatory T lymphocytes;
Teff/Treg ratio, ratio lymphocyte T effector/lymphocyte T regulatory;
sCD25, soluble CD25; IFNγ, interferon gamma; CTLA-4, Cytotoxic T-

lymphocyte-associated protein-4; PDL1, Programmed death ligand 1;
PDL2, Programmed death ligand 2; LAG-3, Lymphocyte-activation gene
3; TIM-3, T-cell immunoglobulin and mucin domain containing-3 pro-
tein; BTLA, B- and T-lymphocyte attenuator protein; sLDH, soluble lac-
tate dehydrogenase; IDO, Indoleamine-2,3-dioxygenase enzyme; TGFβ,
Transforming growth factor beta
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of treatment [7]. Similar effect is observed with ipilimumab in
melanoma [8, 10] or with pembrolizumab in NSCLC [73].
This delay in the separation of survival curves can jeopardize
the success of an immunotherapy since it reduces the statisti-
cal power to assess the difference between the curves [48].
Indeed, the phase III study of ipilimumab in mCRPC after
progression to docetaxel was considered negative because it
failed to reach the pre-determined primary endpoint of OS.
However, when carefully assessing survival curves, a separa-
tion favouring ipilimumab after month 10 can be seen [74].
Design of new immunotherapy trials should consider the fact
that hazard ratios between curves may not be constant over
time, highlighting the need of a better statistical model to
assess differences in survival [48]. If RR or early assessment
of PFS are not reliable endpoints for determining if an immu-
notherapeutic agent is effective or not, the pace of clinical
development of these drugs will necessarily be slow. The cur-
rent pipeline of early clinical trials with immunotherapy
agents is very extensive so a method to rapidly determine
which drugs merit further development is therefore needed.

5 Emerging Toxicity of Immunotherapeutic Agents

Apart from checkpoint inhibitors, a broad spectrum of immu-
notherapeutic agents with different MoA is currently under
development. Early identification of new and unexpected tox-
icities and standardized management guidelines are needed to
further develop these therapies.

A unique profile of toxicities termed immune-related ad-
verse events (irAEs) has been described with anti-CTLA4,
anti-PD1, and anti-PDL1 antibodies [75]. The most frequent
irAEs are well characterized and guidelines for their manage-
ment are widely available [76–83].

Toxicity data from other immunotherapies are still scarce,
but new information is increasingly being reported. Infusion
of ex vivo expanded tumor-reactive T-cells (adoptive T-cell
therapy) has proven to be effective in certain cancers [84, 85].
Prior non-myeloablative chemotherapy is administered to en-
hance engraftment of transferred cells, followed by T-cell
growth factors such as interleukin-2 (IL2) [86]. Although se-
vere events are infrequent and usually manageable, sepsis sec-
ondary to immunosuppression caused by conditioning chemo-
therapy is the cause of the 1-2% rate of death observed with
this treatment. Also, important is CRS, which can occur short-
ly after administration of T-cells and can lead to multiorgan
failure. In a recent study of CD19 CAR in leukemia, all en-
rolled patients had some degree of CRS [87]. Of note,
interleukin-6 (IL6) has been identified as a key cytokine im-
plicated in CART-cells-mediated CRS. Administration of the
IL6 receptor-blocking antibody tocilizumab to patients show-
ing early signs of CRS has been described to achieve symp-
toms control [88]. Autoimmunity can also be induced with

adoptive T-cell therapy by targeting a normal self-protein
[89, 90], which is a potential life-threatening toxicity [25,
91]. Another immune therapeutic approach with a specific
toxicity profile is cancer vaccines. A recent review evaluated
239 clinical trials with nearly 5,000 patients who received a
cancer vaccine. Remarkably, 162 grade 3, 4, and 5 AEs were
attributed to vaccination. Of those toxicities, 60 were local
reactions, 40 were constitutional symptoms, and five were
related to adjuvants used to enhance vaccine anti-tumor ef-
fects. The outstanding 62 systemic AEs were reported by in-
vestigators to be at least Bpossibly related^ to vaccines [92].
Finally, it is also worth considering interleukines. Although
they are not new agents, their side effects need to be well
managed since many current immunotherapy strategies use
interleukines as part of combinatory regimes. Toxicity profile
of some of these molecules such as interferon alpha (IFNα)
include fever or fatigue, and depressive symptoms have also
been described [93]. Hematological toxicity with thrombocy-
topenia and leukopenia can occur in up to 10% of patients, as
well as hyper- or hypothyroidism [94]. High dose IL2 is rec-
ommended to be administered in an inpatient setting by an
experienced team with cardiac monitoring and hemodynamic
support because it can lead to serious toxicities such as capil-
lary leak syndrome [95].

Table 2 shows common toxicity profiles across different
immunotherapy approaches.

6 Need for New Clinical Trial Designs

The frameworks in which cytotoxic agents and MTAs have
been developed are not optimal for immunotherapeutic com-
pounds. Appropriate early clinical trial designs that reflect
their special features are, therefore, needed (Table 3).

For instance, most new immunotherapeutic approaches are
being developed in combinatory regimes, but it is an open
question as to which is the optimal design for multi-agent
early clinical trials. Evidence suggest that using a checkpoint
inhibitor as a backbone adding another anti-cancer agent is the
most sensible strategy [114]. For instance, combination of
antiangiogenics with immunotherapy might achieve synergis-
tic effects since the antiangiogenic agent modifies the tumor
microenvironment facilitating T-cells access tomalignant cells
and, therefore, enhancing their activity [114]. But should
drugs be administered concomitantly or sequentially? Some
toxicity results with concomitant checkpoint inhibitors and
MTAs have shown unacceptable toxicity profiles [115, 116].
Would sequential or intermittent administration of at least one
of the compounds have resulted in more tolerable side effects?
Lack of predictive preclinical data and absence of a deep bio-
logical understanding of some of the toxicities observed [116]
are limitations to answer that question. Is sequential therapy
superior to concomitant in terms of activity? Antigens release
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Table 2 Common toxicity profiles across immunotherapy approaches

Type of treatment Type of toxicity Any grade Grade 3-4 References

1. Checkpoint Inhibitors
Anti-CTLA4 (ipilimumab in
melanoma) N = 446

pruritus 35% 0,3% [96, 97]
diarrhea 33% 6%
skin rash 19-32% 1%
fatigue 18% 0,8 - 2%

Anti-CTLA4 (tremelimumab in
mesothelioma) N = 29

skin rash 62% 0% [98]
colitis/diarrhea 31% 7%
fever 24% 0%
arthralgia 14% 0%

Anti-PD1 (nivolumab in melanoma)
N = 316

fatigue 34% 1% [96]
skin rash 26% 0,6%
pruritus 19% 0%
diarrhea 19% 2%

Anti-PD1 (pembrolizumab in
melanoma) N = 178

pruritus 21% 0% [99]
fatigue 21% 1%
rash 12% 0%
diarrhea 8% 0%

Anti-PDL1 (atezolizumab in
bladder cancer) N = 68

decreased appetite 12% 0% [100]
fatigue 12% 0%
pyrexia 9% 0%
chills 4% 0%

Anti-OX40 (in solid tumors)
N = 28

fatigue 68% 25% [101]
lymphopenia 46% 0%
fever/chills 46% 0%
increased ALT/AST/AlkPhos 11% 0%

2. Adoptive T Cell Therapy
CARs

Antigen: CAIX (in mRCC)
N = 12 liver toxicity 100% 67% [102]
N = 3 liver toxicity 100% 33% [103]

Antigen: ERBB2 (in colorectal cancer)
N = 1 cytokine release syndrome 100% 100% [104]

Antigen: CD19 (in B-cell malignancies)
N = 8 capillary leak syndrome 50% 50% [105]

Engineered TCR
Antigen: MART1 (in melanoma) N = 20 skin rash 70% 0% [89]

hearing impairment 50% 40%
uveitis 55% 0%

Antigen: gp100 (in melanoma) N = 16 skin rash 94% 0% [89]
hearing impairment 31% 6%
uveitis 25% 0%

Antigen: CEA (in colorectal cancer)
N = 3 diarrhea 100% 67% [90]

Antigen: NY-ESO-1 (in synovial sarcoma and melanoma)
N = 17 no toxicity 0% 0% [106]

Antigen: MAGE-A3 (in synovial sarcoma, melanoma and esophageal cancer)
N = 9 central nervous system toxicities 44% 33% [91]

Antigen: MAGE-A3 (in melanoma and myeloma)
N = 2 cardiogenic shock 100% 100% [25]
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by chemotherapies that induce immunogenic tumor cell death
followed by checkpoint inhibitors might be superior to concom-
itant schedules [117, 118]. Trials aiming to achieve an abscopal
effect, a phenomenon in which local radiotherapy triggers tu-
mor response at a distant site [119], merit special mention. In
addition to case reports [120–122], some promising clinical trial
data have been recently reported [123]. However, the schedule
and total dose of radiotherapy, or the most appropriate tech-
nique to use remain to be elucidated [124–126].

Definition of dose-limiting toxicity (DLT) is another chal-
lenge. Classically, the appearance of severe toxicity in a period
of time (DLT period) is regarded as DLT. This is crucial in
EDD since the classification of a drug as Bsafe^ or Bunsafe^
depends very much on the DLTs observed. For chemothera-
peutic drugs and MTAs the DLT period is usually as long as
one or two cycles of treatment. But definition of DLT period
with immunotherapeutic drugs is more unclear due to their
MoA. It is not rare that irAEs appear relatively late in the
course of the immunotherapy treatment [83]. Therefore, some

severe toxicities might happen once the DLT period is clear
and never account as DLT, underestimating the actual toxicity
of the immunotherapeutic agent. Also, permanent conditions
induced by immunotherapy such as endocrinopathies might
have a detrimental effect on patients’ quality of life, but they
are usually not recorded as DLTs. New AEs criteria and new
trial designs reflecting long-term toxicities are needed to truly
reflect the actual toxicity of immunotherapy.

Similarly to DLT, maximum tolerated dose (MTD) deter-
mination should also be adjusted. MTD concept is based on
chemotherapy and MTA paradigms presumption that efficacy
and toxicity increase with the dose. Consequently, MTD and
recommended phase II dose (RP2D) is a balance between
achieving maximum efficacy with acceptable toxicity. This
seems to be true with ipilimumab [127], but dose–response
relationship has proven to be not directly proportional with all
immunotherapeutic agents [72]. Also, dose and toxicity are
not always consistently related either, as demonstrated in sev-
eral trials in which MTD was not reached [34, 128, 129].

Table 2 (continued)

Type of treatment Type of toxicity Any grade Grade 3-4 References

TILs
In melanoma N = 13 vitiligo 38% NA [107]

uveitis 8% NA
In melanoma N = 34 vitiligo 38% NA [108]

uveitis 12% NA
In cervical cancer N = 9 febrile neutropenia 56% 56% [109]

3. Vaccines
Sipuleucel-T (in prostate
adenocarcinoma) N = 338

chills 54% 1% [7]
fatigue 39% 1,2%
pyrexia 29% 0,3%

Survivin (in melanoma) N = 61 fever most common
toxicity; NA

most common
toxicity; NA

[110]

chills most common
toxicity; NA

most common
toxicity; NA

injection reaction 30% NA
4. Cytokines

High dose IFNα (in melanoma)
N = 166

flu-like symptoms 50% 7% [111]
liver toxicity 49% 4%
neutropenia 32% 9%
psychiatric disorder 23% 0.6%

High-dose IL2 600.000 UI/kg
(in melanoma) N = 13

thrombocytopenia 64% 9% [112]
serum bilirubin elevation 53% 12%
serum creatinine elevation 41% 6%
ventricular tachycardia 6% NA

High-dose IL2 600.000 UI/kg
(in mRCC) N = 91

hypotension 67% NA [113]
liver toxicity 42% NA
fever 33% NA

Abbreviations: N patients included per treatment arm; NA Not available; ALT Alanine aminotransferase increase; AST Aspartate aminotransferase
increase; AlkPhos Alkaline phosphatase increased; CAR Chimeric antigen receptor; TCR T-Cell receptor; TILs Tumor-infiltrating lymphocytes
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Moreover, some data suggest that it might be a different toxicity
pattern for the same dose of an immunotherapy depending on
tumor type [130, 131]. This observationmay be the consequence
of different effects exerted by distinct histologies on the host IS.

In addition, pharmacokinetic (PK) and pharmacodynamic
(PhD) properties of the new immunotherapeutic drugs, also
significantly differ from chemotherapy or MTAs. The differ-
ential feature is that immunotherapy acts on the IS of the
cancer patient, whereas chemotherapy or MTAs directly at-
tack tumor cells. So the concept that the higher the concentra-
tion of a drug in blood the higher the efficacy because more
drug reaches the tumor is not applicable with immunotherapy.
A relatively low dose of an immunotherapeutic agent can be
sufficient to initiate the IS activation against tumor. The IS is
able to maintain its activation by itself, so high doses or con-
tinuous schedules of an immunotherapeutic drug might not be
necessary to achieve long-term anti-tumor response and bio-
logical effects might last longer than PK/PhD analyses are
able to reflect [132]. Moreover, this can also have implications
in late appearance of severe toxicities when administering
subsequent drugs. Long-lasting biological effects of immuno-
therapy might overlap with new lines of treatment leading to
toxicities as if it was a de facto combinatorial regimen [31].
Optimal duration of treatment is also affected by this. With
chemotherapy, the longer the patient is able to be in treatment
the better in terms of efficacy. With MTAs this is not so

evident, and intermittent schedules have been proposed. But
this issue is even more challenging with immunotherapy.
Which is the optimal duration of treatment if biological effects
of immunotherapy are not reflected by PK/PhD data? Is it
necessary to keep the patient on treatment as long as the tumor
growth is controlled? Are a predefined number of doses
enough to achieve long-lasting responses? Standard schedule
of ipilimumab is four doses, whereas other agents such as anti-
PD1 antibodies nivolumab or pembrolizumab are given until
tumor progression or intolerance. Smarter new clinical trial
designs able to solve all these outstanding questions, among
others, need to be developed.

7 Conclusions

After chemotherapy and MTAs, we suggest that immunother-
apy has become the third paradigm in cancer. The novel MoA
of these new immunotherapeutic compounds entail a whole
new series of features that are changing the way we develop
anti-cancer drugs. Establishment of preclinical models that
accurately predict toxicity and efficacy, selection of patient
populations, finding and validation of biomarkers, assessment
of response, determination of suitable endpoints, management
of toxicities, or development of new clinical trial designs are
among the challenges and obstacles that need to be overcome.

Table 3 The three paradigms in early drug development

Chemotherapy first paradigm Targeted agents second paradigm Immunotherapy third paradigm
Objectives Classical approach: cytotoxic effect New challenges: cytostatic effect Future goals: immunomodulation

Dose recommendation - DLT/MTD definition based on
dose–response relationship

- Less correlation dose–response
once inhibited the target

- Even less clear dose–response relationship,
DLTs/MTD not always reached

- RP2D establishment - Need for a BED correlation,
proof-of-mechanism based
on PhD data

- Proof-of-mechanism measures
not well defined yet

- Exploratory - Mandatory for BED finding
and dose recommendation

Response evaluation - RECIST versions - mRECIST - irRC criteria (1D)

- WHO criteria - Choi criteria - New irRECIST criteria (2D)

Toxicity assessment - CTCAE versions - Need for a revised CTCAE
version in light of new emergent
toxicities not included in previous
ones. Eg: Hyperphosphatemia

- Need for a new irAEs grading system

- Only relevant acute toxicities
considered, mostly haematological
and gastrointestinal

- Incorporation of chronic toxicities - Relevant acute, subacute and chronic
toxicities

- Autoimmunity may appear in any organ

Candidate populations - Classically, only heavily
pre-treated patients with no
standard treatment options

- New patient populations:
molecularly selected populations,
window-of-opportunity, phase 0
and healthy volunteer studies

- New subgroups of patients who could early
benefit from immunotherapy: progressive
melanoma after ipilimumab or BRAF
inhibitor, progressive SqNSCLC after
platinum

Abbreviations: DLT Dose limiting toxicity; MTD Maximum tolerated dose; RP2D Recommended phase II dose; RECIST Response evaluation criteria
in solid tumors; WHOWorld Health Organization; CTCAE Common Toxicity Criteria for Adverse Events; PhD: Pharmacodynamic; BED Biologically
effective dose; mRECISTmodified RECIST; irRC immune related response criteria; irRECIST immune related RECIST; irAEs immune related adverse
events; SqNSCLC Squamous non-small cell lung cancer.
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Evidences support that the optimal strategy for further im-
munotherapy development is combinatory regimens. There is
a solid biological background for combining immunotherapy
drugs with MTAs, chemotherapy, radiotherapy, or other im-
munotherapeutic compounds with different MoA. Clinical re-
sults reported to date confirm the rationale behind this strategy
[133, 134]. However, we should be cautious with new and
unexpected toxicities that may hamper the success of these
novel regimens so an adequate EDD is essential. Careful and
thoughtful preclinical and clinical approach must be taken to
early identify immunotherapeutic treatments unacceptably
toxic or insufficiently effective.

The third paradigm of immunotherapy in oncology is still
an evolving field. Although important goals have been
achieved so far, there are still many questions that remain
unanswered. The final role of immunotherapy in cancer will
be determined by our capacity to find the right answers to
those questions in forthcoming years.
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