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Abstract
Background Activating KRASmutations are reported in up to
90% of pancreatic cancers. Refametinib potently inhibits
MEK1/2, part of the MAPK signaling pathway. This phase

I/II study evaluated the safety and efficacy of refametinib plus
gemcitabine in patients with advanced pancreatic cancer.
Methods Phase I comprised dose escalation, followed by
phase II expansion. Refametinib and gemcitabine plasma
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levels were analyzed for pharmacokinetics. KRAS mutational
status was determined from circulating tumor DNA.
Results Ninety patients overall received treatment. The max-
imum tolerated dose was refametinib 50 mg twice daily plus
standard gemcitabine (1000 mg/m2 weekly). The combination
was well tolerated, with no pharmacokinetic interaction.
Treatment-emergent toxicities included thrombocytopenia, fa-
tigue, anemia, and edema. The objective response rate was
23% and the disease control rate was 73%. Overall response
rate, disease control rate, progression-free survival, and over-
all survival were higher in patients without detectable KRAS
mutations (48% vs. 28%, 81% vs. 69%, 8.8 vs. 5.3 months,
and 18.2 vs. 6.6 months, respectively).
Conclusion Refametinib plus gemcitabine was well tolerated,
with a promising objective response rate, and had an accept-
able safety profile and no pharmacokinetic interaction. There
was a trend towards improved outcomes in patients without
detectable KRAS mutations that deserves future investigation.

Key Points

Ascertaining tumor mutation status using circulating tumor

DNA may be a promising diagnostic tool for optimization

of treatment 

KRAS mutation status may be both prognostic for disease

progression and predictive of benefit from the refametinib

plus gemcitabine combination for patients with advanced 

pancreatic cancer

1 Introduction

Pancreatic cancer is among the leading causes of cancer-
related mortality worldwide [1], and activating KRAS muta-
tions are reported in up to 90% of pancreatic cancers [2, 3].
These mutations cause constitutive activation of the mitogen-
activated protein kinase signaling pathway (RAS-RAF-MEK-
ERK) which, in turn, persistently activates downstream effec-
tors leading to dysregulated cellular proliferation, survival,
and metastasis [4–6]. Therefore, mitogen-activated protein ki-
nase signaling is an important target for therapeutic inhibition
[7]. However, only a subset of patients may benefit from
single-agent treatment approaches as multiple pathways are
commonly dysregulated.

Gemcitabine monotherapy has long been the standard of
care for advanced pancreatic cancer and still represents an
option (along with the oxaliplatin, irinotecan, fluorouracil,
and leucovorin regimen, and gemcitabine plus albumin-
bound paclitaxel) for first-line therapy in metastatic or locally
advanced, unresectable disease [8–10]. However, the survival
improvement with gemcitabine monotherapy is modest [11].

Previous phase II and III trials of gemcitabine combined with
other cytotoxic agents have shown acceptable safety but in-
consistent survival improvement versus monotherapy [10,
12–16]. The promising activity of cytotoxic combinations
has also been associated with high toxicity [9, 10].

Refametinib (BAY 86-9766; Bayer Pharma AG, Berlin,
Germany) is an orally available, potent, selective, allosteric
(non-adenosine triphosphate competitive) inhibitor of
MEK1/2 [17]. Refametinib has demonstrated both single-
agent activity [18] and synergistic activity in combination
with gemcitabine [19] in preclinical models of pancreatic
cancer.

A single-arm, open-label, phase I/II study (NCT01251640)
evaluated the safety and efficacy of refametinib plus
gemcitabine in patients with advanced pancreatic cancer eli-
gible for first-line gemcitabine. Phase I investigated the safety,
tolerability, and pharmacokinetics of the combination; phase II
evaluated the efficacy, safety, and biomarker analysis of the
recommended phase II dose.

2 Methods

2.1 Ethical Approval and Informed Consent

The study protocol and all protocol amendments were
reviewed and approved by independent ethics committees
and institutional review boards for each study site before the
start of the study and before implementation of the amend-
ments. All procedures performed in studies involving human
participants were in accordance with the ethical standards of
the institutional and/or national research committee and with
the 1964 Declaration of Helsinki and its later amendments or
comparable ethical standards. Informed consent was obtained
from all individual participants included in the study.

2.2 Study Design

This open-label, non-randomized, multicenter study
(ClinicalTrials.gov number NCT01251640 (http://clinicaltrials.
gov/show/NCT01251640)) comprised two phases: phase I
evaluated three dose levels to determine the maximum
tolerated dose and recommended phase II dose of refametinib
plus gemcitabine; phase II evaluated the efficacy, safety, and
biomarker analysis of the recommended phase II dose. The
primary outcome measure in phase II was objective response
rate (confirmed complete response and confirmed partial
response) per blinded independent radiological review.
Secondary outcome measures included disease control rate
(complete response, partial response, and stable disease),
progression-free survival, overall survival, toxicity, and determi-
nation of KRAS mutational status (wild type or mutant).
Additional secondary measures were pre-planned correlation of
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KRASmutational status with response and survival, and analysis
of biomarkers relevant to RAS pathway activation or to path-
ways known to influence activity of RAS-RAF-dependent signal
transduction.

Patients received standard gemcitabine intravenously at
1000 mg/m2 weekly on day 1; continuous oral treatment with
refametinib twice daily began on day 2. Patients received
refametinib plus gemcitabine for 7 out of 8 weeks (cycle 1),
then 3 out of 4 weeks in subsequent cycles. Enrollment of up
to 18 patients in phase I was planned. Dose escalation follow-
ed a 3 + 3 design. If no dose-limiting toxicity was seen within
the first three patients at the starting dose level (refametinib
30 mg twice daily plus standard gemcitabine) and within the
first 4 weeks of treatment, the next highest dose level
(refametinib 50 mg twice daily plus standard gemcitabine)
was to be initiated immediately. All three patients enrolled at
the starting dose level were to continue treatment until they
had received a full 8 weeks of therapy. If a dose-limiting
toxicity occurred within the first three patients at the starting
dose level and after the first 4 weeks of treatment, further
recruitment to the higher dose cohort was to be paused and
three additional patients were to be enrolled to the starting
dose cohort. If no dose-limiting toxicities were observed in
these additional three patients within 4 weeks of treatment,
then enrollment to the higher dose level continued. If two or
more patients out of a maximum of six showed dose-limiting
toxicities at the starting dose level within cycle 1, the next
lowest dose level would be investigated. The maximum toler-
ated dose was the highest dose level at which no more than
one patient out of six experienced a dose-limiting toxicity.
Following identification of the maximum tolerated dose, the
data monitoring committee was to be involved in the defini-
tion of the recommended phase II dose.

Protocol-defined dose-limiting toxicities, as defined by the
National Cancer Institute Common Terminology Criteria for
Adverse Events version 4.0, included grade 4 anemia; grade 4
neutropenia lasting more than 10 days; grade 3 or 4 neutrope-
nia with fever greater than 38 °C; thrombocytopenia or grade
3 or 4 thrombocytopenia associated with serious bleeding;
signs of serious bleeding; grade 3 or higher non-
hematological toxicity; grade 3 or higher diarrhea if refractory
to maximal anti-diarrheal therapy; grade 3 skin toxicity for
more than 2 weeks with maximum supportive treatment;
grade 4 skin toxicity (with subsequent removal from the
study); missing more than 14 days of consecutive treatment;
and increase in aspartate aminotransferase or alanine amino-
transferase from grade 1 to grades 2–4 or from grade 2 (in
patients with liver metastases) to grade 3 or 4 in the case of a
second occurrence after a first recovery to baseline level tak-
ing more than 14 days, or a third occurrence.

In phase II, treatment with refametinib at the recommended
phase II dose, plus standard gemcitabine 1000 mg/m2 weekly,
began on cycle 1, day 1. Treatment continued until

progressive disease, unacceptable toxicity, or other discontin-
uation criteria were met, as follows: initiation of a new anti-
cancer regimen; development of a second malignancy; deteri-
oration of Eastern Cooperative Oncology Group performance
status to 4 or more; increased aspartate aminotransferase or
alanine transaminase from grade 1 to grades 2–4 or from grade 2
(in patients with liver metastases) to grade 3 or 4 in the case
of a second occurrence after a first recovery to baseline level
taking more than 14 days, or a third occurrence; at the patient’s
request; if continuation would be harmful to the patient’s
health (as determined by the investigator); substantial non-
compliance with study requirements; development of any in-
tercurrent illness that may affect clinical status assessment or
study endpoints; positive serum pregnancy test; use of illicit
drugs or other substances that may contribute to toxicity; in-
terruption in study drug administration because of drug-
related toxicities for more than 22 days and/or delay of more
than 22 days for gemcitabine; or if more dose reductions were
required than allowed according to protocol.

2.3 Eligibility

Patients were eligible if aged 18 years or older and with his-
tologically or cytologically confirmed, locally advanced or
metastatic pancreatic adenocarcinoma not amenable to cura-
tive surgery or radiotherapy. Other eligibility criteria included
life expectancy of 12 weeks or more; at least one unidimen-
sional lesion measurable by computed tomography or mag-
netic resonance imaging (Response Evaluation Criteria in
Solid Tumors version 1.1); resolution of all acute toxic effects
of any prior local treatment to National Cancer Institute
Common Terminology Criteria for Adverse Events version
4.0 grade 1 or 0; Eastern Cooperative Oncology Group per-
formance status of 2 or under; adequate laboratory criteria
(platelet count ≥100 × 109/L; hemoglobin ≥10 g/dL; absolute
neutrophil count ≥1.5 × 109/L; total bilirubin ≤1.5 mg/dL; al-
anine aminotransferase and aspartate aminotransferase each
≤2.5 × upper limit of normal [ULN; or ≤5 × ULN in case of
liver metastases]; amylase and lipase ≤1.5 × ULN; serum cre-
atinine ≤1.5 × ULN; prothrombin time or international nor-
malized ratio and partial thromboplastin time ≤1.5 × ULN);
and no rma l c a r d i a c f un c t i on a s e s t ima t e d by
echocardiography.

2.4 Assessments

Screening included demographics and baseline characteris-
tics, echocardiography, ophthalmic examination, plasma and
tumor biopsy for genotyping and biomarker analysis, and tu-
mor evaluation (blinded) by computed tomography or mag-
netic resonance imaging (Response Evaluation Criteria in
Solid Tumors version 1.1). In phase I, serial blood samples
for pharmacokinetic analysis of gemcitabine and refametinib
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and the respective inactive metabolites difluorodeoxyuridine
and M-17 were collected up to 24 h post-infusion at cycle 1,
days 1 and 22, and up to 8 hours post-dose at cycle 1, days 21
and 22. Blinded tumor assessments were performed indepen-
dently every 8 weeks during treatment until progressive dis-
ease or the end of treatment. Confirmatory scans were per-
formed 4 or more weeks after an objective tumor response
(complete response or partial response) was documented.
Investigator assessment of tumor scans was performed for
all patients who received treatment. Safety (changes in labo-
ratory values, vital signs, electrocardiogram, and physical ex-
amination) was assessed at screening, at cycle 1, day 1, and
weekly thereafter. Adverse events and concomitant medica-
tions were assessed continuously from screening onwards.
Following the end of treatment, patients entered a 30-day
safety follow-up including adverse-event documentation.
Survival follow-up was performed monthly up to 8 months
after the first treatment of the last patient.

2.5 Pharmacokinetic Assessments

Plasma concentrations of all analytes were measured using
fully validated high-pressure liquid chromatography with
mass spectrometric detection, and pharmacokinetic parame-
ters were calculated by non-compartmental analysis using
WinNonlin® (Version 4.1; Pharsight Corporation, Princeton,
NJ, USA).

2.6 Biomarker Studies

Circulating tumor DNA in plasma was analyzed for KRAS
mutational status by beads, emulsions, amplification, and
magnetics (BEAMing) technology (Covance Inc., Princeton,
NJ, USA), with an assay cutoff of 0.02% mutant allele for
positivity. Circulating microRNA from plasma was analyzed
by quantitative polymerase chain reaction using a human
microRNA panel (Exiqon, Woburn, MA, USA). Tumor biop-
sies were collected where available, as freshly frozen or
formalin-fixed and paraffin-embedded. Histological analysis
comprised hematoxylin and eosin staining and Ki67
immunolabeling. Targeted archival tumor gene next-
generat ion sequencing was performed using the
FoundationOne® panel (Foundation Medicine, Cambridge,
MA, USA). Gene expression was analyzed using RNA isolat-
ed from tumor biopsy samples using the Ovation® formalin-
fixed and paraffin-embedded circulating DNA synthesis kit
(NuGen, San Carlos, CA, USA), and RNA sequencing was
performed using an Ion Proton™ system (Life Technologies,
Grand Island, NY, USA). Reads were mapped to hg19 using
TopHat2 [20] with Bowtie2 [21]. Gene-level read counts and
reads per kilobase of transcript per million values were calcu-
lated with Expressionist® Refiner Genome (Genedata,
Lexington, MA, USA).

2.7 Statistical Analysis

Phase I data were analyzed descriptively. The primary ef-
ficacy endpoint in phase II tested the null hypothesis that
the overall response rate would be 7% or less on the α level
of 12.5% using a one-sided binomial test; assuming a true
overall response rate of 17% under study treatment, exactly
60 patients treated at the recommended phase II dose were
required to be analyzed for efficacy for a power of 90%
(primary analysis set). The null hypothesis was to be
rejected if seven or more patients in the primary analysis
set experienced confirmed complete response or confirmed
partial response. Other secondary efficacy endpoints in
phase II were analyzed descriptively; corresponding p-
values are not confirmatory. Descriptive statistics and fre-
quency tables were used for safety analysis for all patients
who received at least one dose of study treatment (safety
analysis set).

3 Results

3.1 Baseline Demographics and Disease Characteristics

Of the 24 patients enrolled in phase I, 20 were treated and
evaluable for safety assessment (Fig. 1a). Ten patients were
assigned to dose level 1 (refametinib 30 mg twice daily) and
10 to dose level 2 (refametinib 50 mg twice daily). In phase II,
107 patients were enrolled and screened; 80 were treated and
evaluable for safety assessment (Fig. 1b), of whom 10 were
originally enrolled at dose level 2 in phase I and are therefore
accounted for twice. Overall, 55.6% of patients were male and
the median age was 63 years (Table 1). Most patients (85.6%)
had metastatic disease.

In phase II, of the 60 patients centrally evaluated for re-
sponse (primary analysis set; Fig. 1b), 39 (65%) had KRAS
mutations, as determined from circulating tumor DNA.
Frequently observed KRAS mutations included G12D,
G12V, and G12R; mutations in codon 38 or 436 were not
observed. Molecular tumor characterization was performed
in 23 out of 30 archival samples (77%) with sufficient tumor
content. Tumor exome sequencing revealed KRAS mutations
(G12D, G12R, G12V, Q61H, Q61R, A59G) in 15 out of 16
patient samples containing sufficient DNA (Fig. 2). Frequent
co-occurring somatic mutations or amplifications in patients
with KRAS mutations included TP53 (14 out of 15 [93%]),
CDKN2A (5 out of 15 [33%]), C-MYC (4 out of 15 [27%]),
and KAT6A (2 out of 15 [13%]). One patient with stable dis-
ease and low Ki67 H-score had two co-existing KRAS muta-
tions (A59G, Q61R). Discordance was observed in KRAS
mutational status, as determined by BEAMing technology,
in three samples.
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Nineteen samples with sufficient tumor content had
sufficient RNA for analysis of gene expression.
Messenger RNA expression data for all genes and for
genes with published KRAS pathway signatures [22] were
tested for correlation with response to treatment; visual
inspection of principal component analysis and hierarchi-
cal clustering results showed no obvious correlation (data
not shown; no statistical analysis was performed because
of the small sample number). Correlation between copy
number alteration and messenger RNA expression level
was investigated for genes with copy number alteration in
more than one patient, and expression of C-MYC and
KAT6A correlated with gene amplification (Online
Resource 1).

MicroRNA expression data were generated from baseline
plasma samples. No individual difference in microRNA was
observed forKRASmutational status, response to treatment, or
treatment (data not shown). An association between expres-
sion level and KRAS mutational status was observed for miR-
96-5p, miR-214-3p, and miR-877 (Online Resource 2). The
false discovery rate for each analysis was 0.33.

3.2 Exposure and Safety

In phase I, themean daily dose of refametinib was 56.8mg in the
30 mg cohort (range 40.7–59.8) and 91 mg in the 50 mg cohort
(range 66.8–100). Mean refametinib treatment duration was
23.5 weeks (range 4.6–54) in the 30-mg cohort and 11.3 weeks
(range: 2–32.3) in the 50-mg cohort. During phase I,
treatment was tolerated at dose level 2 (refametinib 50 mg
twice daily plus standard gemcitabine), which was declared
the maximum tolerated dose and recommended phase II dose.
During phase I, one patient in the 30-mg cohort experienced
grade 3 deterioration of general status (dose-limiting toxicity),
which led to dose interruption, remained unresolved, and was
considered unrelated to treatment. This patient subsequently
experienced grade 5 steatohepatitis which was deemed
treatment-related (gemcitabine); a relationship to refametinib
could not be excluded. One patient in the 50-mg cohort expe-
rienced grade 3 pneumonitis (dose-limiting toxicity), consid-
ered treatment-related, leading to dose interruption and study
withdrawal. In phase I, four patients from each dose level were
not evaluable for dose-limiting toxicities because they had not

Phase II

Post-baseline tumor assessments not 
available/not performed (n=7)
Protocol deviations (n=2)
Protocol-defined reasons c (n=11)

Assessed for eligibility (n=107)

Received 50 mg/kg BID (n=80)b

Excluded (n=27)

Did not meet inclusion criteri a
(n=26)
Declined to participate (n=1)

Discontinued from study medication
(n=80)b

AE associated with clinical progression
(n=4)
AE not associated with clinical
progression (n=31)
Clinical progression (n=2)
Radiological progression (n=26)
Withdrawn consent (n=8)
Switched to another therapy (n=1)
Death (n=6)

Analyzed for safety (n=80)b

Analyzed centrally for response;
primary analysis set (n=60)b

Assigned to treatment (n=80)b

Excluded (n=20)

Excluded (n=4)

Phase 
a b

I

Assigned to treatment (n=20)

Analyzed for safety (n=10) Analyzed for safety (n=10)

Assessed for eligibility (n=24)

Did not meet inclusion criteri a
(n=4)

Assigned to 30 mg /kg BID (n=10)
Received 30 mg/kg BID (n=10)a

Assigned to 50 mg /kg BID (n=10)
Received 50 mg/kg BID (n=10)a

Discontinued from study medication
(n=10)

Discontinued from study medication
(n=10)

AE associated with clinical disease 
progression (n=1)
AE not associated with clinical disease 
progression (n=3)
Clinical progression (n=1)
Radiological progression (n=5)

AE not associated with clinical disease 
progression (n=7)
Radiological progression (n=2)
Withdrawn consent (n=1)

Fig. 1 Patient disposition and flow in phase I (a) and phase II (b). aFour
patients were replaced because of non-dose-limiting toxicity events be-
fore the end of the first cycle. bIncludes 10 patients from the 50 mg/kg
twice daily dose level in phase I. cProtocol-defined reasons refer to the

statistical requirement of exactly 60 treated patients to be centrally eval-
uated for the primary efficacy endpoint; patients excluded from the pri-
mary efficacy analysis were evaluated for response by investigator as-
sessment. AE adverse event, BID twice daily other n=2
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Table 1 Baseline demographics
and disease characteristics Phase I

Refametinib 30 mg
BID (n = 10)

Phase II

Refametinib 50 mg
BID (n = 80)

Total
(N = 90)a

Males, n (%) 6 (60.0) 44 (55.0) 50 (55.6)

Median age, years 64.5 63.0 63.0

Race, n (%)

White 10 (100) 77 (96.3) 87 (96.7)

Black 0 2 (2.5) 2 (2.2)

Asian 0 1 (1.3) 1 (1.1)

Ethnicity, n (%)

Not Hispanic or Latino 10 (100) 80 (100) 90 (100)

Median BMI, kg/m2 26.3 24.1 24.5

ECOG PSb, n (%)

0 6 (60.0) 30 (37.5) 36 (40.0)

1 4 (40.0) 49 (61.3) 53 (58.9)

Tumor histology, n (%)

Adenosquamous carcinoma 0 2 (2.5) 2 (2.2)

Ductal adenocarcinoma 6 (60.0) 64 (80.0) 70 (77.8)

Mucinous cystadenocarcinoma 0 1 (1.3) 1 (1.1)

Mucinous non-cystic carcinoma 0 1 (1.3) 1 (1.1)

Osteoclast-like giant-cell tumor 0 1 (1.3) 1 (1.1)

Serous cystadenocarcinoma 0 1 (1.3) 1 (1.1)

Undifferentiated carcinomac 1 (10.0) 1 (1.3) 2 (2.2)

Otherd 3 (30.0) 9 (11.3) 12 (13.3)

Status of primary tumor, n (%)

Resected 1 (10.0) 5 (6.3) 6 (6.7)

Resected, with presence of residual/
recurrent tumor

0 7 (8.8) 7 (7.8)

Unresected 9 (90.0) 68 (85.0) 77 (85.6)

TNM classification at study entry, n (%)

IIA 0 1 (1.3) 1 (1.1)

IIB 1 (10.0) 1 (1.3) 2 (2.2)

III 1 (10.0) 10 (12.5) 11 (12.2)

IV 8 (80.0) 68 (85.0) 76 (84.4)

Median (range) time from initial diagnosis
to start of study treatment, days

26 (8–674) 30 (3–776) 30 (3–776)

Prior systemic anticancer therapye, n (%) 1 (10.0) 6 (7.5) 7 (7.8)

Prior anticancer radiotherapye, n (%) 0 2 (2.5) 2 (2.2)

Number of target lesions, n (%)

1 4 (40.0) 25 (31.3) 29 (32.2)

2 1 (10.0) 22 (27.5) 23 (25.6)

3 3 (30.0) 19 (23.8) 22 (24.4)

4 2 (20.0) 9 (11.3) 11 (12.2)

5 0 5 (6.3) 5 (5.6)

Number of non-target lesions, n (%)

0 4 (40.0) 18 (22.5) 22 (24.4)

1 2 (20.0) 26 (32.5) 28 (31.1)

2 2 (20.0) 15 (18.8) 17 (18.9)

3 1 (10.0) 13 (16.3) 14 (15.6)

4 1 (10.0) 7 (8.8) 8 (8.9)

5 0 1 (1.3) 1 (1.1)
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Table 1 (continued)
Phase I

Refametinib 30 mg
BID (n = 10)

Phase II

Refametinib 50 mg
BID (n = 80)

Total
(N = 90)a

Sites of diseasef, n (%)

Pancreas 9 (90.0) 69 (86.3) 78 (86.7)

Liver 5 (50.0) 46 (57.5) 51 (56.7)

Lymph node 3 (30.0) 43 (53.8) 46 (51.1)

Lung 3 (30.0) 24 (30.0) 27 (30.0)

Abdominal cavity 1 (10.0) 8 (10.0) 9 (10.0)

Peritoneum 0 6 (7.5) 6 (6.7)

Othersg 2 (20.0) 25 (31.3) 27 (30.0)

Median (range) time from most recent
progression to start of study treatment, days

27 (6–54) 12 (2–77) 12 (2–77)

BID twice daily, BMI body mass index, ECOG PS Eastern Cooperative Oncology Group performance status,
TNM tumor node metastasis
a Includes 10 patients from the 50 mg/kg dose level in phase I
b Data missing for one patient for whom screening was coincidentally performed at cycle 1, day 1, and for whom
ECOG PS was 0
c Includes spindle, giant, and small cell types
d Histology was consistent with adenocarcinoma but cytology was not available
e Patients were treated with adjuvant intent
f Includes potential multiple sites per patient
g Includes adrenal gland (phase II, n = 4), hilar lymph node and spleen (phase II, both n = 3), bone, celiac lymph
node, and thorax (phase II, all n = 2), pleural cavity and regional lymph node (phase I, both n = 1; phase II, both
n = 1), and cervical lymph node, iliac lymph node, kidney, mediastinal lymph node, mediastinum, ovary, and
pelvis (phase II, all n = 1)

KRAS

TP53

CDKN2A

SMAD4

C-MYC

KAT6A

MLL2

ARIDIA

ZNF703

PIK3CA

HGF

FGFR1

FBXW7

FANCG

ERBB3

EP300

DNMT3A

CDKN2B

CCND3

APC

AKT2

Patient ID

Response

Ki67 H-score

SD

M

SD

H

SD

L

SD

L

SD

L

PD

L

PD

L

SD

M

SD

L

SD

M

PD

M

SD

L

SD

H

SD

M

SD

L

SD

L

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Patients
with alterations (%)

Point mutation/indel

Gene amplification

Gene deletion

Truncation

Fig. 2 Tumor exome sequencing
(primary analysis set). H high,
Indel insertion or deletion, L low,
M medium, PD progressive
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reached the end of one cycle of treatment or had received too
low a dose of treatment.

In phase II, the mean daily dose of refametinib was 88 mg
overall (range 52.7–100; relative dose intensity 88%); 66% of
patients (53 out of 80) received an average dose of 81–100 mg
daily. Mean refametinib treatment duration, excluding interrup-
tions, was 14.7 weeks (range 0.9–51.3). The mean weekly
gemcitabine dose was 895.6 mg/m2 (range 500–1000; relative
dose intensity 90%); 95% of patients (76 out of 80) received
751–1000 mg/m2 per week. The mean gemcitabine treatment
duration, excluding interruptions, was 11.6weeks (range 1–37).

Themain reasons for study discontinuation in phase II were
adverse events not associated with progressive disease (39%)
or radiological progression (33%) (Online Resource 3). All
patients experienced at least one treatment-emergent adverse
event; most experienced at least one grade 3 (49%) or grade 4
(23%) treatment-emergent adverse event. The most common
grade 3 or 4 treatment-emergent adverse event was neutrope-
nia (39%; 14% grade 4). Overall, 66% of patients experienced
at least one serious adverse event, considered refametinib-
related in 24% of patients and gemcitabine-related in 26% of
patients. No grade 5 adverse events were considered
refametinib-related, although one patient (1.3%) had a grade 5
adverse event considered gemcitabine-related. Frequent
treatment-emergent adverse events, occurring in 20% or more
of patients, are shown in Table 2. In phase II, five patients had

pneumonitis (two each at grades 2 and 3, respectively, and one
at grade 4), in addition to two patients in phase I (one at grade 2
and one at grade 3 [dose-limiting toxicity]).

3.3 Pharmacokinetics

In phase I, following multiple-dose oral administration,
refametinib was well absorbed at both dose levels (30 mg
twice daily and 50 mg twice daily), with comparable exposure
without (cycle 1, day 21) and with (cycle 1, day 22)
gemcitabine (Online Resource 4A). Refametinib and metabo-
lite M-17 pharmacokinetic parameters were generally compa-
rable with historical data in patients with other cancer types
[23] (Online Resource 5). Gemcitabine exposure was compa-
rable when administered without (cycle 1, day 1) and with
(cycle 1, day 22) refametinib (Online Resource 4B). The phar-
macokinetic parameters of gemcitabine and metabolite
difluorodeoxyuridine are shown in Online Resource 6.

3.4 Efficacy

Of the 60 patients evaluated for response by independent radio-
logical review, none had confirmed complete responses and 14
(23%) had confirmed partial responses, giving an objective re-
sponse rate of 23%; the disease control rate was 73% (Table 3).
The null hypothesis of objective response rate of 7% or less could

Table 2 Incidence of treatment-
emergent adverse events occur-
ring in at least 20% of patients, by
body system and worst grade ac-
cording to Common Terminology
Criteria for Adverse Events v4.0
(all patients evaluable for safety
assessment in phase II)

n (%) Grade 1
(n = 80)

Grade 2
(n = 80)

Grade 3
(n = 80)

Grade 4
(n = 80)

Grade 5
(n = 80)

Total
(N = 80)

Thrombocytopenia 11 (13.8) 20 (25.0) 15 (18.8) 2 (2.5) 0 48 (60.0)

Fatigue 16 (20.0) 19 (23.8) 9 (11.3) 0 0 44 (55.0)

Anemia 3 (3.8) 29 (36.3) 10 (12.5) 1 (1.3) 0 43 (53.8)

Limb edema 23 (28.8) 19 (23.8) 1 (1.3) 0 0 43 (53.8)

Nausea 22 (27.5) 13 (16.3) 4 (5.0) 0 0 39 (48.8)

Neutropenia 0 6 (7.5) 20 (25.0) 11 (13.8) 0 37 (46.3)

Diarrhea 17 (21.3) 16 (20.0) 4 (5.0) 0 0 37 (46.3)

Fever 20 (25.0) 16 (20.0) 0 0 0 36 (45.0)

Vomiting 22 (27.5) 11 (13.8) 2 (2.5) 0 0 35 (43.8)

Acneiform rash 11 (13.8) 16 (20.0) 6 (7.5) 0 0 33 (41.3)

Abdominal pain 13 (16.3) 15 (18.8) 2 (2.5) 0 0 30 (37.5)

Mucositis oral 12 (15.0) 10 (12.5) 6 (7.5) 0 0 28 (35.0)

Increased alanine aminotransferase 7 (8.8) 9 (11.3) 11 (13.8) 0 0 27 (33.8)

Anorexia 17 (21.3) 7 (8.8) 2 (2.5) 0 0 26 (32.5)

Increased aspartate aminotransferase 7 (8.8) 5 (6.3) 11 (13.8) 1 (1.3) 0 24 (30.0)

Dyspnea 10 (12.5) 11 (13.8) 1 (1.3) 1 (1.3) 1 (1.3) 24 (30.0)

Thromboembolic event 2 (2.5) 10 (12.5) 10 (12.5) 1 (1.3) 0 23 (28.8)

Constipationa 14 (17.5) 3 (3.8) 0 0 0 18 (22.5)

Increased creatinine phosphokinase 6 (7.5) 6 (7.5) 4 (5.0) 1 (1.3) 0 17 (21.3)

Hypokalemia 11 (13.8) 0 5 (6.3) 0 0 16 (20.0)

Rash maculopapular 7 (8.8) 9 (11.3) 0 0 0 16 (20.0)

a Data missing for one patient
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thus be rejected. Seven patients had unconfirmed partial responses
(12%) and no patients had unconfirmed complete responses.

Median progression-free survival was 6.3 months and me-
dian overall survival was 8.9 months (Fig. 3).

There were 10 (13%) confirmed partial responses and no
confirmed complete responses among all 80 investigator-

assessed patients, giving an objective response rate of 13%.
Another 10 patients (13%) had unconfirmed partial responses
and 35 patients (44%) had stable disease; the disease control
rate was 69%. No patients had an unconfirmed complete re-
sponse. For the 80 investigator-assessed patients, median
progression-free survival was 5.4 months (range 0–18.2;
95% confidence interval 4.0–7.1) and median overall survival
was 8.4 months (range 0.5–18.2; 95% confidence interval
6.4–11.6).

3.5 Response by KRAS Mutational Status

Of the 60 patients evaluated for response by independent ra-
diological review and for KRAS mutational status in circulat-
ing tumor DNA, KRASmutations were detected in 39 patients
(65%). Of these patients, 11 (28%) had partial responses (in-
cluding unconfirmed partial responses) and 16 (41%) had sta-
ble disease; the disease control rate was 69% (27 out of 39).
For patients without detectable KRAS mutations, 10 (48%)
had partial responses (including unconfirmed partial re-
sponses) and seven (33%) had stable disease; the disease con-
trol rate was 81% (17 out of 21). KRAS wild-type allele fre-
quency tended to correlate with better tumor response (Fig. 4).

A greater proportion of patients without detectable KRAS
mutations (11 out of 20 [55%]) showed best change in target
lesion size of 30% or more compared with patients with de-
tectable KRASmutations (13 out of 31 [43%]; blinded assess-
ment) (Fig. 5a).

Median progression-free survival was 5.3 months and
8.8 months (Fig. 5b), and median overall survival was
6.6 months and 18.2 months (Fig. 5c), for patients with and
without detectable KRAS mutations, respectively.

Of the 54 patients in the primary analysis set evaluable for
change in serum level of carbohydrate antigen 19-9 from

Table 3 Efficacy of refametinib plus gemcitabine (primary analysis set)

Response n (%) [75% CI] Total (N = 60)

Best overall response (RECIST)a

Partial response 14 (23.3) [16.89–30.99]

Unconfirmed partial response 7 (11.7) [7.00–18.15]

Stable disease 23 (38.3) [30.63–46.57]

Progressive disease 6 (10.0) [5.69–16.23]

Objective response rate (confirmed complete
response and partial response only)

14 (23.3) [16.89–30.99]

Disease control rate (partial responseb and
stable disease)

44 (73.3) [65.47–80.13]

CI confidence interval, RECIST Response Evaluation Criteria in Solid
Tumors
a Data missing for 10 patients
b Includes unconfirmed partial response
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baseline, 29 showed a 50% or higher decrease (Online
Resource 7), which did not appear to be associated with
KRAS status. However, wild-type KRAS was associated with

lower serum carbohydrate antigen 19-9 at baseline (p =
0.0236) and at cycle 1, day 29 (p = 0.0154) (Online
Resource 8).
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4 Discussion

This phase I/II study determined the maximum tolerated dose
of refametinib plus gemcitabine and evaluated the efficacy
and tolerability of the combination in patients with
unresectable, locally advanced ormetastatic pancreatic cancer,
for whom gemcitabine-based therapy is indicated as first-line
treatment.

The maximum tolerated dose in phase I was identified to be
refametinib 50mg twice daily plus standard gemcitabine, con-
sistent with historical refametinib monotherapy data [23]. The
combination appeared generally feasible, with the most fre-
quent adverse events being grade 1 or 2. However, the inci-
dence of grade 3 or 4 neutropenia in phase II (39%)was higher
than in previous reports of gemcitabine in this patient popula-
tion [9, 12, 14, 16]. In total, seven patients developed pneu-
monitis, a known toxicity of gemcitabine [24], although it
remains possible that adding a MEK inhibitor may increase
the incidence of pneumonitis, as seen in the phase II study of
trametinib and gemcitabine (7 out of 80 cases vs. 2 out of 80
cases in the gemcitabine group) [25].

The primary efficacy endpoint in phase II was reached,
with an objective response rate of 23% for the refametinib
plus gemcitabine combination, which is more than twice as
high as historical reports of gemcitabine monotherapy (range
5.4–10.5%) [11, 13, 26]. The overall disease control rate was
consistent with historical reports of gemcitabine monotherapy
(73% vs. 29.8–47.2%) [11, 13, 26]. Baseline demographics
and disease characteristics were broadly similar to those seen
in previous trials [13, 26]. The inclusion of patients with lo-
cally advanced, unresectable disease as well as those with
metastatic disease remains representative of patients with ad-
vanced pancreatic cancer, and the evaluation of response rate
in these patients was based on patients having at least one
measurable lesion, consistent with recent trials [27–29].

Response, progression-free survival, and overall survival
were similar to those reported for albumin-bound paclitaxel
plus gemcitabine [10]. Partial response and overall survival
were slightly lower than reported for the oxaliplatin,
irinotecan, fluorouracil, and leucovorin regimen, although
progression-free survival was similar [9]. Objective response
rate and overall survival were also similar to those recently
reported for the combination of trametinib and gemcitabine
(objective response rate 22%; overall survival 8.4 months),
along with the proportion of patients with detectable KRAS
mutations (72%) [25]. In the trametinib and gemcitabine
study, overall survival was greater with trametinib and
gemcitabine than with gemcitabine and placebo in patients
with mutant KRAS (n = 103; 8.3 vs. 6.7 months, respectively)
and those with wild-type KRAS (n = 40; 8.6 vs. 5.9 months,
respectively). In our study, median overall survival was also
greater in patients without detectable KRAS mutations (18 vs.
6.6 months, respectively), as were median progression-free

survival and objective response rate (8.8 vs. 5.3 months and
48% vs. 28%, respectively).

The proportion of patients with detectable KRASmutations
as determined from circulating tumor DNAwas similar to that
in a previous study in pancreatic cancer (62.6%) [30]. In the
latter study, overall survival was greater in patients with wild-
type versus mutant KRAS (413 vs. 276 days, respectively),
suggesting a negative prognostic role for KRAS mutations
detected in circulating tumor DNA.

Nevertheless, the predictive or prognostic role of KRAS
following first-line gemcitabine-based therapy in pancreatic
cancer remains unclear. Retrospective analysis of first-line
gemcitabine-based therapy revealed a lower objective response
rate in patients with mutant KRAS compared with wild-type
KRAS (11% vs. 26%, respectively) [31]. Subgroup analysis
revealed longer overall survival with gemcitabine and erlotinib
in patients with wild-type KRAS (9.7 vs. 5.2 months), with no
overall survival difference between KRAS mutational sub-
groups treated with other gemcitabine-based regimens (7.0 vs.
7.0 months) [31]. Conversely, subgroup analysis of a phase III
study [14] reported similar overall survival in patients treat
ed with gemcitabine and erlotinib irrespective of KRAS muta-
tional status (6.1 vs. 6.0 months in wild type and mutant,
respectively), while the mutant KRAS subgroup appeared to
have greater benefit from gemcitabine monotherapy com
pared with the wild-type subgroup (7.4 vs. 4.5 months, respec-
tively) [32].

Results from serum carbohydrate antigen 19-9 levels in
both patient subsets were ambiguous and do not allow for firm
conclusions. A negative impact of KRAS mutations and high
serum carbohydrate antigen 19-9 levels on overall survival
has been reported [33].

C-MYC amplification was prevalent in mutant KRAS tu-
mors, consistent with previous observations, suggesting C-
MYC pathway activation in these patients [34]. These data
suggest that targeting C-MYC pathways may provide an alter-
native therapeutic strategy in the treatment of pancreatic ade-
nocarcinoma [35].

KRAS mutational status also tended to correlate with miR-
96-5 and miR-214-3 expression, roles for which have been
described as a tumor suppressor in pancreatic adenocarcinoma
[36] and in the regulation of growth and invasion of stem-like
cells in a hepatocellular carcinoma model [37], respectively.
However, the significance level must be interpreted with cau-
tion because of the sample size analyzed (800 microRNA
species), the high false discovery rate, and the lack of correc-
tions for multiple comparisons. Although preliminary, these
data may support a role for circulating microRNAs as bio-
markers of disease aggressiveness, warranting further
investigation.

Although concordance between the mutational status in
tumor specimens and circulating tumor DNA is generally very
high, discordance between the mutational status in tumor and
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circulating tumor DNA from fresh plasma may occur and
deserves further investigation [25, 38, 39]. Discordance was
observed here in three samples between KRASmutational sta-
tus as determined by exome sequencing of tumor biopsies and
BEAMing technology of fresh plasma. Although BEAMing
technology is highly sensitive [40], sensitivity was not formal-
ly tested and false negatives could not be conclusively exclud-
ed in this small sample.

Refametinib is metabolized by liver enzymes CYP3A4 and
CYP2C19, and is a substrate for glucuronidation by UGT2B7.
Gemcitabine is metabolized by cytidine deaminase and is pri-
marily eliminated in urine along with its metabolite
difluorodeoxyuridine. As expected from these distinct meta-
bolic and elimination pathways, no pharmacokinetic interac-
tions were observed; refametinib and gemcitabine exposures
were comparable when administered alone or in combination.

Overall, refametinib combined with gemcitabine is well
tolerated in 8-weekly cycles up to the maximum tolerated
dose, with no pharmacokinetic interaction. The primary end-
point of phase II was met: the combination showed a relatively
high objective response rate in patients with advanced pancre-
atic cancer, with an acceptable safety profile. There was a
trend towards improved survival in patients without detectable
KRAS mutations compared with those with detectable KRAS
mutations in circulating tumor DNA. This study also suggests
that biomarker status in patients with KRAS mutations may
provide predictive or prognostic information with regard to
clinical benefit from refametinib plus gemcitabine.
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