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Abstract Epidermal growth factor receptors (EGFR, HER2,
HER3) activate signal transduction pathways involved in
cancer proliferation, apoptosis, differentiation, metastasis,
and angiogenesis. Their overexpression and activation are
associated with unfavorable prognosis of cancer patients.
Therefore, they are attractive targets for cancer therapy. Due
to the development of drug resistance, therapeutic monoclonal
antibodies and synthetic small molecule tyrosine kinase in-
hibitors directed against EGFR family members may fail with
fatal consequences for cancer patients. Medicinal plants raised
considerable interest during the past years as valuable re-
sources to develop novel treatment therapies targeting epider-
mal growth factor receptors and their downstream signal
transduction pathways. The present review gives an overview
of isolated phytochemicals that inhibit these signaling routes.
Inhibitors have been described that down-regulate the mRNA
or protein expression of EGFR, HER2, or HER3 or inhibit the
phosphorylation of these receptors and/or their downstream
signaling kinases. Remarkably, a wealth of in vivo experi-
ments complemented in vitro data, indicating that natural
products are also active in living animals bringing this re-
search concept closer to clinical applicability. The

combination of receptor-inhibiting natural product with stan-
dard anticancer drugs frequently caused increased or even
synergistic tumor inhibition in vitro and in vivo. It deserves
further evaluation, if and how epidermal growth factor
receptor-targeting natural products can be integrated into clin-
ical oncology as well as to define their role for more tumor-
specific and individualized tumor therapies.

Keywords Drug resistance . Kinase .Molecular docking .
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Abbreviations
ART Artesunate
CET Cephalotaxine
EGFR Epidermal growth factor receptor
GBM Glioblastoma multiforme
HER Human epidermal growth factor receptor
HHT Homoharringtonine
NSCLC Non-small cell lung carcinoma
SCLC Small cell lung carcinoma

Introduction

Chemotherapy regimens derived from results of clinical trials
are valuable for determining optimal treatment options for
large populations of patients. However, an individual patient’s
response to chemotherapy can be very different from the
predicted response of the average population, and the reasons
for this variation are largely unknown. Several clinical and
pathological factors have been identified as having prognostic
value of treatment outcome and survival of cancer patients,
e.g., tumor size, lymph node and distant metastasis, tumor
grade, and, more recently, specific molecular biomarkers.
These prognostic factors help to classify the standard risk of
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subpopulations of patients with the same tumor entity, but are
still unable to predict the response of specific individuals to
therapy. Therefore, there is an urgent need for reliable molec-
ular tests to predict the individual patient’s risk of death from
the disease irrespective of the treatment (prognostic markers)
and sensitivity or resistance to chemotherapy (predictive
markers). Such tests are necessary to develop individualized
treatment schedules in the future. The field of chemotherapy is
currently undergoing a paradigm shift from classical cytotoxic
chemotherapy towards targeted therapy with the aim to erad-
icate tumor cells more efficiently with fewer side effects on
normal tissue. Proteins encoded by genes carrying tumor-
specific mutations serve as preferential targets for the devel-
opment of novel drugs in cancer therapy.

It is now well accepted that mutations in three main types of
genes contribute to carcinogenesis: oncogenes, tumor suppres-
sor genes, and stability genes. Oncogene activation (gain-of-
function mutation) results from point mutations, chromosomal
translocation, or gene amplification. Without such mutations,
tumors cannot grow (tumor addiction). On the other hand,
mutations in tumor suppressor genes are loss-of-function mu-
tations, e.g., missense mutations, chromosomal deletions or
insertions, or epigenetic silencing, that allow the tumor to grow
unchecked by normal cellular control mechanisms. Stability
genes or caretakers including DNA repair genes controlling
genomic stability and genes responsible for organizing mitotic
recombination and chromosomal segregation. Inactivating mu-
tations in these genes are dangerous because they increase the
mutational rate in other genes. Out of the large number of
potential targets for targeted chemotherapy, we focus on the
epidermal growth factor receptor family in the present over-
view. Growth factor receptors have a tremendous relevance in
cancer biology. Therefore, the therapeutic intervention to si-
lence the function of epidermal growth factors and their related
signaling pathways represents a highly attractive approach to
improve treatment success of solid tumors.

Epidermal growth factor receptors in cancer biology

There are four human epidermal growth factor receptors
(EGFR/ERBB1/HER1, HER2/ERBB2/c-neu, HER3, and
HER4). After ligand binding, they activate downstream sig-
naling routes, which regulate proliferation, differentiation,
apoptosis, metastasis, and angiogenesis. Their 3D structures
are represented in Fig. 1. EGFR and HER2 are over-expressed
in many solid tumors, which is associated with unresponsive-
ness to chemo- and radiotherapy as well as short survival
times of patients (see below) [1]. The heterodimer structure
of EGFR/HER2 is depicted in Fig. 2. Thus far, 10 ligands
have been identified, i.e., the epidermal growth factor family
(EGF, transforming growth factor-α, β-cellulin, epiregulin,
HB-EGF, AR) and the neuregulin family (heregulin,

neuregulins) [2, 3]. Upon binding of a ligand to an EGFR
monomer, homo-dimerization takes place with a second
EGFR molecule or with another HER member. Similarly,
HER2 can dimerize with HER3 or HER4 and HER3 with
HER4. Ligand binding and dimerization leads to intracellular
phosphorylation of HER receptors and thereby activation of
the downstream signaling pathways. The existence of 10
ligands of different homo- and heterodimers consisting of four
receptors create a considerable flexibility and complexity for
signal transduction [2–4]. This complexity is even further
increased by varying the duration and strength of receptor
signaling, receptor internalization, and recycling as well as
rates of phosphorylation and dephosphorylation [5].

Dimerization stimulates intrinsic tyrosine kinase activity of
EGFR, which regulates specific signal transduction cascades,
e.g., Raf/Mek/Erk, PI3K/PDK1/Akt, PLCγ/PKC, MAPK,
and JNK signaling routes. Constitutive EGFR activation as
consequence of point mutations or gene amplification causes
deregulated cellular processes such as proliferation, invasion,
angiogenesis, cell motility, cell adhesion, inhibition of apo-
ptosis, and DNA synthesis. The kinase activity is also associ-
ated with autophosphorylation of five tyrosine residues in the
C-terminal EGFR domain. Mutations affecting EGFR expres-
sion foster carcinogenesis.

The extraordinary relevance of EGFR in tumor biology
makes it an exquisite molecular target for tumor therapy. Apart
from therapeutic antibodies, several small molecules have
been developed as EGFR inhibitors [6]. For example, gefitinib
(Iressa®; Astra Zeneca, DE, USA) and erlotinib (Tarceva®;
OSI-774, Genentech Inc., CA, USA) are first-generation in-
hibitors used for the treatment of non-small cell lung cancer
and other tumor types [7]. Both quinazolinamines exhibit their
inhibitory activity by competing with ATP for the ATP bind-
ing pocket of EGFR.

Despite considerable successes with these EGFR tyrosine ki-
nase inhibitors in cancer therapy, resistance against these chemical
compounds develop due to the selection of point-mutated EGFR
variants [8]. Therefore, there is an urgent need for the identification
of novel EGFR tyrosine kinase inhibitors. In recent years, medic-
inal plants came into the center of interest as resources for novel
treatment strategies to target EGFR family members.

Role of epidermal growth factor receptors for drug
resistance and patient prognosis

EGFR-expressing cell lines

The connection between EGFR and classical cytotoxic drug
resistance has been known for more than two decades. Murine
sarcoma 180 (S180) cells selected for resistance towards
doxorubicin overexpress EGFR compared to drug-sensitive
wild-type S180 cells [9, 10]. As subsequently shown, EGFR
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expression also plays a role for drug resistance of tumor cells
not previously selected treated with cytostatic drugs. Since
kidney carcinomas are frequently unresponsive to chemother-
apy, they represent a suitable model to study inherent drug
resistance. EGFR expression of human primary cell cultures
of renal cell carcinomas of 18 patients subjected to hierarchi-
cal cluster analyses showed that the expression of c-ErbB1
and c-ErbB2 was higher in resistant cell cultures compared to
sensitive cell cultures [11]. EGFR is involved in drug

resistance by affection of apoptosis, DNA repair, or the induc-
tion of resistance gene expression [12]. These in vitro results
were translated to clinical tumors. Tumors with EGFR expres-
sion were significantly more frequent resistant to doxorubicin
than EGFR negative or weakly expressing cancers [13, 14].

Glioblastoma multiforme (GBM) is the most aggressive
form of adult human brain tumor [15]. Malignant gliomas often
show resistance to adjuvant radio- and chemotherapy due to the
accumulation of genetic alterations that cause oncogene

Fig. 1 3D structure of human HER1/EGFR, HER2, HER3, and HER4. Extracellular and cytoplasmic domains of the proteins were retrieved from
protein data bank (PDB) database and combined structures were formed with PyMol software

Fig. 2 Heterodimer of human HER1/HER2. Extracellular and cytoplasmic domains of the proteins were retrieved from PDB database and combined
structures were formed with PyMol software
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activation, e.g., EGFR [16]. In most GBMs, amplification and
rearrangement of the EGFR gene resulted in mutant receptors,
called ΔEGFR (kinase-deficient mutant EGFR) that enhanced
tumorigenicity in vivo, and caused cisplatin resistance [17].

In addition to cisplatin, EGFR also reduced the activity of
microtubule poisons, i.e., vincristine and paclitaxel [18].
Combination treatment of human ΔEGFR-expressing GBM
cells with EGFR-directed tyrosine kinase inhibitor and cis-
platin synergistically induced apoptosis in vitro and in vivo
[17, 18].

Furthermore, the combination treatment of a c-Met kinase
inhibitor and either an EGFR kinase inhibitor or cisplatin
enhanced cytotoxicity of mutant EGFR-expressing GBM
cells [19]. Taken together, EGFR expression is associatedwith
drug resistance in vitro making it an exquisite target for novel
drugs inhibiting EGFR function. EGFR-mediated resistance is
also known for cytotoxic natural products. Two interesting
bioactive compounds derived from the Chinese coniferous
tree Cephalotaxus hainanensis are cephalotaxine (CET) and
its ester homoharringtonine (HHT) [20]. Although HHT pos-
sessed the highest growth inhibitory activity towards human
leukemic cells [21], human ΔEGFR-expressing GBM cells
were 14-fold more resistant to HHT than control cells [22].
These findings indicated a causative role of mutation-
activated EGFR for cellular resistance towards CET and
HHT. Similar results have been obtained for artesunate
(ART), which is a semisynthetic derivative of artemisinin,

the active principle of Artemisia annua L. This herb was
traditionally used in Chinese medicine for the treatment of
fever and chills. Nowadays, artemisinin is used as anti-
malarial drug [23]. Artemisinin and its derivative ART also
reveal profound anti-cancer activity [24–26]. In sum, drug
resistance mediated by EGFR is not restricted to established
anticancer drugs but also occurs towards other cytotoxic com-
pounds of natural origin. Hence, EGFR-mediated resistance
may represent a general type of cellular defense mechanisms
towards a broad range of toxic xenobiotics.

EGFR in clinical tumors

EGFR is expressed in different human tumors, e.g., in cancers of
the lung, head and neck, colon, pancreas, breast, ovary, bladder
and kidney, and gliomas. EGFR expression correlated is of
prognostic significance for cancer patients. Patients with
EGFR-overexpressing tumors reveal worse prognosis [27]. To
illustrate this, we exemplarily focus on lung cancer inmore detail.

Lung cancer is the leading cause of cancer mortality world-
wide, and cure rates are less than 15 % [28]. Lung cancers are
classified into two histological types: small cell carcinoma and
non-small cell carcinoma. The majority of bronchogenic car-
cinomas can be classified into four histological types: small
cell carcinoma, adenocarcinomas, squamous cell lung carci-
nomas, and large cell carcinomas. The histological features,
clinical course, and response to therapy indicate that small cell

Fig. 3 Molecular docking results for the compounds showing the stron-
gest interaction with HER1/EGFR tyrosine kinase domain (PDB ID =
3W2O) and HER2 tyrosine kinase domain (PDB ID = 3PP0). Residues

labeled bold at the tables were stated in the literature to reside at the site
where the known EGFR inhibitors bind
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Table 2 Phytochemicals with activity against HER2 and HER3

Compound Plant Tumor type Effect Reference

Houttuyninum Houttuynia
cordata

MDA-MB-453 breast
cancer

Inhibition of HER2 phosphorylation,
inhibition of ERK1/2 and AKT
activation, dose-dependent
cytotoxicity in vitro

Zhou et al. 2012 [117]

BT474 and N87 Inhibition of HER2 phosphorylation,
inhibition of xenograft tumor growth
in vivo

Zhou et al. 2012 [117]

11,11′-Dideoxy-
verticillin

Shiraia
bambusicola

SK-OV-3 ovarian cancer Inhibition of HER2 phosphorylation Zhang et al. 2005 [52]

ZH-4B SK-OV-3 ovarian cancer
SK-BR-3 breast cancer

Inhibition of HER2 phosphorylation Guo et al. 2004 [118]

Genistein Glycine max BT-474 breast cancer Inhibition of HER2 protein expression
phosphorylation and promoter activity
through an estrogen-receptor-independent
mechanism

Sakla et al. 2007 [119]

SKOV-3 ovarian cancer Down-regulation of HER2 mRNA Li et al. 2004 [120]

MCF-7 and MCF7 HER2
breast cancer

Inhibition of proliferation and induction
of apoptosis

Seo et al. 2011 [121]

(−) Epigallocatechin-3-
gallate

Camelia sinensis MCF7 and AU565 breast
cancer

Inhibition of HER3 expression after
stimulation of HER2 by heregulin-β1

Pan et al. 2007 [122]

MCF-7 breast cancer Inhibition of hergulin-β1-induced
migration/invasion; inhibition of
hergulin-β1-induced HER2/HER3
activation

Kushima et al. 2009 [123]

NF639, SMF, and BA/F3
2+4 breast cancer

Inhibition of cell growth, inhibition of
HER2 phosphorylation

Pianetti et al. 2002 [124]

Head and neck squamous
cell carcinoma and breast
carcinoma

Inhibition of HER2 phosphorylation and
STAT3 activation

Masuda et al. 2003 [125]

CaCo2, HCT116, HT29,
SW480, and SW837
colon cancer and FHC
normal colon cells

Inhibition of HER2 phosphorylation;
synergistic growth inhibition with
epigallocatechin

Shimizu et al. 2005 [80]

OE19 esophageal
adenocarcinoma

Inhibition of HER2 phosphorylation Hou et al. 2005 [81]

HT29 colon cancer Inhibition of EGFR, HER2, and HER3
phosphorylation; inhibition of ERK and
AKT phosphorylation

Shimizu et al. 2005 [126]

Curcumin Curcuma longa HCT-116 and HAT-29
colon cancer

Inhibition of expression and activation of
EGFR, HER2, HER3, and AKT;
synergistic growth inhibition with
5-fluorouracil plus oxaliplatin

Patel et al. 2008, 2010
[127, 128]

MDA-MB-231/HER2
breast cancer

Down-regulation of HER2 expression; inhibition
of cell growth and migration, induction
of G1 cell cycle arrest and apoptosis

Sun et al. 2012 [129]

Curcumin, resveratrol Curcuma longa,
many plants

Breast cancer cells Enhanced growth inhibition in combination
with HER2-targeted immunoliposomes
containing trastuzumab

Catania et al. 2013 [130]

Curcumin analogues
PGV-0 and PGV-1

Synthetic
derivatives

T47D breast cancer Inhibition of HER2 activity in silico binding
to HER2 ATP-binding site; enhanced
cytotoxicity in combination with
doxorubicin

Meiyanto et al. 2014 [131]

Pterostilbene Bluberry and
grape

Breast cancer Inhibition of heregulin-β1-mediated cell
invasion; inhibition of phosphorylation
of p38MAPK and AKT

Pan et al. 2011 [132]

Dihydrocalcones and
their glycosides

Apple Inhibition of HER3 activation Teller et al. 2013 [99]

Quercetin Diverse plants PC-3 and LnCap
prostate cancer

Inhibition of HER2 and HER3 expression
and autophosphorylation; inhibition of
phosphorylation of cRAF, MAPK, ELK-1,
and AKT-1

Huynh et al. 2003 [133]
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lung carcinoma (SCLC) is a separate entity. The behavior of
the other three histological subtypes is similar and therefore is
referred to as non-small cell lung carcinoma (NSCLC) [29].
NSCLC represent the majority of lung cancers and are usually
associatedwith poor prognosis.While SCLC is drug sensitive,
NSCLC are the opposite. Clinical oncology still regards re-
sistance to chemotherapy NSCLC patients as a major prob-
lem. As numerous mechanisms are operative in drug-resistant
tumors [11, 30, 31], the relative quantitative contributions of
each of these resistance mechanisms have to be determined.
Hence, understanding the complex genetic network in clini-
cally relevant drug resistance needs more holistic approaches
to the entire battery of genes conferring drug resistance.

In 81 human primary squamous cell lung carcinomas,
EGFR expression was described as prognostic factor [13].
EGFR expression level was reduced in NSCLC patients with
long-term survival [32]. In addition, down-regulation of
HER2 expression played an important role in resistant
NSCLC [33]. Interestingly, carcinomas of smokers expressed
EGFR more frequently than carcinomas of nonsmokers do
[34]. The importance of EGFR signaling in lung cancer and its
beneficial effects on patient survival led to clinical usage of
the EGFR inhibitor erlotinib for the treatment of NSCLC [33].

Taken together, these data clearly speak for an important role
of EGFR in drug resistance in vitro as well as in the clinical
setting. This is why it appears an exquisite target for novel
drugs specifically inhibiting EGFR function and signaling.

HER2, HER3, and HER4 in clinical tumors

HER2 overexpression plays a major role in breast cancer, but
it can be also found in other tumor types. HER2 positivity in
breast cancers varies from 10 to 40 % [35–38]. The overex-
pression of HER2 mRNA and protein is a poor prognostic
factor [39, 40] and correlated with poor responsiveness to
chemotherapy [36]. While EGFR and HER2 have been inten-
sively studied during the past years, less data are available for
HER3 and HER4. The prognostic significance of HER3 has
been discussed in a contradictory manner. Some authors re-
ported associations of HER3 expression to poor prognosis in
breast cancer patients, while others described HER3 as a
favorable prognostic factor [41]. HER4 mediates anti-
proliferative and differentiation effects [35]. Hence, it is

plausible that this receptor represents a favorable prognostic
marker in breast cancer patients [41–43].

Since the development of monoclonal antibody C225 to
treat EGFR-positive cancers [44], many other therapeutic
antibodies and small molecule tyrosine kinase inhibitors
against EGFR and HER2 have been developed [45]. In con-
trast, HER4 does not serve as target for drug development
because of its positive prognostic significance. While EGFR-
or HER2-overexpressing cancers are adverse prognostic fac-
tors if standard cytotoxic chemotherapy is applied, the con-
trary occurs upon application of EGFR or HER2 inhibitors.
Tumors with high EGFR or HER expression are preferentially
killed by such targeted antibodies and small molecule inhib-
itors [37]. This is an instructive example how the specific
therapeutic targeting of proteins with worse prognosis can be
exploited to improve treatment success rates. Unfortunately,
tumors can also develop resistance against EGFR- or HER2-
directed antibodies and small molecules, and the search for
novel drugs to fight cancer continues.

In this context, the tremendous chemodiversity of phyto-
chemicals comes into play. Novel compounds from natural
sources may serve as lead compounds for a new generation of
drugs eradicating resistant tumors.

Inhibition of epidermal growth factor signaling
by phytochemicals

Natural products as resource for cancer treatment

As pointed out by a survey of the National Cancer Institute,
USA, the majority of established cancer drugs are natural
products, derivatives of natural products, or drugs mimicking
the mode of action of natural products [46]. Searching in
nature for novel scaffolds is a promising way to find new
chemical tools to bypass and overcome such drug resistance.
Novel natural product inhibitors may serve as lead compounds
for drug development. A plethora of data in the literature
shows that natural products can serve as inhibitors for
EGFR-associated signaling molecules such as the RAS/
RAF/MEK/ERK and PI3K/AKT/mTOR pathways. This indi-
cates that the identification of novel inhibitors from natural
resources is not beyond the scope of expectations.

Table 2 (continued)

Compound Plant Tumor type Effect Reference

Apigenin Diverse plants Breast cancer Inhibition of HER2 autophosphorylation and
transphosphorylation; inhibition of AKT
kinase activity by preventing the docking
of PI3K to HER2/HER3 heterodimers

Way et al. 2004 [134]
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Inhibitors of EGFR signaling

Phytochemicals from different chemical classes such as fla-
vonoids, terpenoids, and alkaloids have been shown to exert
their cytotoxic activity towards cancer cells by affecting
EGFR signaling (Table 1). Some specific compounds were
intensively investigated such as genistein, curcumin, querce-
tin, resveratrol, and (−) epigallocatechin-3-gallate. The fre-
quent observation that natural products act in a multifactorial
manner [47] applies here as well. As shown in Table 1, phy-
tochemicals inhibited both phosphorylation and expression of
EGFR (by ubiquitination and degradation). Furthermore, nat-
ural compounds inhibited the phosphorylation of downstream
kinases either as consequence of EGFR inhibition or by
binding of compounds to corresponding kinase domains of
signal transducers. In addition, translocation of kinases (e.g.,
ERK, MAPK) from the cytosol to the nucleus can be blocked
by some compounds. As consequence of silencing EGFR
signaling routes, various effects were observed in cancer cells,
e.g., induction of cell cycle arrest and apoptosis, inhibition of
cell mobility, and inhibition of invasion of metastasis.

It is important to note that several compounds have been
shown to exert their effects not only in vitro but also in vivo,
e.g., curcumin, (−) epigallocatechin-3-gallate, 11,11′-dideoxy-
verticillin, quercetin, deguelin, proanthocyanidins, luteolin,
artesunate, platycodin D, berberine, capsaicin, and delfinidin.
Further evaluation of the compounds mentioned in Table 1 in
terms of EGFR inhibition was performed with in silico mo-
lecular docking analyses on human EGFR tyrosine kinase
domain. Molecular docking analyses in silico on human
EGFR tyrosine kinase domain revealed silibinin to interact
with comparable binding energies as the known inhibitor,
lapatinib with similar docking poses (Fig. 3). Anti-tumor
activity in vivo represents a precondition to consider com-
pounds for clinical application. It is also interesting to study
the interaction of natural products with anticancer drugs.
Phytochemicals caused increased or even synergistic inhibi-
tion of tumor growth in combination with established drugs.
This has been shown for the combinations of curcumin plus
gefitinib/erlotinib, honokiol plus cetuximab, and (−)
epigallocatechin-3-gallate plus 5-fluorouracil erlotinib/
gefitinib (Table 1). Furthermore, natural products can reduce
the side effects of standard anticancer therapy on normal
organs as shown by the combination of curcumin and gefitin-
ib, which led to reduced gastrointestinal side effects compared
to gefitinib alone in xenograft tumor-bearing mice (Table 1).

Inhibitors of HER2/HER3 signaling

Although the inhibition of other EGFR family members was
much less investigated, several studies provided results for the
inhibition of HER2 and HER3 and their related downstream
signaling routes. As can be seen in Table 2, most evidence has

been gathered for (−) epigallocatechin-3-gallate, one of the active
ingredients of green tea (Camelia sinensis), the flavonoid genistein
from soy (Glycine max), and curcumin from Curcuma longa.

Few publications investigated other compounds such as
houttuyninum, 11,11′-dideoxy-verticcillin, ZH-4B, resvera-
trol, pterostilbene, dihydrocalcones, quercetin, and apigenin.
The mechanisms of actions how these phytochemicals affect
HER2 and HER3 are comparable with those observed for
EGFR. They include inhibition of HER2/HER3 phosphoryla-
tion and expression as well as inhibition of downstream signal
transducers, e.g., ERK1/2, AKT, STAT3, p38MAPK, cRAF,
Elk-1, and PI3K (Table 2). Further evaluation of the com-
pounds mentioned in Table 2 in terms of HER2 inhibition was
performed with in silico molecular docking analyses on hu-
man HER2 tyrosine kinase domain. Molecular docking anal-
yses in silico on human HER2 tyrosine kinase domain re-
vealed curcumin to interact with comparable binding energies
as the known inhibitor, lapatinib with similar docking poses
(Fig. 3). The results for the in silico molecular docking anal-
yses on EGFR and HER2 tyrosine kinase domains are repre-
sented in Table 3 and Table 4, respectively. The inhibition of
HER2/HER3 and related signal transduction pathways led to
growth inhibition and induction of apoptosis as well as to the
inhibition of human tumor xenograft growth in vivo. Compa-
rable to EGFR inhibition, HER2 and HER3 inhibition by
curcumin also caused synergistic growth inhibition with 5-
fluorouracil/oxaliplatin (Table 2).

Conclusions and perspectives

The identification of tumor target molecules with prognostic
relevance for patients opened avenues for the development of
more specific treatment options. Important examples in cur-
rent cancer biology and pharmacology are epidermal growth
factor receptors and specific small molecules inhibiting their
signaling in tumors. Nevertheless, resistance can also occur
towards targeted therapies and novel drugs attacking these
receptors are needed. Natural products have been identified
as possible novel drug candidates specifically inhibiting
EGFR in tumor cells. An important perspective for
EGFR/HER2/HER3 inhibiting natural products is their use
for personalized treatment options. The individual testing of
the mutational status would allow selecting the right
EGFR/HER2/HER3 inhibitor for the right patient. In this
respect, natural products may represent valuable tools for the
development of personalized therapy in the years to come.

The reliable prediction of resistance development is still a
major unresolved issue. Deep sequencing and next-generation
sequencing have great potentials in monitoring the develop-
ment of drug resistance in individual tumors and thus offer a
new dimension in personalized medicine. In addition to
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monitoring clinical course of tumor diseases upon drug treat-
ment, whole genome sequencing techniques may be useful to
measure the modulation of drug resistance by natural com-
pounds. In addition to studies with large numbers of patient
samples taken before and after treatment, longitudinal studies
monitoring the same patients at the beginning of and during
therapy may provide better insight into the individual mech-
anisms of resistance development in each individual tumor.
This kind of research opens avenues for the prediction of
individual response of a tumor patient to therapy. It would
be of great value for patients to know whether or not a tumor
will respond to the proposed therapy [31]. If a tumor is
resistant, therapy will only cause toxic effects in normal
tissues without effect on the tumor. Then, another more effec-
tive regimen could be applied or natural products alleviating
the adverse side effects of chemotherapy could be applied.
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