
REVIEW

Mechanisms of mTOR inhibitor resistance in cancer therapy

Jennifer S. Carew & Kevin R. Kelly &

Steffan T. Nawrocki

Received: 20 January 2011 /Accepted: 22 February 2011 /Published online: 9 March 2011
# Springer-Verlag 2011

Abstract Mammalian target of rapamycin (mTOR) is a
conserved serine/threonine kinase that regulates cell cycle
progression, protein translation, metabolism, and cellular
proliferation. The mTOR pathway promotes cell proliferation
under energy or nutrient-rich conditions by increasing
ribosomal biogenesis and protein synthesis. Since enhanced
activity of the mTOR pathway is frequently observed in
malignant cells, inhibition of this kinase has become an
attractive strategy to treat cancer. Rapamycin and its analogs
temsirolimus, everolimus, and ridaforolimus referred to as
“rapalogs” have demonstrated promising efficacy against
renal cell carcinoma and are under investigation for the
treatment of other malignancies. However, the emergence of
drug resistance may ultimately limit the utility of rapalog
therapy. Here we summarize the known mechanisms of
resistance to mTOR-inhibitor therapy and describe potential
strategies to overcome these for the current agents that target
this pathway.
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Introduction

The serine/threonine kinase mammalian target of rapamycin
(mTOR) is a critical regulator of cell proliferation,
metabolism, and protein synthesis. mTOR is ubiquitously
expressed and is activated downstream of the phosphoino-
sitide 3-kinase (PI3K) pathway. It functions as a sensor of
nutritional/metabolic stress during cell development and
promotes protein synthesis and cell growth during nutrient
or energy rich periods. Inhibition of mTOR signaling can
abrogate the cellular response to growth factor receptor
activation. Consistent with its essential role in cell growth,
aberrant activity of the mTOR pathway is frequently
observed in many types of cancer. Therefore, targeting
mTOR activation is an attractive approach for cancer
therapy.

Recent work has determined that mTOR exists in two
multi-protein complexes, mTORC1 and mTORC2, which
differ in their binding partners and their sensitivity to
rapamycin [1] (Fig. 1). mTORC1 forms a complex with
raptor (regulatory-associated protein of mTOR), GβL
(mLST8), the proline-rich AKT substrate 40 kDa
(PRAS40), disheveled, egl-10, and pleckstrin (DEP)-domain
containing mTOR-interacting protein (deptor) [2–6]. Raptor
appears to be critical for mTORC1 function as it acts as a
scaffold to recruit mTORC1 targets [2, 3]. mTORC1 activity
is inhibited by rapamycin (sirolimus) and associated
analogs (temsirolimus/CCI-779, everolimus/RAD001, and
ridaforolimus/AP23573), which are collectively termed rapa-
logs. These agents suppress mTORC1 activity through their
association with FK506 binding protein 12 (FKBP-12) [7].
However, mTORC2 is considered to be largely insensitive to
rapalogs, although prolonged treatment may be able to
reduce mTORC2 activity in some cell types [8–10].
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The mTORC1 pathway can be stimulated by growth
factor receptor signaling through the tuberous sclerosis
complex (TSC1/2) with Rheb or under conditions of
metabolic stress [11]. Downstream of mTORC1 are the S6
kinases (S6K1 and S6K2) and 4E-BP1, which modulate
cap-dependent translation [12]. 4E-BP1 binds to eIF-4E and
blocks the formation of a functional eIF-4F complex
leading to translational inhibition. S6K1 also regulates
protein synthesis initiation by phosphorylating the S6
protein of the 40S ribosomal subunit and by inducing
eIF4A helicase activity [13, 14]. Therefore, rapalogs decrease
mTOR-associated protein synthesis of key proteins involved
in cell cycle progression, such as cyclin D1, c-MYC, and
hypoxia inducible factor 1α (HIF-1α) [15]. In agreement
with the mTOR pathway playing a critical role in cell
proliferation and survival, inhibition of mTOR signaling
blocks tumor cell proliferation, disrupts angiogenesis, and
induces apoptosis and autophagy [16–18].

The frequent hyperactivation of the mTOR pathway in
cancer provided a rationale for the clinical evaluation of
rapalogs as potential anticancer agents. The US Food and
Drug Administration (FDA) approved temsirolimus and
everolimus in 2007 and 2009, respectively, for the
treatment of patients with metastatic renal cell carcinoma
(RCC) [19, 20]. Ridaforolimus is currently being evaluated
in a phase III trial in patients with metastatic soft-tissue and
bone sarcomas. Numerous other clinical trials are underway
to investigate the safety and efficacy of mTOR inhibitors in
additional tumor types.

Despite the promising anticancer activity of mTOR
inhibitors observed in preclinical and clinical studies, the
molecular basis of sensitivity and resistance to these agents
remains largely unknown and drug resistance is an

emerging problem. This review focuses on potential
mechanisms of mTOR inhibitor resistance and outlines
strategies to improve mTOR inhibitor-based therapy.

Molecular determinants of mTOR inhibitor sensitivity

Although mTOR inhibitors have activity against a number
of cancer types, only a portion of patients treated with these
agents exhibit substantial clinical benefit. Considering this,
it is imperative to identify which patients may benefit most
from mTOR inhibitor therapy in order to optimize their
utility and improve clinical outcomes. Several associations
have been made between the molecular characteristics of
tumors and sensitivity to mTOR inhibitors (Table 1). While
sensitive tumors may be responsive to low doses of
rapalogs, higher doses or rapalogs given concurrently with
other targeted therapeutic agents may be required to achieve
activity in the majority of patients due to the presence of
redundant signaling pathways that abrogate rapalog effica-
cy. Future studies are needed to establish detailed molecular
profiles that predict sensitivity to mTOR inhibitor therapy.

Constitutive PI3K activity

Early studies suggested that dysregulated PI3K signaling
induced by loss of phosphatase and tension homologue
deleted on chromosome ten (PTEN) function may predict
the anticancer efficacy of mTOR inhibition [21, 22]. PTEN
functions as a major negative regulator of the PI3K/AKT
pathway. Accordingly, loss of PTEN or activation of AKT
increased the sensitivity of cancer cells to mTOR inhibitor
treatment in preclinical models [21]. However, clinical

Fig. 1 The mTOR signaling
pathway. The functional mTOR
signaling complex exists in two
forms: mTORC1 and mTORC2.
Growth factor stimulation sig-
nals through PI3K to activate
AKT leading to mTORC1 acti-
vation. mTORC2 may also acti-
vate AKT via phosphorylation
of Ser473. Two major substrates
of mTORC1 are 4E-BP1 and
S6K, whose phosphorylation
promotes the translation of key
cell cycle regulators and
transcription factors. Since
mTORC1 activity is also
controlled by the cellular
environment (presence of
nutrients and energy), it is
also a critical regulator of
autophagy
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studies in tumor types with frequent PTEN mutation such
as melanoma and glioblastoma have not demonstrated
significant responses to mTOR inhibitor treatment,
suggesting that patient selection on the basis of PTEN
status alone will not define an mTOR inhibitor-sensitive
population [23, 24]. A possible explanation is that
activation of the RAS pathway can bypass mTORC1
inhibition. A recent study found that cancer cells harbor-
ing oncogenic phosphoinositide-3-kinase catalytic α poly-
peptide (PIK3CA) mutations or loss of PTEN function
were consistently sensitive to mTOR inhibitor treatment,
except when KRAS or BRAF mutations were also present
[25]. Given the prevalence of RAS pathway activation in
cancers, this observation may explain, in part, why all
tumors with constitutive PI3K activity do not respond to
mTOR inhibitors.

Hypoxia inducible factor 1α (HIF-1α) activity

The mTOR inhibitors temsirolimus and everolimus are
approved for use in advanced RCC. The majority of clear
cell RCCs are characterized by a loss of function of the von
Hippel-Lindau (VHL) tumor suppressor gene [26]. VHL is
an E3 ubiquitin ligase that promotes the proteasomal
degradation of HIF-1α and HIF-2α [27]. Abnormal
stabilization of these transcription factors promotes the
transcription of pro-angiogeneic cytokines and glycolytic
enzymes. Since mTOR inhibitors decrease HIF-1α levels,
tumors that are dependent upon its activity may be
hypersensitive to rapalog therapy [17, 28]. The reported
efficacy of rapalogs in patients with RCC is in agreement
with this hypothesis.

Cyclin D1 expression

mTOR inhibitors have recently demonstrated therapeutic
activity against mantle cell lymphoma (MCL) [29]. This
cancer type is characterized by a chromosomal t:11–14
translocation that induces overexpression of cyclin D1, a
phenomenon that drives the pathogenesis of this disease.
The correlation between inhibition of mTOR activity and a

dramatic reduction in cyclin D1 expression may explain the
efficacy of mTOR inhibitors in MCL and provides a
rationale for their use in MCL therapy. However, it is
possible that mTOR inhibitors possess other mechanisms of
action that account for the activity of this drug class against
this disease.

Mechanisms of resistance to mTOR inhibitors

Mutations in FKBP-12 or mTOR

A number of potential mechanisms that may lead to
resistance to mTOR inhibitors have been proposed
(Fig. 2). Rapalogs bind to FKBP-12 and thus mutations in
FKBP-12 or the FKB domain of mTOR could reduce
binding affinity and result in rapalog resistance [30–32]. To
overcome this potential resistance mechanism, second-
generation active site mTOR inhibitors are being devel-
oped. These agents termed “TORKinhibs” inhibit the
serine/threonine kinase activity of mTOR in an FKBP-12-
independent manner and could theoretically circumvent this
resistance mechanism [33–35].

PI3K/AKT pathway activation

Inhibition of mTORC1 has been reported to induce AKT
activation in numerous cell types [36–39]. In most cell
types, rapalogs block mTORC1 activity but do not alter
mTORC2 assembly. Thus, it is possible that inhibition of
mTORC1 shifts the balance to increased mTORC2 activity,
which has been shown to directly phosphorylate AKT at
Ser 473 [40]. It is also possible that inhibition of mTORC1
leads to AKT activation via upregulation of receptor
tyrosine kinases such as insulin-like growth factor-1
receptor (IGF-R1) [39]. Increases in AKT activation have
been shown to be major contributors to diminished rapalog
anticancer activity [41]. This data provides a strong
rationale for dual targeting of mTORC1 and PI3K activity.
Consistent with this idea, several dual inhibitors of PI3K
and mTOR activity have been developed including PI-103

Sensitive tumors Resistant tumors

• PTEN deficient • Redundant signaling pathways

• Constitutive P13K/AKT/mTOR activity • Activation of feedback loops

• VHL deficient • Loss of PP2A regulatory subunit B22β

• Cyclin D1 overexpressed • Presence of oncogenic KRAS or BRAF mutation

• Functional apoptotic pathways • Non-functional apoptotic pathways

• Low p27 levels

• Decreased expression of 4E-BP1

• Overexpression of elF4E

Table 1 Molecular characteris-
tics of mTOR inhibitors
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and NVP-BEZ235. These agents have shown greater
anticancer efficacy compared with agents that inhibit either
mTOR or PI3K pathways alone [42–46]. Another potential
strategy to target PI3K/AKT activation induced by
mTORC1 inhibition is to target IGF-1/IGF-1R signaling.
IGF-1 production has been shown to promote constitutive
IGF-1R signaling and high PI3K activity. Similar to
blocking PI3K directly, inhibition of IGF-1R also was
determined to enhance the efficacy of mTOR inhibitor
therapy [39, 47–49].

Previous investigations have established that upregula-
tion of mTORC2 leads to increased activation of AKT [40].
TORKinhibs such as PP242 bind directly to the ATP site of
mTOR and therefore inhibit both mTORC1 and mTORC2
[33]. Importantly, these agents suppress 4E-BP1 phosphor-
ylation and block the phosphorylation of the mTORC2
substrate AKT [50]. As expected, TORKinhibs displayed
more potent anticancer activity compared to rapalogs in
preclinical studies [33, 50].

Increases in ERK/MAPK signaling

In addition to activating the PI3K pathway, treatment with
rapalogs has been reported to increase signaling of the
ERK/MAPK pathway in both in vitro and in vivo
preclinical models and in biopsies from patients with

cancer [51]. Functional Ras and MEK1/2 activity were
required for the phosphorylation of ERK in these studies.
Notably, inhibition of PI3K decreased ERK activation
following rapalog treatment. These results suggest that
activation of ERK induced by rapalog treatment requires
signaling via the PI3K and Ras pathways. Consistent with
this hypothesis regarding a feedback loop promoting
resistance to rapalogs, administration of the MEK1/2
inhibitor U0126 augmented the anticancer activity of
everolimus [51]. However, additional studies are needed
to more finely dissect the mechanism(s) by which PI3K
signals to the Ras-ERK pathway following mTORC1
inhibition.

Activation of PIM kinases

The PIM kinases are another family of kinases that have
been reported to be hyperactivated following rapalog
treatment [52]. There are three isoforms of the serine/
threonine PIM kinase (PIM-1, PIM-2, and PIM-3) that play
a role in cancer growth and progression [53]. PIM kinase
substrates with important roles in cancer biology include
c-MYC, p27, CDC25A, and BAD. In addition to these
targets, recent studies demonstrate that PIM kinases also
stimulate mTORC1 activity via phosphorylation of 4E-BP1,
eIF4E, and PRAS40 [52, 54, 55]. Consistent with this

Fig. 2 Mechanisms of rapalog resistance. Many mechanisms of
resistance to rapalog therapy have been identified and are labeled in
green. Following rapalog treatment, numerous feedback loops have
been reported to promote the activation of pro-survival signaling
cascades, including PI3K/AKT, ERK, PIM, and PDK1. One mecha-
nism of increased AKT activation is via enhanced phosphorylation of
Ser473 by mTORC2. Alterations in protein translation (decreased

4E-BP1 or increased eIF4E) have also been demonstrated to
interfere with the effects of rapalogs on protein synthesis. The
stimulation of autophagy and increased levels of anti-apoptotic
molecules, such as Bcl-2 represent additional mechanisms of
resistance. Since mTOR inhibitors induce apoptosis in some tumor
types, non-functional apoptotic pathways can also confer resistance
to rapalogs
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observation, two recent reports have established a link
between PIM kinase activity and resistance to rapalogs.
The potential therapeutic implications of this correlative
relationship are highlighted by the fact that combined
therapy of rapalogs with PIM kinase inhibitors led to
enhanced anticancer activity in preclinical investigations
[56, 57].

Functional status of PP2A phosphatases and PDK1 activity

Activation of PDK1 was recently reported to contribute to
rapamycin resistance [58]. Loss of PPP2R2B, which
encodes for the B55β subunit of the serine/threonine
protein phosphatase PP2A results in PDK1-dependent
phosphorylation of MYC following treatment with rapa-
mycin. PDK1-mediated MYC phosphorylation was inde-
pendent of PI3K and AKT and promoted resistance to
rapamycin [58]. This data is in agreement with other studies
showing that alterations in phosphatase activity can
stimulate rapamycin resistance [59–61].

Altered expression levels of eIF4E and 4E-BP1

One of the primary downstream substrates of mTOR is 4E-
BP1, which suppresses eIF4E activity. Low levels of 4E-BP1
confer resistance to rapamycin as this translates into an
inability to inhibit the activity of eIF4E [62]. Similarly,
overexpression of eIF4E also results in resistance to
rapamycin. eIF4E plays a critical role in translation and its
increased expression levels have been associated with tumor
progression [63]. Interestingly, cells with high 4E-BP1
expression are hypersensitive to rapamycin, suggesting that
dysregulation of translation may be an important determinant
for rapamycin sensitivity [62].

Dysregulation of p27Kip1levels

In an earlier study, rapamycin resistance was reported in
fibroblasts and T lymphocytes that were deficient in p27 [64].
p27 is a cyclin-dependent kinase (cdk) inhibitor that is
decreased following serum stimulation, which facilitates cell
proliferation. Rapamycin treatment prevents p27 downregu-
lation and this effect may contribute to the anti-proliferative
properties of this agent [64]. Accordingly, cells with low
levels of p27 may be less responsive to rapalog-mediated
growth inhibition.

Oxidative stress

A recent study conducted in yeast demonstrated that
elevated superoxide levels induced rapamycin resistance
[65]. The authors found that increased oxidative stress
triggered mTORC1 modification and abrogated its ability to

bind to the FKBP-12/rapamycin complex. Intrinsic oxida-
tive stress is a hallmark feature of many cancer types and
promotes cell proliferation, pro-survival signaling, genomic
instability, and reduced sensitivity to conventional antican-
cer therapies. This report suggests that high levels of
reactive oxygen species may also confer rapalog resistance
[66]. Agents that bind directly to mTORC1 such as the
TORKinhibs may be able to overcome this resistance
mechanism since they inhibit mTOR activity in an FKBP-
12-independent manner and would likely not be affected by
redox-related changes in binding affinity.

Modulation of apoptotic regulators

The two main pathways of apoptosis induction are the
“extrinsic” or death-receptor pathway and the “intrinsic” or
mitochondrial pathway. Several studies have demonstrated
that rapalogs induce apoptosis via activation of the
mitochondrial apoptotic cascade [17, 67–69]. This pathway
can be activated by stress stimuli that disrupt the mito-
chondrial membrane leading to the release of cytochrome c
and SMAC (second mitochondria-derived activator of
caspases) into the cytosol. The release of cytochrome c
results in apoptosome formation and activation of caspase-9
and eventually caspase-3 culminating in apoptosis. The
majority of conventional cancer therapeutics cause apopto-
tic cell death in this manner. The intrinsic susceptibility of
cancer cells to apoptosis induction is thought to be
regulated in a rheostat fashion by the balance between the
levels of various pro- (Bax, Bak, Bim, Bid, etc.) and anti-
apoptotic (Bcl-2, Bcl-XL, Mcl-1, etc.) proteins. Consistent
with this hypothesis, a preclinical study conducted in cells
with enforced Bcl-2 overexpression demonstrated that
rapalog treatment blocked mTOR signaling and suppressed
proliferation, but the presence of Bcl-2 inhibited apoptosis
and caused partial drug resistance [17].

Another family of proteins with anti-apoptotic functions
is the inhibitor of apoptosis (IAP) proteins, including
c-IAP1, c-IAP2, XIAP, and survivin. IAPs can block
apoptosis via inhibition of caspases or through modulation
of pro-survival signaling cascades, such as the nuclear
factor kappa B (NF-κB) pathway [70]. Given their
functional homology to Bcl-2, overexpression of IAPs
may also diminish sensitivity to rapalog-induced apoptosis.
Indeed, overexpression of survivin was recently demon-
strated to blunt apoptosis stimulated by temsirolimus [28].

Enhanced angiogenesis

Angiogenesis is defined as the generation of new blood
vessels from the pre-existing vasculature. This process
plays an essential role in cancer progression by promoting
tumor growth and metastasis. Accordingly, increased
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production of pro-angiogenic factors such as vascular
endothelial growth factor (VEGF) and platelet-derived
growth factor (PDGF) have been reported in many types
of cancer. One of the major mechanisms proposed to
underlie the anticancer activity of mTOR inhibitor therapy
is the inhibition of angiogenesis [71]. Rapalogs have been
reported to have direct effects on endothelial cells, resulting
in blunted tumor angiogenesis [71]. As mentioned earlier,
the mTOR pathway also regulates cap-dependent trans-
lation and rapalog treatment has been shown to decrease
HIF-1α expression [17]. Since HIF-1α controls the
transcription of many pro-angiogenic genes, such as
VEGF, reduced HIF-1α levels strongly suppresses angio-
genesis. The ability of rapalogs to potently disrupt
angiogenesis may explain why these agents are effective
for the treatment VHL-deficient RCC. Considering this
mechanism of action, resistance to rapalogs could emerge
in tumors that upregulate pro-angiogenic factor secretion
via mTOR-independent pathways or through heightened
HIF-1α activity.

Stimulation of autophagy

The role that autophagy plays following chemotherapy
remains highly controversial as its induction has been
proposed to both mediate and provide protection against
cell death [72]. It is likely that autophagy has dual roles
that may be variable, cell type specific, and treatment-
dependent. Stimulation of autophagy has been reported
following treatment with many anticancer agents, includ-
ing arsenic trioxide, histone deacetylase (HDAC) inhib-
itors, etoposide, tamoxifen, temozolomide, bortezomib,
and imatinib [75–81]. Inhibition of autophagy has been
reported to enhance the efficacy of many of these agents
[82–86].

mTORC1 is a critical inhibitor of autophagy that is
regulated by various upstream signals, including glucose,
oxygen, amino acids, and growth factors [73]. Rapalogs are
potent inducers of autophagy due to their ability to inhibit
mTORC1 activity. It is not clear whether rapalog-induced
autophagy contributes to its anticancer activity or is an
undesired side effect that may limit drug efficacy. Consis-
tent with this idea, a recent study found that a dual
mTORC1 and mTORC2 inhibitor induced autophagy and
disruption of this pathway with the autophagy inhibitor
chloroquine promoted apoptotic cell death [74]. The
authors concluded that induction of autophagy reduced
the efficacy an mTORC1/mTORC2 inhibitor and sug-
gested combination studies with autophagy inhibitors to
overcome this resistance mechanism. Further investiga-
tion of the significance of autophagy induction associated
with mTOR inhibition should diminish some of the
current controversy.

Overcoming resistance to mTOR inhibitors

The many positive aspects of the anticancer mechanism of
action of mTOR inhibitors have prompted extensive efforts
aimed to elucidate effective strategies to circumvent drug
resistance and to maximize clinical benefit. As discussed
earlier, one possible strategy to overcome some of the
limitations of rapalogs is to use ATP competitive active site
mTOR inhibitors, which have been coined TORKinhibs. In
contrast to rapalogs, TORKinhibs inhibit the kinase activity
of mTOR directly rather than via FKBP-12. In addition,
several reports have demonstrated that TORKinhibs, such
as PP242 block both mTORC1 and mTORC2 activity [33,
50, 87, 88]. Thus, it is likely that enhanced anticancer
activity can be obtained using TORKinhibs via dual
mTORC1/mTORC2 inhibition, which prevents mTORC2-
mediated AKT activation. Another approach to block
rapalog-induced PI3K/AKT activation is to use dual mTOR
and PI3K inhibitors. Several compounds have already been
developed including PI-103 and NVP-BEZ235, which have
demonstrated superior efficacy compared to rapalogs in
various models [36, 42, 43, 89, 90]. Similarly, drug
combination strategies to inhibit mTOR and AKT, such as
rapalogs in combination with the PI3K/AKT inhibitor
perifosine have yielded synergistic anticancer activity
[91]. Of these two strategies, it is not clear which one will
yield the greater therapeutic benefit. It is likely that dual
inhibition of mTOR and PI3K will be more efficacious due
to the numerous downstream targets of PI3K. However, it is
also possible that these agents may cause greater toxicity
compared to the TORKinhibs [50].

In addition to activating the PI3K/AKT pathway, rapalog
treatment results in the stimulation of multiple other pro-
survival feedback loops, including the MEK/ERK, PIM,
and PDK1 pathways. Accordingly, inhibition of each of
these pathways has promoted sensitization to rapalog
therapy [51, 56, 58]. It is possible that activation of certain
feedback loops by rapalog therapy may be cell type-
dependent and thus, specific pathway inhibitors may be
selected based on tumor response to improve clinical
outcome.

mTOR inhibitors have been reported to simultaneously
inhibit cell proliferation and induce apoptosis in various
cancer cell types [67–69]. Induction of apoptosis by
rapalogs may be related to their ability to decrease the
expression levels of various anti-apoptotic proteins, includ-
ing Bcl-2, Bcl-xL, Mcl-1, and survivin [28, 92–95].
However, defects in the apoptotic pathway have been
known to cause resistance to a large number of stress
stimuli and chemotherapeutic agents, including rapalogs.
Consistent with this observation, cells with defective p53 or
high levels of the anti-apoptotic proteins Bcl-2, Bcl-xL,
Mcl-1, or survivin has resulted in rapalog resistance [17,
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28, 96, 97]. To overcome this protective mechanism,
rapalogs have been given in combination with Bcl-2
inhibitors (ABT-737, ABT-263) or other agents that
decrease the expression of anti-apoptotic proteins [96, 98,
99]. For example, treatment with the HDAC inhibitor
vorinostat or the multi-tyrosine kinase inhibitor sorafenib
has been reported to decrease anti-apoptotic protein
expression levels and sensitize cancer cells to rapalog-
mediated apoptosis [28, 100]. Considering that most
chemotherapeutic agents kill cancer cells by inducing
apoptosis, modulation of this cell death pathway is likely
to be an effective approach to improve the efficacy of many
cancer therapeutics.

The mTOR pathway promotes VEGF production via
upregulation of HIF-1α expression. Accordingly, mTOR
inhibition has displayed potent anti-angiogenic activity in
multiple cancer types [71, 101–105]. Inhibition of angio-
genesis may be a major contributor to rapalog activity given
that many cancer cell types that are resistant to rapalogs in
vitro are very sensitive to the same cells in vivo [71].
Therefore, high levels of HIF-1α or activation of pro-
angiogenic pathways that are mTOR-independent are likely
to promote rapalog resistance. Several studies have been
conducted to address this issue by testing the ability of
various angiogenesis inhibitors including agents that target
epidermal growth factor receptor (EGFR), VEGF, IGF-1R,
and multi-tyrosine kinase inhibitors (i.e. sorafenib) to
enhance rapalog activity [100, 106–108]. In addition, other
agents such as MEK and HDAC inhibitors that have
displayed anti-angiogenic activity have been shown to
augment the efficacy of rapalogs [28, 41, 109–111].
Considering that angiogenesis can be initiated through
several signaling cascades, a combination approach that
simultaneously inhibits multiple pro-angiogenic regulators
is likely to be the most effective approach.

Autophagy acts as a bulk protein degradation system that
mediates the turnover of long-lived cytosolic proteins,
aggregated proteins, and defective organelles. Persistent
autophagy has been proposed to induce a necrotic-type
death, suggesting that its activation may be an alternative
cell death pathway [112]. However, autophagy has also
been implicated as a survival mechanism used to recycle
cellular components to produce nutrients and energy during
periods of metabolic or hypoxic stress or following
chemotherapeutic agent treatment [82–86]. Recent evidence
suggests that rapalog-mediated induction of autophagy may
represent an important pro-survival mechanism that limits
the therapeutic efficacy of this class of agents in some
tumor types [72]. Inhibition of mTOR signaling with
rapalogs strongly induces autophagy, thus disrupting this
process may enhance apoptosis. Consistent with this notion,
blocking autophagy with chloroquine enhanced apoptosis
induced by a novel mTORC1/mTORC2 inhibitor [74].

Further investigation aimed to critically evaluate the
therapeutic potential of targeting autophagy to maximize
the anticancer effects of mTOR inhibition is warranted.

Conclusions

Inhibition of mTOR activity in malignant cells results in
growth inhibition and apoptosis. Since this kinase functions
as a critical regulator of several hallmark features of
tumorigenesis including cellular proliferation, translation,
and angiogenesis, mTOR inhibitors have great therapeutic
potential. Indeed, temsirolimus and everolimus were
recently FDA approved for the treatment of advanced/
metastatic RCC and have demonstrated preclinical and
clinical therapeutic efficacy in several other cancer types. In
spite of these promising data, the collective studies
conducted to date have established that single agent rapalog
therapy is not likely to be sufficiently efficacious for most
tumor types. Drug resistance is clearly an important
emerging problem. mTOR inhibitors have been shown to
restore sensitivity to many standard chemotherapeutic
agents, suggesting that rapalogs may be best utilized in
combination chemotherapy. Second generation mTOR inhib-
itors that target both mTORC1 and mTORC2 (TORKinhibs)
as well as dual pathway inhibitors (PI3K and mTOR) have
showed improved efficacy in early studies and appear to have
the potential to circumvent rapalog resistance in some cancer
types. The ultimate success of agents that target this essential
pathway in combination with other chemotherapeutic agents
will likely vary between tumor types based on the functional
status of known or yet to be elucidated resistance mecha-
nisms. Future studies that establish optimal mTOR inhibitor-
based drug combinations that target essential resistance
mechanisms hold significant promise and will hopefully
translate into direct patient benefit.
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