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Abstract. Developing a comprehensive service strategy to optimize customer satisfaction presents an ongo-

ing challenge for effective facility provider. The essence of comprehensive systems is selecting the suitable

service design, establishing an effective service delivery process, and building continuous improvement.

This research analyzes a finite capacity service system incorporating several realistic customer-server dy-

namics: customer impatience, server’s partial breakdown, and threshold recovery policy. When the number

of customers is more, the server is under pressure to increase the service rate to mitigate the service system’s

load. Motivating from this fact, the concept of service pressure condition is also incorporated. For charac-

terization, we evaluate state probabilities derived using the matrix-analytic method and henceforth several

performance measures. To address the cost optimization problem involving the developed Chapman-

Kolmogorov forward differential-difference equations and determine optimal operational parameters, we

employ the recently devised cuckoo search (CS) optimization approach. A comparative analysis is per-

formed with the semi-classical optimizer: quasi-Newton (QN) method, and metaheuristics technique:

particle swarm optimization (PSO), to validate the efficacy of results. Lastly, several numerical illustrations

are depicted in different tables and graphs to understand essential characteristics quickly.

Keywords: Customer impatience, service pressure condition, partial server breakdown, threshold-based

recovery policy, Cuckoo search, particle swarm optimization, quasi-Newton

1. Introduction

Within the constraints of socio-economic-

technological factors, an efficient service sys-

tem is indispensable for progressive and sus-

tainable development in the fast-growing com-

petitive world. Effective service includes cus-

tomer satisfaction and uninterrupted, quality,

cost-effective, time-prompt service. In conges-

tion, we have to experience the cognition of

waiting in a queue and waiting for one’s our

turn to seek the hassle-free service. Waiting is

ubiquitous and reinforces strategic research on

critical areas of the service facility. The pursuit

of optimal service design ranges from optimal

capacity to uninterrupted availability, optimal

service rate to optimal cost, quality to prompt

service, etc. Decision-makers must explore the

existing technological innovation and the ac-

ceptance of the customers to design a robust

service system.
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In today’s technological era, the study of

queueing-based service systems has gained

significant prominence due to the growing im-

portance and complexity. This research paper

highlights essential reflections of a queueing-

based service system using several realistic

queueing notions such as balking, service pres-

sure coefficient, threshold-based recovery pol-

icy, and partial server breakdown. A compre-

hensive survey of the literature on queueing

systems featuring the aforementioned queue-

ing notions shows that these queueing notions

have been rarely studied in conjunction with

different theoretical concepts. The paramount

importance for organizations, be it in the realm

of services or production, lies in the quality

of service provision and operational efficiency.

Over the past few decades, there has been an

increased interest among researchers, system

analysts, and decision-makers/policymakers

in congestion problems, including work re-

lated to server breakdown, threshold-based

recovery policies, and service pressure coef-

ficients.

In congestion, impatience is prevalent

among the customers. In general, at the epoch

of arrival, if the server is unavailable due

to busy in serving waiting customers, breaks

down, or finite capacity, customers may show a

reluctance attitude to join the queue and there-

fore may be uncertain whether to enter the ser-

vice system. The longer the waiting queue,

the higher the likelihood of customers balking.

Haight (1957) was the first researcher who in-

troduced the notion of customer balking in the

queueing literature for a Markovian environ-

ment. Later, Haight (1959) again envisaged a

single server Markovian queue that character-

ized the customers’ continuous abandonment.

Abou El Ata and Hariri (1992) investigated

Markovian overflow queue with balking be-

havior of customers. Abou El Ata and Hariri

(1992) extended the analytical solution for the

multi-server Markovian queue with customer

impatience. Drekic and Woolford (2005) inves-

tigated a priority queue assigning low priority

to impatient customers. Lozano and Moreno

(2008) studied the abandonment behavior of

arrived customers in a single-server service

system in a discrete-time environment with

an infinite/finite buffer. Sun et al. (2017) ex-

plored the customer impatience (balking) in

a single server Markovian environment with

the double-adaptive working vacation (WV)

policy. Since impatience attributes directly

affect the quality of service (QoS), queueing

problems with the attribute of impatience cus-

tomers have motivated many scholars to in-

vestigate a distinguished service environment

(Shekhar et al. 2020ab). We analyze how ser-

vice availability and system capacity impact

customer choices to join or avoid a queue, vi-

tal for understanding behavior and optimizing

resources.

The efficient service system is dynamic

with a load of customers, seeks to improve

customer service to impact customer reten-

tion levels. Under the pressure of increased

congestion, the server may tempt to increase

the service efficiency. This paper also incor-

porates the concept of service pressure coeffi-

cient to model real-time strategic policies. The

pressure coefficient an absolute constant, de-

fines as the amount to which the server in-

creases the service capacity (rate) to diminish

the over waiting load of the service system. For
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the higher backlog of waiting, there is a high

chance that the servers may start operating in-

tensely until the backlog becomes small or non-

existent. Wang and Lin (2011) were the first to

introduce the concept of pressure conditions

for the service systems for the first time in the

queueing literature. Wang et al. (2013) exam-

ined the warm-standby provisioning machine

interference problem with multiple-imperfect

coverage and multiple-server with the pres-

sure condition for improving the repair rate.

More recently, Shekhar et al. (2021a) concep-

tualized service pressure conditions for retain-

ing the reneged customers in the multi-server

Bernoulli’s vacation queueing problem.

The literature on queue-based service sys-

tems is rich with assumptions about reliable

servers, which is seldom. The server is sub-

ject to breakdowns randomly at any instant in

practice. Most research findings on queueing-

based service systems with server breakdown

consider that the server terminates working

completely when the breakdown occurs. Nev-

ertheless, in practice, some real-time systems

exist in which the service provider still works

at a lesser rate in the breakdown state, which

is referred to as working breakdown or partial

breakdown in the queueing literature (Sridha-

ran and Jayashree 1996, Kalidass and Kasturi

2012, Li et al. 2013, Liu and Song 2014) stud-

ied the single-server Markovian queue with

working breakdown. A detailed survey ad-

dressing queueing-based service systems with

the breakdown of the server is provided by

Krishnamoorthy et al. (2014). Liou (2015) ex-

plored a single server queue with customer im-

patience and servers’ working breakdown us-

ing the matrix method. Yang and Chen (2018)

analyzed a single server service system with

the working breakdown and optional service

policies. Rajadurai (2018) employed the sup-

plementary variable technique to analyze the

general retrial queue with the catastrophic con-

ditions and working breakdown under multi-

ple working vacation policies. Recently, Yen

et al. (2022) dealt with a retrial MRP with the

working breakdown & exponentially start-up

time and implemented the PSO algorithm to

establish the optimal management policy with

optimal joint values of the faster and slower

service rates simultaneously at the minimum

mean cost of the system.

The breakdown of the server leads in pro-

nounced congestion or high impatience at-

tributes among the customers, which increases

the economic losses, customer dissatisfaction,

etc. The breakdown of the service facility ne-

cessitates strategic recovery. The present study

focuses on employing strategic corrective mea-

sures: threshold recovery policy. According

to these economic corrective measures, when

the active server is broken down, the recovery

can be performed if there exists a pre-specified

T (1 ≤ T ≤ K) number of customers in the ser-

vice system. The concept of threshold recovery

policy was firstly introduced by Efrosinin and

Semenova (2010). Jain and Bhagat (2012) en-

visaged a finite capacity retrial queueing-based

service system with a threshold recovery pol-

icy for unreliable servers. Yang et al. (2013)

formulated a cost optimization problem for a

threshold-based recovery policy for repairable

M/M/1/N system. Yang and Chiang (2014)

incorporated the concept of threshold recov-

ery policy for a machine interference problem

and employed the metaheuristics and PSO al-
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gorithm to obtain the converging results along

with the mean cost of the machine interference

problem.

The cost optimization problems are system-

atically developed to infer the strategic policies

integral to achieving the optimal design. For

better understanding of the converging results

and utilization of several nature-inspired opti-

mization techniques, one can refer the research

works (Shekhar et al. 2020b 2021ab) and refer-

ences therein.

To the best of our knowledge, no research

within the queueing literature has compre-

hensively addressed threshold-based recovery

policy, servers’ working breakdown, customer

impatience, and service pressure conditions in

a research article. This notable research gap

in the literature motivates us for the present

study. Moreover, motivated by the results

of the nature-inspired algorithms: particle

swarm optimization (PSO) and cuckoo search

(CS) algorithm, we employ these techniques to

optimize the system parameters (i.e ., decision

variables) and the mean cost of the developed

model. A comparative study among CS al-

gorith & PSO algorithm, and QN method has

also been conferred to prove the excellence of

the metaheuristics approaches. The significant

contribution of the present study is to imple-

ment the optimization algorithms and to de-

velop MATLAB codes for comparing the find-

ings of the CS algorithm, PSO algorithm, and

the QN method in terms of statistical parame-

ters, computation time, and operating policies

in optimal conditions, among others.

The proposed model has many real-life ap-

plications across a spectrum of real-life ser-

vice systems like computer and communica-

tion systems, supply chain management, pro-

duction systems, inventory control, and ma-

chine repair problems. The hardware unit con-

sisting of routers, computers, switches, etc.,

processes the data packets in several commu-

nication systems. When a data packet arrives

and finds a long latency, it may lose the in-

formation. As the number of data packets

load increases in a hardware unit, it extends

its built-in standby power to a faster process-

ing rate thereby mitigating latency. The pro-

cessing slows down due to technical issues

in the hardware unit or associated software.

The persistent technical issues are recovered

following some state-dependent strategic poli-

cies. This model’s adaptability lends itself to

numerous real-world scenarios, underscoring

its relevance in optimizing various service sys-

tems and operational settings.

The remaining content of this article is

framed as follows. Section 2 introduces the

proposed queueing modeling and defines its

states with several assumptions and notations.

The matrix analytic method and correspond-

ing solution algorithm to compute the steady-

state probability distribution are discussed in

section 3. Section 4 showcases how the sys-

tem performance indicators are defined and

formulated in vector form. Section 5 confers

the cost function as a constrained optimiza-

tion problem. Besides this, some of the special

cases are provided in section 6. Next, the QN

method, PSO & CS algorithms are discussed in

detail along with their pseudo-codes in subsec-

tions 7.1, 7.2, and 7.3, respectively. In section 8,

several numerical illustrations with the help

of numerous graphs and tables are explained.

Lastly, in section 9 some of the concluding re-
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marks and future prospects are provided.

2. Proposed Model and State Descrip-
tion

Notations

λ: Mean arrival rate of customers in the

system

μb : Service rate during the normal busy

state of the server

μd : Service rate during the partial break-

down period of the server

α: Breakdown rate of the server

β: Repair rate when the server is broken

down

μT : Threshold value at which the break-

down server will be repaired

(1 − ξ): Balking probability of the waiting

customers

ψ: Parameter associated with the service

pressure coefficient

K: Capacity of the system

The present study develops a finite capacity

service system with numerous realistic queue-

ing notions like customer impatience, service

pressure coefficient, partial server breakdown,

and threshold-based recovery policy. The ca-

pacity of the studied service system is pro-

posed as K. The prospective customer joins

the service system for intended service fol-

lowing the Poisson process with parameter

λ (> 0). If the service facility is idle at the

arrival epoch, the customer gets the intended

service instantly; otherwise, arrived customer

queues in the waiting line. The server selects

the customer to serve from the queue follow-

ing the First-Come-First-Serve (FCFS) queue dis-

cipline. It is assumed that the service times to

serve the customers follow an exponential dis-

tribution with parameter μb during the nor-

mal busy state. The server is deteriorated (par-

tially broken down) due to some technical is-

sues that occur following the Poisson process

with parameter α. In this state, the server

continues service uninterruptedly to waiting

customers at a slower rate instead of complete

termination. The service times during the par-

tial breakdown period of the server also follow

an independent and identically (iid) exponen-

tially distributed with rate parameter μd . The

notion of the threshold recovery policy is em-

ployed to mitigate the mean cost of the ser-

vice system due to customers in waiting. Ac-

cording to this, the partial breakdown server

is not recovered until the number of customers

in the system attains a pre-specified threshold

value T (1 ≤ T ≤ K). The recover times of

the breakdown server follow an iid exponen-

tial distribution with rate parameter β. After

accomplishing the recovery action, the server

is ready to furnish the service to the waiting

customers immediately at a normal efficiency.

When the server is busy or malfunctioning,

the customers who intended to join the ser-

vice system tend to become impatient, causing

them to depart the system with a probability

of 1 − ξ. These customers may remain in the

system with the complimentary probability ξ.

If the number of customers in the system is

T or more, the concept of the service pres-

sure coefficient is considered. The pressure

factor is assumed to be dependent on num-

ber of customers in the system and parameter

ψ. Additionally, we assume that all contin-

uous random variables, namely, inter-arrival

times, breakdown times, and service/repair
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times, are mutually independent. The events

arrival, service, repair, recovery, and balking

are independent to each other.

Let us define the following terms N(t) �

number of customers in the service sys-

tem at time instant t, and J(t) �

the server’s state at the time t, where

J(t) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if the server is

in normal working attribute

1, if the server is

in working breakdown state

Thus, the process {(J(t),N(t)); t ≥ 0} consti-

tutes a continuous-time Markov chain (CTMC)

defined in a two-tuple irreducible form,

with the state-space Ω � {{(0, n); n �

0, 1, 2, · · · , K} ∪ {(1, n); n � 1, 2, · · · , K}}.
Hence, at time instant t (t ≥ 0), all the system-

state probabilities are outlined as follows

P0,n(t) �Prob{ J(t) � 0,N(t) � n},
n � 0, 1, 2, · · · , K

P1,n(t) �Prob{ J(t) � 1,N(t) � n},
n � 1, 2, · · · , K

Assuming all the considerations, the state-

dependent mean service rate of the server is

defined as

μ(n)b �

⎧⎪⎪⎨⎪⎪⎩
μb , 1 ≤ n ≤ T − 1(

2n
n+1

)ψ
μb , T ≤ n ≤ K

μd < μ
(n)
b , ∀n

Now, using the theoretical concepts and ax-

ioms of the QBD (quasi birth and death)

process, the system of Chapman-Kolmogorov

forward differential-difference equations, that

governs the proposed model, is delineated to

exhibit the transient-state probabilities repre-

senting the likelihood of distinguished states

of the service system. Following the different

system states, we have

When the server is Idle

P′
0,0(t) � −λP0,0(t) + μ(1)b P0,1(t) (1)

When the server is in the regular working
attribute

P′
0,1(t) � −

(
λξ + μ(1)b + α

)
P0,1(t)

+ λP0,0(t) + μ(2)b P0,2(t) (2)

P′
0,n(t) � −

(
λξ + μ(n)b + α

)
P0,n(t)

+ λξP0,n−1(t)μ(n+1)
b P0,n+1(t),

2 ≤ n ≤ T − 1 (3)

P′
0,T(t) � −

(
λξ + μ(T)b + α

)
P0,T(t)

+ λξP0,T−1(t) + μ(T+1)
b P0,T+1(t)

+ βP1,T(t) (4)

P′
0,n(t) � −

(
λξ + μ(n)b + α

)
P0,n(t)

+ λξP0,n−1(t) + μ(n+1)
b P0,n+1(t)

+ βP1,n(t),
T + 1 ≤ n ≤ K − 1 (5)

P′
0,K(t) � −

(
μ(K)

b + α
)
P0,K(t)

+ λξP0,K−1(t) + βP1,K(t) (6)

When the server is in working breakdown
state

P′
1,0(t) � − λP1,0(t) + αP0,0(t) + μdP1,1(t) (7)

P′
1,1(t) � − (

λξ + μd
)
P1,1(t) + λP1,0(t)

+ αP0,1(t) + μdP1,2(t) (8)

P′
1,n(t) � − (

λξ + μd
)
P1,n(t) + λξP1,n−1(t)

+ αP0,n(t) + μdP1,n+1(t),
2 ≤ n ≤ T − 1 (9)
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P′
1,n(t) � − (

λξ + μd + β
)
P1,n(t)

+ λξP1,n−1(t) + αP0,n(t)
+ μdP1,n+1(t),

T ≤ n ≤ K − 1 (10)

P′
1,K(t) � − (

μd + β
)
P1,K(t) + λξP1,K−1(t)

+ αP0,K(t) (11)

At t � 0, the initial condition is

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
P0,0(0) � 1

P0,n(0) � 0, n � 1, 2, · · · , K
P1,n(0) � 0, n � 1, 2, · · · , K

(12)

3. Matrix Analytic Method

In equilibrium condition, i.e ., t → ∞, the fol-

lowing are the state probabilities for the anal-

ysis of the service system, which are depicted

as

for n � 0, 1, 2, · · · , K, lim
t→∞ P0,n(t) � P0,n

and lim
t→∞ P′

0,n(t) � 0

for n � 1, 2, · · · , K, lim
t→∞ P1,n(t) � P1,n

and lim
t→∞ P′

1,n(t) � 0

Now, to derive the state probability distri-

bution, we adopt the matrix analytic method

as the system of equations is highly compli-

cated, making it challenging to calculate the

closed/vector-form of expression of the state

probabilities because of intricate constraints

like multi-equation, multi-variable, and mul-

tiple parameters. The matrix analytic method,

pioneered by Neuts (1981), leverages the con-

cept of embedded Markov chains to handle nu-

merous realistic queue-based service systems.

For the matrix approach, we characterize the

probability vector P̃n ; n � 0, 1, 2, · · · , K as row

vector having steady-state probabilities as ele-

ments, i.e., P̃0 � [P0,0] and P̃n � [P0,n , P1,n]; n �

1, 2, · · · , K. The transition rate matrix of the

Markov chain can equivalently be defined us-

ing the QBD process. Hence, by balancing the

incoming and outgoing transitions, the tridiag-

onal generator matrix Q of the studied CTMC

is defined as follows

Q �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0 B0 0 0 · · · 0 0 0
C0 A1 B1 0 · · · 0 0 0
0 C1 A2 B1 · · · 0 0 0
0 0 C2 A3 · · · 0 0 0
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.

0 0 0 0 · · · AK−2 B1 0
0 0 0 0 · · · CK−2 AK−1 B1

0 0 0 0 · · · 0 CK−1 AK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The elements of the transition rate matrix

Q as block submatrices are represented as fol-

lows.

A0 �

[
−λ

]
, B0 �

[
−λ 0

]
,

B1 �

[
λξ 0

0 λξ

]
, C0 �

[
μ1

b

0

]
,

An �

[
a(n)

11
a(n)

12

a(n)
21

a(n)
22

]

We depict each element of the block subma-

trix An ; n � 1, 2, · · · , K as the scalar a(n)i j whose

closed form structure is defined as follows

a(n)i j �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
(
λξ + α + μ(n)b

)
, i � j � 1 ; 1 ≤ n ≤ K − 1

−
(
α + μ(n)b

)
, i � j � 1 ; n � K

α, i < j ; 1 ≤ n ≤ K

β, i > j ; 1 ≤ n ≤ K

− (λξ) , i � j � 2 ; n � 1

− (
λξ + μd

)
, i � j � 2 ; 2 ≤ n ≤ T − 1

− (
λξ + β + μd

)
, i � j � 2 ; T ≤ n ≤ K − 1

− (
β + μd

)
, i � j � 2 ; n � K

0, otherwise



8 Varshney et al.: Finite Capacity Service System with Partial Server Breakdown and Recovery Policy: An Economic Perspective

Similarly, we define the block submatrix

Cn ; n � 1, 2, · · · , K − 1 as

Cn �

[
c(n)

11
0

0 c(n)
22

]
where, element of the matrix Cn for

n � 1, 2, · · · , K − 1 is the scalar c(n)ii out-

lined as

c(n)ii �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
μ(n+1)

b , i � 1 ; 1 ≤ n ≤ K − 1

μd , i � 2 ; 1 ≤ n ≤ K − 1

0, otherwise

Let P̃ �
[
P̃0 , P̃1 , · · · , P̃K−1 , P̃K

]
be the probabil-

ity vector in equilibrium associated to the pre-

defined generator matrix Q. Considering the

partition of the probability vector P̃, we repre-

sent governing system of equations in matrix

form as

P̃Q � 0 (13)

The homogeneous governing system of equa-

tions 13 can straightforwardly be represented

in the form of pre-defined block submatrices

as

P̃0A0 + P̃1C0 � 0 (14)

P̃0B0 + P̃1A1 + P̃2C1 � 0 (15)

P̃n−1B1 + P̃nAn + P̃n+1Cn � 0, (16)

n � 2, 3, · · · , K − 1

P̃K−1B1 + P̃KAK � 0 (17)

Now, after appropriate matrix operation and

recursive substitution of each element, we ob-

tain

P̃0 � P̃1C0

(−A−1
0

)
� P̃1Ξ0

P̃1 � P̃2C1

[
− (Ξ0B0 + A1)−1

]
� P̃2Ξ1

P̃n � P̃n+1Cn

[
− (Ξn−1B1 + An)−1

]
� P̃n+1Ξn ,

n � 2, 3, · · · , K − 1

where,

Ξn �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−C0A−1

0
, n � 0

−C1 (Ξ0B0 + A1)−1 , n � 1

−Cn (Ξn−1B1 + An)−1 , 2 ≤ n ≤ K − 1

Again by the recursive back substitution, we

redefine each of the state probability vector

P̃n in the closed product form of Ξn ; n �

0, 1, 2, · · · , K − 1 as

P̃n � P̃K{ΞK−1ΞK−2ΞK−3 · · ·Ξn+2Ξn+1Ξn},
n � 0, 1, 2, · · · , K − 1

P̃n � P̃K

(
K−1∏
i�n

Ξi

)
� P̃KΦn , n � 0, 1, 2, · · · , K − 1

(18)

Following the total probability rule, we de-

fine the normalization condition for the state-

probability distribution as P̃e � 1, which can

be equivalently rewritten using the partition of

the probability vector as[
P̃0e1 + P̃1e2 + P̃2e2 + · · · + P̃K−1e2 + P̃Ke2

]
� 1

(19)

where e1 and e2 are column vectors having or-

der one and two respectively such that each

element of both the vectors is unity. Now us-

ing the Eq.(18), the Eq.(19) can be redefined

as

P̃KΦ0e1 +
[
P̃1 + P̃2 + · · · + P̃K−1 + P̃K

]
e2 � 1

P̃KΦ0e1+
[
P̃KΦ1 + P̃KΦ2 + · · · + P̃KΦK−1 + P̃K

]
e2 � 1

P̃KΦ0e1 + P̃K [Φ1 + Φ2 + · · · + ΦK−1 + I] e2 � 1

�⇒ P̃K

[
Φ0e1 +

(
K−1∏
n�1

Φn + I

)
e2

]
� 1 (20)

The state probability vector P̃K is eval-

uated from Eq.(17) and Eq.(20), hence-

forth, all the other steady-state probabilities

P̃0 , P̃1 , · · · , P̃K−1 are evaluated from the Eq.(18).
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Following the computation of state proba-

bilities, we define various performance indices

in the next section to tract the modeling and

analyze the efficiency of the service system.

4. System Performance Measures

In general, there are many standard system

performance indicators that can effectively il-

lustrate the quality performance of the service

systems. This paper also introduces several

queueing-based system performance indices

for finite capacity service systems with service

pressure coefficient, threshold-based recovery

policy, and working breakdown to outline

the modeling and methodology used. These

system performance measures prove valuable

for conducting the parametric investigation

to achieve the objective of decision-making.

Moreover, all the system performance indica-

tors defined in this section are correlated and

recognized as prime importance in a specific

situation. Next, we characterize these system

performance indicators in the closed/vector

form in terms of governing state probabilities.

• Expected number of customers in the

queueing system

LS � ΠK

(
K−1∑
n�1

nΦne2 + Ke2

)
(21)

Queue length can influence balking be-

havior, where customers might opt not

to join a queue if it appears too lengthy,

impacting potential revenue.

• Expected number of customers in the

waiting queue

LQ � ΠK

(
K−1∑
n�1

(n − 1)Φne2 + (K − 1)e2

)
(22)

• Probability that server is in working

breakdown state

PWD � ΠK

(
K−1∑
n�1

Φne3 + e3

)
(23)

where, e3 � [0 1]T
• Probability that the server is in a busy

state

PB � ΠK

(
K−1∑
n�1

Φne4 + e4

)
(24)

where, e4 � [1 0]T
• Probability that server is idle

PI � Π0e1 (25)

• Throughput of the service system

τp �ΠK

(
K−1∑
n�1

μ(n)b Φne4 + μ
(K)
b e4

+

K−1∑
n�1

μdΦne3 + μde3

)
(26)

Throughput refers to the rate at which

customers successfully pass through a

service system. It signifies the system’s

capacity to handle and process incom-

ing customers. This is a critical per-

formance measure as it offers insights

into the efficiency and effectiveness of

the service system. Throughput can be

influenced by various factors, including

arrival rates, service rates, the number

of servers, and the queueing discipline.

Analyzing throughput assists in under-

standing the system’s ability to meet de-

mand and process customers efficiently,

which in turn aids in system optimiza-

tion and performance evaluation.

• Average balking rate

ABR � ΠK

(
K−1∑
n�1

(1 − ξ)λΦne2

)
(27)
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The average balking rate is a crucial met-

ric in queueing theory, indicating how of-

ten customers choose not to join a queue

due to various factors. It provides in-

sights into customer behavior, helps op-

timize service resources, and guides im-

provements in service quality. High

balking rates can signal issues with wait

times and service quality, while address-

ing balking behavior can lead to better re-

source allocation and enhanced customer

experiences.

• Effective arrival rate

λeff � λΠ0e1 + ΠK

(
K−1∑
n�1

ξλΦne2

)
(28)

• Expected waiting time in the service sys-

tem

WS �

ΠK

(∑K−1
n�1 nΦne2 + Ke2

)
λΠ0e1 + ΠK

(∑K−1
n�1 ξλΦne2

) (29)

Waiting time reflects the duration cus-

tomers spend in the queue before being

served, directly affecting customer satis-

faction and system efficiency.

Using above defined performance indices, we

develop the cost optimization problem in the

next section with pertinent decision parame-

ters and design parameters.

5. Cost Analysis

For the economical analysis of the studied

Markovian single-server finite capacity service

system, our focus is on the formulation of the

mean cost function utilizing different cost fac-

tors incurred. The parameters μd and μb are

considered as decision variables. The core pur-

pose of the study is to use the joint station-

ary probability distribution and system perfor-

mance characteristics of the developed model

to optimize the long-run mean cost at the op-

timal value of the decision parameters. The

key cost elements unified to the different sys-

tem states of the queueing model are defined

as follows.

Ch ≡ The unit cost associated with cus-

tomers in the service system

Cd ≡ The unit cost associated with the par-

tial breakdown of the server

Cb ≡ The unit cost associated with the busy

state of the server

Ci ≡ The unit cost associated with the idle

server

Cμb ≡ Unit cost for providing the service

with rate μb

Cμd ≡ Unit cost for providing the service

with rate μd

Cw ≡ cost associated with each waiting cus-

tomer present in the system

We use the above-defined components re-

lated to the mean cost and performance indices

defined in the previous section to formulate the

cost function as follows

TC(μb , μd) �ChLS + CdPWD + CbPB + CiPI

+ Cμbμb + Cμdμd + CwWS (30)

We examine two service modes for waiting

customers. The first employs a normal service

policy where the server operates at its full ca-

pacity. Conversely, the second mode features a

reduced service rate due to a partially downed

state. Underlying these assumptions is the con-

sistent premise that the service rate during the

impaired state remains lower than that of the

server’s normal operational mode. The notion

of multiplying service rates by their state prob-
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abilities is relevant under the Bernoulli service

regime, it should be noted that this specific

aspect has not been explored in the present in-

vestigation. The cost optimization (minimiza-

tion) problem is framed mathematically as an

optimal control problem.

TC(μ∗b , μ∗d) � min
μd<μb

{TC(μb , μd)} (31)

where μ∗b and μ∗d are the optimized values of

decision variables that minimize the mean cost.

It is realistic to consider minimizing the mean

cost by adjusting the service rate of a server

in different states, including when the server

is partially broken. In certain real-world sit-

uations, service rates can indeed be adjusted

based on the server’s operational condition.

This concept is particularly relevant in systems

where equipment can operate at different lev-

els of functionality or efficiency. For example,

in manufacturing plants, if a machine experi-

ences partial breakdown or reduced efficiency,

its production rate might be adjusted to avoid

further damage and maintain a certain level

of output. In service industries, such as call

centers, if a certain number of operators are

unavailable due to technical issues, the service

rate could be adjusted to manage incoming

calls efficiently. Similarly, in computer systems

or cloud computing environments, if certain

processing nodes are temporarily unavailable

or experiencing issues, the overall computa-

tional capacity might be adjusted dynamically

to ensure continued operation while minimiz-

ing disruption. While the specific mechanisms

for adjusting service rates may vary across in-

dustries and scenarios, the fundamental con-

cept of adapting service rates based on the

server’s operational state is indeed applica-

ble in real-world situations. It allows orga-

nizations to balance operational efficiency, re-

source utilization, and customer satisfaction

while minimizing costs. We employ the classi-

cal and meta-heuristic optimization techniques

to determine the optimal mean cost. The de-

tails and results are discussed in the forthcom-

ing sections.

6. Special Cases

In this section, for the validity and applicabil-

ity of developed model, the comparative study

with several existing research articles is pro-

vided by aligning or relaxing one or more

assumptions. It proves that, the results of

the governing model resemble with the actual

findings in the queueing literature. The pre-

sentation demonstrates the versatility and ac-

curacy of our model.

Case 1: For ξ � 1, μ(n)b � μ, and α �

0, the studied model analogous to classical

M/M/1/K queueing model (Kleinrock 1975).

Case 2: For ξ � 1, μ(n)b � μ, and α � 0, our

model and findings align with the outcomes of

a queueing system with balking proposed by

Haight (1957).

Case 3: By substituting ξ � 1, μ(n)b � μ,

α � 0, and β � 0, the governing model con-

verts to the queueing problem with working

breakdown and customer impatience investi-

gated by Liou (2015).

Case 4: By taking ξ � 1, and α � 0, the

studied model deduces to a queueing model

with service pressure coefficient proposed by

Hillier (2012).

Case 5: In the case when ξ � 1, μ(n)b � μ,

α � 0, and β � 0, the current model resem-

bles with the single server service system with
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working breakdown of the server proposed by

Kalidass and Kasturi (2012).

Case 6: By setting the combination of pa-

rameters as ξ � 1, μ(n)b � μ, α � 0, and

β � 0, the model becomes a finite capac-

ity queue-based service system with working

breakdown and threshold-based recovery pol-

icy which was examined by Efrosinin and Se-

menova (2010) in the literature.

Through these comparative cases, we

showcase the alignment of our model with di-

verse scenarios from the queueing literature,

validating its comprehensiveness and applica-

bility.

7. Optimization Techniques

In the pursuit of optimizing the system’s opera-

tional efficiency and minimizing mean cost, we

employ the semi-classical and meta-heuristic

techniques to determine the optimal value of

decision parameters. The results of each tech-

nique are compared to others to validate the

newly evolved meta-heuristic techniques. The

results are compiled in the next section. In

the subsequent subsection, we give detail, al-

gorithm, procedure, and pseudo-code of semi-

classical method: quasi-Newton method (QN),

and meta-heuristic optimization techniques:

particle swarm optimization (PSO), cuckoo

search (CS).

7.1 Quasi-Newton Method

The literature on optimization algorithms

shows that gradient-based optimization algo-

rithms have errors (i.e . zigzagging) when deal-

ing with ill-conditioned optimization prob-

lems. As a solution, the quasi-Newton tech-

nique of order two is gaining interest as it uses

curvature information and efficacy in dealing

with ill-conditioned cost optimization prob-

lems. Second-order techniques offer advan-

tageous over the first-order methods, includ-

ing a high rate of local converging simulations

(usually super-linear) and preserving invari-

ance (non-sensitiveness to the choice of coordi-

nates) due to its quicker estimation of Jacobian

matrices, particularly when dealing with ex-

tensive solution space ranges. Inspiring by this

fact, we have incorporated the semi-classical

optimizer: the QN method, for the govern-

ing multi-objective problem. The advantage of

the QN method for multi-objective and multi-

constraint optimization is that the estimation

of Jacobian matrices is reasonably faster than

their actual estimation. This change is signif-

icantly more apparent when the range of the

problem’s solution space is extensive.

The QN method provides the optimal re-

sults in two steps. First, we compute a search

direction pt , which indicates the direction of

the input space (vector including initial val-

ues of system design parameters) at iteration t.

The second step determines how far we have

to move in this direction by computing a step

length αt ∈ R+. Therefore, it is an optimiza-

tion method that searches for optimality with

a descent direction.

pt
� −(Ht)∇ f (xt) (32)

We then obtain the next iterate as

xt+1
� xt

+ αt pt (33)

Here, the Hessian approximation Bt 
 (Ht)−1

must satisfy the quasi-Newton condition called

secant equation.

Bt(xt+1 − xt) � yt (34)
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where, yt � ∇ f (xt+1) − ∇ f (xt) in which f :

D → R is continuously differentiable function

on the domain D and ∇ f (xt) ∈ Rn denotes the

gradient of f at xt . Further, instead of com-

puting the actual Hessian in the quasi-Newton

method, we approximate the Hessian with the

help of a positive definite symmetric matrix

Bt ∈ Rn×n , which is updated at every iteration

as

Bt+1
� Bt

+ U

Now, we utilize the concept of the popular

BFGS-method to compute the matrix U as

U �
yt(yt)T
(yt)T(st) −

(Bt st)(Bt st)T
(st)T Bt st (35)

where, st � αt pt and (yt)T represents trans-

pose of yt .

The distinction between the QN method

and the original Newton’s method lies in the

utilization of the analytically computed Jaco-

bian matrix J(xt) as a replacement for Bt . The

primary difference between Newton and the

QN method is that Newton method uses the

exact Jacobian matrix while the QN method

uses approximated results. Therefore, the QN

method is more famous for feasible super-

linear convergence and is not calculated the

Jacobian if some of the involved functions are

twice continuously differentiable and strongly

non-convex or convex (Zhou 2020). The proce-

dure for utilizing the quasi-Newton method is

outlined below:

Procedure for QN method

Initialization:

1. Choose an initial guess x0 for the

solution.

2. Initialize the iteration counter.

3. Set a positive definite matrix B0 as

an approximation to the Hessian.

Iteration:

1. Calculate the search direction by

solving Bt pt � −∇ f (xt).
2. Choose a step size αt (line search or

other methods).

3. Update the solution xt+1 � xt + st .

4. Compute gradient at new point

∇ f (xt+1).
Updating Approximation:

1. Calculate changes st � xt+1−xt and

yt � ∇ f (xt+1) − ∇ f (xt).
2. Update Bt+1 using a formula (eg.,

BFGS update).

Termination:

1. Check convergence criteria (itera-

tions, gradient, changes in x).

Repeat:

1. If not converged, increment as per

step-size and repeat iteration.

Final Result:

1. Once terminated, xnew is the ap-

proximate optimal solution.

The pseudo-code for quasi-Newton method
Initialize: starting point x0, B0, and tmax ;

for(t < tmax)

solve Bt pt � −∇ f (xt);
step size st � αt pt (line search along pt);

update iteration xt+1 � xt + st

update Bt+1 � Bt + U, where U is given

by Eq.(35)

end for
Output: Bnew and xnew
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7.2 Particle Swarm Optimization

Particle swarm optimization (PSO) algorithm

is an agent-based optimization technique,

which was firstly introduced by Kennedy and

Eberhart in 1995 (Kennedy and Eberhart 1995)

having been inspired by swarm intelligence

and its collective movement. When birds (par-

ticles) fly in a flock (swarm) to search for food

randomly, they share information about what

they find among themselves and help the en-

tire flock get the best hunt. Similarly, parti-

cles in PSO share information to collectively

improve their search for the best solution. The

roaming nature of birds in the flock will inspire

the exploration phase of the optimization pro-

cedure, which aims to avoid being stuck in the

local region.

PSO is a bio-inspired process that searches

for an optimal solution in the solution space

globally. PSO algorithm excels at tackling non-

linear, non-convex, and multi-modal optimiza-

tion problems. Multiple local and global op-

timal are present, and we need to obtain the

global optimum of the problem. In PSO, we

use both global best (pt
gb) and the individual

(particle) best (pt∗
i ) concurrently at the itera-

tion t. Using certain individuals best aims

to escalate the diversity in the promising so-

lutions; however, this diversity may be mim-

icked by employing randomization. As a re-

sult, if the optimization problem of interest

is substantially non-linear and multi-modal,

there is no convincing justification for choosing

the individual best (Yang 2020). An initial set

of locations (solutions) (p0
i ) and velocities (v0

i )
are generated randomly for each particle (bird)

in the swarm (flock). Each particle’s speed

is stochastically accelerated towards its prior

best position (individual best) and the global

best solution across iterations in the search

space (Lindfield and Penny 2017).

vt+1
i �vt

i + c1r1(pt∗
i − pt

i ) + c2r2(pt
gb − pt

i ) (36)

where c1 and c2 are positive constants chosen

at the initiation of the process. The vector pt∗
i

is the finest position (best solution) for the par-

ticles till time instant t, determined using the

objective function f (pi) in the local search re-

gion. The vector pt
gb is defined as the univer-

sally best (i.e ., global best) position vector for

all the particles. At each iteration, the solution

vector is updated to provide the terminating

optimum position. The vectors pt
i and vt

i are

the current values of the position and velocity

vector respectively. Furthermore, r1 and r2 are

the random vectors chosen from the uniformly

distributed random variate ru in the continu-

ous range [0, 1], re-selected at each iteration

of the algorithm. Here, randomness shows a

significant role in avoiding getting trapped at

a local optimum and fostering exploration of

the solution space.

The second term of Eq.(36) assures com-

plete exploitation of the local area in the search

space to pinpoint an accurate value of the local

optimum. Similarly, the third term of Eq.(36)

prompts that the entire search space is ex-

plored to find a global optimum and escape

getting confined at a local optimum. Thus, the

choice of c1 and c2 is critical in confirming com-

patibility, and hence their selection should be

made sensibly.

Concurrently, each particle’s position is up-

dated according to its velocity. The position

updating formula is defined as

pt+1
i � pt

i + vt+1
i (37)
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The equation above describes a global explo-

ration process, ensuring that each new point

is evaluated for potential improvement across

the solution space. Further, we adopt the con-

cept of inertia function Ω(t) (Shi and Eberhart

1998) to stabilize the exploration of the par-

ticles. This function prevents particles to be

stuck in a local region or overshoot from opti-

mum value. Henceforth, the velocity formula

is restructured as follows

vt+1
i � Ωvt

i + c1r1(pt∗
i − pt

i ) + c2r2(pt
gb − pt

i )
(38)

The appropriate value of the inertia function

Ω(t) is chosen within the range [0.5, 0.9]. Here

is the procedure for employing the particle

swarm optimization algorithim:

Procedure for PSO algorithm

Initialization:

1. Initialize a population of particles

with random positions and veloci-

ties.

2. Set personal best positions (pt∗
i ) of

each particle to its initial position.

3. Set global best position (pt
gb) to the

position of the best particle.

Iteration:

1. For each particle, calculate its fitness

value.

2. For each particle, update personal

best positions (pt∗
i ) if the current fit-

ness is better.

3. For each particle, update global best

position (pt
gb) if the current fitness is

better than the overall best.

4. For each particle, update particles

velocity and position based on its

previous velocity, position, (pt∗
i ),

and (pt
gb).

Termination:

1. Check convergence criteria (iter-

ations, fitness, solution improve-

ment).

2. If convergence is met, terminate;

otherwise, continue to the next it-

eration.

Repeat:

1. If not converged, increment the iter-

ation count and repeat the iteration

process.

Final Result:

1. Once terminated, the position of

(pt
gb) represents the optimal solu-

tion found by the algorithm.

The pseudo-code for Particle Swarm Opti-
mization algorithm
Input: Objective function, population size, r1,

r2, c1, c2, starting particle position, tmax ;

Initialize population: find position of n parti-

cles;

while(t < tmax or convergence criterion)

for loop over all n particles and all d dimen-

sions

update new velocity vt+1
i according to

Eq.(38);

update new position of particle pt+1
i accord-

ing to Eq.(37);

evaluate objective function at new position;

find the current best position (pi) for each

particle;

end for
update global best pgb ;

t → t + 1;

end while
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Output: optimal objective value TC∗ at p∗

7.3 Cuckoo Search

Cuckoos are captivating birds, known not just

for their melodious sounds but also for their

peculiar reproduction method. Most of the

cuckoo species lay their eggs in communal

nests, and they may throw down the eggs of

others to maximize the chances of their eggs

hatching. Nevertheless, some species prac-

tice obligatory brood parasitism, which in-

volves laying their eggs in the nests of other

host birds. Some cuckoo species have evolved

due to genetic variation where female parasitic

cuckoos are capable of imitating the color and

pattern of eggs of certain host species. The

behavior lessens the likelihood of their eggs

forsaking, increasing their reproductive poten-

tial. The competitiveness dynamics between

cuckoos and host species forms a combat sys-

tem where cuckoos’ eggs can be exposed and

thrown down with a probability of P∗.
In the algorithm, the resemblance of two

eggs (solutions) pi and pj can be roughly eval-

uated by their difference (pj − pi) . Thus, the

location at iteration t can be modified by

pt+1
i � pt

i + αs ⊗ H(Pa − ε) ⊗ (pt
j − pt

k) (39)

where s is step-size, which is ranged by a vari-

able α that takes positive values, H is a Heavi-

side step-function used to simulate the discov-

ery probability with the help of random num-

ber ε taken from a uniform distributed range

[0, 1]. Furthermore, the product notation ⊗ of

two vectors means entry-wise multiplications.

Now, for generating new solution pt+1
i for the

ith cuckoo, a Lévy flight is performed as

pt+1
i � pt

i + αL(s , λ) (40)

where the Lévy flights are random walks with

phases being taken from

L(s , λ) ∼ 1

s1+λ

(
λΓ (λ) sin(πλ)/2

π

)
(41)

to approximate a Lévy probability distribution

with an exponent 0 ≤ λ ≤ 2. Here, the gamma

function is defined as

Γ (λ) �
∫ ∞

0

zλ−1e−u du (42)

The procedure for applying the cuckoo search

algorithm is as follows:

Procedure for CS algorithm

Initialization:

1. Initialize a population of cuckoos

(solution candidates).

2. Assign random solutions (nest po-

sitions) to the cuckoos.

Iteration:

1. For each cuckoo, generate a new so-

lution by performing random walk

or Lévy flights.

2. For each cuckoo, evaluate the fitness

of the new solution.

3. For each cuckoo, replace the old so-

lution with the new one if it’s better.

4. For each cuckoo, some solutions are

randomly abandoned (cuckoos lay

eggs in other nests).

Lévy Flights:

1. Used for exporing solution space ef-

ficiently.

2. Lévy flights introduce randomness

while taking larger steps in random

directions.

Lévy Flight Equation:

1. Generate step size using the Lévy

distribution.
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2. Update position using the current

position and step size.

Termination:

1. Check convergence criteria (iter-

ations, fitness, solution improve-

ment).

2. If convergence is met, terminate;

otherwise, continue to the next it-

eration.

Repeat:

1. If not converged, increment the iter-

ation count and repeat the iteration

process.

Final Result:

1. Once terminated, the best solution

found among the cuckoos repre-

sents the optimal solution according

to the algorithm.

The pseudo-code for Cuckoo Search algo-
rithm
Objective function: TC(x), x �

{x0
1
, x0

2
, · · · , x0

d}, population size, tmax ;

Initialize: population of n host nests

xi(1 ≤ i ≤ n);
while(t < tmax or convergence criterion)

Get a cuckoo randomly (say, i) by Lévy

distribution;

Evaluate its fitness value Fi ;

Choose a nest among n (say, j) randomly;

Evaluate its fitness value Fj ;

if (Fi > Fj)
replace j by the new solution;

end if
Abandon a fraction (Pa) of worse nests

and built new ones;

Keep the best solutions/nests;

Rank the solutions/nests and find the

current best;

Rank the solutions/nests and find the

current best;

end while
Output: If the stopping criterion is met, then

p∗ is the best global solution found so far.

8. Results and Discussion

In this section, several numerical examples are

given to perform the sensitivity analysis of the

stationary system performance indices of the

proposed single server finite capacity service

system for various intricate system parame-

ters. The numerical results and illustrations

are outlined in Figs. 1–4, which showcase the

influence of several system parameters on the

key system performance indices, namely, the

mean number of customers in the service sys-

tem (LS), and throughput of the service system

(τp).

For illustrations, we standardize the capac-

ity of the service system as K � 15 and thresh-

old T � 7. The other system parameters are

fixed as follows: λ � 1.5, ξ � 0.7, μb � 3.0,

μd � 1.5, ψ � 1.0, α � 0.01, β � 8.0. In

Figs. 1 and 2, we illustrate the line graphs for

the mean number of customers in the service

system w.r.t. λ and μb , respectively, for the

varied parametric values of design parameters

T, ξ, α, and ψ. It is easy to observe that LS

shows a growing trend on increasing values of

λ and the reverse effect on increased values of

μb as intuitively expected. For the fixed value

of λ, an increasing trend is observed for the

higher values of T, ξ, and α as in Fig. 1. Nev-

ertheless, at the same time, the reverse trend is

observed in the case of ψ. Similarly, in Fig. 2-

(iv), it is observed that for the definite values
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Figure 1 Effect of Varied (i) T, (ii) ξ, (iii) α, and (iv) ψ w.r.t. λ on Mean Number of Customers in the Service

System

of μb and increasing ψ, LS is decreasing. It

is apparent from the fact that as the pressure

factor increases, the active servers’ service rate

increases, which results in a decreasing trend

in LS.

The influence of system parameters λ and

μb on the throughput (τp) of the service sys-

tem is depicted in Figs. 3 and 4, respectively,

as bar graphs. These figures provide a better

and more important understanding to the sys-

tem analysts on distinguishing the variations

of throughput of the service system w.r.t. to

various system parameters value. Throughput

gives the mean number of customers served

by the server either in normal mode or par-

tial breakdown state; subsequently, it increases

when the number of arrivals in the service sys-

tem increases and the service rate increases.

The parameter ξ positively affects through-

put, as shown in Figs. 3(ii) & 4(ii), whereas

T and α negatively that can be observed in

Figs. 3(i) & (iii) and Figs. 4(i) & (iii). Moreover,

τp is the least sensitive w.r.t. ψ, which results

in a minor change with higher values of ψ, as

presented in Figs. 3(iv) & 4(iv).

Besides the earlier fixed default value of

system parameters, the default values of sev-

eral cost elements are also considered as Ch �
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Figure 2 Effect of Varied (i) T, (ii) ξ, (iii) α, and (iv) ψ w.r.t. μb on Mean Number of Customers in the Service

System

5, Cd � 60, Cb � 250, Ci � 170; Cμb � 2,

Cμd � 17, and Cw � 100 to analyze studied

service system economically. For the various

combinations of default parameters, Figs. 5

and 6 depict the variation in the value of the

mean cost (TC) of the system, given in Eq. (30).

Fig. 5(i) characterizes the variation on TC for

increasing values of T and λ, revealing that

the mean cost (TC) enhances as intuitively ex-

pected. From Figs. 5(ii) & (iv), we notice that

for higher values of combinations (λ, ξ) and

(λ, ψ), the mean cost TC is deduced rapidly

in comparison to Fig. 5(iii). This trend can be

attributed to the decrease in the expected num-

ber of customers in the service system caused

by balking and the pressure coefficient. Cor-

respondingly, TC significantly raises with the

higher values of parameters μb and T as in

Fig. 6(i). In Fig. 6(ii), it is noticeable that,

first, the TC increases more rapidly w.r.t. pos-

itively varied (ξ, μb) and remains almost con-

stant later. Similar findings are exhibited for

the remaining figures as well. Our findings

highlight the intricate interplay of factors like

arrival rates, service rates, breakdown proba-

bilities, and recovery policies on the system’s

efficiency and cost-effectiveness.

Therefore, all of these statistics incite that
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Figure 3 Effect of Varied (i) T, (ii) ξ, (iii) α, and (iv) ψ w.r.t. λ on the Throughput of the Service System

the default parametric values used here are

praiseworthy in decision making, planning,

and designing the service system, which plays

a significant role in the development of the

governing model. From the results provided

in the above Figs. 1–6, it is perceived that

there is a strategic need to estimate the op-

timal operating policy to minimize the mean

cost incurred in the service system. Gener-

ally, it is highly typical to evaluate the analyt-

ical and closed-form of μ∗b and μ∗d , because of

the high order complexity and non-linearity in-

volved in the cost optimization problem. The

trend for incurred TC w.r.t. to the system de-

sign parameters μb and μd respectively, have

been calculated numerically with the help of

Figs. 7–9. In this context, the values of dif-

ferent default system parameters and perfor-

mance associated unit cost, are considered as

follows: K � 20; T � 10; λ � 4.0, ξ � 0.3,

ψ � 1.0, α � 0.2, β � 3.0, Ch � 130, Cd � 60,

Cb � 100, Ci � 350, Cμb � 5, Cμd � 35, and

Cw � 100. The lower and upper limits of

the decision/system design parameters μb and

μd are taken as [2 20] and [1 7] respectively.

From Fig. 7, the conclusion be inferred that

the mean cost TC(μb , μd) is convex in nature

as intuitively anticipated. Optimizing service
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Figure 4 Effect of Varied (i) T, (ii) ξ, (iii) α, and (iv) ψ w.r.t. μb on the Throughput of the Service System

system performance hinges on effective cost al-

location. Numerical experiments and graphs

reveal cost variations, refining parameters for

convex cost function graphs. Costs directly

impact outcomes, as shown in the graphs.

Nature-inspired optimization computes opti-

mal costs and design parameters, confirmed in

tables. A careful cost consideration, combined

with experimentation, offers a comprehensive

understanding of their impact. Our approach

draws from prior research articles.

To calculate the optimal combinations of

the design decision parameters μb and μd , the

nature-inspired optimization technique: par-

ticle swarm optimization (PSO), and cuckoo

search (CS) algorithm are utilized. The results

are compared with the results of the quasi-

Newton method. The results delineated in

Figs. 8–10 infer the convex nature of cost func-

tion w.r.t. to decision parameters. Several gen-

erations of the PSO algorithm have also been

depicted in Fig 11 to display the robustness and

working nature of the PSO algorithm. These

results show that the mean cost of the service

system w.r.t. combined values of continuous

system design parameters, μb and μd , is opti-

mal, and the used algorithm plays an essential

role in providing converging results.
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Figure 5 Mean Cost (TC) w.r.t. Varied (i) (T, λ), (ii) (ξ, λ), (iii) (λ, α), and (iv) (ψ, λ)
Table 1 Iterations of QN method in Finding the Optimal Values of μb and μd

Number of iterations μd μb TC(μb , μd)
0 3.000000 12.000000 549.252374

1 2.005001 11.651540 530.572348

2 2.307443 10.644663 527.526168

3 2.212510 10.519532 526.369986

4 2.175001 10.475921 526.289346

5 2.181594 10.460087 526.285852

6 2.181004 10.457057 526.285811

7 2.180910 10.456292 526.285810

8 2.180910 10.456295 526.285810

9 2.180910 10.456296 526.285810

10 2.180910 10.456297 526.285810

11 2.180910 10.456297 526.285810

Next, we also provide numerous simula-

tions w.r.t. several combinations of system

parameters to validate the converging results

and the convexity of the formulated cost func-
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Figure 6 Mean Cost (TC) w.r.t. Varied (i) (T, μb), (ii) (ξ, μb), (iii) (μb , α), and (iv) (μb , ψ)
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Figure 7 Mean Cost (TC) w.r.t. Decision Variables μb and μd
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Figure 8 Contour Plot for TC w.r.t. Varied μb and μd

Figure 9 Three Dimensional Contour Plot for Mean Cost (TC) w.r.t. Varied μb and μd
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Figure 10 Surface Plot for TC w.r.t. Varied (μb , μd )

Figure 11 PSO Algorithm’s Different Generations
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Table 2 Optimal Values of μb and μd with Optimal Expected Cost Value TC∗ using QN Method

(λ, ξ, α, β) (3.8,0.3,0.2,3.0) (4.0,0.3,0.2,3.0) (4.2,0.3,0.2,3.0) (4.0,0.4,0.2,3.0) (4.0,0.5,0.2,3.0)

(μ0
d , μ

0
b) (3,12) (3,12) (3,12) (3,12) (3,12)

Total Iterations 10 11 14 12 15

μ∗d 2.062034 2.18090 2.300244 2.982308 3.808015

μ∗b 10.642130 10.456297 10.278914 9.384290 8.486856

TC(μ∗d , μ∗b) 524.706586 526.28581 528.034607 540.489366 558.81171

∂TC
∂μd

–0.957199 –0.707379 –0.695862 –5.273421 –9.221684

∂TC
∂μb

–0.264034 –0.421598 –0.565635 –0.959683 –1.510192

Table 3 Optimal Values of μb and μd with Optimal Expected Cost Value TC∗ using QN Method

(λ, ξ, α, β) (4.0,0.3,0.1,3.0) (4.0,0.3,0.15,3.0) (4.0,0.3,0.1,4.0) 4.0,0.3,0.1,3.5) (4.0,0.3,0.1,2.5)

(μ0
d , μ

0
b) (3,12) (3,12) (3,12) (3,12) (3,12)

Total Iterations 14 12 11 13 14

μ∗d 2.246358 2.205677 2.254851 2.251055 2.240368

μ∗b 8.623722 9.647259 8.539841 8.576771 8.685731

TC(μ∗d , μ∗b) 497.738489 513.662107 495.710162 496.603728 499.234312

∂TC
∂μd

2.743551 1.027515 2.787818 2.771251 2.695925

∂TC
∂μb

–0.565639 –0.513366 –0.571368 –0.569079 –0.560221

Table 4 Optimal Values of μ∗b and μ∗d with Minimal Expected Cost TC∗ using PSO Algorithm

(K,T ,λ,ξ,α,β) μ∗
d

μ∗
b

TC∗(μ∗
b
, μ∗

d
) mean

{
TCi
TC∗

}
max

{
TCi
TC∗

}
CPU time

(20, 10, 4.0, 0.3, 0.2, 3.0) 2.180950 10.456491 526.285810 1.0000000020 1.0000000046 294.88

(25, 10, 4.0, 0.3, 0.2, 3.0) 2.205506 10.035226 517.335965 1.0000000033 1.0000000093 475.34

(30, 10, 4.0, 0.3, 0.2, 3.0) 2.226941 9.698844 510.423085 1.0000000115 1.0000000332 438.36

(20, 8, 4.0, 0.3, 0.2, 3.0) 2.368139 7.890944 471.088229 1.0000000090 1.0000000021 290.35

(20, 10, 3.8, 0.3, 0.2, 3.0) 2.062034 10.642108 524.706586 1.0000000005 1.0000000014 288.39

(20, 10, 4.2, 0.3, 0.2, 3.0) 2.300265 10.278137 528.034607 1.0000000041 1.0000000117 287.64

(20, 10, 4.0, 0.4, 0.2, 3.0) 2.982303 9.384467 540.489366 1.0000000177 1.0000000486 287.64

(20, 10, 4.0, 0.5, 0.2, 3.0) 3.808010 8.486571 558.811711 1.0000000071 1.0000000209 288.38

(20, 10, 4.0, 0.3, 0.10, 3.0) 2.246466 8.622392 497.738492 1.0000000056 1.0000000147 287.85

(20, 10, 4.0, 0.3, 0.15, 3.0) 2.205811 9.646706 513.662109 1.0000000007 1.0000000014 287.74

(20, 10, 4.0, 0.3, 0.1, 2.5) 2.240297 8.685781 499.234313 1.0000000029 1.0000000072 287.47

(20, 10, 4.0, 0.3, 0.1, 3.5) 2.251017 8.578444 496.603730 1.0000000041 1.0000000069 287.44

(20, 10, 4.0, 0.3, 0.1, 4.0) 2.254923 8.538948 495.710164 1.0000000026 1.0000000056 287.26

tion (30) in Tables 1–5. We have incorpo-

rated the semi-classical optimizer: QN method

and meta-heuristics like PSO and CS algo-

rithm. Because the PSO algorithm does not in-

volve the computation of gradients, it is an ap-

propriate technique to calculate the optimum

of single/multi-modal optimization problems.

The advantage of the meta-heuristics like PSO

and CS algorithms is that these can be em-

ployed to examine the optimal values of deci-
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Table 5 Optimal Values of μ∗b and μ∗d with Minimal Expected Cost TC∗ using CS Algorithm

(K,T ,λ,ξ,α,β) μ∗
d

μ∗
b

TC∗(μ∗
b
, μ∗

d
) mean

{
TCi
TC∗

}
max

{
TCi
TC∗

}
CPU time

(20, 10, 4.0, 0.3, 0.2, 3.0) 2.180949 10.456489 526.285810 1.0000000139 1.0000000251 320.71

(25, 10, 4.0, 0.3, 0.2, 3.0) 2.205506 10.035226 517.335965 1.0000000105 1.0000000263 512.84

(30, 10, 4.0, 0.3, 0.2, 3.0) 2.226941 9.698844 510.423086 1.0000000451 1.0000000659 649.73

(20, 8, 4.0, 0.3, 0.2, 3.0) 2.368204 7.890913 471.088229 1.0000000223 1.0000000247 329.51

(20, 10, 3.8, 0.3, 0.2, 3.0) 2.062093 10.642086 524.706586 1.0000000045 1.0000000074 338.13

(20, 10, 4.2, 0.3, 0.2, 3.0) 2.300295 10.278109 528.034608 1.0000000087 1.0000000135 350.62

(20, 10, 4.0, 0.4, 0.2, 3.0) 2.982291 9.384449 540.489367 1.0000000197 1.0000000502 309.67

(20, 10, 4.0, 0.5, 0.2, 3.0) 3.808075 8.486598 558.811711 1.0000000098 1.0000000179 310.88

(20, 10, 4.0, 0.3, 0.1, 3.0) 2.246501 8.622378 497.738493 1.0000000129 1.0000000213 325.11

(20, 10, 4.0, 0.3, 0.15, 3.0) 2.205852 9.646717 513.662111 1.0000000012 1.0000000025 314.54

(20, 10, 4.0, 0.3, 0.1, 2.5) 2.240315 8.685793 499.234313 1.0000000054 1.0000000096 299.38

(20, 10, 4.0, 0.3, 0.1, 3.5) 2.251009 8.578429 496.603730 1.0000000076 1.0000000104 305.15

(20, 10, 4.0, 0.3, 0.1, 4.0) 2.254927 8.538941 495.710164 1.0000000045 1.0000000062 307.69

sion variables whether discrete or continuous.

The parametric values of the system compo-

nents are taken as the same as in the previous

simulation to demonstrate the converging re-

sults. The PSO algorithm pertinent parameters

are fixed as c1 � 2, c2 � 2 andΩ � 0.5. We con-

ventionally fix the lower and upper bounds for

μb and μd as [5.0 15.0] and [2.0 5.0] respec-

tively, and obtained the optimal operating de-

cision parameters in Table 4 up to the tenth

place of decimal. The numerical results in Ta-

ble 4 are depicted by considering 20 indepen-

dent runs with 100 generations in each run and

50 particles generated randomly for each PSO

simulation. For the validity purpose, we have

also used the notion of statistical characteris-

tics: mean-ratio and maximum-ratio of the op-

timal mean cost for all independent runs, to

show the robustness of the proposed PSO al-

gorithm.

For a better understanding of the research

findings, a comparative study between the QN,

PSO, and CS algorithm is accomplished for

several combinations of system parameters in

Tables 1-5. The computation time among all

the iterations and optimal results are funda-

mental aspects for comparing the efficacy and

effectiveness of an algorithm. So inspired by

this, we have used both in each table with each

combination of system parameters. It is ob-

served that the calculated optimal values of

design parameters and mean cost by the pro-

posed algorithms QN, PSO, and CS algorithm

are almost equivalent. The CPU time (in sec-

onds) for the PSO algorithm is slightly less

than the CS algorithm in each iteration. The

associated mean cost enlisted by the PSO algo-

rithm meets the optimality considerably and

efficiently for all considered test instances. The

results of the PSO algorithm are also superior

to the QN method, for each numerical exam-

ple. Newton’s method involves the compu-

tation of gradient for calculating the Hessian.

We obtain gradient numerically due to the high

non-linearity and complexity of the optimiza-

tion problem. It includes the high-scale esti-

mation, which minimizes the efficacy of the

algorithm.
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While both the PSO algorithm and the

CS method are nature-inspired optimization

techniques, several reasons explain why the

cuckoo search method often performs less

efficiently than the PSO technique. Firstly,

the cuckoo search approach could result in

a slower rate of convergence and additional

computational/processing costs due to its sig-

nificant reliance on the random walk concept

and the random selection of host nests. Addi-

tionally, the lack of social interaction between

particles in the cuckoo search method, which

allows particles to communicate information

about their optimal placements and facilitates a

more effective search of the search space, can be

considered a disadvantage compared to parti-

cle swarm optimization. Lastly, PSO integrates

velocity updates resulting from both personal

and communal understanding, enabling par-

ticles to continuously adjust their trajectory,

while the cuckoo search approach relies mostly

on stochastic perturbations, thereby limiting

its capacity to effectively converge to opti-

mal solutions. Hence, from the above ex-

amples/numerical experiments and delibera-

tions, it can be concluded that the PSO al-

gorithm effectively provides optimal results

compared to the CS algorithm and the quasi-

Newton method. It is also noted that the op-

timum setup of system design parameters is

essential to reduce the mean cost required in

rendering service to potential customers.

9. Conclusion and Scope of the Future

The uniqueness of the current work is to

observe the interplay among several queue-

ing characteristics, viz customer impatience,

threshold recovery policy, and partial server

breakdown under the pressure condition,

on the operational capability and perfor-

mance of the service system. The Chapman-

Kolmogorov differential-difference equations

have been provided for modeling purposes by

capturing the system dynamics. The steady-

state probability distribution has been derived

using the matrix method analytically. The an-

alytical foundation enables to show the qual-

ity performance of the service system. Hence-

forth, numerous system performance indices

have been provided. A pivotal aspect of

the research involved formulating the mean

cost function and the associated cost opti-

mization problem, enabling economic analysis

of the system. To address this, the nature-

inspired optimizer, PSO, and CS algorithm

have been used for the numerical illustration

of cost analysis. Comparative analyses were

conducted, not only against the semi-classical

Quasi-Newton (QN) optimizer but also be-

tween the CS and PSO algorithms to depict the

optimal operating combination (i.e ., optimal

service rates μ∗b and μ∗d) with the minimal mean

cost TC∗ of the service system. The present

study is mainly based on efficient resource uti-

lization of real-life queueing-based service sys-

tems. This research provides essential theoret-

ical and practical contributions to service sys-

tems that can be replicated in an organization

with limited resources facing the challenge of

queues. As a practical aspect, the insights de-

rived from this study can help decision-makers

take the necessary actions to reduce the overall

cost of the service systems. Looking forward,

this study serves as a stepping stone for future

research endeavors. In addition to the substan-

tial insights in this research, there are many
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other queueing notions, such as MRP, working

vacation, general arrival/service pattern, etc.,

that present future research opportunities for

academics, managers, and policymakers ex-

panding our understanding of service system

optimization and resource management.
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